2019届中考数学复习 解答中考压轴题的“金钥匙”

合集下载

中考数学精品文档——解答中考压轴题的“金钥匙”

中考数学精品文档——解答中考压轴题的“金钥匙”

剖析湖北中考压轴题 提炼解题方法与技巧一般设计3~4问,由易到难有一定的坡度,或连续设问,或独立考查,最后一问较难,一般是涉及几何特殊图形(或特殊位置)的探究问题。

本人就最后一问进行了研究,提炼出一些方法、技巧,供大家参考。

一、 数学思想:主要是数形结合思想、分类讨论思想、特殊到一般的思想 二、 探究问题:1、三角形相似、平行四边形、梯形的探究2、特殊角-----直角(或直角三角形)的探究3、平分角(或相等角)的探究4、平移图形后重叠部分面积函数的探究5、三角形(或多边形)最大面积的探究6、图形变换中特殊点活动范围的探究 三、 解题方法:1、画图法:(从形到数)一般先画出图形,充分挖掘和运用坐标系中几何图形的特性,选取合适的相等关系列出方程,问题得解。

画图分类时易掉情况,要细心。

2、解析法:(从数到形)一般先求出点所在线(直线或抛物线)的函数关系式,再根据需要列出方程、不等式或函数分析求解。

不会掉各种情况,但解答过程有时较繁。

四、 解题关键:1、从数到形:根据点的坐标特征,发现运用特殊角或线段比2、从形到数:找出特殊位置,分段分类讨论 五、 实例分析:(荆州2012压轴题编)如图,求△OAE 右移t (0<t ≤3)时,△OAE 与△ABE 重叠部分面积函数关系式。

t=23,分类讨论:230≤≤t ,323≤t ; 其次,求面积关系式时,充分运用两个比:1=OEOA, 21000=E O A O .如图,230≤≤t 时,显然,阴影部分的面积M AA AH O OAE S S S S 11∆∆∆--=阴 其中关键是求1AA 边上的高MN 。

∵=MN NA21000=E O A O ∴MN=2NA 又=MN NA 11=OEOA∴ 1NA MN = ∴1NA MN ==2NA (A 是1NA 中点)(十堰2012压轴题编)动点M(m, 0)在x 轴上,N (1, n )在线段EF 上,求∠MNC=090时m 的取值范围。

中考数学压轴题解题技巧

中考数学压轴题解题技巧

中考数学压轴题解题技巧压轴题这类题目一般分数多,难度大,考验综合能力强,在考试中是能够拉开成绩的题目,也是很多同学重点钻研项目。

下面是小编整理的中考数学压轴题解题技巧,希望小编整理的数学压轴题解题方法对同学们有用! 从总体上来看,中考数学压轴题通常有3小问,其中第一问比较简单,中等水平的学生能够比较轻易地解出来。

所以,同学们看到压轴题,不要产生恐惧心理,拿下第一问还能得两三分。

第二问通常有些难度,通常要利用第一问的条件和结论,所以,如果第一问做不出来,后面就别提了。

第三问难度最大,考验的是同学的综合能力。

1中考数学压轴题解题技巧1、基本知识不丢一分在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。

“首先要梳理知识网络,思路清晰知己知彼。

其次要掌握数学考纲,对考试心中有谱。

掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的解题技巧,根据考纲和自己的实际情况来侧重复习。

2、运用数形结合思想中考数学压轴题解题技巧之一就是数形结合思想,是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法,或利用数量关系来研究几何图形的性质,解决几何问题的一种数学思想。

纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。

有些数学问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵。

2019届中考数学压轴题及解题技巧

2019届中考数学压轴题及解题技巧

2019届中考数学压轴题及解题技巧压轴类型一、相似图形综合题1、如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBE=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBE=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBE=∠DCO=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.【点评】本题考查相似形综合题、四点共圆、锐角三角函数、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,证明B、D、E、C四点共圆,学会构建二次函数解决问题,属于中考压轴题.2、我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为 3 ;(2)如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是△ABC 的“內似线”,求EF的长.【分析】(1)过等边三角形的内心分别作三边的平行线,即可得出答案;(2)由等腰三角形的性质得出∠ABC=∠C=∠BDC,∠A=∠ABD,证出△BCD∽△ABC,再由三角形的外角性质证出BD平分∠ABC即可;(3)分两种情况:①当==时,EF∥AB,由勾股定理求出AB==5,作DN⊥BC于N,则DN∥AC,DN是Rt△ABC的内切圆半径,求出DN=(AC+BC﹣AB)=1,由几何平分线定理得出=,求出CE=,证明△CEF∽△CAB,得出对应边成比例求出EF=;②当==时,同理得:EF=即可.【解答】(1)解:等边三角形“內似线”的条数为3条;理由如下:过等边三角形的内心分别作三边的平行线,如图1所示:则△AMN∽△ABC,△CEF∽△CBA,△BGH∽△BAC,∴MN、EF、GH是等边三角形ABC的內似线”;故答案为:3;(2)证明:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD,∴△BCD∽△ABC,又∵∠BDC=∠A+∠ABD,∴∠ABD=∠CBD,∴BD平分∠ABC,即BD过△ABC的内心,∴BD是△ABC的“內似线”;(3)解:设D是△ABC的内心,连接CD,则CD平分∠ACB,∵EF是△ABC的“內似线”,∴△CEF与△ABC相似;分两种情况:①当==时,EF∥AB,∵∠ACB=90°,AC=4,BC=3,∴AB==5,作DN⊥BC于N,如图2所示:则DN∥AC,DN是Rt△ABC的内切圆半径,∴DN=(AC+BC﹣AB)=1,∵CD平分∠ACB,∴=,∵DN∥AC,∴=,即,∴CE=,∵EF∥AB,∴△CEF∽△CAB,∴,即,解得:EF=;②当==时,同理得:EF=;综上所述,EF的长为.【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、三角形的内心、勾股定理、直角三角形的内切圆半径等知识;本题综合性强,有一定难度.3、已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD 交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG 并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.4、阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E 是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).【点评】本题考查的是全等三角形的判定和性质、相似三角形的判定和性质,正确作出辅助性、灵活运用相关的性质定理和判定定理是解题的关键.压轴类型二、二次函数综合题1、已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.【分析】(1)如图1,由条件可知△AOB为等边三角形,则可求得OA的长,在Rt△AOD 中可求得AD和OD的长,可求得A点坐标,代入抛物线解析式可得a的值;(2)如图2,作辅助线,构建平行线和相似三角形,根据CF∥BG,由A的横坐标为﹣4,得B的横坐标为1,所以A(﹣4,16a),B(1,a),证明△ADO∽△OEB,则,得a的值及B的坐标;(3)如图3,设AC=nBC由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(﹣mn,am2n2),分别根据两三角形相似计算DE和CO的长即可得出结论.【解答】解:(1)如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,∴A与B是对称点,O是抛物线的顶点,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=2,AB⊥OC,∴AC=BC=1,∠BOC=30°,∴OC=,∴A(﹣1,),把A(﹣1,)代入抛物线y=ax 2(a>0)中得:a=;(2)如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,∵CF∥BG,∴,∵AC=4BC,∴=4,∴AF=4FG,∵A的横坐标为﹣4,∴B的横坐标为1,∴A(﹣4,16a),B(1,a),∵∠AOB=90°,∴∠AOD+∠BOE=90°,∵∠AOD+∠DAO=90°,∴∠BOE=∠DAO,∵∠ADO=∠OEB=90°,∴△ADO∽△OEB,∴,∴,∴16a2=4,a=±,∵a>0,∴a=;∴B(1,);(3)如图3,设AC=nBC,由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(﹣mn,am2n2),∴AD=am2n2,过B作BF⊥x轴于F,∴DE∥BF,∴△BOF∽△EOD,∴==,∴,∴=,DE=am2n,∴=,∵OC∥AE,∴△BCO∽△BAE,∴,∴=,∴CO==am2n,∴DE=CO.【点评】本题是二次函数的综合题,考查了利用三角形相似计算二次函数的解析式、三角形相似的性质和判定、函数图象上点的坐标与解析式的关系、等边三角形的性质和判定,要注意第三问不能直接应用(1)(2)问的结论,第三问可以根据第二问中AC=4BC,确定A、B两点横坐标的关系,利用两点的纵坐标和三角形相似列比例式解决问题.2、已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是 D .A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.【分析】(1)表示出根的判别式,判断其正负即可得到结果;(2)将二次函数解析式配方变形后,判断其顶点坐标是否在已知函数图象即可;(3)根据m的范围确定出顶点纵坐标范围即可.【解答】解:(1)∵函数y=﹣x2+(m﹣1)x+m(m为常数),∴△=(m﹣1)2+4m=(m+1)2≥0,则该函数图象与x轴的公共点的个数是1或2,故选D;(2)y=﹣x2+(m﹣1)x+m=﹣(x﹣)2+,把x=代入y=(x+1)2得:y=(+1)2=,则不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;(3)设函数z=,当m=﹣1时,z有最小值为0;当m<﹣1时,z随m的增大而减小;当m>﹣1时,z随m的增大而增大,当m=﹣2时,z=;当m=3时,z=4,则当﹣2≤m≤3时,该函数图象的顶点坐标的取值范围是0≤z≤4.【点评】此题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的图象与性质是解本题的关键.3、在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N (x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.【分析】(1)利用抛物线解析式求得点B、C的坐标,利用待定系数法求得直线BC的表达式即可;(2)由抛物线解析式得到对称轴和顶点坐标,结合图形解答.【解答】解:(1)由y=x2﹣4x+3得到:y=(x﹣3)(x﹣1),C(0,3).所以A(1,0),B(3,0),设直线BC的表达式为:y=kx+b(k≠0),则,解得,所以直线BC的表达式为y=﹣x+3;(2)由y=x2﹣4x+3得到:y=(x﹣2)2﹣1,所以抛物线y=x2﹣4x+3的对称轴是x=2,顶点坐标是(2,﹣1).∵y1=y2,∴x1+x2=4.令y=﹣1,y=﹣x+3,x=4.∵x1<x2<x3,∴3<x3<4,即7<x1+x2+x3<8.【点评】本题考查了抛物线与x轴的交点.解答(2)题时,利用了“数形结合”的数学思想,降低了解题的难度.4、某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.5、已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.【分析】(Ⅰ)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x 的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i)由(Ⅱ)的方程,可求得N点坐标,利用勾股定理可求得MN2,利用二次函数性质可求得MN长度的取值范围;(ii)设抛物线对称轴交直线与点E,则可求得E点坐标,利用S△QMN=S△QEN+S△QEM可用a表示出△QMN的面积,再整理成关于a的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),且a<0,设△QMN的面积为S,∴S=S△QEN+S△QEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a2+(8S﹣54)a+24=0(*),∵关于a的方程(*)有实数根,∴△=(8S﹣54)2﹣4×27×24≥0,即(8S﹣54)2≥(36)2,∵a<0,∴S=﹣﹣>,∴8S﹣54>0,∴8S﹣54≥36,即S≥+,当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN面积的最小值为+.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得N点的坐标是解题的关键,在最后一小题中用a表示出△QMN的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.6、如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P 的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 x﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=PA时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m=,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M的坐标和点N的坐标是解答问题(3)的关键.7、我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.【分析】(1)把点(﹣2,0)和(﹣1,3)分别代入y=ax2+bx,得到关于a、b的二元一次方程组,解方程组即可;(2)根据二次函数的性质,得出抛物线y=ax2+bx的顶点坐标是(﹣,﹣),把顶点坐标代入y=﹣2x,得出﹣=﹣2×(﹣),即可求出b的值;(3)由于这组抛物线的顶点A1、A2、…,A n在直线y=﹣2x上,根据(2)的结论可知,b=4或b=0.①当b=0时,不合题意舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的顶点为A n(﹣n,2n),则D n(﹣3n,2n),因为以A n 为顶点的抛物线不可能经过点D n,设第n+k(k为正整数)条抛物线经过点D n,此时第n+k条抛物线的顶点坐标是A n+k(﹣n﹣k,2n+2k),根据﹣=﹣n﹣k,得出a==﹣,即第n+k条抛物线的表达式为y=﹣x2﹣4x,根据D n(﹣3n,2n)在第n+k条抛物线上,得到2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,进而求解即可.【解答】解:(1)∵抛物线y=ax2+bx经过点(﹣2,0)和(﹣1,3),∴,解得,∴抛物线的表达式为y=﹣3x2﹣6x;(2)∵抛物线y=ax2+bx的顶点坐标是(﹣,﹣),且该点在直线y=﹣2x上,∴﹣=﹣2×(﹣),∵a≠0,∴﹣b2=4b,解得b1=﹣4,b2=0;(3)这组抛物线的顶点A1、A2、…,A n在直线y=﹣2x上,由(2)可知,b=4或b=0.①当b=0时,抛物线的顶点在坐标原点,不合题意,舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的顶点为A n(﹣n,2n),则D n(﹣3n,2n),∵以A n为顶点的抛物线不可能经过点D n,设第n+k(k为正整数)条抛物线经过点D n,此时第n+k条抛物线的顶点坐标是A n+k(﹣n﹣k,2n+2k),∴﹣=﹣n﹣k,∴a==﹣,∴第n+k条抛物线的表达式为y=﹣x2﹣4x,∵D n(﹣3n,2n)在第n+k条抛物线上,∴2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,∵n,k为正整数,且n≤12,∴n1=5,n2=10.当n=5时,k=4,n+k=9;当n=10时,k=8,n+k=18>12(舍去),∴D5(﹣15,10),∴正方形的边长是10.【点评】本题是二次函数综合题,其中涉及到利用待定系数法求抛物线的解析式,二次函数的性质,函数图象上点的坐标特征,正方形的性质等知识,有一定难度.设第n+k(k为正整数)条抛物线经过点D n,用含n的代数式表示D n的坐标以及用含n、k的代数式表示第n+k条抛物线是解题的关键.压轴类型三、多边形综合题1、如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.【分析】(1)先根据线段垂直平分线的性质证明QB=QE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形ABGE是平行四边形,再根据菱形的判定即可得出结论;(2)根据三角形中位线的性质可得AE+BE=2OF+2OB=18,设AE=x,则BE=18﹣x,在Rt△ABE中,根据勾股定理可得62+x2=(18﹣x)2,BE=10,得到OB=BE=5,设PE=y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,根据勾股定理可得62+(8﹣y)2=y2,解得y=,在Rt△BOP中,根据勾股定理可得PO==,由PQ=2PO即可求解.【解答】(1)证明:∵PQ垂直平分BE,∴QB=QE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,在△BOQ与△EOP中,,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵QB=QE,∴四边形BPEQ是菱形;(2)解:∵O,F分别为PQ,AB的中点,∴AE+BE=2OF+2OB=18,设AE=x,则BE=18﹣x,在Rt△ABE中,62+x2=(18﹣x)2,解得x=8,BE=18﹣x=10,∴OB=BE=5,设PE=y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,62+(8﹣y)2=y2,解得y=,在Rt△BOP中,PO==,∴PQ=2PO=.【点评】本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、勾股定理等知识;本题综合性强,有一定难度.2、如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.压轴类型四、圆综合题如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF ⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.【点评】本题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.2、如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)由AB是⊙O的直径知∠ACB=90°,由=即AC=BC可得答案;(2)分∠ABD为锐角和钝角两种情况,①作BF⊥l于点F,证四边形OBFC是矩形可得AB=2OC=2BF,结合BD=AB知∠BDF=30°,再求出∠BDA和∠DEA度数可得;②同理BF= BD,即可知∠BDC=30°,分别求出∠BEC、∠ADB即可得;(3)分D在C左侧和点D在点C右侧两种情况,作EI⊥AB,证△CAD∽△BAE得= =,即AE=CD,结合EI=BE、EI=AE,可得BE=2EI=2×AE=AE=×CD=2CD,从而得出结论.【解答】解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CAB=∠CBA==45°;(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,∴AD=AE;②当∠ABD为钝角时,如图3所示,同理可得BF=BD,即可知∠BDC=30°,∵OC⊥AB、OC⊥直线l,∴AB∥直线l,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,∵AB=DB,∴∠ADB=∠ABE=15°,∴∠BEC=∠ADE,∴AE=AD;(3)①如图2,当D在C左侧时,由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,∴△CAD∽△BAE,∴==,∴AE=CD,作EI⊥AB于点I,∵∠CAB=45°、∠ABD=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2;②如图3,当点D在点C右侧时,过点E作EI⊥AB于I,由(2)知∠ADC=∠BEA=15°,∵AB∥CD,∴∠EAB=∠ACD,∴△ACD∽△BAE,∴==,∴CD,∵BA=BD,∠BAD=∠BDA=15°,∴∠IBE=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2.【点评】本题主要考查圆的综合问题,熟练掌握切线的性质、等腰直角三角形的判定与性质、圆心角定理及相似三角形的判定与性质是解题的关键.3、如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG=,AH=3,求EM的值.【分析】(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得=,由此即可解决问题;【解答】(1)证明:如图1中,∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=3,∴HC=4,在Rt△HOC中,∵OC=r,OH=r﹣3,HC=4,∴(r﹣3)2+(4)2=r2,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,∴=,∴EM=.【点评】本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.。

中考数学压轴题解答技巧必备

中考数学压轴题解答技巧必备

中考数学压轴题解答技巧必备临近中考,先生要有一定的自主性,光跟着教员〝跑〞没用。

由于每位先生对知识点的掌握水平不同,温习进度也不同。

查字典数学网为大家提供了中考数学压轴题解答技巧,希望可以实在的协助到大家。

一、注重构建知识网络——微观掌握数学框架要学会构建知识网络,数学概念是构建知识网络的动身点,也是数学中考考察的重点。

因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类、定义、性质和判定,并会运用这些概念去处置一些效果。

二、注重夯实数学双基——微观掌握知识技艺在温习进程中夯实数学基础,要留意知识的不时深化,留意知识之间的内在联络和关系,将新知识及时归入已有知识体系,逐渐构成和扩大知识结构系统,这样在解题时,就能由标题所提供的信息,从记忆系统中检索出有关信息,选出最正确组合信息,寻觅解题途径、优化解题进程。

三、注重强化题组训练——感悟数学思想方法除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习气。

反思自己的思想进程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联络。

而总结出它所用到的数学思想方法,并把思想方法相近的标题编成一组,不时提炼、不时深化,做到举一反三、举一反三。

逐渐学会观察、实验、剖析、猜想、归结、类比、联想等思想方法,自动地发现效果和提出效果。

四、注重树立〝病例档案〞——做到万无一失预备一本数学学习〝病例卡〞,把往常犯的错误记上去,找出〝病因〞开出〝处方〞,并且经常地拿出来看看、想想错在哪里,为什么会错,怎样矫正,这样到中考时你的数学就没有什么〝病例〞了。

我们要在教员的指点下做一定数量的数学习题,积聚解题阅历、总结解题思绪、构成解题思想、催生解题灵感、掌握学习方法。

五、注重常用公式技巧——做到思想矫捷准确对经常运用的数学公式要了解来龙去脉,要进一步了解其推理进程,并对推导进程中发生的一些能够变化自行探求。

几何综合(解析版)--中考数学抢分压轴题秘籍(全国通用)

几何综合(解析版)--中考数学抢分压轴题秘籍(全国通用)

几何综合--中考数学抢分秘籍(全国通用)几何综合问题在中考中以填空题和解答题的形式出现,考查难度较大.此类问题在中考中多考查面积平分、面积最值和几何变换的综合问题,一般要用到特殊三角形、特殊四边形、相似三角形、圆、锐角三角函数、勾股定理、图形变换的性质和二次函数的最值等相关知识,以及分类讨论、数形结合、转化与化归等数学思想.此类题型常涉及以下问题:①几何图形中的线段最值问题②探究图形面积的分割问题;③探究图形面积的最值问题.右图为几何综合问题中各题型的考查热度.题型1:线段最值问题①动点路径问题②“胡不归”问题③“将军饮马”问题④“造桥选址”问题解题模板:1.(2021秋•白云区校级月考)如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切,则点A到⊙O上的点的距离的最大值为()A.B.C.D.【分析】由题意画出符合题意的图形,当⊙O与BC,CD相切时,点A到⊙O上的点的距离取得最大值,利用勾股定理即可求得结论.【解答】解:由题意,当⊙O与BC,CD相切时,点A到⊙O上的点的距离取得最大值,如图,由对称性可知:圆心O在AC上.AC==4.∵BC与⊙O相切于点E,∴OE⊥EC.∵四边形ABCD是正方形,∴∠ACB=45°.∴△OEC为等腰直角三角形.∴OC=OE=.∴CG=OC﹣OG=﹣1.∴AG=AC﹣CG=4﹣(﹣1)=3+1.故选:C.【点评】本题主要考查了切线的性质,正方形的性质,直线和圆的位置关系,勾股定理,连接OE,利用切线的性质得到OE⊥EC是解题的关键.【变式1-1】(2020•遵义)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.【分析】(1)要证明EF=DE,只要证明△DME≌△ENF即可,然后根据题目中的条件和正方形的性质,可以得到△DME≌△ENF的条件,从而可以证明结论成立;(2)根据勾股定理和三角形相似,可以得到AG和CG、CE的长,然后即可得到GE的长.【解答】(1)证明:∵四边形ABCD是正方形,AC是对角线,∴∠ECM=45°,∵MN∥BC,∠BCM=90°,∴∠NMC+∠BCM=180°,∠MNB+∠B=180°,∴∠NMC=90°,∠MNB=90°,∴∠MEC=∠MCE=45°,∠DME=∠ENF=90°,∴MC=ME,∵CD=MN,∴DM=EN,∵DE⊥EF,∠EDM+∠DEM=90°,∴∠DEF=90°,∴∠DEM+∠FEN=90°,∴∠EDM=∠FEN,在△DME和△ENF中,∴△DME≌△ENF(ASA),∴EF=DE;(2)解:如图1所示,由(1)知,△DME≌△ENF,∴ME=NF,∵四边形MNBC是矩形,∴MC=BN,又∵ME=MC,AB=4,AF=2,∴BN=MC=NF=1,∵∠EMC=90°,∴CE=,∵AF∥CD,∴△DGC∽△FGA,∴,∴,∵AB=BC=4,∠B=90°,∴AC=4,∵AC=AG+GC,∴AG=,CG=,∴GE=GC﹣CE==;如图2所示,同理可得,FN=BN,∵AF=2,AB=4,∴AN=1,∵AB=BC=4,∠B=90°,∴AC=4,∵AF∥CD,∴△GAF∽△GCD,∴,即,解得,AG=4,∵AN=NE=1,∠ENA=90°,∴AE=,∴GE=GA+AE=5.综上所述:GE的长为:,5.【点评】本题考查正方形的性质、全等三角形的判定与性质、三角形相似,解答本题的关键是明确题意,利用数形结合的思想解答.2.(2022春•广陵区期末)如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=2,点P为线段BD上的一个动点,则MP+PB的最小值是4.【分析】过P点作PH⊥BC于H,过M点作MN⊥BC于N,如图,根据菱形的性质得到AB=BC,BO 平分∠ABC,AO⊥BD,再判断△ABC为等边三角形得到∠ABC=∠ACB=60°,则∠OBC=30°,所以PH=BP,则MP+PB=MP+PH,所以MP+PH的最小值为MN的长,然后利用含30度角的直角三角形三边的关系求出MN即可.【解答】解:过P点作PH⊥BC于H,过M点作MN⊥BC于N,如图,∵四边形ABCD为菱形,∴AB=BC,BO平分∠ABC,AO⊥BD,∵AB=AC=10,∴AB=AC=BC=10,∴△ABC为等边三角形,∴∠ABC=∠ACB=60°,∴∠OBC=30°,∴PH=BP,∴MP+PB=MP+PH,当M、P、H共线时,MP+PH的值最小,即MP+PH的最小值为MN的长,∵AM=2,∴CM=10﹣2=8,在Rt△MNC中,∵∠MCN=60°,∴CN=CM=4,∴MN=CN=4,即MP+PB的最小值为4.故答案为:.【点评】本题考查了胡不归问题:利用垂线段最短解决最短路径问题,把PB转化为PH是解决问题的关键.也考查了菱形的性质和等边三角形的性质.【变式2-1】(2021•郴州)如图,在△ABC中,AB=5,AC=4,sin A=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为.【分析】过点P作PE⊥AB于点E,过点C作CH⊥AB于点H,首先得出BD=4,AD=3,根据sin∠ABD=,得EP=,则PC+PB的最小值为PC+PE的最小值,即求CH的长,再通过等积法即可解决问题.【解答】解:过点P作PE⊥AB于点E,过点C作CH⊥AB于点H,∵BD⊥AC,∴∠ADB=90°,∵sin A==,AB=5,∴BD=4,由勾股定理得AD=,∴sin∠ABD=,∴EP=,∴PC+PB=PC+PE,即点C、P、E三点共线时,PC+PB最小,∴PC+PB的最小值为CH的长,=,∵S△ABC∴4×4=5×CH,∴CH=.∴PC+PB的最小值为.故答案为:.【点评】本题主要考查了锐角三角函数,垂线段最短、勾股定理等知识,将PC+PB的最小值转化为求CH的长,是解题的关键.3.(2022秋•朝阳区校级月考)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的纵坐标为.【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E (0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.【解答】解:∵∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,则,解得:,∴直线EC的解析式为y=x+2,解,得,∴P(,),故答案为:.【点评】本题考查了轴对称﹣最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.【变式3-1】(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x 轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为(﹣,0).【分析】在BC上截取BH=3,可证四边形BHEF是平行四边形,可得BF=EH,由对称性可得DE=D'E,则四边形BDEF的周长=EH+ED'+BD+EF,由EF和BD是定值,则当EH+D'E有最小值时,四边形BDEF 的周长有最小值,即当点E,点H,点D'共线时,EH+D'E有最小值,利用待定系数法可求HD'解析式,即可求解.【解答】解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).【点评】本题考查了轴对称﹣最短路线问题,坐标与图形,平行四边形的判定和性质,一次函数的性质等知识,确定点E的位置是解题的关键.4.如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是.【分析】根据题意得出作EF∥AC且EF=,连接DF交AC于M,在AC上截取MN=,此时四边形BMNE的周长最小,进而利用相似三角形的判定与性质得出答案.【解答】解:作EF∥AC且EF=,连接DF交AC于M,在AC上截取MN=,延长DF交BC于P,作FQ⊥BC于Q,作出点E关于AC的对称点E′,则CE′=CE=1,将MN平移至E′F′处,则四边形MNE′F′为平行四边形,则当BM+EN=BM+FM=BF′时四边形BMNE的周长最小,由∠FEQ=∠ACB=45°,可求得FQ=EQ=1,∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,∴=,∴=,解得:PQ=,∴PC=,由对称性可求得tan∠MBC=tan∠PDC==.故答案为.【点评】此题主要考查了正方形的性质以及相似三角形的判定与性质,得出M,N的位置是解题关键.【变式4-1】如图,已知四边形ABCD四个顶点的坐标为A(1,3),B(m,0),C(m+2,0),D(5,1),当四边形ABCD的周长最小时,m的值为.【分析】因为AD,BC的长度都是固定的,所以求出AB+CD的长度就行了.问题就是AB+CD什么时候最短.把D点向左平移2个单位到D′点;作D′关于x轴的对称点D″,连接AD″,交x轴于P,从而确定C点位置,此时AB+CD最短.设直线AD″的解析式为y=kx+b,待定系数法求直线解析式.即可求得m的值.【解答】解:将C点向左平移2单位与B重合,点D向左平移2单位到D′(3,1),作D′关于x轴的对称点D″,根据作法知点D″(3,﹣1),设直线AD″的解析式为y=kx+b,则,解得k=﹣2,b=5.∴直线AD″的解析式为y=﹣2x+5.当y=0时,x=,即B(,0),m=.故答案为:.【点评】考查了轴对称﹣最短路线问题,关键是熟悉关于x轴的对称点,两点之间线段最短等知识.题型2:面积平分问题解题模板:技巧精讲1:利用中线平分图形面积的方法2.利用对称性平分图形面积的方法5.(1)问题提出:如图(1),在直角△ABC中,∠C=90°,AC=8,BC=6,点D为AC上一点且AD=2,过点D作直线DE交△ABC于点E,使得△ABC被分成面积相等的两部分,则DE的长为2.(2)类比发现:如图(2),五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O(0,0),C (4,0),D(4,2)请你找出一条经过顶点A的直线,将五边形ABOCD分为面积相等的两部分,求出该直线对应的函数表达式.(3)如图(3),王叔叔家有一块四边形菜地ABCD,他打算过D点修一条笔直的小路把四边形菜地ABCD 分成面积相等的两部分,分别种植不同的农作物,已知AB=AD=200米,BC=DC=200米,∠BAD =90°过点D是否存在一条直线将四边形ABCD的面积平分?若存在,求出平分该四边形面积的线段长:若不存在,请说明理由.【分析】(1)如图1中,取AC的中点F,连接BF,BD,作FE∥BD交BC于E,连接DE交BF于O.证明DE平分△ABC的面积,利用平行线分线段成比例定理求出CE即可解决问题.(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,求出点M的坐标即可解决问题.(3)先求出四边形ABCD的面积,即可得出四边形ABQD的面积,从而求出QM,再用平行线分线段成比例定理求出BM,即可得出DM,最后用勾股定理即可.【解答】解:(1)如图1中,取AC的中点F,连接BF,BD,作FE∥BD交BC于E,连接DE交BF 于O.∵AF=FC,=S△BFC,∴S△AFB∵BD∥EF,=S△BDF,∴S△BDE=S△BOE,∴S△DFO=S四边形ABED,∴S△ECD∴DE平分△ABC的面积,∵AC=8,AD=2,∴AF=CF=4,DF=2,∵EF∥BD,∴=,∴=,∴CE=4,∴DE===2,故答案为2.(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,∵直线AO的解析式为y=x,∴直线BE解析式为y=x+2,∴点E坐标(﹣,0),∵直线AC的解析式为y=﹣4x+16,∴直线DF的解析式为y=﹣4x+18,∴点F坐标为(,0)∴EF的中点M坐标为(,0),∴直线AM的解析式为:y=x﹣4.(3)如图3中,连接BD,AC交于点O.在BC上取一点Q,过Q作QM⊥BD,∵AB=AD=200、BC=CD=200,∴AC是BD的垂直平分线,在Rt△ABD中,BD=AB=200,∴DO=BO=OA=100,在Rt△BCO中,OC==300,=S△ABD+S△CBD=BD×(AO+CO)=×200×(100+300)=80000,∴S四边形ABCD∵在一条过点D的直线将筝形ABCD的面积二等分,=S四边形ABCD=40000,∴S四边形ABQD=×BD×OA=20000,∵S△ABD=BD×QM=×200×QM=100QM=S四边形ABQD﹣S△ABD=20000,∴S△QBD∴QM=100,∵QM∥CO.∴=,∴=,∴BM=,∴DM=BD﹣BM=,在Rt△MQD中,DQ===.【点评】此题是一次函数综合题,主要考查了等腰三角形的性质,三角形的中线,几何作图,勾股定理,等积问题等知识,解题的关键是把多边形转化为三角形是解决问题的关键,记住三角形的中线把三角形分成面积相等的两个三角形.【变式5-1】(2022•江北区模拟)新知学习:若一条线段把一个平面图形分成面积相等的两部分,我们把这条线段叫做该平面图形的二分线.解决问题:(1)①三角形的中线、高线、角平分线中,一定是三角形的二分线的是三角形的中线;②如图1,已知△ABC中,AD是BC边上的中线,点E,F分别在AB,DC上,连接EF,与AD交于=S△DGF,则EF是(填“是”或“不是”)△ABC的一条二分线.点G.若S△AEG(2)如图2,四边形ABCD中,CD平行于AB,点G是AD的中点,射线CG交射线BA于点E,取EB 的中点F,连接CF.求证:CF是四边形ABCD的二分线.(3)如图3,在△ABC中,AB=CB=CE=7,∠A=∠C,∠CBE=∠CEB,D,E分别是线段BC,AC上的点,且∠BED=∠A,EF是四边形ABDE的一条二分线,求DF的长.【分析】(1)①由平面图形的二分线定义可求解;②由面积的和差关系可得S△BEF=S△ABD=S△ABC,可得EF是△ABC的一条二分线;=S△CEF,由AB∥DC,G是AD的中点,证明△CDG≌△EAG,所(2)根据EB的中点F,所以S△CBF=S△CEF,所以S四边形AFCD=S△CBF,可得CF是四边形ABCD的二分线;以S四边形AFCD=S△DEC=S△ABE,可得S△HED=(3)延长CB使BH=CD,连接EH,通过全等三角形的判定可得S△BEHS四边形ABDE,即可得DF=DH=.【解答】解:(1)∵三角形的中线把三角形分成面积相等的两部分;∴三角形的中线是三角形的二分线,故答案为三角形的中线②∵AD是BC边上的中线=S△ACD=S△ABC,∴S△ABD=S△DGF,∵S△AEG+S△AEG=S四边形BDGE+S△DGF,∴S四边形BDGE=S△ABD=S△ABC,∴S△BEF∴EF是△ABC的一条二分线故答案为:是(2)∵EB的中点F,=S△CEF,∴S△CBF∵AB∥DC,∴∠E=∠DCG,∵G是AD的中点,∴DG=AG,在△CDG和△EAG中,∴△CDG≌△EAG(AAS),=S△DCG,∴S△AEG=S△CEF,∴S四边形AFCD=S△CBF,∴S四边形AFCD∴CF是四边形ABCD的二分线.(3)如图,延长CB使BH=CD,连接EH,AB=CB=CE=7,∠A=∠C,∠CBE=∠CEB,D,E分别是线段BC,AC上的点,且∠BED=∠A,∵BC=7∴BD+CD=7∴BD+BH=7=HD∵∠BED=∠A,∠BED+∠DEC=∠A+∠ABE∴∠ABE=∠CED,且AB=CE=7,∠A=∠C∴△ABE≌△CED(ASA)=S△EDC,∴AE=CD,BE=DE,∠AEB=∠EDC,S△ABE∴AE=BH,∵∠CBE=∠CEB∴∠AEB=∠EBH∴∠EBH=∠EDC,且BE=DE,BH=CD∴△BEH≌△DEC(SAS)、=S△DEC,∴S△BEH=S△DEC=S△ABE,∴S△BEH=S四边形ABDE,∴S△HED∵EF是四边形ABDE的一条二分线,=S四边形ABDE=S△HED,∴S△DEF∴DF=DH=【点评】本题是三角形综合题,考查了全等三角形的判定和性质,三角形中线的性质,平行线的性质,理解新定义是本题的关键.【变式5-2】(2021•西安一模)问题提出(1)如图①,在Rt△ABC中,∠A=90°,AB=3,AC=4,在BC上找一点D,使得AD将△ABC分成面积相等的两部分,作出线段AD,并求出AD的长度;问题探究(2)如图②,点A、B在直线a上,点M、N在直线b上,且a∥b,连接AN、BM交于点O,连接AM、BN,试判断△AOM与△BON的面积关系,并说明你的理由;解决问题(3)如图③,刘老伯有一个形状为筝形OACB的养鸡场,在平面直角坐标系中,O(0,0)、A(4,0)、B(0,4)、C(6,6),是否在边AC上存在一点P,使得过B、P两点修一道笔直的墙(墙的宽度不计),将这个养鸡场分成面积相等的两部分?若存在,请求出直线BP的表达式;若不存在,请说明理由.【分析】(1)当点D是BC的中点时,AD将△ABC分成面积相等的两部分,根据直角三角形斜边中线等于斜边的一般,可求出AD的长度;(2)根据同底等高的三角形面积相等,再减去相等的部分,就可以得出△AOM与△BON的面积相等;(3)连接AB,过点O作AB的平行线,交CA的延长线于点F,交OA于点G,则△OBG的面积等于△AFG的面积,则四边形OACB的面积转化为△BCF的面积,取CF的中点P,求出点P的坐标,即可求出直线BP的表达式.【解答】解:(1)如图①,取BC边的中点D,连接AD,则线段AD即为所求.在Rt△ABC中,∠BAC=90°,AB=3,AC=4,∴BC=,∵点D为BC的中点,∴AD=BC=.=S△BON,理由如下:(2)S△AOM=S△ABM﹣S△AOB,S△BON=S△ABN﹣S△AOB,由图可知,S△AOM如图②,过点M作MD⊥AB于点D,过点N作NE⊥AB于点E,∴MD∥NE,∠MDE=90°,又∵MN∥DE,∴四边形MDEN是矩形,∴MD=NE,=,S△ABN=,∵S△ABM=S△ABN,∴S△ABM=S△BON.∴S△AOM(3)存在,直线BP的表达式为:y=x+4.如图③,连接AB,过点O作OF∥AB,交CA的延长线于点F,交OA于点G,=S△AFG,由(2)的结论可知,S△OBG=S△BCF,∴S四边形OACB取CF的中点P,作直线BP,直线BP即为所求.∵A(4,0),B(0,4),C(6,6),∴线段AB所在直线表达式为:y=﹣x+4,线段AC所在直线的表达式为:y=3x﹣12,∴直线OF的表达式为:y=﹣x,联立,解得,∴F(3,﹣3),∵点P是CF的中点,∴P(,),∴直线BP的表达式为:y=x+4.【点评】主要考查了勾股定理,中点的性质,面积转化以及待定系数法求一次函数表达式等内容,熟练掌握勾股定理的内容,中点性质的应用,作出辅助线,进行面积的转化是解答本题的关键.题型3:面积最值问题6.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.得到BM=CM=2,易证△AMB∽△CGB,求得GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG,EH=DG=8﹣x,所以S△BDE===,当x=4时,△BDE面积的最大值为8.【解答】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,BC=4,∴△AMB∽△CGB,∴,∴GB=8,设BD=x,则DG=8﹣x,∵ED=DC,∠EHD=∠DGC,∠HED=∠GDC,∴△EDH≌△DCG(AAS),∴EH=DG=8﹣x,===,∴S△BDE当x=4时,△BDE面积的最大值为8.故答案为8.【点评】本题考查了正方形,熟练运用正方形的性质与相似三角形的判定与性质以及全等三角形的判定与性质是解题的关键.;【变式6-1】(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC;(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC(3)如图③,四边形ABCD,AC=m,BD=n,对角线AC交于O点,他们所成锐角为β,求四边形ABCD .的面积S四边形ABCD【分析】(1)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(2)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(3)过A作AE⊥BD于E,过C作CF⊥BD于F,解直角三角形求出AE、CF,根据三角形面积公式求出即可.【解答】解:(1)如图①,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=60°,AC=4,∴AM=AC×sin60°=4×=2,∵BC=6,=×BC×AM=×6×2=6;∴△ABC的面积S△ABC(2)如图②,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=α,AC=b,∴AM=AC×sinα=b×sinα=b sinα,∵BC=a,=×BC×AM=×a×b sinα=ab sinα;∴△ABC的面积S△ABC(3)如图3,过A作AE⊥BD于E,过C作CF⊥BD于F,BD=n,OA+OC=m,∵AC、BD夹角为β,∴AE=OA•sinβ,CF=OC•sinβ,=S△ABD+S△BDC∴S四边形ABCD=BD•AE+BD•CF=BD•(AE+CF)=BD•(OA•sinβ+OC•sinβ)=BD•AC•sinβ=mn sinβ.=mn sinβ.即四边形ABCD的面积S四边形ABCD【点评】本题考查了解直角三角形,三角形的面积的应用,此题比较难,解题时关键要找对思路,即原四边形的高已经发生了变化,只要把高求出来,一切将迎刃而解.【变式6-2】如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动的速度为每秒1个单位,运动的时间为x秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.【分析】(1)由正方形的性质得出AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,证出∠ADE=∠CDG,由SAS证明△ADE≌△CDG,得出∠DCG=∠DAE=90°,证出∠DCG+∠DCB=180°,即可得出结论;(2)分情况讨论:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,则AC∥EK∥AD,证明△ADE∽△BEH,由相似三角形的性质得出=,求出BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积,即可得出结果;②当点E在BC边上时,S=△DEC的面积=4﹣x;(3)由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;由勾股定理求出BD,即可得出结果.【解答】(1)证明:∵四边形ABCD与四边形DEFG都是正方形,∴AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠DCG=∠DAE=90°,∵∠DCB=90°,∴∠DCG+∠DCB=180°,∴点G在直线BC上;(2)解:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,如图1所示:则AC∥EK∥AD,∴∠HEK=∠EHB,∠DEK=∠EDA,∵∠EHB+∠BEH=90°,∠EDA+∠AED=90°,∠HEK+∠DEK=90°,∴∠EDA=∠BEH,∠AED=∠EHB,∴△ADE∽△BEH,∴=,即=,∴BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积=2×2﹣×2×x﹣×(2﹣x)×=;②当点E在BC边上时,S=△DEC的面积=×2×(4﹣x)=4﹣x;(3)解:由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∵BD===2,∴BF+FG=2BD=4,∴点F运动的路径长为4.【点评】本题是四边形综合题目,考查了正方形的性质、平行线的判定与性质、三角形面积的计算、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解决问题的关键.1.如图,在边长为6的菱形ABCD中,∠BCD=60°,连接BD,点E、F分别是边AB、BC上的动点,且AE=BF,连接DE、DP、EF.(1)如图①,当点E是边AB的中点时,求∠EDF的度数;(2)如图②,当点E是边AB上任意一点时,∠EDF的度数是否发生改变?若不改变,请证明;若发生改变,请说明理由;(3)若点P是线段BD上一动点,求PF+DP的最小值.【分析】(1)由菱形的性质可得AB=BC=CD=AD=6,∠BCD=∠BAD=60°,可证△ABD,△BCD 是等边三角形,由等边三角形的性质可证DE=DF,∠EDF=60°,可得结论;(2)证明△ADE≌△BDF(SAS),根据全等三角形的性质得∠ADE=∠BDF,由角的和差即可得∠EDF =∠ADB=60°;(3)过点P作PG⊥AD于点G,连接PF,过点F作FG′⊥AD于点G′,交BD于点P′,可得GP=DP•sin60°=DP,则PF+DP=PF+GP,当点F、P、G三点共銭,且FG⊥AD时,PF+GP有最小值,最小值为FG′的长,过点D作DH⊥BC于点H,则DH=FG',PF+DP的最小值即为DH的长,由△BDC是等边三角形可得DH=CD•sin60°=3,即可求得PF+DP的最小值.【解答】解:(1)∵四边形ABCD是菱形,边长为6,∴AB=BC=CD=AD=6,∠BCD=∠BAD=60°,∴△ABD,△BCD是等边三角形,∵点E是边AB的中点,AE=BF,∴点F是边BC的中点,∴∠ADE=∠BDE=∠BDF=∠CDF=30°,∴∠EDF=∠BDE+∠BDF=60°;(2)∠EDF的度数不改变,证明:△ABD,△BCD是等边三角形,∴AD=BD,∠DAB=∠DBC=60°,∵AE=BF,∴△ADE≌△BDF(SAS),∴∠ADE=∠BDF,∴∠EDF=∠ADB=60°;(3)如图,过点P作PG⊥AD于点G,连接PF,过点F作FG′⊥AD于点G′,交BD于点P′,∵∠ADB=60°,∴GP=DP•sin60°=DP,∴PF+DP=PF+GP,∴当点F、P、G三点共銭,且FG⊥AD时,PF+GP有最小值,最小值为FG′的长,过点D作DH⊥BC于点H,∵四边形ABCD是菱形,∴DH=FG',∴PF+DP的最小值即为DH的长,∵DH⊥BC,△BDC是等边三角形,∴DH=CD•sin60°=3,∴PF+DP的最小值为3.【点评】本题考查了四边形的综合应用,掌握菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,最短路径等知识,添加恰当辅助线构造构造在直角三角形是解本题的关键.2.(2022•连云港)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM+PN的最小值.【分析】(1)先证明四边形DBCE是平行四边形,再由BE⊥DC,得四边形DBCE是菱形;(2)作N关于BE的对称点N',过D作DH⊥BC于H,由菱形的对称性知,点N关于BE的对称点N'在DE上,可得PM+PN=PM+PN',即知MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,可得DH=DB•sin∠DBC=,即可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DE=AD,∴DE=BC,∵E在AD的延长线上,∴DE∥BC,∴四边形DBCE是平行四边形,∵BE⊥DC,∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,∴PM+PN=PM+PN',∴当P、M、N'共线时,PM+PN'=MN'=PM+PN,∵DE∥BC,∴MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,∴DH=DB•sin∠DBC=2×=,∴PM+PN的最小值为.【点评】本题考查平行四边形性质及应用,涉及菱形的判定,等边三角形性质及应用,对称变换等,解题的关键是掌握解决“将军饮马”模型的方法.3.(2014•海南)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式;(2)首先求出四边形MEFP面积的表达式,然后利用二次函数的性质求出最值及点P坐标;(3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x 轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.【解答】方法一:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.方法二:(1)略.(2)连接MF,过点P作x轴垂线,交MF于点H,有最大值时,四边形MEFP面积最大.显然当S△PMF当a=1时,E(1,0),F(2,0),∵M(0,1),∴l MF:y=﹣x+1,设P(t,﹣t2+4t+5),H(t,﹣t+1),=(P Y﹣H Y)(F X﹣M X),∴S△PMF=(﹣t2+4t+5+t﹣1)(2﹣0)=﹣t2+t+4,∴S△PMF最大值为,∴当t=时,S△PMF=EF×MY=×1×1=,∵S△MEF的最大值为+=,∴S四边形MEFP∴P(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,∴﹣x2+4x+5=0,解得:x=2±,∵点P在第一象限,∴P(2+,3),PM、EF长度固定,当ME+PF最小时,PMEF的周长取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),∵四边形MEFM1为平行四边形,∴ME=M1F,作点M1关于x轴的对称点M2,则M2(1,﹣1),∴M2F=M1F=ME,当且仅当P,F,M2三点共线时,此时ME+PF=PM2最小,∵P(2+,3),M2(1,﹣1),F(a+1,0),∴K PF=K M1F,∴,∴a=.【点评】本题是二次函数综合题,第(1)问考查了待定系数法;第(2)问考查了图形面积计算以及二次函数的最值;第(3)问主要考查了轴对称﹣最短路线的性质.试题计算量偏大,注意认真计算.4.(2021•靖江市校级一模)如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,若AE=2,则求EF的长.(请从“线段的长度或线段的位置关系”的方向设计条件及问题,并解答)【分析】过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB=6,∠B=60°,可得BG=3,AG=3=EH,由题意可得,FH=FC﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.【解答】若AE=2.则求EF的长.解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3=EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,EF经过菱形对角线交点,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得:EF===2.【点评】本题考查了菱形的性质,勾股定理,矩形的性质,解决本题的关键是掌握菱形的性质.5.(2012•新密市自主招生)如图,菱形ABCD的边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,且AE+CF=4,则△DEF面积的最大值为.【分析】首先过点F作FG⊥AD,交AD的延长线于点G,由菱形ABCD的边长为4,∠BAD=60°,即=DE•FG)=﹣(x﹣2)2+,可求得AD=CD=4,∠FDG=60°,然后设AE=x,即可得S△DEF然后根据二次函数的性质,即可求得答案.【解答】解:过点F作FG⊥AD,交AD的延长线于点G,∵菱形ABCD边长为4,∠BAD=60°,∴AD=CD=4,∠ADC=180°﹣∠BAD=120°,∴∠FDG=180°﹣∠ADB=60°,设AE=x,∵AE+CF=4,∴CF=4﹣x;∴DE=AD﹣AE=4﹣x,DF=CD﹣CF=4﹣(4﹣x)=x,在Rt△DFG中,FG=DF•sin∠GDF=x,=DE•FG=×(4﹣x)×x=﹣x2+x=﹣(x2﹣4x)=﹣(x﹣2)2+,∴S△DEF∴当x=2时,△DEF面积的最大,最大值为.故答案为:.【点评】此题考查了菱形的性质、三角函数的性质以及二次函数的最值问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与函数思想的应用.6.(2022•杭州模拟)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为等腰直角三角形,连接BD,BB′与CE的数量关系是BB'=CE.(2)当0°<α<360°且a≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点E,C,D,B′为顶点的四边形是平行四边形时,请直接写出BE与B′E的数量关系.。

初中数学中考压轴题的解题策略与技巧

初中数学中考压轴题的解题策略与技巧

初中数学中考压轴题的解题策略与技巧初中数学中考压轴题的解题策略与技巧中考数学是中学阶段最重要的科目之一,对于学生的升学和未来的学习生涯都有着巨大的影响。

中考数学试题中,常常有一些难度较大、涉及知识面广泛、需要灵活应变的题目,这些就是我们说的中考数学中的“压轴题”。

这些题目既考验学生的知识储备,又考验学生的解题能力和思维能力,因此,学生在备考中要特别重视这类题目的练习和掌握。

本文将为大家介绍初中数学中考压轴题的解题策略和技巧,希望能够对大家的备考有所帮助。

一、解题策略1.理解题意:理解题目的关键信息和解题规律,分析问题所涉及的概念、原理、方法等,抓住题目的中心思想,明确解题目的突破点,然后再考虑如何运用相关知识进行分析和解答。

2.归纳总结:把几个相似的题目作比较,找出它们的共性和特点,归纳总结出问题的常见解法、技巧和思路,再运用它们推算出本题的解题方法。

3.举一反三:将解决本题的方法迁移到其他的问题上,通过类比、变形、推广等方法,掌握和运用相关的知识和技巧,提高学生的数学思维和解题水平。

4.灵活应变:初中数学中考压轴题往往具有一定的难度和变化性,解题过程中常常需要不断的调整和修正,要善于对题目进行判断和估计,掌握灵活应变的解题方法。

二、解题技巧1.画图辅助:画图能够帮助学生更加直观地理解题目,从而更方便地推算和解答问题。

在解题时,可以根据题目需要,画出简洁、准确的图形,用于分析问题的结构和特点,并据此推出解题方法。

2.巧用公式:初中数学中考压轴题往往涉及到很多的公式,学生要掌握这些公式的使用方法和特点,熟练应用公式来解答问题。

同时,在解答问题的过程中,还要注意判断公式的适用范围和条件。

3.化繁为简:将复杂的问题分解成若干个简单的问题,逐步深入,不断推进,使问题化解成容易解决的小问题。

如此反复推算,直到解答整个问题。

4.运用逆向思维:对于某些特殊的问题,可能需要学生进行逆向思维的推理和解答。

比如,可以从问题的反面去分析问题的特点和解决方法,或者对某一已知条件推出未知的结论等等。

2019中考数学二次函数压轴题(含答案)

2019中考数学二次函数压轴题(含答案)

中考数学冲刺复习资料:二次函数压轴题面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.解答:解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.平行四边形类3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P 是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n 与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.解答:解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x2﹣2x﹣3.设直线AB的解析式是y=kx+b,把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当t=﹣=时,二次函数的最大值,即PM最长值为=,则S△ABM=S△BPM+S△APM==.(3)存在,理由如下:∵PM∥OB,∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P 点的横坐标是.所以P点的横坐标是或.4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).方法一:设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.方法二:∵A′(﹣1,0),B′(0,2),B(2,0),设抛物线的解析式为:y=a(x+1)(x﹣2)将B′(0,2)代入得出:2=a(0+1)(0﹣2),解得:a=﹣1,故满足条件的抛物线的解析式为y=﹣(x+1)(x﹣2)=﹣x2+x+2;(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面积为:×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②P A′=B′B;③B′P∥A′B;④B′A′=PB.5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.解:(1)∵顶点A的横坐标为x=﹣=1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即P A∥BD则构成平行四边形只能是P ADB或P ABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|P A=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4∴P(﹣2,﹣7)或P(4,﹣1),存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.周长类6.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S 和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.解:(1)∵抛物线y=经过点B(0,4)∴c=4,∵顶点在直线x=上,∴﹣=﹣=,∴b=﹣;∴所求函数关系式为;(2)在Rt△ABO中,OA=3,OB=4,∴AB=,∵四边形ABCD是菱形,∴BC=CD=DA=AB=5,∴C、D两点的坐标分别是(5,4)、(2,0),当x=5时,y=,当x=2时,y=,∴点C和点D都在所求抛物线上;(3)设CD与对称轴交于点P,则P为所求的点,设直线CD对应的函数关系式为y=kx+b,则,解得:,∴,当x=时,y=,∴P(),(4)∵MN∥BD,∴△OMN∽△OBD,∴即得ON=,设对称轴交x于点F,则(PF+OM)•OF=(+t)×,∵,S△PNF=×NF•PF=×(﹣t)×=,S=(﹣),=﹣(0<t<4),a=﹣<0∴抛物线开口向下,S存在最大值.由S△PMN=﹣t2+t=﹣(t﹣)2+,∴当t=时,S取最大值是,此时,点M的坐标为(0,).等腰三角形类7.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x(3)存在,如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),8.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,(1分)又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,(2分)∴BD=OC=1,CD=OA=2,(3分)∴点B的坐标为(﹣3,1);(4分)(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1),则得到1=9a﹣3a﹣2,(5分)解得a=,所以抛物线的解析式为y=x2+x﹣2;(7分)(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分)过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC.(10分)∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1);(11分)②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分)过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分)∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分)经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上.(16分)9.在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BDC≌△COA,∴BD=OC=1,CD=OA=2,∴点B的坐标为(3,1);(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴抛物线的解析式为y=x2﹣x﹣2;(3)假设存在点P,使得△ACP是等腰直角三角形,①若以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图(1),∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC,∴CM=CD=2,P1M=BD=1,∴P1(﹣1,﹣1),经检验点P1在抛物线y=x2﹣x﹣2上;②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图(2),同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴P2(﹣2,1),经检验P2(﹣2,1)也在抛物线y=x2﹣x﹣2上;③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,如图(3),同理可证△AP3H≌△CAO,∴HP3=OA=2,AH=OC=1,∴P3(2,3),经检验P3(2,3)不在抛物线y=x2﹣x﹣2上;故符合条件的点有P1(﹣1,﹣1),P2(﹣2,1)两点.。

2019年中考数学复习 动点最值问题压轴题 考点突破训练(有答案)

2019年中考数学复习    动点最值问题压轴题    考点突破训练(有答案)

2019年中考数学复习 动点、最值问题压轴题考点突破训练一、选择题1. 如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为( )A .2 3B .2 5C . 3D . 52. 如图,直线y =23x +4与x 轴,y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB的中点,点P 为OA 上一动点,当PC +PD 值最小时,点P 的坐标为( ) A .(-3,0) B .(-6,0)C.(-32,0) D .(-52,0)3. 如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ) A .20 cm B .18 cm C .2 5 cm D .3 2 cm4. 已知抛物线y =14x 2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y =14x 2+1上一个动点,则△PMF 周长的最小值是( ) A .3 B .4 C .5 D .65. 如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 平分∠CAB ,交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为( ) A.403 B.154 C.245D .66. 如图,点A(a ,3),B(b ,1)都在双曲线y =3x 上,点C ,D 分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( ) A .5 2 B .6 2 C .210+2 2 D .8 27. 如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 停止),求在运动过程中,四边形PABQ 的面积最小值为( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 2二、填空题8. 如图,△ABC 为等边三角形,AB =2.若P 为△ABC 内一动点,且满足∠PAB =∠ACP ,则线段PB 长度的最小值为______________.9. 如图,在△AOB 中,∠O =90°,AO =8 cm ,BO =6 cm ,点C 从A 点出发,在边AO 上以2 cm/s 的速度向O 点运动,与此同时,点D 从点B 出发,在边BO 上以1.5 cm/s 的速度向O 点运动,过OC 的中点E 作CD 的垂线EF ,则当点C 运动了__________s 时,以C 点为圆心,1.5 cm 为半径的圆与直线EF 相切.10. 如图,在Rt △ABC 中,BC =2,∠BAC =30°,斜边AB 的两个端点分别在相互垂直的射线OM ,ON 上滑动,下列结论:①若C ,O 两点关于AB 对称,则OA =23; ②C ,O 两点距离的最大值为4; ③若AB 平分CO ,则AB ⊥CO ; ④斜边AB 的中点D 运动路径的长为π2;其中正确的是______________.(填序号)11. 如图,在平面直角坐标系中,已知点A,B的坐标分别为(8,0),(0,23),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP,EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为________________.12. 如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC =60°,则当△ABM为直角三角形时,AM的长为_____________________.13. 如图,将直线y=-x沿y轴向下平移后的直线恰好经过点A(2,-4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为________________.14. 在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q 分别在AB,AD边上移动,则点A′在BC边上可移动的最大距离为________.三、解答题15. 在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,求PF2+PG2的最小值。

2019年中考数学最后一题解答题解析版

2019年中考数学最后一题解答题解析版

2019年中考数学解答题解析版1.(8分)在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y 轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.【分析】(1)首先证明△PEF∽△BCO,推出当PE最大时,△PEF的周长最大,构建二次函数,求出PE最大时,点P的坐标,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,求出PM即可解决问题.(2)首先利用待定系数法求出点D′坐标,设N(1,n),∵C(0,2),D′(5,),则NC2=1+(n﹣2)2,D′C2=52+(﹣2)2,D′N2=(5﹣1)2+(﹣n)2,分三种情形分别构建方程求出n的值即可解决问题.解:(1)如图1中,对于抛物线y=﹣x2+x+2,令x=0,得到y=2,令y=0,得到﹣x2+x+2=0,解得x=﹣2或4,∴C(0,2),A(﹣2,0),B(4,0),抛物线顶点D坐标(1,),∵PF⊥BC,∴∠PFE=∠BOC=90°,∵PE∥OC,∴∠PEF=∠BCO,∴△PEF∽△BCO,∴当PE最大时,△PEF的周长最大,∵B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,设P(m,﹣m2+m+2),则E(m,﹣m+2),∴PE=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,∴当m=2时,PE有最大值,∴P(2,2),如图,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,可得PM=10,∴PH+HK+KG的最小值为10,此时H(1,).(2)∵A(﹣2,0),C(0,2),∴直线AC的解析式为y=x+2,∵DD′∥AC,D(1,),∴直线DD′的解析式为y=x+,设D′(m,m+),则平移后抛物线的解析式为y1=﹣(x﹣m)2+m+,将(0,0)代入可得m=5或﹣1(舍弃),∴D′(5,),设N(1,n),∵C(0,2),D′(5,),∴NC2=1+(n﹣2)2,D′C2=52+(﹣2)2,D′N2=(5﹣1)2+(﹣n)2,①当NC=CD′时,1+(n﹣2)2=52+(﹣2)2,解得:n=②当NC=D′N时,1+(n﹣2)2=(5﹣1)2+(﹣n)2,解得:n=③当D′C=D′N时,52+(﹣2)2=(5﹣1)2+(﹣n)2,解得:n=,综上所述,满足条件的点N的坐标为(1,)或(1,)或(1,)或(1,)或(1,).【点评】本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.2.(13分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,4)三点.(1)求抛物线的解析式及顶点D的坐标;(2)将(1)中的抛物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线.若新抛物线的顶点D′在△ABC内,求h的取值范围;(3)点P为线段BC上一动点(点P不与点B,C重合),过点P作x轴的垂线交(1)中的抛物线于点Q,当△PQC与△ABC相似时,求△PQC的面积.解:(1)函数表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+3x+4,函数顶点D(,);(2)物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D′(﹣h,1),将点AC的坐标代入一次函数表达式并解得:直线AC的表达式为:y=4x+4,将点D′坐标代入直线AC的表达式得:1=4(﹣h)+4,解得:h=,故:0<h;(3)过点P作y轴的平行线交抛物线和x轴于点Q、H∵OB=OC=4,∴∠PBA=∠OCB=45°=∠QPC,直线BC的表达式为:y=﹣x+4,则AB=5,BC=4,AC=,S△ABC=×5×4=10,设点Q(m,﹣m2+3m+4),点P(m,﹣m+4),CP=m,PQ=﹣m2+3m+4+m﹣4=﹣m2+4m,①当△CPQ∽△CBA,,即,解得:m=,相似比为:,②当△CPQ∽△ABC,同理可得:相似比为:,利用面积比等于相似比的平方可得:S△PQC=10×()2=或S△PQC=10×()2=.3.(15分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x 轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)将点A、B坐标代入二次函数表达式,即可求解;(2)①S△PBC=PG(x C﹣x B),即可求解;②分点P在直线BC下方、上方两种情况,分别求解即可.解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(x C﹣x B)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(2),要主要分类求解,避免遗漏.4.(14分)如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.(3)已知点P是直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q 为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标解:(1)将A(﹣1,0),B(2,0)分别代入抛物线y=ax2+bx﹣1中,得,解得:∴该抛物线的表达式为:y=x2﹣x﹣1.(2)在y=x2﹣x﹣1中,令x=0,y=﹣1,∴C(0,﹣1)∵点C关于x轴的对称点为C1,∴C1(0,1),设直线C1B解析式为y=kx+b,将B(2,0),C1(0,1)分别代入得,解得,∴直线C1B解析式为y=﹣x+1,设M(t,+1),则E(t,0),F(0,+1)∴S矩形MFOE=OE×OF=t(﹣t+1)=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,S矩形MFOE最大值=,此时,M(1,);即点M为线段C1B中点时,S最大.矩形MFOE(3)由题意,C(0,﹣1),C1(0,1),以C、C1、P、Q为顶点的四边形为平行四边形,分以下两种情况:①C1C为边,则C1C∥PQ,C1C=PQ,设P(m,m+1),Q(m,﹣m﹣1),∴|(﹣m﹣1)﹣(m+1)|=2,解得:m1=4,m2=﹣2,m3=2,m4=0(舍),P1(4,3),Q1(4,5);P2(﹣2,0),Q2(﹣2,2);P3(2,2),Q3(2,0)②C1C为对角线,∵C1C与PQ互相平分,C1C的中点为(0,0),∴PQ的中点为(0,0),设P(m,m+1),则Q(﹣m,+m﹣1)∴(m+1)+(+m﹣1)=0,解得:m1=0(舍去),m2=﹣2,∴P4(﹣2,0),Q4(2,0);综上所述,点P和点Q的坐标为:P1(4,3),Q1(4,5)或P2(﹣2,0),Q2(﹣2,2)或P3(2,2),Q3(2,0)或P4(﹣2,0),Q4(2,0).5.(12分)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.【分析】(1)先根据题意得出点B的坐标,再利用待定系数法求解可得;(2)分点P在点C上方和下方两种情况,先求出∠OBP的度数,再利用三角函数求出OP的长,从而得出答案;(3)分对称轴x=1在a到a+1范围的右侧、中间和左侧三种情况,结合二次函数的性质求解可得.解:(1)∵点A(﹣1,0)与点B关于直线x=1对称,∴点B的坐标为(3,0),代入y=x2+bx+c,得:,解得,所以二次函数的表达式为y=x2﹣2x﹣3;(2)如图所示:由抛物线解析式知C(0,﹣3),则OB=OC=3,∴∠OBC=45°,若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,∴OP=OB tan∠OBP=3×=,∴CP=3﹣;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OB tan∠OBP′=3×=3,∴CP=3﹣3;综上,CP的长为3﹣或3﹣3;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,解得a=1﹣(正值舍去);若a<1<a+1,即0<a<1,则函数的最小值为1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,则函数的最小值为a2﹣2a﹣3=2a,解得a=2+(负值舍去);综上,a的值为1﹣或2+.【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、三角函数的运用、二次函数的图象与性质及分类讨论思想的运用.6.(12分)已知二次函数:y=ax2+(2a+1)x+2(a<0).(1)求证:二次函数的图象与x轴有两个交点;(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数时,求a的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x轴的两个交点A,B(A在B的左侧),与y轴的交点C及其顶点D这四点画出二次函数的大致图象,同时标出A,B,C,D的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P使∠PCA=75°?如果存在,求出点P的坐标;如果不存在,请说明理由.解:(1)∵y=ax2+(2a+1)x+2=(x+2)(ax+1),且a<0,∴抛物线与x轴的交点为(﹣2,0)、(﹣,0),则二次函数的图象与x轴有两个交点;(2)∵两个交点的横坐标均为整数,且a为负整数,∴a=﹣1,则抛物线与x轴的交点A的坐标为(﹣2,0)、B的坐标为(1,0),∴抛物线解析式为y=(x+2)(﹣x+1)=﹣x2﹣x+2=﹣(x+)2+,当x=0时,y=2,即C(0,2),函数图象如图1所示:(3)存在这样的点P,∵OA=OC=2,∴∠ACO=45°,如图2,当点P在直线AC上方时,记直线PC与x轴的交点为E,∵∠PCA=75°,∴∠PCO=120°,∠OCB=60°,则∠OEC=30°,∴OE===2,则E(2,0),求得直线CE解析式为y=﹣x+2,联立,解得或,∴P(,);如图3,当点P在直线AC下方时,记直线PC与x轴的交点为F,∵∠ACP=75°,∠ACO=45°,∴∠OCF=30°,则OF=OC tan∠OCF=2×=,∴F(,0),求得直线PC解析式为y=﹣x+2,联立,解得:或,∴P(﹣1,﹣1),综上,点P的坐标为(,)或(﹣1,﹣1).7.(10分)如图,直线y=x﹣3交x轴于点A,交y轴于点C,点B的坐标为(1,0),抛物线y=ax2+bx+c(a≠0)经过A,B,C三点,抛物线的顶点为点D,对称轴与x 轴的交点为点E,点E关于原点的对称点为F,连接CE,以点F为圆心,CE的长为半径作圆,点P为直线y=x﹣3上的一个动点.(1)求抛物线的解析式;(2)求△BDP周长的最小值;(3)若动点P与点C不重合,点Q为⊙F上的任意一点,当PQ的最大值等于CE 时,过P,Q两点的直线与抛物线交于M,N两点(点M在点N的左侧),求四边形ABMN 的面积.解:(1)直线y=x﹣3,令x=0,则y=﹣3,令y=0,则x=3,故点A、C的坐标为(3,0)、(0,﹣3),则抛物线的表达式为:y=a(x﹣3)(x﹣1)=a(x2﹣4x+3),则3a=﹣3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+4x﹣3…①;(2)过点B作直线y=x﹣3的对称点B′,连接BD交直线y=x﹣3于点P,直线B′B交函数对称轴与点G,连接AB′,则此时△BDP周长=BD+PB+PD=BD+B′B为最小值,D(2,1),则点G(2,﹣1),即:BG=EG,即点G是BB′的中点,过点B′(3,﹣2),△BDP周长最小值=BD+B′B=;(3)如图2所示,连接PF并延长交圆与点Q,此时PQ为最大值,点A、B、C、E、F的坐标为(3,0)、(1,0)、(0,﹣3)、(2,0)、(﹣2,0),则CE=,FQ=CE,则PF=CE﹣CE=,设点P(m,m﹣3),点F(﹣2,0),PF2=13=(m﹣2)2+(m﹣3)2,解得:m=1,故点P(1,﹣2),将点P、F坐标代入一次函数表达式并解得:直线PF的表达式为:y=﹣x﹣…②,联立①②并解得:x=,故点M、N的坐标分别为:(,)、(,),过点M、N分别作x轴的垂线交于点S、R,则S四边形ABMN=S梯形NRSM﹣S△ARN﹣S△SBM=.8.(12分)如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.【分析】(1)OA=OC=4OB=4,即可求解;(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即可求解;(3)PD=HP sin∠PFD=(x﹣4﹣x2+3x+4,即可求解.解:(1)OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HP sin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,∵<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,﹣6).【点评】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图象的面积计算等,其中(3),用函数关系表示PD,是本题解题的关键.9.(12分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【分析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ、AC=CQ、CQ=AQ三种情况,分别求解即可;(3)由PN=PQ sin∠PQN=(﹣m2+m+4+m﹣4)即可求解.解:(1)由二次函数交点式表达式得:y=a(x+3)(x﹣4)=a(x2﹣x﹣12),即:﹣12a=4,解得:a=﹣,则抛物线的表达式为y=﹣x2+x+4;(2)存在,理由:点A、B、C的坐标分别为(﹣3,0)、(4,0)、(0,4),则AC=5,AB=7,BC=4,∠OAB=∠OBA=45°,将点B、C的坐标代入一次函数表达式:y=kx+b并解得:y=﹣x+4…①,同理可得直线AC的表达式为:y=x+4,设直线AC的中点为M(﹣,4),过点M与CA垂直直线的表达式中的k值为﹣,同理可得过点M与直线AC垂直直线的表达式为:y=﹣x+…②,①当AC=AQ时,如图1,则AC=AQ=5,设:QM=MB=n,则AM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q(1,3);②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=4﹣5,则QM=MB=,故点Q(,);③当CQ=AQ时,联立①②并解得:x=(舍去);故点Q的坐标为:Q(1,3)或(,);(3)设点P(m,﹣m2+m+4),则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,PN=PQ sin∠PQN=(﹣m2+m+4+m﹣4)=﹣m2+m,∵﹣<0,∴PN有最大值,当m=时,PN的最大值为:.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.(12分)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.【分析】①点B、C在直线为y=x+n上,则B(﹣n,0)、C(0,n),点A(1,0)在抛物线上,所以,解得a=﹣1,b=6,因此抛物线解析式:y=﹣x2+6x﹣5;②先求出点P到BC的高h为BP sin45°=(4﹣t),于是S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x﹣5,所以点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),易证△PQN为等腰直角三角形,即NQ=PQ=2,PN=4,Ⅰ.NH+HP =4,所以﹣m2+6m﹣5﹣(m﹣5)=4解得m1=1(舍去),m2=4,Ⅱ.NH+HP=4,m ﹣5﹣(﹣m2+6m﹣5)=4解得m1=,m2=(舍去),Ⅲ.NH﹣HP=4,﹣(﹣m2+6m﹣5)﹣[﹣(m﹣5)]=4,解得m1=(舍去),m2=.解:①∵点B、C在直线为y=x+n上,∴B(﹣n,0)、C(0,n),∵点A(1,0)在抛物线上,∴,∴a=﹣1,b=6,∴抛物线解析式:y=﹣x2+6x﹣5;②由题意,得,PB=4﹣t,BE=2t,由①知,∠OBC=45°,∴点P到BC的高h为BP sin45°=(4﹣t),∴S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x﹣5,∴点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),易证△PQN为等腰直角三角形,即NQ=PQ=2,∴PN=4,Ⅰ.NH+HP=4,∴﹣m2+6m﹣5﹣(m﹣5)=4解得m1=1,m2=4,∵点A、M、N、Q为顶点的四边形是平行四边形,∴m=4;Ⅱ.NH+HP=4,∴m﹣5﹣(﹣m2+6m﹣5)=4解得m 1=,m 2=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, m >5, ∴m =,Ⅲ.NH ﹣HP =4,∴﹣(﹣m 2+6m ﹣5)﹣[﹣(m ﹣5)]=4, 解得m 1=,m 2=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, m <0, ∴m =,综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或或.【点评】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键. 11.(本小题满分12)如图,抛物线y =c bx ax ++2经过点A (-2,5),与x 轴相交于B (-1,0),C (3,0)两点, (1)抛物线的函数表达式; (2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿沿直线BD 翻折得到△B C 'D ,若点C '恰好落在抛物线的对称轴上,求点C '和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式。

(完整版)2019年中考数学压轴题汇编(几何1)解析版

(完整版)2019年中考数学压轴题汇编(几何1)解析版

(2019年安徽23题)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB =∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2?h3.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△PAB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2?h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.(2019年北京27题)27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.【分析】(1)根据题意画出图形.(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP =∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD =NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD=OC=OP+PC=2a+x,MQ=DM+QD=2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=a+a=+1,求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=OP=1∴OD=∵OH=+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中∴△OCN≌△QDP(SAS)∴ON=QP【点评】本题考查了根据题意画图,旋转的性质,三角形内角和180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以ON=QP为条件反推OP的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP=2为条件构造全等证明ON=QP.(2019年北京28题)28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP 满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE 垂直平分线FP,作EG⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.【点评】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.(2019年福建24题)24.(12分)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD 的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到=,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∠ADB=90°﹣∠CAD,从而得到∠BAC=∠CAD,即可证得结论;(2)易证得BC=CF=4,即可证得AC垂直平分BF,证得AB=AF=10,根据勾股定理求得AE、CE、BE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角函数求得tan∠BAD的值.【解答】解:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE===3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵AB?DH=BD?AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.【点评】本题属于圆综合题,考查了圆周角定理,勾股定理,锐角三角函数,圆心角、弧、弦的关系,相交弦定理,等腰三角形的判定和性质等知识,解题的关键是熟练掌握并灵活运用性质定理,属于中考压轴题.(2019年甘肃兰州27题)27.(10分)通过对下面数学模型的研究学习,解决问题.【模型呈现】如图,在Rt△ABC,∠ACB=90°,将斜边AB绕点A顺时针旋转90°得到AD,过点D 作DE⊥AC于点E,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型成为“K型”.推理过程如下:【模型应用】如图,在Rt△ABC内接于⊙O,∠ACB=90°,BC=2,将斜边AB绕点A顺时针旋转一定的角度得到AD,过点D作DE⊥AC于点E,∠DAE=∠ABC,DE=1,连接DO交⊙O 于点F.(1)求证:AD是⊙O的切线;(2)连接FC交AB于点G,连接FB.求证:FG2=GO?GB.【分析】(1)因为直角三角形的外心为斜边中点,所以点O在AB上,AB为⊙O直径,故只需证AD⊥AB即可.由∠ABC+∠BAC=90°和∠DAE=∠ABC可证得∠DAE+∠BAC =90°,而E、A、C在同一直线上,用180°减去90°即为∠BAD=90°,得证.(2)依题意画出图形,由要证的结论FG2=GO?GB联想到对应边成比例,所以需证△FGO∽△BGF.其中∠FGO=∠BGF为公共角,即需证∠FOG=∠BFG.∠BFG为圆周角,所对的弧为弧BC,故连接OC后有∠BFG=∠BOC,问题又转化为证∠FOG=∠BOC.把DO延长交BC于点H后,有∠FOG=∠BOH,故问题转化为证∠BOH=∠BOC.只要OH⊥BC,由等腰三角形三线合一即有∠BOH=∠BOC,故问题继续转化为证DH∥CE.联系【模型呈现】发现能证△DEA≌△ACB,得到AE=BC=2,AC=DE =1,即能求AD=AB=.又因为O为AB中点,可得到,再加上第(1)题证得∠BAD=90°,可得△DAO∽△AED,所以∠ADO=∠EAD,DO∥EA,得证.【解答】证明:(1)∵⊙O为Rt△ABC的外接圆∴O为斜边AB中点,AB为直径∵∠ACB=90°∴∠ABC+∠BAC=90°∵∠DAE=∠ABC∴∠DAE+∠BAC=90°∴∠BAD=180°﹣(∠DAE+∠BAC)=90°∴AD⊥AB∴AD是⊙O的切线(2)延长DO交BC于点H,连接OC∵DE⊥AC于点E∴∠DEA=90°∵AB绕点A旋转得到AD∴AB=AD在△DEA与△ACB中∴△DEA≌△ACB(AAS)∴AE=BC=2,AC=DE=1∴AD=AB=∵O为AB中点∴AO=AB=∴∵∠DAO=∠AED=90°∴△DAO∽△AED∴∠ADO=∠EAD∴DO∥EA∴∠OHB=∠ACB=90°,即DH⊥BC∵OB=OC∴OH平分∠BOC,即∠BOH=∠BOC∵∠FOG=∠BOH,∠BFG=∠BOC∴∠FOG=∠BFG∵∠FGO=∠BGF∴△FGO∽△BGF∴∴FG2=GO?GB【点评】本题考查了三角形外心定义,圆的切线判定,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的判定和性质,垂径定理,等腰三角形三线合一,圆周角定理.其中第(2)题证明DO∥EA进而得到DO垂直BC是解题关键.(2019年甘肃陇南27题)27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.【答案】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1,三点共线,在△A1B1M1和△EB1M1中,,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°-90°=90°.【解析】延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,得出△EB1C1是等腰直角三角形,由等腰直角三角形的性质得出∠B1EC1=∠B1C1E=45°,证出∠B1C1E+∠M1C1N1=180°,得出E、C1、N1,三点共线,由SAS证明△A1B1M1≌△EB1M1得出A1M1=EM1,∠1=∠2,得出EM1=M1N1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论.此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.(2019年甘肃天水25题)25.(10分)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.(2019年广东深圳23题)23.(9分)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标,F2(5,0)(直接写出);②求的最大值.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②如图4,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG?CFCF=∵CG2+BG2=BC2,∴BG2=BC2﹣CG2∴==∴=令y=CG2(64﹣CG2)=﹣CG4+64CG2=﹣[(CG2﹣32)2﹣322]=﹣(CG2﹣32)2+322∴当CG2=32时,此时CG=4==.【点评】本题是一道难度较大,综合性很强的有关圆的代数几何综合题,主要考查了圆的性质,切线的性质和判定定理,直角三角形性质,相似三角形性质和判定,动点问题,二次函数最值问题等,构造相似三角形和应用求二次函数最值方法是解题关键.(2019年广东24题)24.(9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC?BE=25,求BG的长.【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC?BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∠BAD+∠DAG =∠GDC+∠ACB得∠BAG=∠BGA,从而得出BG=AB=5.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;(2)如图1,连接OA,∵AB=AC,∴=,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴=,∴AB2=BC?BE,∴BC?BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GDC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.【点评】本题是圆的综合问题,解题的关键是掌握圆心角定理、切线的判定与性质、相似三角形的判定与性质等知识点.(2019年广东广州24题)24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=﹣(6﹣6)=3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣【点评】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.(2019年广西池州25题)25.(10分)如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F=45°,求CF的长.【分析】(1)由圆心角、弧、弦之间的关系得出,由圆周角定理得出∠ADE=∠DBC,证明△ADE≌△DBC,即可得出结论;(2)连接CO并延长交AB于G,作OH⊥AB于H,则∠OHG=∠OHB=90°,由切线的性质得出∠FCG=90°,得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG =OH,由等边三角形的性质得出∠OBH=30°,由直角三角形的性质得出OH=OB =1,OG=,即可得出答案.【解答】(1)证明:∵AE=DC,∴,∴∠ADE=∠DBC,在△ADE和△DBC中,,∴△ADE≌△DBC(AAS),∴DE=BC;(2)解:连接CO并延长交AB于G,作OH⊥AB于H,如图所示:则∠OHG=∠OHB=90°,∵CF与⊙O相切于点C,∴∠FCG=90°,∵∠F=45°,∴△CFG、△OGH是等腰直角三角形,∴CF=CG,OG=OH,∵AB=BD=DA,∴△ABD是等边三角形,∴∠ABD=60°,∴∠OBH=30°,∴OH=OB=1,∴OG=,∴CF=CG=OC+OG=2+.【点评】本题考查了切线的性质,圆周角定理,圆心角、弧、弦之间的关系,全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质;熟练掌握切线的性质和圆周角定理是解题的关键.(2019年广西贺州25题)25.(10分)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.【分析】(1)由切线的性质得出AF⊥OA,由圆周角定理好已知条件得出∠F=∠DBC,证出AF∥BC,得出OA⊥BC,求出∠BOA=90°﹣30°=60°,由圆周角定理即可得出结果;(2)由垂径定理得出BE=CE=BC=4,得出AB=AC,证明△AOB是等边三角形,得出AB=OB,由直角三角形的性质得出OE=OB,BE=OE=4,求出OE=,即可得出AC=AB=OB=2OE=.【解答】解:(1)∵AF与⊙O相切于点A,∴AF⊥OA,∵BD是⊙O的直径,∴∠BAD=90°,∵∠BAC=120°,∴∠DAC=30°,∴∠DBC=∠DAC=30°,∵∠F=30°,∴∠F=∠DBC,∴AF∥BC,∴OA⊥BC,∴∠BOA=90°﹣30°=60°,∴∠ADB=∠AOB=30°;(2)∵OA⊥BC,∴BE=CE=BC=4,∴AB=AC,∵∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠OBE=30°,∴OE=OB,BE=OE=4,∴OE=,∴AC=AB=OB=2OE=.【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA⊥BC是解题的关键.(2019年广西柳州25题)25.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且=,连接FB,FD,FD交AB于点N.(1)若AE=1,CD=6,求⊙O的半径;(2)求证:△BNF为等腰三角形;(3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ON?OP=OE?OM.【解答】解:(1)如图1,连接BC,AC,AD,∵CD⊥AB,AB是直径∴,CE=DE=CD=3∴∠ACD=∠ABC,且∠AEC=∠CEB∴△ACE∽△CEB∴∴∴BE=9∴AB=AE+BE=10∴⊙O的半径为5(2)∵=∴∠ACD=∠ADC=∠CDF,且DE=DE,∠AED=∠NED=90°∴△ADE≌△NDE(ASA)∴∠DAN=∠DNA,AE=EN∵∠DAB=∠DFB,∠AND=∠FNB∴∠FNB=∠DFB∴BN=BF,∴△BNF是等腰三角形(3)如图2,连接AC,CE,CO,DO,∵MD是切线,∴MD⊥DO,∴∠MDO=∠DEO=90°,∠DOE=∠DOE∴△MDO∽△DEO∴∴OD2=OE?OM∵AE=EN,CD⊥AO∴∠ANC=∠CAN,∴∠CAP=∠CNO,∵∴∠AOC=∠ABF∵CO∥BF∴∠PCO=∠PFB∵四边形ACFB是圆内接四边形∴∠P AC=∠PFB∴∠P AC=∠PFB=∠PCO=∠CNO,且∠POC=∠COE∴△CNO∽△PCO∴∴CO2=PO?NO,∴ON?OP=OE?OM.(2019年广西北部湾等25题)25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE =90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG?CE=CB?EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=?DQ=CH?DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.(2019年广西梧州25题)25.(10分)如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.【分析】(1)由AD∥CF,AF平分∠DAC,可得∠FAC=∠AFC,得出AC=CF=5,可证出△ADE∽△FCE,则,可求出DE长;(2)由△ADG∽△HBG,可求出DG,则,可得EG∥BC,则∠1=∠AHC,根据DF∥AH,可得∠AHC=∠DFC,结论得证.【解答】(1)解:∵矩形ABCD中,AD∥CF,∴∠DAF=∠ACF,∵AF平分∠DAC,∴∠DAF=∠CAF,∴∠FAC=∠AFC,∴AC=CF,∵AB=4,BC=3,∴==5,∴CF=5,∵AD∥CF,∴△ADE∽△FCE,∴,设DE=x,则,解得x=∴;(2)∵AD∥FH,AF∥DH,∴四边形ADFH是平行四边形,∴AD=FH=3,∴CH=2,BH=5,∵AD∥BH,∴△ADG∽△HBG,∴,∴,∴DG=,∵DE=,∴=,∴EG∥BC,∴∠1=∠AHC,又∵DF∥AH,∴∠AHC=∠DFC,∠1=∠DFC.【点评】本题考查了矩形的相关证明与计算,熟练掌握矩形的性质、平行四边形的判定与性质与相似三角形的性质与判定是解题的关键.(2019年广西梧州25题)25.(10分)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.【分析】(1)证明△ABE≌△CDF(AAS),得BE=DF,根据一组对边平行且相等的四边形是平行四边形可得结论;(2)如图,连接BD,交EF于O,计算EO和BO的长,得∠OEB=30°,根据三角函数可得HM的长,从而得EM和EH的长,利用勾股定理计算FH的长,最后根据四边的和计算结论.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CD,AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠CFD=∠BEA,∵∠BAC=∠BEA+∠ABE,∠DCA=∠CFD+∠CDF,∴∠ABE=∠CDF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(AAS),∴BE=DF,∵BH=DG,∴BE+BH=DF+DG,即EH=GF,∵EH∥GF,∴四边形EHFG是平行四边形;(2)如图,连接BD,交EF于O,∵四边形ABCD是正方形,∴BD⊥AC,∴∠AOB=90°,∵AB=2,∴OA=OB=2,Rt△BOE中,EB=4,∴∠OEB=30°,∴EO=2,∵OD=OB,∠EOB=∠DOF,∵DF∥EB,∴∠DFC=∠BEA,∴△DOF≌△BOE(AAS),∴OF=OE=2,∴EF=4,∴FM=2,EM=6,过F作FM⊥EH于M,交EH的延长线于M,∵EG∥FH,∴∠FHM=∠GEH,∵tan∠GEH=tan∠FHM==2,∴,∴HM=1,∴EH=EM﹣HM=6﹣1=5,FH===,∴四边形EHFG的周长=2EH+2FH=2×5+2=10+2.【点评】此题主要考查了正方形的性质,平行四边形的判定和性质,三角函数和全等三角形的判定等知识.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题,第二问有难度,恰当地作出辅助线是关键.(2019年广西百色25题)25.(10分)如图,已知AC、AD是⊙O的两条割线,AC与⊙O交于B、C两点,AD过圆心O且与⊙O交于E、D两点,OB平分∠AOC.(1)求证:△ACD∽△ABO;(2)过点E的切线交AC于F,若EF∥OC,OC=3,求EF的值.[提示:(+1)(﹣1)=1]【解答】证明:(1)∵OB平分∠AOC∴∠BOE=∠AOC∵OC=OD∴∠D=∠OCD∵∠AOC=∠D+∠OCD∴∠D=∠AOC∴∠D=∠BOE,且∠A=∠A∴△ACD∽△ABO(2)∵EF切⊙O于E∴∠OEF=90°∵EF∥OC∴∠DOC=∠OEF=90°∵OC=OD=3∴CD==3∵△ACD∽△ABO∴∴∴AE=3∵EF∥OC∴∴∴EF=6﹣3(2019年广西贵港26题)26.(10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB =,求线段PA+PF的最小值.(结果保留根号)【分析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出P A+PF=P A+PB′≥AB′,求出AB′即可解决问题.【解答】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′OF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴P A+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴P A+PF的最小值为.【点评】本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.(2019年广西桂林25题)25.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD 交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE?DC:(3)求tan∠ACD的值.【分析】(1)由切线的性质和圆周角定理可得∠ACB=∠ABM=90°,由角平分线的性质可得∠CAB=∠CBA=45°;(2)通过证明△EDO∽△ODC,可得,即可得结论;(3)连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,由外角的性质可得∠CAB =∠CDB=45°=∠EDO+∠ODB=3∠ODB,可求∠ODB=15°=∠OBD,由直角三角形的性质可得BD=DF+BF=AD+2AD,即可求tan∠ACD的值.【解答】证明:(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DE?DC∴OA2=DE?DC=EO?DC(2)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF=AD∴BD=DF+BF=AD+2AD∴tan∠ACD=tan∠ABD===2﹣【点评】本题属于圆的综合题,考查了圆周角定理、垂径定理、相似三角形的判定与性质以及锐角三角函数等知识.注意准确作出辅助线是解此题的关键.(2019年贵州毕节10题)10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.(2019年贵州安顺25题)25.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cosC=,求AE的长.【分析】(1)连结OD、AD,如图,先利用圆周角定理得到∠ADB=90°,则根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,加上DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为⊙O的切线;(2)连结DE,如图,有圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH;(3)利用余弦的定义,在Rt△ADC中可计算出AC=5,在Rt△CDH中可计算出CH =,则CE=2CH=2,然后计算AC﹣CE即可得到AE的长.【解答】(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;(3)解:在Rt△ADC中,CD=BC=5,∵cosC==,∴AC=5,在Rt△CDH中,∵cosC==,∴CH=,∴CE=2CH=2,∴AE=AC﹣CE=5﹣2=3.【点评】本题考查了圆的综合题:熟练掌握圆周角定理、切线的判定定理和等腰三角形的判定与性质;会利用三角函数的定义解直角三角形.(2019年贵州贵阳25题)25.(12分)(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.【分析】数学理解:(1)由等腰直角三角形的性质可得AC=BC,∠A=∠B=45°,AB=AC,由正方形的性质可得DE=DF=CE,∠DFC=∠DEC=90°,可求AF=DF=CE,即可得AB=(AF+BE);问题解决:(2)延长AC,使FM=BE,通过证明△DFM≌△DEB,可得DM=DB,通过△ADM≌。

2019中考数学压轴题解题攻略助你完美收官精品教育.doc

2019中考数学压轴题解题攻略助你完美收官精品教育.doc

中考数学压轴题解题攻略助你完美收官具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。

解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。

现介绍几种常用的解题策略,供初三同学参考。

1、以坐标系为桥梁,运用数形结合思想纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

2、以直线或抛物线知识为载体,运用函数与方程思想直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。

因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。

例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

4、综合多个知识点,运用等价转换思想任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。

中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。

因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

北京市2019年中考数学押题卷3(含解析)

北京市2019年中考数学押题卷3(含解析)

北京市中考数学押题卷 3
学校
姓名
准考证号
1. 本试卷共 8 页,共三道大题, 28道小题.满分 100 分,考试时间 120 分钟.
考 2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号.

3. 试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,



择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答.
C、正方体有 6 个面;
D、圆柱体有 3 个面; 故选: D. 【说明】 本题主要考查立体图形,解题的关键是掌握立体图形:有些几何图形(如长方 体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形.
2. 实数 a, b, c在数轴上的对应点的位置如图所示,如果 a+b=0,那么下列结论正确的是
4. 考试结束Leabharlann 将本试卷和答题卡一并交回.评卷人
得分
一、选择题 ( 本题共 16 分,每小题 2 分 ) 下面各题均有四个选项,其中只有一 .个.是符合题意的
1. 下列几何图形中,有 3个面的是(

A.
B.
C.
D.
【解析】 根据立体图形的概念逐一判断可得.
【解答】 解: A、球只有 1 个面;
B、三棱锥有 4 个面;
1 拿到试卷:熟悉试卷 刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题, 了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施, 也从根本上防止了“漏做题”。 2 答题顺序:从卷首依次开始 一般来讲,全卷大致是先易后难的排列。所以,正确的做法是从卷首开始依次做题, 先易后难,最后攻坚。但也不是坚决地“依次”做题,虽然考卷大致是先易后难,但试 卷前部特别是中间出现难题也是常见的,执着程度适当,才能绕过难题,先做好有保 证的题,才能尽量多得分。 3 答题策略 答题策略一共有三点: 1. 先易后难、先熟后生。先做简单的、熟悉的题,再做综合题、 难题。 2. 先小后大。先做容易拿分的小题,再做耗时又复杂的大题。 3. 先局部后整体。 把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。 4 学会分段得分 会做的题目要特别注意表达准确、书写规范、语言科学,防止被“分段扣点分”。不会做的 题目我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对, 立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。如果题 目有多个问题,也可以跳步作答,先回答自己会的问题。 5 立足中下题目,力争高水平 考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中 要立足中下题目。中下题目通常占全卷的 80%以上,是试题的主要构成,学生能拿下这 些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。 6 确保运算正确,立足一次性成功 在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。不能为 追求速度而丢掉准确度,甚至丢掉重要的得分步骤。试题做完后要认真做好解后检查, 看是否有空题,答卷是否准确,格式是否规范。 7 要学会“挤”分 考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把 要点写清晰,作文尤其要注意开头和结尾。考试时,每一道题都认真思考,能做几步就做 几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。 8 检查后的涂改方式要讲究 发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。如果对现有的 题解不满意想重新写,要先写出正确的,再划去错误的。有的同学先把原来写的题解涂抹了, 写新题解的时间又不够,本来可能得的分数被自己涂掉了。考试期间遇到这些事,莫慌乱! 不管是大型考试还是平时的检测,或多或少会存在一些突发情况。遇到这些意外情况应该怎 么办?为防患于未然,老师家长们应该在考前给孩子讲清楚应急措施,告诉孩子遇事不慌乱, 沉重冷静,必要时可以向监考老师寻求帮助。

2019年中考数学原创押题密卷(福建卷)(全解全析)

2019年中考数学原创押题密卷(福建卷)(全解全析)

12019 年福建中考押题密卷数学·全解全析1. 【参考答案】A【全解全析】–2019 的绝对值是 2019,2019 的倒数是2. 【参考答案】B【全解全析】0.0000005=5×10 –7,故选 B . 3.【参考答案】C12019,故选A . 【全解全析】A 中主视图和左视图与题干不符;B 中三视图与题干均不符;C 符合要求;D 中三视图与题干均不符;故选C .4. 【参考答案】D【全解全析】A .不是同类项,不能合并,故错误;B .a ⋅ a 4 = a 5 ,故错误;C .a 6 ÷ a 3 = a 3 ,故错误;D 正确.故选D .5. 【参考答案】B3【全解全析】取出黑球的概率为= 1.故选B .6. 【参考答案】C【全解全析】如图所示:2 + 4 +3 3∵∠BDE 是△ADE 的外角,∴∠BDE =∠3+∠A =∠1+∠A =65°,∵a ∥b ,∴∠DBF =∠BDE =65°, 又∵∠ABC =90°,∴∠2=180°–90°–65°=25° .故选 C . 7. 【参考答案】D2⎪【全解全析】观察函数图象,发现:当−2<x <0 或 x >1 时,一次函数图象在反比例函数图象的下方,∴不 等式 ax +b < k 的解集是−2<x <0 或 x >1,即不等式 ax +b – k<0 的解集为−2<x <0 或 x >1,故选 D .xx8. 【参考答案】C【全解全析】由圆周角定理得,∠ABC =∠ADC =26°,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠CAB =90°–∠ABC =64°,故选C .9. 【参考答案】A【全解全析】∠B = 90, BC = 3, AB = 4 ,∴ AC == 5 ,D ,E 分别是 AB ,AC的中点,∴ DE = 1 BC = 3 ,EC = 1 AC = 5,DE ∥BC ,∴∠FCM = ∠EFC , CF 平分∠ACM ,2 2 2 2∴∠FCM = ∠FCE ,∴∠EFC = ∠FCE ,∴ EF = EC = 5,∴DF = DE + EF = 4 ,故选A .210. 【参考答案】B⎧1x -1 1 (x -1)①3 + a 【全解全析】⎨3 2,解①得 x ≥–3,解②得 x ≤ 5 ,不等式组的解集是–3≤x ≤ 3 + a ⎪⎩2x - a 3(1- x )②3 + a 3ya +12.∵仅有三个整数解,∴–1≤5a +10 <0,∴–8≤a <–3.∵5a +10 y - 2 +2 - y=1,整理得 3y –a –12=y –2,∴y =.∵y ≠2,∴a ≠–6,又y = 有整数解,∴a =–8 或–4,所有满足条件的整数a 的值之 22和是(–8)+(–4)=–12,故选B . 11.【参考答案】2【全解全析】原式=1+3–2=2.故答案为:2.12. 【参考答案】x ≤3【全解全析】根据题意得:3–x ≥0,解得 x ≤3,故答案为:x ≤3.13. 【参考答案】4【全解全析】∵数据个数是偶数,且中位数是 4,∴a =4,故答案为:4. 14.【参考答案】36°【全解全析】∵五边形 ABCDE 是正五边形,∴AB =BC =CD =AE =ED ,∠B =∠E =∠BCD =∠CDE =108°, ∴△ABC ≌△AED ,∴∠CAB =∠DAE = 1(180°–108°)=36°,∴∠CAD =108°–36°–36°=36° .故答案为: 236°.32 3 + 3 ⎩⎩⎩ ⋅15. 【参考答案】m >1 4【全解全析】根据题意得 Δ=(–3)2–4(2+m )<0,解得 m > 1 .故答案为:m > 1.4416. 【参考答案】12【全解全析】如图,过点 A 作 AC ⊥x 轴于点 C ,过点 B 作 BD ⊥AC 于点 D ,则∠ACO =∠BDA =90°,∵△ABO 是等腰直角三角形,∴AO =BA ,∠BAO =90°,∴∠OAC +∠BAD =∠ABD +∠BAD =90°,∴∠OAC = ∠ABD ,∴△AOC ≌△BAD (AAS ),∴AD =OC =2,BD =AC =4,∴点 B 的坐标为(6,2),∴2= k,6解得 k =12,故答案为:12.⎧ x = 3 17.【参考答案】⎨ y = 2 .⎧x + y = 5①【全解全析】⎨2x + 3y = 12② ,②–①×2 得 y =2,(3 分)把 y =2 代入①得 x =3,(6 分)⎧ x = 3则方程组的解为⎨ y = 2.(8 分)a18. 【参考答案】,. a - 23(a -1)(a +1) 2a -1 a +1【全解全析】原式=[a +1 - ]⋅ a +1 (a - 2)2 a 2 - 2a a +1= a +1 (a - 2)2a (a - 2) = ⋅a +1 a +1 (a - 2)243 2 + 3 3a=a - 2,(4 分)当 a =2+ 时,原式=2 3 + 3= = .(8 分) 319. 【参考答案】这种玩具的销售单价为 460 元时,厂家每天可获利润 20000 元.【全解全析】设这种玩具的销售单价为 x 元时,厂家每天可获利润 20000 元, 由题意得,(x –360)[160+2(480–x )]=20000,(4 分) 整理得 x 2 - 920x + 211600 = 0 , 解得 x 1 = x 2 = 460 ,∴这种玩具的销售单价为 460 元时,厂家每天可获利润 20000 元.(8 分)20. 【参考答案】(1)见全解全析;(2)75°.【全解全析】(1)如图所示,BD 即为所求;(4 分)(2)∵在△ABC 中,AB =AC ,∠ABC =70°,∴∠ABC =∠ACB =70°,∴∠A =180°–2∠ABC =180°–140°=40°.(6 分)∵BD 是∠ABC 的平分线, 1 1∴∠ABD = ∠ABC = ×70°=35°,22∵∠BDC 是△ABD 的外角,∴∠BDC =∠A +∠ABD =40°+35° =75°.(8 分)21.【参考答案】证明见全解全析.【全解全析】∵四边形 ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠ABC =∠ADC ,∴∠BAE =∠DCF .(2 分)2 +3 2 + 3 - 2⎨⎩∵BE、DF 分别是∠ABC、∠ADC 的平分线,∴∠ABE=1∠ABC,∠CDF=1∠ADC,2 2∴∠ABE=∠CDF.(4 分)⎧∠ABE =∠CDF在△ABE 与△CDF 中,∵⎪AB =CD ,⎪∠BAE =∠DCF∴△ABE≌△CDF(ASA),∴AE=CF.(8 分)22.【参考答案】(1)当点P 是BC 的中点时,DP 是⊙O 的切线.(2)75.8【全解全析】(1)当点P 是BC 的中点时,DP 是⊙O 的切线.(1 分)理由如下:连接AP,∵AB=AC,∴ AB = AC .又∵ PB = PC ,∴ PBA = PCA .∴PA 是⊙O 的直径.(2 分)∵PB = PC ,∴∠1=∠2.又∵AB=AC,∴PA⊥BC.(3 分)又∵DP∥BC,∴DP⊥PA.∴DP 是⊙O 的切线.(4 分)(2)连接OB,设PA 交BC 于点E.由垂径定理,得BE=EC=1BC =6.(5 分)2在Rt△ABE 中,由勾股定理得AE.(6 分)设⊙O 的半径为r,则OE=8–r,在Rt△OBE 中,由勾股定理得r2 =62 +(8-r)2 ,解得r=25.(8 分)4∵DP∥BC,∴∠ABE=∠D.56又∵∠1=∠1,∴△ABE ∽△ADP ,BEAE6875∴=,即=DPAPDP 25 ,解得 DP =2 ⨯ 4.(10 分)23. 【参考答案】(1)50.5.(2)甲品种挂果数超过 49 个的西红柿秧苗的数量有 270 株.(3)甲品种的小西红柿秧苗更适应市场需求,理由见全解全析.【全解全析】(1)把这组数据按从小到大的顺序排列,因为数据的总数是 50 个,其中位数为中间两 50 + 51 个数(25 和26 个数)的平均数,即 =50.5,故中位数 m =50.5;(2 分)2(2) 样品中,甲品种挂果数超过 49 个的西红柿秧苗有 27 株,∴27⨯ 500 = 270 (株), 50∴估计甲品种挂果数超过 49 个的小西红柿秧苗的数量有 270 株.(6 分)(3) 可以推断出甲品种的小西红柿秧苗更适应市场需求,(8 分)理由为:①甲品种挂果数的平均数高,说明甲品种平均产量高;②甲品种挂果数的中位数比乙高,说明甲品种有一半秧苗的产量高于乙品种;③甲品种产量的方差小于乙品种,说明甲品种的产量比较稳定,挂果数相差不大.(10 分)24. 【参考答案】(1)见全解全析.(2)①见全解全析.②AP =310 .【全解全析】(1)如图 1,∵AE 垂直于 AN ,∴∠EAB +∠BAN =90°,∵四边形 ABCD 是正方形,∴∠BAD =90°,∴∠NAD +∠BAN =90°,∴∠EAB =∠NAD , 又∵∠ABE =∠D =90°,AB =AD ,∴△ABE ≌△ADN ;(4 分) (2)①如图 2,在 ND 上截取 DG =BM ,连接 AG 、MG ,∵AD =AB ,∠ADG =∠ABM =90°,∴△ADG ≌△ABM ,∴AG =AM ,∠MAB =∠GAD ,∵∠BAD =∠BAG +∠GAD =90°,∴∠MAG =∠BAG +∠MAB =90°,∴△AMG 为等腰直角三角形,872 6 5 由题可知∠MAN =45°,则∠GAN =45°,∴AN ⊥MG ,∴AN 为 MG 的垂直平分线,∴NM =NG ,∴DN –DG =GN ,即 DN –BM =MN ,即 MN +BM =DN ;(8 分)②如图 3,连接 AC ,由①可知 MN +BM =DN ,∴MN +CM –BC =DC +CN ,∴CM –CN +MN =DC +BC =2BC , 即 8–CN +10=2BC ,即 CN =18–2BC ,在 Rt △MNC 中,根据勾股定理得 MN 2=CM 2+CN 2,即 102=82+CN 2,∴CN =6,∴BC =6,∴AC =6 ,∵∠BAP +∠BAQ =45°,∠NAC +∠BAQ =45°,∴∠BAP =∠NAC ,又∵∠ABP =∠ACN =135°,∴△ABP ∽△ACN ,∴AP= AB = 1 ,AN AC 2在 Rt △AND 中,根据勾股定理得 AN 2=AD 2+DN 2=36+144,解得 AN =6 5 ,∴ AP = 1,∴AP =3 210 .(12 分)8⎨25.【参考答案】(1)y =– 2 x 2– 4x +2.(2)l =–2 (m + 1 )2+ 49 2,当 m =– 1 时,l 有最大值,最333 4 484大值为49 2 .(3)点 M 的坐标为(2,–10 )或(–4,–10 )或(–2,2).4833【全解全析】(1)∵矩形 OBDC 的边 CD =1,∴OB =1,∵AB =4,∴OA =3,∴A (–3,0),B (1,0),⎧a + b + 2 = 0把 A 、B 两点坐标代入抛物线解析式可得 , ⎩9a - 3b + 2 = 0⎧a =- 2 ⎪ 32 2 4解得⎨,∴抛物线解析式为 y =– x – x +2;(4 分) 4 3 3 ⎪b =- ⎩⎪ 3(2)在 y =– 2 x 2– 4 x +2 中,令 y =2 可得 2=– 2 x 2– 4x +2,解得 x =0 或 x =–2,3 3 3 3∴E (–2,2),∴直线 OE 解析式为 y =–x ,由题意可得 P (m ,– 2m 2– 4m +2),(6 分)3 3∵PG ∥y 轴,∴G (m ,–m ),∵P 在直线OE 的上方,∴PG =– 2 m 2– 4 m +2–(–m )=– 2212(m + 1 )2+49,(8 分)33 3m – m +2=–3 34 24∵直线 OE 的解析式为 y =–x ,∴∠PGH =∠COE =45°,∴l =2 PG = 2 [– 2 (m + 1 )2+ 49 ]=– 2 (m + 1 )2+ 49 2 ,2 234 24 34 48∴当 m =– 1时,l 有最大值,最大值为49 2;(11 分)44810 10 (3)点M 的坐标为(2,– )或(–4,–)或(–2,2).(14 分)33①当 AC 为平行四边形的边时,则有 MN ∥AC ,且 MN =AC ,如图,过 M 作对称轴的垂线,垂足为 F , 设 AC 交对称轴于点 L ,则∠ALF =∠ACO =∠FNM ,9⎨ ⎩⎧∠MFN = ∠AOC 在△MFN 和△AOC 中, ⎪∠FNM = ∠ACO ,⎪MN = AC ∴△MFN ≌△AOC (AAS ),∴MF =AO =3,∴点 M 到对称轴的距离为 3,又 y =– 2 x 2– 4x +2,∴抛物线对称轴为 x =–1,3 3 设 M 点坐标为(x ,y ),则|x +1|=3,解得 x =2 或 x =–4, 10 10当x =2 时,y =– ,当x =–4 时,y =– , 3310 10 ∴M 点坐标为(2,–)或(–4,–);33②当 AC 为对角线时,设 AC 的中点为 K , 3 ∵A (–3,0),C (0,2),∴K (– ,1),2∵点 N 在对称轴上,∴点 N 的横坐标为–1,设 M 点横坐标为 x ,3 ∴x +(–1)=2×(– )=–3,解得 x =–2,此时 y =2,∴M (–2,2);210 10 综上可知点M 的坐标为(2,– )或(–4,–)或(–2,2).33。

2019年连云港中考数学压轴题解析

2019年连云港中考数学压轴题解析
首先这类数量关系必然要做辅助线,第一个考虑辅助线的作法是截长补短
我们作BF平行于MN交DC于点F,那么四边形MBFN是平行四边形,所以DN+MB=DN+NF,如 果这个结果等于EC,那么FC就必须等于BE,所以我们接下来只要证明FC等于BE就结束了, 也就是证明△ABE≌△BCF,其中AB=BC,∠C=∠ABC=90°,又因为MN∥BF,AE⊥MN,所以 ∠AEB=90°经过简单倒角可以得到∠BAE=∠CBF,最后因为是正方形,AB=BC,这样三个条 件都齐了,三角形全等,因此结论成立。
第三问,其实是个动点最小值问题,P’S中点S是顶点,首先我们要知道四边形APNP’是个什么 图形,看起来是正方形,得证明
过点P作PF垂直于AB,延长FP交DC于G,,借助对角线45°这个特性,用类似于上一题的思路 能证明红蓝三角形全等,因此△APN为等腰直角三角形,由于存在翻折关系,所以四边形 APNP’是正方形。 随着点P运动,P’也在运动,且AP=AP’,两者夹角为90°,想到了什么了吗? 瓜豆原理!!! 什么是瓜豆原理? 通俗来说,就是有一个定点,两个动点,这两个动点到定点之间的距离的比值是固定值,且两 动点与定点之间连线的夹角也是固定值,这时候移动其中一个动点,那么另外一个动点也跟着 动;并且其中一个动点走什么路线,另一个点也走相似的路线,这个两个点画出的路线是相似 图形。 具体我画图来说下
求出各点坐标,然后用距离公式求出来,也很麻烦,有兴趣的同学可以去尝试一下。 下面开始进行技术总结 1.线段加减关系要想到截长补短辅助线作法,也可以尽可能把所求量放到一个等式中去 2.一线三垂直模型的逆用能用来证明直角 3.瓜豆原理模型要掌握,并且要掌握证明方法,运用手拉手模型 4.相似三角形性质要熟练掌握,不要害怕计算,一定要仔细

2019年中考数学压轴题解题方法建议

2019年中考数学压轴题解题方法建议

2019年中考数学压轴题解题方法建议各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢2019年中考已经进入倒计时!今年合肥有哪些变化?最后一道压轴题,如何解答才能得高分?在剩下的时间里,考生该如何冲刺,抓住“临门一脚”,提高数学得分……数学考试发生三大变化考生需吃透考纲“从2019年的考试大纲来看,今年中考数学的变化主要有三个方面:数与代数,图形与几何,统计与概率。

”方国钧概括道。

“具体来说,代数的变化体现在有理数、实数、代数式、方程和不等式有新内容增加,图形与几何的内容多从图形的性质,图形的变化,图形与坐标的角度来考察,最后,统计与概率部分增加了通过表格、折线图、趋势图等感受随机现象的变化C。

”面对这些变化,方老师建议,学生一定要吃透考纲把握考试动向,“考生不仅要明确考试的内容,更要对考纲对知识点的要求了然于心。

”冲刺复习应回归课本提升做题速度模拟考试中,考生的数学成绩浮动相对较大,有些题很容易失分有些题很容易得分。

在最后的冲刺阶段,考生可从哪些方面来提分? “学生首先要清楚自己的薄弱点,才能更好地进行强化复习。

”方老师强调,关于备考策略,他有如下建议:一、回归课本,重视基础。

考生应当围绕课程回忆和梳理知识点,对经典题型进行分析,解构和熟悉,做到以不变应万变。

二、专题训练,各个击破。

对各板块间的知识点有综合概括,针对重点知识的交叉点和结合点,进行必要的专题训练。

例如将函数与不等式、方程结合起来,进行综合复习。

三、规范答题,对症训练。

有些考生常将计算错误简单归结为粗心,其实不然,这是基础不牢固,也可能是技巧不熟练,学生应当培养自己的运算能力,做到精准答题。

四、掌握技巧,快速拿分。

选择题和填空题利用估算法、图像法、特例法快速解决。

对于解答题,则要仔细审题,抓住得分点。

考试中把握好答题时间压轴题要步步为营不少学生在走出考场后反映,数学考试时间不够,被某一道题花去太长时间……那么,考生在答题过程中,应当注重哪技巧呢?方老师认为,可从以下几点做起。

2019年江苏省13市中考数学试卷压轴题及答案解析WORD版

2019年江苏省13市中考数学试卷压轴题及答案解析WORD版

2019年江苏省13市中考数学试卷压轴题及答案解析WORD版2019年江苏省南京市中考数学试卷压轴题26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷压轴题答案26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【分析】(1)根据邻边相等的四边形是菱形证明即可.(2)求出几种特殊位置的CD的值判断即可.【解答】(1)证明:∵DE=DG,EF=DE,∴DG=EF,∵DG∥EF,∴四边形DEFG是平行四边形,∵DG=DE,∴四边形DEFG是菱形.(2)如图1中,当四边形DEFG是正方形时,设正方形的边长为x.在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB==5,则CD=x,AD=x,∵AD+CD=AC,∴+x=3,∴x=,∴CD=x=,观察图象可知:0≤CD<时,菱形的个数为0.如图2中,当四边形DAEG是菱形时,设菱形的边长为m.∵DG∥AB,∴=,∴=,解得m=,∴CD=3﹣=,如图3中,当四边形DEBG是菱形时,设菱形的边长为n.∵DG∥AB,∴=,∴=,∴n=,∴CG=4﹣=,∴CD==,观察图象可知:当0≤CD<或<CD≤时,菱形的个数为0,当CD=或<CD≤时,菱形的个数为1,当<CD≤时,菱形的个数为2.【点评】本题考查相似三角形的判定和性质,菱形的判定和性质,作图﹣复杂作图等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型,题目有一定难度.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=3.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是(1,2).(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【分析】(1)①根据定义可求出d(O,A)=|0+2|+|0﹣1|=2+1=3;②由两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|及点B是函数y=﹣2x+4的图象上的一点,可得出方程组,解方程组即可求出点B的坐标;(2)由条件知x>0,根据题意得,整理得x2﹣3x+4=0,由△<0可证得该函数的图象上不存在点C,使d(O,C)=3.(3)根据条件可得|x|+|x2﹣5x+7|,去绝对值后由二次函数的性质可求出最小值;(4)以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E 作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处,可由d(O,P)≥d(O,E)证明结论即可.【解答】解:(1)①由题意得:d(O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2﹣3x+4=0,∴△=b2﹣4ac=﹣7<0,∴方程x2﹣3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x﹣0|+|x2﹣5x+7﹣0|=|x|+|x2﹣5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2﹣5x+7|=x+x2﹣5x+7=x2﹣4x+7=(x﹣2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.【点评】考查了二次函数的综合题,涉及的知识点有新定义,解方程(组),二次函数的性质等.2019年江苏省常州市中考数学试卷压轴题27.(10分)如图,二次函数y=﹣x2+bx+3的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣1,0),点D为OC的中点,点P在抛物线上.(1)b=;(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC、BD分别交于点M、N.是否存在这样的点P,使得PM=MN=NH?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P的横坐标小于3,过点P作PQ⊥BD,垂足为Q,直线PQ与x轴交于点R,且S△PQB=2S△QRB,求点P的坐标.28.(10分)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.2019年江苏省常州市中考数学试卷压轴题答案27.(10分)如图,二次函数y=﹣x2+bx+3的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣1,0),点D为OC的中点,点P在抛物线上.(1)b=2;(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC、BD分别交于点M、N.是否存在这样的点P,使得PM=MN=NH?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P的横坐标小于3,过点P作PQ⊥BD,垂足为Q,直线PQ与x轴交于点R,且S△PQB=2S△QRB,求点P的坐标.【分析】(1)把点A坐标代入二次函数解析式即求得b的值.(2)求点B、C、D坐标,求直线BC、BD解析式.设点P横坐标为t,则能用t表示点P、M、N、H的坐标,进而用含t的式子表示PM、MN、NH的长.以PM=MN为等量关系列得关于t的方程,求得t的值合理(满足P在第一象限),故存在满足条件的点P,且求得点P坐标.(3)过点P作PF⊥x轴于F,交直线BD于E,根据同角的余角相等易证∠EPQ=∠OBD,所以cos∠EPQ=cos∠OBD=,即在Rt△PQE中,cos∠EPQ=;在Rt △PFR中,cos∠RPF=,进而得PQ=PE,PR=PF.设点P横坐标为t,可用t表示PE、PF,即得到用t表示PQ、PR.又由S△PQB=2S△QRB易得PQ=2QR.要对点P位置进行分类讨论得到PQ与PR的关系,即列得关于t的方程.求得t的值要注意是否符合各种情况下t的取值范围.【解答】解:(1)∵二次函数y=﹣x2+bx+3的图象与x轴交于点A(﹣1,0)∴﹣1﹣b+3=解得:b=2故答案为:2.(2)存在满足条件呢的点P,使得PM=MN=NH.∵二次函数解析式为y=﹣x2+2x+3当x=0时y=3,∴C(0,3)当y=0时,﹣x2+2x+3=0解得:x1=﹣1,x2=3∴A(﹣1,0),B(3,0)∴直线BC的解析式为y=﹣x+3∵点D为OC的中点,∴D(0,)∴直线BD的解析式为y=﹣+,设P(t,﹣t2+2t+3)(0<t<3),则M(t,﹣t+3),N(t,﹣t+),H(t,0)∴PM=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,MN=﹣t+3﹣(﹣x+)=﹣t+,NH=﹣t+∴MN=NH∵PM=MN∴﹣t2+3t=﹣t+解得:t1=,t2=3(舍去)∴P(,)∴P的坐标为(,),使得PM=MN=NH.(3)过点P作PF⊥x轴于F,交直线BD于E∵OB=3,OD=,∠BOD=90°∴BD==∴cos∠OBD=∵PQ⊥BD于点Q,PF⊥x轴于点F∴∠PQE=∠BQR=∠PFR=90°∴∠PRF+∠OBD=∠PRF+∠EPQ=90°∴∠EPQ=∠OBD,即cos∠EPQ=cos∠OBD=在Rt△PQE中,cos∠EPQ=∴PQ=PE在Rt△PFR中,cos∠RPF=∴PR=PF∵S△PQB=2S△QRB,S△PQB=BQ•PQ,S△QRB=BQ•QR∴PQ=2QR设直线BD与抛物线交于点G∵﹣+=﹣x2+2x+3,解得:x1=3(即点B横坐标),x2=﹣∴点G横坐标为﹣设P(t,﹣t2+2t+3)(t<3),则E(t,﹣t+)∴PF=|﹣t2+2t+3|,PE=|﹣t2+2t+3﹣(﹣t+)|=|﹣t2+t+|①若﹣<t<3,则点P在直线BD上方,如图2,∴PF=﹣t2+2t+3,PE=﹣t2+t+∵PQ=2QR∴PQ=PR∴PE=•PF,即6PE=5PF∴6(﹣t2+t+)=5(﹣t2+2t+3)解得:t1=2,t2=3(舍去)∴P(2,3)②若﹣1<t<﹣,则点P在x轴上方、直线BD下方,如图3,此时,PQ<QR,即S△PQB=2S△QRB不成立.③若t<﹣1,则点P在x轴下方,如图4,∴PF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,PE=﹣t+﹣(﹣t2+2t+3)=t2﹣t﹣∵PQ=2QR∴PQ=2PR∴PE=2•PF,即2PE=5PF∴2(t2﹣t﹣)=5(t2﹣2t﹣3)解得:t1=﹣,t2=3(舍去)∴P(﹣,﹣)综上所述,点P坐标为(2,3)或(﹣,﹣).【点评】本题考查了二次函数的图象与性质,一次函数的图象与性质,解一元二次方程,同角的余角相等,三角函数的应用.第(3)题解题过程容易受第(2)题影响而没有分类讨论点P的位置,要通过图象发现每种情况下相同的和不同的解题思路.28.(10分)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:1;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:1+;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.【分析】(1)①平面图形S的“宽距”的定义即可解决问题.②如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.求出PC的最大值即可解决问题.(2)①如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.②如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊥x轴于T.求出d=5或8时,点M的坐标,即可判断,再根据对称性求出点M在y轴左侧的情形即可.【解答】解:(1)①半径为1的圆的宽距离为1,故答案为1.②如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt△ODC中,OC===∴OP+OC≥PC,∴PC≤1+,∴这个“窗户形“的宽距为1+.故答案为1+.(2)①如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.②如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊥x轴于T.∵AC≤AM+CM,又∵5≤d≤8,∴当d=5时.AM=4,∴AT==2,此时M(2﹣1,2),当d=8时.AM=7,∴AT==2,此时M(2﹣1,2),∴满足条件的点M的横坐标的范围为2﹣1≤x≤2﹣1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣2+1≤x﹣2+1.【点评】本题属于圆综合题,考查了平面图形S的“宽距”的定义,正方形的判定和性质,三角形的三边关系等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会寻找特殊位置解决问题,属于中考压轴题.2019年江苏省扬州市中考数学试卷压轴题27.(本题满分12分),如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°。

中考数学压轴题解题技巧及训练(附解析)

中考数学压轴题解题技巧及训练(附解析)

中考数学压轴题解题技巧中考数学压轴题解题技巧数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。

函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。

求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。

一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。

求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。

找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。

求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。

而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。

解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

关键是掌握几种常用的数学思想方法。

一是运用函数与方程思想。

以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。

二是运用分类讨论的思想。

对问题的条件或结论的多变性进行考察和探究。

三是运用转化的数学的思想。

由已知向未知,由复杂向简单的转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BDE A xy 2019届中考数学复习 解答中考压轴题的“金钥匙”般设计3~4问,由易到难有一定的坡度,或连续设问,或独立考查,最后一问较难,一般是涉及几何特殊图形(或特殊位置)的探究问题。

本人就最后一问进行了研究,提炼出一些方法、技巧,供大家参考。

一、 数学思想:主要是数形结合思想、分类讨论思想、特殊到一般的思想 二、 探究问题:1、三角形相似、平行四边形、梯形的探究2、特殊角-----直角(或直角三角形)的探究3、平分角(或相等角)的探究4、平移图形后重叠部分面积函数的探究5、三角形(或多边形)最大面积的探究6、图形变换中特殊点活动范围的探究 三、 解题方法:1、画图法:(从形到数)一般先画出图形,充分挖掘和运用坐标系中几何图形的特性,选取合适的相等关系列出方程,问题得解。

画图分类时易掉情况,要细心。

2、解析法:(从数到形)一般先求出点所在线(直线或抛物线)的函数关系式,再根据需要列出方程、不等式或函数分析求解。

不会掉各种情况,但解答过程有时较繁。

四、 解题关键:1、从数到形:根据点的坐标特征,发现运用特殊角或线段比2、从形到数:找出特殊位置,分段分类讨论 五、 实例分析:(荆州2012压轴题编)如图,求△OAE 右移t (0<t ≤3)时,△OAE 与△ABE 重叠部分面积函数关系式。

分析:解题关键,首先,求右移过程中,到达零界位置(点AB 上)的时间t=23,然后对时间进行分段E 落在分类讨论:230≤≤t ,⎪⎭⎫ ⎝⎛3,230E 3)4,1(1E M H323≤t ; 其次,求面积关系式时,充分运用两个比:1=OE OA, 21000=E O A O . 如图,230≤≤t 时,显然,阴影部分的面积M AA AH O O AE S S S S 11∆∆∆--=阴 其中关键是求1AA 边上的高MN 。

∵=MN NA21000=E O A O ∴MN=2NA 又=MN NA 11=OEOA∴ 1NA MN = ∴1NA MN ==2NA (A 是1NA 中点)(十堰2012压轴题编)动点M(m, 0)在x 轴上,N (1, n )在线段EF 上,求∠MNC=090时m 的取值范围。

54321122246POE FC G Hyx分析:解题时,有两个关键位置,先画出来。

首先,点M 在最右边 1M 处时,1N 与E 重合,发现∠CEF=045,得知∠F EM 1=045 ∴1FM =EF=4,∴()0,51M1M2M ()4,1),1(2n N然后,点M 在最左边2M 处时,以C 2M 为直径的⊙P 与EF 相切于点2N (特殊位置),易知2N 是HN 的中点,所以N (1,23)。

又∵△CH 2N ∽△2N F 2M∴FM F N HN CH 222= ∴m -=-1232331, ∴m=45-(襄阳2012压轴题编)点M 在抛物线()3324322+--=x y 上,点N 在其对称轴上,是否存在这样的点M 与N ,使以M 、N 、C 、E 为顶点的四边形是平行四边形? 分析:平行四边形中有两个定点E 、C ,和两个动点M 、N ,为了不使情况遗漏,需按EC 在平行四边形中的“角色”分类;然后,求M 、N 坐标时,充分运用平行四边形在坐标系中的性质求解,关注与△OCE 全等的△,还有线段比43=OC OE 。

简解: (1) CE 为平行四边形的对角线时,其中点P 为其中心,点M 与抛物线的顶点重合,点N 与M 关于点P 对称,∴⎪⎭⎫ ⎝⎛332,4M ⎪⎭⎫ ⎝⎛-314,4N(2) CE 为平行四边形的一条边时,根据其倾斜方向有两种情况: ① 往右下倾斜时,QMN OCE ∆≅∆得QM=OC=8,NQ=6∴易求M (12,-32) N (4,-26)② 往左下倾斜时,同理可求M(-4,-32) N(4,-38) (孝感2012压轴题编)若点P 是抛物线()412+--=x y 的一个动点,过点P 作PQ ∥AC交x 轴于点Q ,当点P 的坐标为 时,四边形PQAC 是等腰梯形。

105510152025303540451010PCOE YX⎪⎭⎫ ⎝⎛332,41M 2M 3M 1N 2N3N54321123y224xBQ PNACOM分析:①、关注线段比31=OC OA 得到101=AC OA ②、运用等腰梯形的轴对称性画出图形,用解析法求解较简捷。

简解:作AC 的垂直平分线交x 轴于点M ,垂足为点N ,连结CM 交抛物线于点P ,作PQ ∥AC 交x 轴于点Q ,四边形PQAC 即为所求。

由101==AM AN AC OA ,可求出M (4,0).再求出直线CM 解析式343+-=x y 与抛物线解析式联立起来求解,即使点P 的坐标。

(恩施2012压轴题编)若点P 是抛物线322++-=x x y 位于直线AC 上方的一个动点,求△APC 的面积的最大值。

432112345224xyEFC AOP分析:求坐标系中斜放的三角形面积时,简便方法是:三角形面积=水平宽×铅垂高÷2这里求三角形最大面积,用解析法简便些。

先求出直线AC 函数关系式1+=x y ,则铅垂高PE=()213222++-=+-++-x x x x x =()8272123232122+⎪⎭⎫ ⎝⎛--=++-⨯⨯x x x ∴S=(咸宁2012压轴题编) 如图,当MB ∥OA 时,如果抛物线ax ax y 102-=的顶点在△ABM 内部(不包括边),求a 的取值范围。

()3,2PE AF ∙212246810121416y5510xOBEC F42246810y5xBM OFCADE分析:由题意知,当MB ∥OA 时,△ABM 是等腰直角三角形;又由ax axy 102-=得其对称轴为定直线: 5210=--=aax 顶点纵坐标为:()a aa y 2541002-=--=按要求得:2251<-<a ∴251252-<<-a(黄冈2012压轴题编) 在第四象限内,抛物线()()m x x my -+-=21(m>0)上是否存在点F ,使得点B 、C 、F 为顶点的三角形与△BCE 相似 ?若存在,求m 的值。

分析:函数中含有参数,使问题变得复杂起来。

但我们解决问题时,把它当成已知数看待即可。

由于解析式中含有参数,故抛物线形状是可变的。

所以不能画出准确的图形,只能画出示意图辅助求解。

但不难得知其图像总过两定点B (-2,0)和E (0,2),那么△BCE 中有特殊角∠EBC=045,由此相似分为两类。

未在求解过程中,由于动点F (x ,y )和参数m ,存在三个224681012141618202224y5510xOBECF知数,因此需要三个相等关系才能求解。

简解:(1) △EBC ∽△CBF 时,设F (x ,y )。

由∠EBC=∠CBF=045 得到 y = -x -2由相似得BF BE BC ∙=2得到 ()()222222+∙=+x m由点F 在抛物线上, 得到 ()()m x x my -+-=21联立上述三式,转化得()()22422+=+m m ∴2221+=m 2222-=m (舍去) (2)△EBC ∽△CFB由∠ECB=∠CBF 得EC ∥BF 得到BF :mx m y 42--= 由相似得BF EC BC ∙=2得到()()22222222++∙+=+x y m m由点F 在抛物线上, 得到 ()()m x x my -+-=21联立上述三式,转化得()()()mm mm 44222++=+ 得出矛盾 0=16,故不存立。

(武汉2012压轴题编) 抛物线2212-=x y 向下平移m (m >0)个单位,顶点为P ,如图,当NP 平分∠MNQ 时,求m 的值。

8642246y55xHNPMOB A QR分析:含参数的二次函数问题,把参数m 当已知数看待。

关键是通过求点N 的坐标时,发现∠NMQ=045,(很隐蔽)另外还要发现和运用HP=HN ,建立方程求解。

在求解的过程中,若用原参数表示函数关系,过程较繁,若设新参数M (- t,0),则过程简捷一些。

简解:设M (-t,0),则平移后抛物线为()()t x t x y -+=21=222121t x -和已知直线AB :y=2x-2 联立起来得点N 坐标 ( 2+t, 2+t+t ) ∴MQ=NQ ∴ ∠NMQ=045 可推出HP=HN ,于是得 ()t t t +=+22212∴t=-2 ∴m=2。

相关文档
最新文档