数学建模期末试卷答案

合集下载

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。

3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。

二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。

作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。

2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。

将二维向量k s =(k x ,k y )定义为状态。

安全渡河条件下的状态集合称为允许状态集合,记做S 。

数学建模期末试卷答案

数学建模期末试卷答案

课程名称:数学实验与数学建模主讲教师:唐向阳学号 2010212569姓名凌泽广成绩:2012《数学模型》考试试题一、(20分)某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为3万公斤。

已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。

而原材料的消耗为:每捆原稿纸用白坯纸10/3公斤,每打笔记本用白坯纸40/3公斤,每箱练习本用白坯纸80/3公斤。

生产一捆原稿纸可获利2元,生产一打笔记本可获利3元,生产一箱练习本可获利1元。

(1)试确定在现有生产条件下的最优生产方案。

(2)如白坯纸的供应量不变,当工人数不足时可招收临时工,临时工的工资支出为每人每月40元,问:要不要招收临时工?解(1):建立模型:设每月生产原稿纸x捆,每月生产笔记本y打,每月生产练习本z箱,用Max f来表示造纸厂获利的最大值,那么根据题意有如下线性规划模型,Max f=x*2+y*3+z*1且x,y,z满足如下不等式:Max f=2x+3y+zx/30+y/30+z/30<=10010x/3+40y/3+80z/<=30000x>=0,y>=0,z>=0利用mathematica 软件包求解上述不等式:运行程序ConstrainedMax[2x+3y+z,{x+y+z≤3000,x+4y+8z≤9000,x≥0,y≥0,z≥0},{x,y,z}]运行结果如下:{8000,{x→1000,y→2000,z→0}}故可知,当生产原稿纸为1000捆,生产笔记本2000打,生产练习本0箱时,此时造纸厂所获得的利润最大,最大为8000元(2)建立模型:如果造纸厂每月所招进来的每名临时工人所创造的利润大于每个月的工资,那么造纸厂就可以招收临时工人,现假设需要招收m名临时工人,那么总共就有由于白坯100+m名工人,设每月有x1名工人用来生产原稿纸,有x2名工人用来生产笔记本,有,x3名工人用来生产练习本,由于纸的供应量不变,此时设造纸厂所获得的最大利润为Max g,依据题意可知有如下线性规划模型,Max g=60x+90y+30z-40m且x,y,z,m满足如下不等式:x+y+z<=100+m30x*10/3+30y*40/3+30z*80/3<=30000x,y,z,m>=0x,y,z<=100+m利用mathematica软件包求解上述程序,运行程序:ConstrainedMax[60x+90y+30z-40m,{x+y+z<=100+m,x+4y+8z≤300, x≥0,y≥0,z≥0,x≤100+m,y≤100+m,z≤100+m,m≥0},{x,y,z,m}]得到结果:{10000,{x→300,y→0,z→0,m→200}}由此可知,此时造纸厂所获得的最大利润为10000元,所需要招收的临时工为200人;那么此时每名临时工人每月为公司所带来的利润为:10000/200=50>40,因此可知:造纸厂可以招收临时工。

《数学建模》试卷及答案_高中数学选择性必修第三册_人教A版_2024-2025学年

《数学建模》试卷及答案_高中数学选择性必修第三册_人教A版_2024-2025学年

《数学建模》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、一个长方体的长、宽、高分别为3, 4, 5,求其体积。

A、60B、20C、12D、92、在建立数学模型时,以下哪种方法通常用于确定数学模型的形式?()A. 观察法B. 理论分析法C. 统计分析法D. 模拟法3、在建立数学模型的过程中,以下哪个步骤不是必须的?A、收集数据B、提出假设C、建立方程D、验证模型4、某中学数学建模小组对某一社区的家用车流量进行了模型分析。

若该社区每小)],其中(t)时通过的家用车流量(单位:辆/h)满足以下关系:[f(t)=100+5sin(πt12(单位:小时)是从12:00开始的时间,那么该社区15:00至16:00之间通过的家用车流量估计为多少辆?A、105B、103C、101D、995、在数学建模过程中,以下哪种方法被用于解决实际问题中的系统优化问题?A. 逻辑推理法B. 据统计法C. 线性规划法D. 递归分析法6、某工厂生产某种产品,已知每生产x件产品,需要原材料费1000元,生产成本每件30元。

若工厂以每件50元售出,问工厂至少要生产多少件产品才能保证不亏损?A)25件B)30件C)35件D)40件7、(2019·江苏卷)某校学生在校参加社团活动的频率与每周用于社团活动的平均时间如下表所示:次数1次2次3次4次5次及5次以上时间(小时) 5.5810.51317根据上述数据,若该生下周参加1次社团活动,则其下周用于社团活动的平均时间为 ______ 小时。

A. 9B. 10C. 11D. 128、某城市出租车计费规则如下:起步价为10元,包含前3公里;超过3公里后,每增加1公里加收2元,不足1公里按1公里计算。

若乘客乘坐出租车行驶了x公里(x > 3),则乘客应付的车费y(元)与行驶距离x(公里)之间的函数关系式为:A. y = 10 + 2(x - 3)B. y = 10 + 2xC. y = 2x - 6D. y = 12 + 2(x - 3)二、多选题(本大题有3小题,每小题6分,共18分)1、(5分)以下关于数学建模的说法中,正确的是:A. 数学建模是一种将实际问题转化为数学问题的过程B. 数学建模只适用于数学专业,其他专业无需涉及C. 数学建模需要运用数学知识、计算机技术以及实际应用背景D. 数学建模的目的是为了找到问题的最优解2、某市计划在城市中心建立一个大型公园,以提高市民的生活质量。

数学模型(专升本)期末考试答案

数学模型(专升本)期末考试答案

数学模型(专升本)期末考试答案1. (单选题) 说明某事物内部各组成部分所占比例应选____。

(本题2.0分)A、率B、构成比C、相对比D、标准差标准答案:B解析:得分: 22. (单选题) 两样本均数比较用t检验,其目的是检验( )(本题2.0分)A、两样本均数是否不同B、两总体均数是否不同C、两个总体均数是否相同D、两个样本均数是否相同标准答案:C解析:3. (单选题) 人该指标的数值,为推断这组人群该指标的总体均值μ与μ0之间的差别是否有显著性意义,若用t检验,则自由度应该是(本题2.0分)A、 5B、28C、29D、 4标准答案:C解析:4. (单选题) 正态分布曲线下,横轴上,从μ-1.96σ到μ+1.96σ的面积为(本题2.0分)A、95%B、49.5%C、99%D、97%标准答案:A解析:5. (单选题) 两样本均数间的差别的假设检验时,查t界值表的自由度为(本题2.0分)A、n-1B、(r-1)(c-1)C、n1+n2-2D、 1标准答案:C解析:6. (单选题) 最小二乘法是指各实测点到回归直线的( )(本题2.0分)A、垂直距离的平方和最小B、垂直距离最小C、纵向距离的平方和最小D、纵向距离最小标准答案:C解析:7. (单选题) 对含有两个随机变量的同一批资料,既作直线回归分析,又作直线相关分析。

令对相关系数检验的t值为tr,对回归系数检验的t值为tb,二者之间具有什么关系?( )(本题2.0分)A、tr>tbB、tr<tbC、tr= tbD、二者大小关系不能肯定标准答案:C解析:8. (单选题) 设配对资料的变量值为x1和x2,则配对资料的秩和检验( )(本题2.0分)A、分别按x1和x2从小到大编秩B、把x1和x2综合从小到大编秩C、把x1和x2综合按绝对值从小到大编秩D、把x1和x2的差数按绝对值从小到大编秩标准答案:D解析:9. (单选题) 四个样本率作比较,χ2>χ20.05,ν可认为( )(本题2.0分)A、各总体率不同或不全相同B、各总体率均不相同C、各样本率均不相同D、各样本率不同或不全相同标准答案:A解析:10. (单选题) 某学院抽样调查两个年级学生的乙型肝炎表面抗原,其中甲年级调查35人,阳性人数4人;乙年级调查40人,阳性人数8人。

数学建模期末试题及答案

数学建模期末试题及答案

数学建模期末试题及答案1. 题目描述这是一份数学建模期末试题,包含多个问题,旨在考察学生对数学建模的理解和应用能力。

以下是试题的具体描述及答案解析。

2. 问题一某城市的交通流量与时间呈周期性变化,根据历史数据,可以得到一个交通流量函数,如下所示:\[f(t) = 100 + 50\sin(\frac{2\pi}{24}t)\]其中,t表示时间(小时),f(t)表示交通流量。

请回答以下问题:a) 请解释一下该函数的含义。

b) 根据该函数,该城市的最大交通流量是多少?c) 在哪个时间段,该城市的交通流量较低?【解析】a) 该函数表示交通流量f(t)随时间t的变化规律。

通过观察函数,可以发现交通流量与时间的关系是周期性变化,每24小时一个周期。

函数中的sin函数表示交通流量在周期内的变化,振幅为50,即交通流量的最大值与最小值之差为50。

基准流量为100,表示在交通最不繁忙的时刻,流量为100辆。

b) 最大交通流量为基准流量100辆与振幅50辆之和,即150辆。

c) 交通流量较低的时间段为振幅为负值的时刻,即最小值出现的时间段。

3. 问题二某学校的图书馆借书规则如下:- 学生每次最多可以借5本书,每本书的借阅期限为30天。

- 学生可以在借阅期限结束后进行续借,每次续借可以延长借阅期限30天。

请回答以下问题:a) 一个学生在10天内连续借了3次书,分别是2本、3本和4本,请写出该学生在每次借书后的总借书数。

b) 如果一个学生借了5本书,每本都是在借阅期限后进行续借,借了10年,最后一次续借后,该学生一共续借了几次书?【解析】a) 总的借书数为每次借书的累加和。

学生第一次借2本,总共借书数为2本;第二次借3本,总共借书数为2 + 3 = 5本;第三次借4本,总共借书数为5 + 4 = 9本。

b) 学生每本书借阅期限为30天,10年为3650天,每次借书续借可以延长借阅期限30天。

因此,学生续借次数为10年÷30天= 121次。

数学建模期末答案

数学建模期末答案

《数学建模》期末考试A卷姓名:专业:学号:学习中心:成绩:一、判断题(每题3分,共15分)1、模型具有可转移性。

------------------------------(√)2、一个原型,为了不同的目的可以有多种不同的模型。

------(√)3、一个理想的数学模型需满足模型的适用性和模型的可靠性。

---------------------------------------------(√)4、力学中把质量、长度、时间的量纲作为基本量纲。

-------(√)5、数学模型是原型的复制品。

-------------------- (×)二、不定项选择题(每题3分,共15分)1、下列说法正确的有AC 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解不清楚。

2、建模能力包括ABCD 。

A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力3、按照模型的应用领域分的模型有AE 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型4、对黑箱系统一般采用的建模方法是 C 。

A、机理分析法B、几何法C、系统辩识法D、代数法5、一个理想的数学模型需满足AC 。

A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性三、用框图说明数学建模的过程。

(10分)四、建模题(每题15分,共60分)1、四条腿长度相等的椅子放在起伏不平的地面上,4条腿能否同时着地?解:4条腿能同时着地(一)模型假设对椅子和地面都要作一些必要的假设:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设:(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

青岛理工大学数学建模期末考试题目及答案详解

青岛理工大学数学建模期末考试题目及答案详解

青岛理工大学数学建模期末考试题目及答案详解1、30、等腰三角形ABC中,AB=2BC,且BC=12,则△ABC的周长为( ). [单选题]A. 48B. 60(正确答案)C. 48或60D. 362、11.11点40分,时钟的时针与分针的夹角为()[单选题] *A.140°B.130°C.120°D.110°(正确答案)3、33、点P(-5,-7)关于原点对称的点的坐标是()[单选题] *A. (-5,-7)B. (5,7)(正确答案)C. (5,-7)D. (7,-5)4、12.下列方程中,是一元二次方程的为()[单选题] *A. x2+3xy=4B. x+y=5C. x2=6(正确答案)D. 2x+3=05、16.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高时,气温变化记作,那么气温下降时,气温变化记作()[单选题] *A.-10℃(正确答案)B.-13℃C.+10℃D.+13℃6、260°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限7、函数f(x)=-2x+5在(-∞,+∞)上是()[单选题] *A、增函数B、增函数(正确答案)C、不增不减D、既增又减8、24.下列各数中,绝对值最大的数是()[单选题] *A.0B.2C.﹣3(正确答案)D.19、8、下列判断中:1.在平面内有公共原点而且互相垂直的两条数轴,就构成了平面直角坐标系;2.坐标平面内所有的点与所有实数之间是一一对应的;3.在直角坐标平面内点(x,y)与点(y,x)表示不同的两点;4.原点O的坐标是(0,0),它既在x轴上,又在x轴上。

其中错误的个数是()[单选题] *A.1B.2(正确答案)C.3D.410、的单调递减区间为()[单选题] *A、(-1,1)(正确答案)B、(-1,2)C、(-∞,-1)D、(-∞,+∞)11、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B、33C、16D、412、4.在﹣,,0,﹣1,4,π,2,﹣3,﹣6这些数中,有理数有m个,自然数有n 个,分数有k个,则m﹣n﹣k的值为()[单选题] *A.3(正确答案)B.2C.1D.413、5.下列说法中正确的是()[单选题] *A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数(正确答案)D.有最小的自然数,也有最小的整数14、-2/5角α终边上一点P(-3,-4),则cosα=()[单选题] *-3/5(正确答案)2月3日-0.333333333-2/5角α终边上一点P(-3,-4),则tanα=()[单选题] *15、17.已知的x∈R那么x2(x平方)>1是x>1的()[单选题] *A.充分不必要条件B.必要不充分条件(正确答案)C.充分必要条件D.既不充分也不必要条件16、1.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为()[单选题] *A.(0,-2)B.(2,0)(正确答案)C.(4,0)D.(0,-4)17、下列说法正确的是[单选题] *A.一个数前面加上“-”号,这个数就是负数B.零既不是正数也不是负数(正确答案)C.零既是正数也是负数D.若a是正数,则-a不一定是负数18、19.如图,共有线段()[单选题] *A.3条B.4条C.5条D.6条(正确答案)19、y=kx+b(k是不为0的常数)是()。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

东北师范大学数学建模课程期末考试通过必备真题库及答案4

东北师范大学数学建模课程期末考试通过必备真题库及答案4

《数学建模课程》练习题一答案一、填空题: 1.;)()0(,00rt e x t x x x rx dtdx =⇒== 2. 80; 3. .2090,19**=≈Q T4、图中奇点个数为0或2.5. .)1(1)()0(),1(00rtm m m e x x x t x x x x x rx dt dx --+=⇒=-=6. ),10(,/)10(0C T P T Kn N ≥-= K 是比例常数; 7、%)1ln(/2ln x +; 8、42.9.0.1()100;t x t e = 10. 25p =;二、分析判断题:1、1)要研究的问题:如何设置四部电梯的停靠方式,使之发挥最大效益2)所需资料为:每天早晨乘电梯的总人数、各层上、下电梯的人数、电梯的速度、楼层的高度、层数等3)要做的具体建模前期工作:观察和统计所需资料,一般讲,需要统计一周内每天的相关资料4)可以建立概率统计模型,亦可在适当的假设下建立确定性模型2、根据题意可知:下一年病人数==当年患者数的一半+新患者.于是令n X 为从2000年起计算的n 年后患者的人数,可得到递推关系模型:10005.01+=+n n X X由,12000=X 可以算出2005年时的患者数19755=X 人.递推计算的结果有,).211(2000210nn n x X -+= 容易看出,,2000→n n X X ,且是单调递增的正值数列故结论正确.3. (1)车流的密度 (2)车的行驶速度 (3)道路的宽度 (4)行人穿越马路的速度(5)设置斑马线地点的两侧视野等。

4. (1)因为可行域的右上方无界,故将出现目标函数趋于无穷大的情形,结果是问题具有无界解;(2)将最优解代入约束条件可知第二个约束条件为严格不等式,而其他为严格等式。

这说明,铁和钙的摄入量达标,而蛋白质的摄入量超最低标准18个单位。

5、穿高跟鞋后新的比值应为0.6.x d l d l d l d++=++ 令0.60.618l d l d +=+, 由此可解得7.54().d cm =三、应用题:1、先建立模型(图1),然后使用双标号法求解,得到图2。

《数学建模》期末考试试卷一与参考答案

《数学建模》期末考试试卷一与参考答案

《数学建模》期末考试试卷 班级 姓名 学号一、(15分)以色列的某社区联盟,其农业生产受农田面积和灌溉配水量的限制,其资料如表1所示,适合该地区种植的农作物有甜菜、棉花和栗子,其每英亩的期望净收益、用水量及可种植的最大面积如表2所示。

表1 农田面积和灌溉配水量 表2 农作物期望净收益、用水量试问,该社区联盟应如何安排这三种农作物的生产,方使总的收益最大?建立线性规划问题的数学模型并写出用LINGO 求解的程序。

二、(15分)用单纯形方法求解线性规划问题。

⎪⎩⎪⎨⎧≥≥≥≤++≤++++=000242126042..61314S max 321321321321x x x x x x x x x t s x x x ;;三、(15分)上海红星建筑构配件厂是红星集团属下之制造建材设备的专业厂家。

其主要产品有4种,分别用代号A 、B 、C 、D 表示,生产A 、B 、C 、D 四种产品主要经过冲压、成形、装配和喷漆四个阶段。

根据工艺要求及成本核算,单位产品所需要的加工时间、利润以及可供使用的总工时如下表所示:在现有资源的条件下如何安排生产,可获得利润最大?现设置上述问题的决策变量如下:1234,,,x x x x 分别表示A 、B 、C 、D 型产品的日产量,则可建立线性规划模型如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+++≤+++≤+++≤++++++=0,,,300048462000552424005284480..81169max 432143214321432143214321x x x x x x x x x x x x x x x x x x x x t s x x x x z 利用LINGO10.0软件进行求解,得求解结果如下:Global optimal solution found at iteration: 4Objective value: 4450.000 Variable Value Reduced Cost X1 400.0000 0.000000 X2 0.000000 0.5000000 X3 70.00000 0.000000 X4 10.00000 0.000000 Row Slack or Surplus Dual Price 1 4450.000 1.000000 2 0.000000 2.500000 3 610.0000 0.000000 4 0.000000 0.5000000 5 0.000000 0.7500000(1)指出问题的最优解并给出原应用问题的答案;(2)写出线性规划问题的对偶线性规划问题,并指出对偶问题的最优解;(3)灵敏度分析结果如下:Ranges in which the basis is unchanged: Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase Decrease X1 9.000000 0.5000000 0.1666667 X2 6.000000 0.5000000 INFINITY X3 11.00000 0.3333333 1.000000 X4 8.000000 1.000000 1.000000 Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 480.0000 20.00000 80.000003 2400.000 INFINITY 610.00004 2000.000 400.0000 20.000005 3000.000 40.00000 280.0000对灵敏度分析结果进行分析 四、(15分)(1)叙述层次分析法的步骤。

最新数学模型(数学建模)期末试卷及答案详解()

最新数学模型(数学建模)期末试卷及答案详解()

数学建模(数学模型)期末考试卷专业 级《数学模型与数学软件》考核命题卷(含答题卷)(编号1)闭卷)一、综合题(15分)为了研究同类车的刹车距离d (司机想刹车到车停下来所行驶的距离)与刹车时的车速v 之间存在什么样的函数关系,通过多组同条件实验测得一组数据如下表:(车速与距离都是多次实验的平均车速和平均距离)车速 (km/h) 29.3 44.0 58.7 62.2 73.3 88.0 102.7 110.2 117.3 刹车距离(m ) 39.0 76.6 126.2 135.8 187.8 261.4 347.1 388.9444.8 1.(6分)请简述数学建模一般步骤的基本方法。

2.(2分)为了研究刹车距离与车速的关系,需要做哪些资料数据的搜集?3.(7分)请给出合理的假设,建立合适的模型,来研究)(v fd 。

(注:模型不需要求解)二、综合题(16分)在研究存储模型中,设某产品日需求量为常数r ,每次生产为瞬间完成,每次生产的准备费为1c ,并与生产量无关, 每单位时间每件产品贮存费为2c 。

现需要制定最优的生产计划(即最佳的生产周期T 和每周期生产量Q 的确定)。

1.(6分)请简述数学建模的基本方法。

2.(10分)请在合适的假设下,建立不允许缺货的最优生产计划模型。

三、综合题(18分)研究奶制品深加工问题中,有80桶牛奶,共680小时的可利用工作时间,至多能加工80公斤A1产品,其他对于下列关系:1.(12化。

(注:不要求求解结果) 2.(6分)以此题为例,简述线性规划三个特征。

四、综合题(16分)研究治愈即免疫的传染病模型,设每个病人每天有效接触为a ,日治愈率为b ,初始状态下病人数和健康人数占总人数的比值分别为00,s i1(6分)做合适的假设,并建立传染病的SIR 模型;2(10分)写出利用ODE45函数求解此模型的MATLAB 程序代码。

获利44元/千克获利32元/千克五、综合题(20分)研究层次分析法模型,如下图:目标层准则层方案层如果现在已经得到五个准则的成对比较矩阵为:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1135/13/11125/13/13/12/117/14/1557123342/11A 1.(8分)阐述层次分析法的基本步骤;2.(8分)使用和法演算A 矩阵的最大特征值,并求这五个准则对目标层的权向量; 3.(4分)求A 矩阵的一致性指标CI 和CR ,已知12.1)5(=RI 。

(完整版)数学建模期末试卷A及答案

(完整版)数学建模期末试卷A及答案

用。
且阻滞作用随人口数量增加而变大,从而人口增长率 r(x) 是人口数量 x(t) 的的减函数。
假设 r(x) 为 x(t) 的线性函数:
The shortest way to do many things is
r(x) r sx (r 0, s 0)

其中, r 称为人口的固有增长率,表示人口很少时(理论上是 x 0 )的增长率。
在每个生产周期T 内,开始一段时间( 0 t T0 ) 边生产边销售,后一段时间(T0 t T )只销售不 生产,存贮量 q(t) 的变化如图所示。设每次生产开工
费为 c1 ,每件产品单位时间的存贮费为 c2 ,以总费用最小为准则确定最优周 期T ,并讨论 r k 和 r k 的情况。
c(T )
某家具厂生产桌子和椅子两种家具,桌子售价 50 元/个,椅子销售价格 30 元/个,生 产桌子和椅子要求需要木工和油漆工两种工种。生产一个桌子需要木工 4 小时,油漆工 2 小时。生产一个椅子需要木工 3 小时,油漆工 1 小时。该厂每个月可用木工工时为 120 小 时,油漆工工时为 50 小时。问该厂如何组织生产才能使每月的销售收入最大?(建立模型 不计算)(10’)
s r 当 x xm 时人口不再增长,即增长率 r(xm ) 0 ,代入有 xm ,从而有
根据 Malthus 人口模型,有
r(x)
r1
x xm

dx r(1 x )x
dt
xm
x(0) x0
4.(25 分)已知 8 个城市 v0,v1,…,v7 之间有一个公路网(如图所示), 每条公路为图中的边,边上的权数表示通过该公路所需的时间.
(1)设你处在城市 v0,那么从 v0 到其他各城市,应选择什么路径使所需 的时间最短? (1) v0 到其它各点的最短路如下图:

数学建模2福州大学数学自考期末测试及答案

数学建模2福州大学数学自考期末测试及答案

判断题(共40 道试题,共80 分。

)1. 数据的需求是与建立模型的目标密切相关的A. 错误B. 正确满分:2 分2. 有的建模问题可利用计算机求解A. 错误B. 正确满分:2 分3. 独立性检验是检验随机数中前后个数的统计相关性是否显著的方法A. 错误B. 正确满分:2 分4. 数学建模中常遇到微分方程的建立问题A. 错误B. 正确满分:2 分5. 交流中必须学会倾听A. 错误B. 正确满分:2 分6. 相对误差等于绝对误差加测量误差A. 错误B. 正确满分:2 分7. 数学建模以模仿为目标A. 错误B. 正确满分:2 分8. 图示法是一种简单易行的方法A. 错误B. 正确满分:2 分9. 国际上仅有一种单位体系A. 错误B. 正确满分:2 分10. 在建模中要不断进行记录A. 错误B. 正确满分:2 分11. 任何一个模型都会附加舍入误差A. 错误B. 正确12. 变量间关系通常分为确定性与不确定关系A. 错误B. 正确满分:2 分13. 求常微分方程的基本思想是将方程离散化转化为递推公式以求出函数值A. 错误B. 正确满分:2 分14. 回归分析是研究变量间相关关系的统计方法A. 错误B. 正确满分:2 分15. 量纲齐次原则指任一个有意义的方程必定是量纲一致的A. 错误B. 正确满分:2 分16. 人口预测模型用以预测人口的增长A. 错误B. 正确满分:2 分17. 引言是整篇论文的引论部分A. 错误B. 正确满分:2 分18. 系统模拟是研究系统的重要方法A. 错误B. 正确满分:2 分19. 任意齐次线性方程组的基本解组仅有一组A. 错误B. 正确满分:2 分20. 参考文献要反映出真实的科学依据A. 错误B. 正确满分:2 分21. 建模中的数据需求常常是一些汇总数据A. 错误B. 正确满分:2 分22. 样本平均值和理论均值不属于参数检验方法A. 错误B. 正确23. 题面见图片A. 错误B. 正确满分:2 分24. 研究新产品销售模型是为了使厂家和商家对新产品的推销速度做到心中有数A. 错误B. 正确满分:2 分25. 要获得真正理论意义上的最优回归方程是很困难的A. 错误B. 正确满分:2 分26. 题名是人们检索文献资料的第一重要信息A. 错误B. 正确满分:2 分27. 我们研究染色体模型是为了预防遗传病A. 错误B. 正确满分:2 分28. 明显歪曲实验结果的误差为过失误差A. 错误B. 正确满分:2 分29. 模型的成功与否取决于经受住实践检验A. 错误B. 正确满分:2 分30. 恰当的选择特征尺度可以减少参数的个数A. 错误B. 正确满分:2 分31. 通过实验收集和问卷调查等可以获取数据A. 错误B. 正确满分:2 分32. 摘要是对论文内容不加注释和评论的简短陈述A. 错误B. 正确满分:2 分33. 小组讨论要回避责任A. 错误B. 正确34. 建模假设应是有依据的A. 错误B. 正确满分:2 分35. 数学建模的误差是不可避免的A. 错误B. 正确满分:2 分36. 数学建模仅仅设计变量A. 错误B. 正确满分:2 分37. 常见的数据拟合方法有插值法最小二乘法等A. 错误B. 正确满分:2 分38. 建模主题任务是整个工作的核心部分A. 错误B. 正确满分:2 分39. 在构造一个系统的模拟模型时要抓住系统中的主要**素A. 错误B. 正确满分:2 分40. 模型不具有转移性A. 错误B. 正确满分:2 分福建师范2012秋福师《数学建模》在线作业二试卷总分:100 测试时间:--判断题多选题、多选题(共10 道试题,共20 分。

2020-2021《数学建模》期末课程考试试卷B(含答案)

2020-2021《数学建模》期末课程考试试卷B(含答案)

2020-2021《数学建模》期末课程考试试卷B适用专业:信息与计算科学; 考试日期:考试时间:120分钟;考试方式:闭卷;总分100分一.简答题(30分).1. 什么是数学模型?2. 层次分析法的一般步骤是什么?3. 根据模型的应用领域, 数学模型可以分成哪些类型?二、计算题1. (10分)某学校有3个系共有200名学生, 其中甲系103名, 乙系63名, 丙系34名, 若学生代表会议设21个席位. 试用下列方法求出各系应分配的席位数.(1) 按比例分配取整数的名额后, 剩下的名额按惯例分给小数部分较大者;(2) 利用Q值法进行分配. 2.(10分)雨滴的速度v与空气密度ρ, 粘滞系数μ和重力加速度g有关, 其中粘滞系数的定义是: 运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比, 比例系数为粘滞系数. 用量纲分析法给出速度v的表达式.3.(15分)在考虑最优价格问题时设销售期为T, 由于商品的损耗, 成本q随时间增长, 设q q tβ=+, β为增长率. 又设单位时间的销售量为x a bp=-(p为价格). 今将销售期分为/2,/2t T T t T<<<两段, 每段的价格固定, 记作12,p p. 求12,p p的最优值, 使销售期内的总利润最大.4. (10分)食肉动物C、食草动物H和草P组成生态系统, 因为草地有限, 草过密会使得草的生长减慢. 用带符号的有向图建立这个系统的冲量过程模型, 并证明冲量过程是不稳定的.5. (15分)如果食饵-捕食者系统中, 捕食者掠食的对象只是成年的食饵,而未成年的食饵因体积太小免遭捕获. 在适当的假设下建立这三者之间关系的模型, 求平衡点.6. (10分)按年龄分组的种群增长的差分方程模型中, 设一群动物的最高年龄为18岁, 每6岁一组, 分为3个年龄组, 各组的繁殖率为1230,6,2b b b, 存活率为1211,24s s, 开始时3组各1000只.求(1) 18年后各组分别有多少只?(2) 时间充分长以后种群的增长率(即固有增长率)和按年龄组的分布.2020-2021《数学建模》期末课程考试试卷B适用专业:信息与计算科学; 考试日期:考试时间:120分钟; 考试方式:闭卷;总分100分一.简答题(30分).1. 什么是数学模型?答: 对于现实世界的一个特定对象, 为了一个特定目的, 根据特有的内在规律, 做出一些必要的简化假设, 运用适当的数学工具, 得到一个数学结构.2. 层次分析法的一般步骤是什么?答: (1) 将决策问题分为3个层次: 目标层, 准则层, 方案层(2)通过相互比较确定各准则对目标的权重, 及各方案对每一准则的权重.(3) 将方案层对准则层的权重及准则层对目标层的权重进行综合, 给出决策结果.3. 根据模型的应用领域, 数学模型可以分成哪些类型?答: 人口模型, 交通模型, 环境模型, 生态模型, 城镇规划模型, 水资源模型, 再生资源利用模型, 污染模型等.二、计算题1. (10分)某学校有3个系共有200名学生, 其中甲系103名, 乙系63名, 丙系34名, 若学生代表会议设21个席位. 试用下列方法求出各系应分配的席位数.(1) 按比例分配取整数的名额后, 剩下的名额按惯例分给小数部分较大者; (2) 利用Q 值法进行分配.解: (1)甲,乙,丙 三系按比例分配的席位分别为; 10.815, 6.615, 3.570 参照惯例的结果三系分配情况为: 11, 7, 3.(2) 第20席: 222123103633496.4,94.5,96.310*116*73*4Q Q Q ====== 1Q 最大, 于是第20席分给甲.第21席: 2110380.4,11*12Q == 3Q 最大, 于是第21席给丙系.最终的分配结果为: 甲系11, 乙系6, 丙系4.2.(10分)雨滴的速度v 与空气密度ρ, 粘滞系数μ和重力加速度g 有关, 其中粘滞系数的定义是: 运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比, 比例系数为粘滞系数. 用量纲分析法给出速度v 的表达式.解: (,,,)0f v g ρμ=, 11[],ML T μ--=解得113111222221212(,)0,,F vr g r g ππππρμ----===于是3122(/)v r g ρμ=3.(15分)在考虑最优价格问题时设销售期为T, 由于商品的损耗, 成本q 随时间增长, 设0q q t β=+,β为增长率. 又设单位时间的销售量为x a bp =-(p 为价格). 今将销售期分为/2,/2t T T t T <<<两段, 每段的价格固定, 记作12,p p . 求12,p p 的最优值, 使销售期内的总利润最大.解: 总利润为:[][]/21211220/2110220(,)()()()()3()()()()244T TT U p p p q t a bp dt p q t a bp dtT T T a bp b p q a bp b p q ββ=--+--⎧⎫⎡⎤⎡⎤=---++---+⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎰⎰ 由120,0U Up p ∂∂==∂∂得最优价格为:1020113(),()2424T T p a b q p a b q b b ββ⎡⎤⎡⎤=++=++⎢⎥⎢⎥⎣⎦⎣⎦4. (10分)食肉动物C 、食草动物H 和草P 组成生态系统, 因为草地有限, 草过密会使得草的生长减慢. 用带符号的有向图建立这个系统的冲量过程模型, 并证明冲量过程是不稳定的. 解: C,H,P 分别为123,,V V V , 邻接矩阵为010101011A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A 的特征多项式为32()21f λλλλ=+++.因为(0)1,(1)1f f =-=-, 所以有一根1(1,0)λ∈-, 又因为1231λλλ=, 故必存在模大于1的特征根, 冲量过程不稳定.5. (15分)如果食饵-捕食者系统中, 捕食者掠食的对象只是成年的食饵,而未成年的食饵因体积太小免遭捕获. 在适当的假设下建立这三者之间关系的模型, 求平衡点.解: 设11()x t 为成年食饵的数量, 12()x t 为未成年食饵的数量, 2()x t 为捕食者数量, 由未成年变为成年食饵的存活率为r, 仍不考虑各个种群自身的阻滞增长作用, 则模型为:1112111212111122222112dx rx x x dt dx r x rx dt dx r x x x dt λλ⎧=-⎪⎪⎪=-⎨⎪⎪=--⎪⎩平衡点为: 212112221(0,0,0),(,,)r r r r P P r λλλ 6. (10分)按年龄分组的种群增长的差分方程模型中, 设一群动物的最高年龄为18岁, 每6岁一组, 分为3个年龄组, 各组的繁殖率为1230,6,2b b b , 存活率为1211,24s s , 开始时3组各1000只.求 (1) 18年后各组分别有多少只?(2) 时间充分长以后种群的增长率(即固有增长率)和按年龄组的分布.解: 04310021004L ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭因为()(0)k x k L x =(1) 18年后,即()3(3)(0)14375,1375,875Tx L x ==(2) L 的特征方程为33208λλ--=所以固有增长率为1.5 按年龄组的稳定分布为:()*1122(1,,)1,1/3,1/18T T s s s x λλ==。

数学建模_暨南大学中国大学mooc课后章节答案期末考试题库2023年

数学建模_暨南大学中国大学mooc课后章节答案期末考试题库2023年

数学建模_暨南大学中国大学mooc课后章节答案期末考试题库2023年1.将多个评价指标合成一个整体性的综合评价指标的常用方法有:参考答案:线性加权综合法_逼近理想点法2.数学规划中目标函数值不能进一步优化,是因为参考答案:紧约束的限制3.层次分析法的特点有参考答案:定性与定量相结合_系统化_层次化4.选用评价指标需要考虑参考答案:可测性_系统性5.对实际问题中遇到前人研究过的普遍规律,也必须从无到有创造性地建立数学模型。

参考答案:错误6.通过DW检验可以判断原模型的随机误差是否存在自相关性。

参考答案:正确7.数学规划包括:参考答案:非线性规划_线性规划_多目标规划_整数规划8.层次分析法最重要的一步是参考答案:设计层次分析模型(结构图)9.线性规划模型常用求解软件有:参考答案:LINGO_MATLAB10.对具体数学规划模型进行拓展讨论和分析较好的办法,是直接重新建立模型及求解。

参考答案:正确11.形象思维、逻辑思维范畴内的能力包括参考答案:想象力_判断力_洞察力12.层次分析结构图包括:参考答案:方案层_准则层_目标层13.一般解决评价、决策问题的步骤有:参考答案:确定各个评价指标的权重系数_建立评价体系、收集数据并做预处理_对评价结果进行排序,做出合理决策14.在数学规划模型中,用决策变量来表达回答问题的“结构”。

参考答案:正确15.整数规划的特点是部分决策变量要求取整数。

参考答案:正确16.将多目标规划模型转为单目标规划模型的常用方法有:参考答案:目标函数线性加权求和法_主次目标法17.关于指派问题,下面说法正确的有:参考答案:指派问题是要将若干个任务分配给若干个对象_每个对象只能完成一个或多个任务_一个任务只能由一个或多个对象来完成18.通过观察自变量和因变量的散点图,可以大致给出自变量和因变量的关系。

参考答案:正确19.为了优化管理,机场的管理人员需要建立()的数学模型参考答案:机票超定策略_飞机起飞排队模型_空中交通的管制模型20.在lingo软件中限制变量x取0或1的命令为参考答案:@bin(x)21.在lingo软件中限制变量x为整数的函数为参考答案:@gin(x)22.基于数据分析的建模方法有:参考答案:元胞自动机模拟_蒙特卡洛模拟_数据统计分析方法23.基于机理分析的规律描述常用参考答案:微分方程建模_差分方程建模24.模型假设是参考答案:模型假设是建立模型的前提25.数学建模过程中常用的创新思维有参考答案:群体思维_发散思维_归纳思维_逆向思维26.可以把问题分解成参考答案:条件_目标_过程27.数学建模常涉及参考答案:评价决策_描述规律_预测未来_优化28.已知点列并且完全经过点列的数据分析方法是参考答案:插值29.问题分析需要注意参考答案:解决问题的步骤_分清主次因素_提出问题的角度_解决问题的需要哪些动作30.数学建模的后期任务包括参考答案:模型结果的讨论分析_模型的推广_检验模型结果31.建立数学模型的目的可能是参考答案:做出决策_描述或解释现象_解决某个特定问题32.常用的机理分析方法有参考答案:差分方程_微分方程33.层次分析法的步骤有:参考答案:计算各个因素相应的权重_对各因素权重进行综合,进行排序_构建层次结构图34.在撰写数学建模成果报告时应该尽量表述得浅显易懂。

最新数学建模(数学模型)期末考试题(试卷)及答案详解(附答案)

最新数学建模(数学模型)期末考试题(试卷)及答案详解(附答案)

数学建模(数学模型)期末考试卷及答案详解第一部分 基本理论和应用1、计算题(满分10分)设电路供电网内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关是相互独立的,利用中心极限定理计算同时开着的灯数在6900与7100之间的概率.2、计算题(满分10分)设某种电子元件的使用寿命服从正态分布) ,(2σμN ,现随机抽取了10个元件进行检测, 得到样本均值(h)1500=x ,样本标准差(h)14=S . 求总体均值μ的置信概率为99%的置信区间3、计算题(满分10分)从正态总体)6 ,4.3(~2N X 中抽取容量为n 的样本,如果要求样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量n 至少应取多大?4、计算题(满分10分) 设总体X 的概率密度为:⎩⎨⎧<<+=其他,,0,10,)1();(x x x f θθθ )1(->θn X X X ,,,21 是来自总体X 的简单随机样本,求参数θ的矩估计量和极大似然估计量.5.(15分)设总体X 服从区间[0,θ]上的均匀分布,θ>0未知,12,,,n X X X 是来自X的样本,(1)求θ的矩估计和极大似然估计;(2)上述两个估计量是否为无偏估计量,若不是请修正为无偏估计量;(3)试问(2)中的两个无偏估计量哪一个更有效?6. (15分)设),(~2σμN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值,2nS 为样本二阶中心矩,2S 为样本方差,问下列统计量:(1)22σnnS ,(2)1/--n S X n μ,(3)212)(σμ∑=-ni iX各服从什么分布?7. (10分)一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布.8. (10分)设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算.9. (10分)某商品的每包重量2~(200,)X N σ.若要求{195205}0.98P X <<≥,则需要把σ控制在什么范围内.10. (15分)设系统L 由两个相互独立的子系统12,L L 联接而成,联接的方式分别为串联,并联和备用(当系统1L 损坏时,系统2L 开始工作),如图7.1所示.1L 和2L 的寿命为X 和Y ,分别有密度(0,)()()x X p x e I x αα-+∞=和(0,)()()y Y p y e I y ββ-+∞=,其中0,0αβ>>且αβ≠.请就这三种联接方式分别写出系统L 的寿命Z 的密度.答案第一部分 基本理论和应用 1、计算题(满分10分)设电路供电网内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关是相互独立的,利用中心极限定理计算同时开着的灯数在6900与7100之间的概率. 解:设同时开着的灯数为X ,(10000,0.7)Xb ……………2分(0,1)N (近似) ……………3分 {69007100}210.971P X ≤≤=Φ-= …………5分 2、计算题(满分10分)设某种电子元件的使用寿命服从正态分布) ,(2σμN ,现随机抽取了10个元件进行检测,得到样本均值(h)1500=x ,样本标准差(h)14=S . 求总体均值μ的置信概率为99%的置信区间. 解: T =(1)X t n - 0.005{(1)}0.99P T t n <-= ………4分0.0050.005{(1)(1)}0.99P X n X X n -<<+-= ………………4分 所求为(1485.61,1514.39) …………2分3、计算题(满分10分)从正态总体)6 ,4.3(~2N X 中抽取容量为n 的样本,如果要求样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量n 至少应取多大? 解:(0,1)X N ………………3分{1.4 5.4}21P X P <<=<=Φ- ……………4分解210.95Φ-≥ 得34.6n ≥ n 至少取35 ……………3分4、计算题(满分10分) 设总体X 的概率密度为:⎩⎨⎧<<+=其他,,0,10,)1();(x x x f θθθ )1(->θn X X X ,,,21 是来自总体X 的简单随机样本,求参数θ的矩估计量和极大似然估计量.解: 1101()(2E X dx θθθθ++==+⎰+1)x ……………3分 解12X θθ+=+,得θ的矩估计量为211X X -- ……………2分 1()1()ni i L x θθθ=+∏n=() 1ln ln 1ln nii L n x θθ==+∑()+ ……………2分令1ln ln 01ni i d L nx d θθ==+=+∑ 得θ的极大似然估计量为11ln nii nX=--∑ …………3分5.(15分)设总体X 服从区间[0,θ]上的均匀分布,θ>0未知,12,,,n X X X 是来自X的样本,(1)求θ的矩估计和极大似然估计;(2)上述两个估计量是否为无偏估计量,若不是请修正为无偏估计量;(3)试问(2)中的两个无偏估计量哪一个更有效? 解:(1)2EX θ=,令2X θ=,得θ的矩估计量1ˆ2X θ=; ……………5分 似然函数为:()12121,0,,,(,,,;)0n n n x x x L x x x θθθ⎧<<⎪=⎨⎪⎩,其它其为θ的单调递减函数,因此θ的极大似然估计为{}212()ˆmax ,,,n n X X X X θ==。

(完整版)数学建模试卷(附答案)

(完整版)数学建模试卷(附答案)

2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。

二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。

(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。

(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。

2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。

随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。

后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。

谁料,DDT 同样杀死澳洲瓢虫。

结果,介壳虫增加起来,澳洲瓢虫反倒减少了。

试建立数学模型解释这个现象。

3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:数学实验与数学建模主讲教师:唐向阳学号 2010212569姓名凌泽广成绩:2012《数学模型》考试试题一、(20分)某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为3万公斤。

已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。

而原材料的消耗为:每捆原稿纸用白坯纸10/3公斤,每打笔记本用白坯纸40/3公斤,每箱练习本用白坯纸80/3公斤。

生产一捆原稿纸可获利2元,生产一打笔记本可获利3元,生产一箱练习本可获利1元。

(1)试确定在现有生产条件下的最优生产方案。

(2)如白坯纸的供应量不变,当工人数不足时可招收临时工,临时工的工资支出为每人每月40元,问:要不要招收临时工?解(1):建立模型:设每月生产原稿纸x捆,每月生产笔记本y打,每月生产练习本z箱,用Max f来表示造纸厂获利的最大值,那么根据题意有如下线性规划模型,Max f=x*2+y*3+z*1且x,y,z满足如下不等式:Max f=2x+3y+zx/30+y/30+z/30<=10010x/3+40y/3+80z/<=30000x>=0,y>=0,z>=0利用mathematica 软件包求解上述不等式:运行程序ConstrainedMax[2x+3y+z,{x+y+z≤3000,x+4y+8z≤9000,x≥0,y≥0,z≥0},{x,y,z}]运行结果如下:{8000,{x→1000,y→2000,z→0}}故可知,当生产原稿纸为1000捆,生产笔记本2000打,生产练习本0箱时,此时造纸厂所获得的利润最大,最大为8000元(2)建立模型:如果造纸厂每月所招进来的每名临时工人所创造的利润大于每个月的工资,那么造纸厂就可以招收临时工人,现假设需要招收m名临时工人,那么总共就有由于白坯100+m名工人,设每月有x1名工人用来生产原稿纸,有x2名工人用来生产笔记本,有,x3名工人用来生产练习本,由于纸的供应量不变,此时设造纸厂所获得的最大利润为Max g,依据题意可知有如下线性规划模型,Max g=60x+90y+30z-40m且x,y,z,m满足如下不等式:x+y+z<=100+m30x*10/3+30y*40/3+30z*80/3<=30000x,y,z,m>=0x,y,z<=100+m利用mathematica软件包求解上述程序,运行程序:ConstrainedMax[60x+90y+30z-40m,{x+y+z<=100+m,x+4y+8z≤300, x≥0,y≥0,z≥0,x≤100+m,y≤100+m,z≤100+m,m≥0},{x,y,z,m}]得到结果:{10000,{x→300,y→0,z→0,m→200}}由此可知,此时造纸厂所获得的最大利润为10000元,所需要招收的临时工为200人;那么此时每名临时工人每月为公司所带来的利润为:10000/200=50>40,因此可知:造纸厂可以招收临时工。

二、(30分) 有某种货物的存贮系统,市场对这种货物的需求量(单位:单位)和订次20单位,订货点为15单位(即存货低于15单位时订货,但已订货未到前不再订),存贮费每件每周10元,缺货损失费每件每周500元。

对于缺货,货到后不补,设开始时存货为20单位。

试用mathematica生成随机数R1,R2,R1模拟需求量,R2模拟订货提前期。

模拟14周的运行情况,填下表,并求订货费用、存贮费用、缺货费用以及周平解:建立模型:先将上述图表的概率转换成累积概率:d=Table[random[],{k,14}Do[if[d[j]]<=0.02,r1=r1+1;r2>0.02,and r2≤0.1;r3>0.1,and r3<=0.32;r4>0.32,and r4≤0.54;r5>0.66,and r5≤0.84;r6>0.84,and r6≤0.93;r7>0.93,r7≤1],{j,14}]Print["r1=","r2=","r3","r4","r5","r6","r7",r1,r2,r3,r4,r5,r6,r7]生成一组随机数R1:68,52,90,59,08,72,44,95,81,94,28,89,63,0用同样的方法生成一组随机数R2:50,86,1那么用R1这14个数分别按秩序的代表着从第1周到底14周模拟的需求量,可知模拟出来的需求量分别为4,3,5,3,1,4,3,6,4,6,2,5,3,1.现在逐一分析每一周后的存储量,且最开始的存货为20单位(1)在第一周后的的存储量为20-4=16>15,不需要订货(2)在第二周后的存储量为16-3=13<15,此时需要订货类似于同样的(1),(2)进行分析可知,所得的数据如表中所示。

所以,由表格数据可知,订货费用为25*3=75;存储费用为10*200=2000;缺货费用为500*1=500;周平均费用为1/14(75+2000+500)=183.9。

三、(50分)一个城郊的社区计划更新消防站。

原来的消防站在旧城中心。

规划要将新的消防站设置得更科学合理,故在前一个季度收集了火警反应时间的资料:(1) 平均要用3.2分钟派遣消防队员;(2) 消防队员到达火灾现场的时间(行车时间)依赖于火灾现场的距离。

(3) 行车时间的资料列于表11时间估计为d分钟。

给出消防队对求救电话的反应时间的模型d(r);2.求平均反应时间。

设社区位区域[0, 6] [0, 6]内,(x, y)是新的消防站的位置。

根据求救电话频率,确定消防队对求救电话的平均反应时间z = f (x, y) ;3.求新的消防站的最佳位置。

解:首先对下面的参量与变量进行整体说明:(x ,y)表示新的消防站的位置x ,y中至少有一个为0,1,2,3,4,5,6,(i,j)表示火灾现场所在区域的位置i , j=1,2,3,4,5,6r表示消防队里火灾现场的距离d(r) 表示消防队电话求助的反应时间z 表示消防队对求救电话的平均反应时间A 表示每年从各区域打来的紧急救助电话的数量矩阵a 表示每年从各区域打来的紧急电话的频率矩阵1.建立模型:先对距离(里)与时间(分钟)的数据关系进行数据拟合,运行程序如下:Clear[data]data={{1.22,2.62},{3.48,8.35},{5.10,6.44},{3.39,3.51},{4.13,6.52},{1.75,2.46},{2.95,5.20},{1.3 0,1.73},{0.76,1.14},{2.52,4.56},{1.66,2.90},{1.84,3.19},{3.19,4.26},{4.11,7.00},{3.09,5.49},{4. 96,7.64},{1.64,3.09},{3.23,3.88},{3.07,5.49},{4.26,6.82},{4.40,5.53},{2.42,4.30},{2.96,3.55}}; ListPlot[data]运行结果如下图(1):用最小二乘法进行直线拟合给出反应时间的函数,运行如下程序:data={{1.22,2.62},{3.48,8.35},{5.10,6.44},{3.39,3.51},{4. 13,6.52},{1.75,2.46},{2.95,5.20},{1.30,1.73},{0.76,1.14}, {2.52,4.56},{1.66,2.90},{1.84,3.19},{3.19,4.26},{4.11,7.0 0},{3.09,5.49},{4.96,7.64},{1.64,3.09},{3.23,3.88},{3.07, 5.49},{4.26,6.82},{4.40,5.53},{2.42,4.30},{2.96,3.55}}; f[x]=Fit[data,{1,r},r]运行结果如下:0.579543 +1.36943r故可知反应时间为行车时间和准备时间(3.2分)的和:d(r)=1.36943r+0.579543 +3.22.(1)我们要求解平均反应时间,那么我们用新的消防站的位置(x , y)和火灾现场所在的区域的位置(i , j)来表示消防站到火灾现场的距离r;(2)把区域[0,6]*[0,6]等分成36个小区域,并且来自某一小区的中心的紧急电话可代表来自区域的所有紧急电话;那么由题意可知,消防队对求助电话平均反应时间为:z=f(x,y)=]57201.0|)2/1||2/1(|*3693.1[,61,1+--+--∑==yjxiajiji3.建立模型:假设消防站设在主要道路的俩侧,也就是说图中的x, y至少有一个取整值;消防队的行车路线为竖直或水平方向,终点为紧急电话来自小区域的中心,且行车路线最短,交通通畅;现在,我们要确定新的消防站的最佳位置,也就是找到最佳坐标点,使得消防站到各个火灾现场的平均时间最小。

下面,就将x ,y中的一个取整数时,平均反应时间随另一个而变化的情况进行讨论,(1)首先计算每年从各区域打来的紧急电话求助频率A=[3 0 1 4 2 12 1 1 23 25 3 3 0 1 28 5 2 1 0 010 6 3 1 3 10 2 3 1 1 1]sum(A)= ∑==61,1,jijia=84a=A/sum(A)=[ 0 0.0238 0.0357 0.0119 0.0119 0.01190.1190 0.0714 0.0357 0.0119 0.0119 0.01190.0952 0.0595 0.0238 0.0119 0 00.0595 0.0357 0.0357 0 0.0119 0.02380.0238 0.0119 0.0119 0.0238 0.0357 0.02380.0357 0 0.0119 0.0476 0.0238 0.0119] (2)建立一个m 文件a = [ 0 0.0238 0.0357 0.0119 0.0119 0.01190.1190 0.0714 0.0357 0.0119 0.0119 0.01190.0952 0.0595 0.0238 0.0119 0 00.0595 0.0357 0.0357 0 0.0119 0.02380.0238 0.0119 0.0119 0.0238 0.0357 0.02380.0357 0 0.0119 0.0476 0.0238 0.0119]l=[ 1 1 1 1 1 12 2 2 2 2 23 3 3 3 3 34 4 4 4 4 45 5 5 5 5 56 6 6 6 6 6]" y=l%"(y可取0,1,2,3,4,5,6)h=a*{1.369*(|i-1/2-x|+|j-1/2-y|)+0.57021}+3.2g=sum(h)z=sum(g)(3)用随机模拟算法:在可行域[0 ,6]*[0 ,6] 内简单地选取100个随机的点:r=random(1,100, [0 ,6])计算目标函数在这些点的值,选择其中最小的点即可。

相关文档
最新文档