初中数学几何辅助线技巧汇总

合集下载

初中几何常用辅助线做法

初中几何常用辅助线做法

常用辅助线做法➢考点考向1. 与角平分线有关的辅助线2. 与线段长度相关的辅助线3. 与等腰、等边三角形相关的辅助线4. 与中点相关的辅助线5. 构造一线三垂直(等角)6. 等面积法常见辅助线的作法总结1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6)构造等腰三角形或作等腰三角形的高利用“三线合一”性质。

7)作三角形的中位线。

8)引平行线构造全等三角形。

9)特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.(等面积法)10)构造三垂直模型。

✧考点一:与角平分线有关的辅助线(1)可向两边作垂线。

(2)可构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形【例1】已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.✧考点二:与线段长度有关的辅助线(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

初中辅助线102种方法

初中辅助线102种方法

初中辅助线102种方法1.绘制直线段:在所给的两个点上画辅助线,连接两点即可获得直线段。

2.绘制垂直线:在给定直线上选取一点,作与该点不共线的直线,通过该点引垂直线即可。

3.绘制平行线:在给定直线上选取一点作线段,然后以该线段为半径作圆,在另一点处画一条线段,两条线段平行。

4.绘制等分线:在直线上选择两个点,作圆使其与直线交于两点,连接两点画线段。

5.绘制三等分线:在直线上选择三个不共线的点,分别与直线上的点相连接,形成三个等腰三角形的底面,在三个对应顶点之间画线段。

6.绘制中位线:在三角形的两边上选择两点,使其各自与一个端点形成中位线,在两点之间画线段。

7.绘制角平分线:在给定角的两边上选择两个点,以该点为圆心作圆相交于两点,然后连接两点即可。

8.绘制垂直平分线:对于给定线段,以其中一点为圆心作大于一半长度的圆,在另一端点处画线段,连接两点即可。

9.绘制等腰三角形的高:在一个顶角上选择一点,然后与两边的端点相连,两条线段相交的点就是等腰三角形的高。

10.绘制正方形的对角线:在正方形的两个对角线上选择相对的两点,连接两点即可。

11.绘制圆:以给定的圆心为圆心,以圆上两个点的距离作半径画圆。

12.绘制圆的切线:以切点为圆心,在圆上选择两个点,连接两点即可。

13.绘制圆的弦:在圆上选择两个点,连接两点即可。

14.绘制正多边形的对角线:在正多边形的两个对角线上选择相对的两点,连接两点即可。

15.绘制垂直于圆的切线:以圆心为圆心,在圆上选择两个点,作圆与圆外一点的连线,得到的直线即为切线。

16.绘制等边三角形的高:在等边三角形的一个顶点上选择一点,然后与底边上两个相对的顶点相连,两条线段相交的点即为高所在位置。

17.绘制与给定角相等的角:在给定角的两边上选择两个点,分别以这两个点为圆心与给定角的两边相交,连接两个交点即可。

18.绘制与给定线段等长的线段:在给定线段上选择一点,以该点为圆心作圆的交点即为与给定线段等长的线段的两端点。

几何证明题辅助线经典方法

几何证明题辅助线经典方法

几何证明题辅助线经典方法
引言
几何证明题是数学中常见的题型,也是学生们认识几何图形、发现几何规律的重要手段。

辅助线是解决几何证明题时常用的方法之一,本文将介绍几种经典的辅助线方法。

方法一:画垂直平分线
对于某些几何图形中的线段,我们可以通过画垂直平分线来辅助证明。

垂直平分线将线段分成两等分,从而在几何证明过程中起到重要的辅助作用。

方法二:画过顶点的高
在证明三角形相等或等腰三角形时,辅助线中的高是常见的方法之一。

通过画一条从顶点到对边的垂线,我们可以将几何图形转化为更容易处理的形式,从而证明所需结论。

方法三:画过顶点的中位线
在证明平行四边形或矩形时,辅助线中的中位线是一种常见的
方法。

通过画一条从顶点到对边中点的线段,我们可以将问题简化,并且利用矩形或平行四边形的性质得到所需结论。

方法四:画三角形的内切圆
在证明三角形的某些性质时,画三角形的内切圆是一种常见的
辅助线方法。

内切圆与三角形的各边均相切,通过利用内切圆的性质,我们可以得到有关三角形的一些重要结论。

方法五:画过顶点的角平分线
在证明两角相等或证明某些三角形相似时,画过顶点的角平分
线是一种常见的辅助线方法。

通过将角细分为两等分,我们可以得
到有关角度的一些重要关系,从而得到所需结论。

结论
辅助线方法在解决几何证明题时起到了重要的作用。

以上介绍
的几种经典辅助线方法仅是其中的一部分,通过熟练掌握这些方法,并结合具体问题,我们可以更好地解决几何证明题,提高数学水平。

初中几何辅助线大全很详细哦

初中几何辅助线大全很详细哦

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

初中几何中常用的辅助线方法的资料

初中几何中常用的辅助线方法的资料

初中几何是学生学习几何知识的基础阶段,掌握正确的辅助线技巧对于解决几何问题至关重要。

下面是一份关于初中几何中常用的辅助线方法的资料,希望能帮助到您。

一、基本概念辅助线:在解决几何问题时,为了更好地展现图形的性质或构建所需的条件,临时添加的线段称为辅助线。

辅助线不改变原图形的基本结构,但能帮助我们发现解题的关键线索。

二、常用辅助线方法1. 过顶点作垂线●应用场景:证明直角、等腰三角形的性质,求解高、距离等问题。

●示例:证明一个三角形是直角三角形时,可以尝试从一个顶点向对边作垂线,利用勾股定理。

2. 连接中点●应用场景:证明线段倍长、中位线性质、平行四边形和梯形的构造。

●示例:证明两条线段相等时,连接它们的中点,利用中位线定理。

3. 平行线构造●应用场景:形成相似三角形、构造平行四边形、证明角度关系。

●示例:为证明两个角相等,可以在其中一个角的一边上作一条平行于另一角所在直线的辅助线,从而构成一对内错角或同位角。

4. 过顶点作平行线●应用场景:构造全等三角形、证明角平分线性质。

●示例:证明两角相等时,可以从一个角的顶点出发作一条平行于另一个角一边的线,这样可以构造出一组等角的三角形。

5. 延长线段●应用场景:寻找共线点、证明交比不变、构造平行线。

●示例:当需要证明四点共线时,延长某些线段,利用交叉线段的比值相等来证明。

6. 作角平分线或垂直平分线●应用场景:证明等腰三角形、等边三角形性质,解决与圆相关的几何问题。

●示例:证明一个点在三角形某边的垂直平分线上,可以过该点作这条边的垂线,利用垂直平分线的性质。

三、技巧总结1.观察图形特征:首先分析图形的已知条件和所求目标,根据图形的特殊形状或已知条件选择合适的辅助线方法。

2.尝试多种方案:有时候,一种辅助线方法可能不足以解决问题,需要尝试几种不同的方法。

3.灵活运用定理:熟练掌握各种几何定理,并能灵活应用到辅助线的构造中。

4.练习与总结:多做练习,每次解题后总结辅助线的使用经验,逐步提高解题效率。

初中初中几何辅助线做法总结满分必备

初中初中几何辅助线做法总结满分必备

【初中】初中最全几何辅助线做法总结,满分必备!几何中,同学们最头疼的就是做辅助线了,所以,今天整理了做辅助线的102条规律,从此,再也不怕了!线、角、相交线、平行线规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条.规律2.平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.规律5.有公共端点的n条射线所构成的交点的个数一共有n(n-1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个.规律7. 如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角.规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90°.规律10.平面上有n条直线相交,最多交点的个数为n(n-1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.规律13.已知AB∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.三角形部分规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或及求证有关的量)移到同一个或几个三角形中去然后再证题.规律16.三角形的一个内角平分线及一个外角平分线相交所成的锐角,等于第三个内角的一半.规律17. 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.规律18. 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.规律19. 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.规律22. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形.规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:①a>b②a±b = c③a±b = c±d规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。

初中数学几何图形的辅助线添加方法大全

初中数学几何图形的辅助线添加方法大全

初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

初中几何辅助线大全及口诀

初中几何辅助线大全及口诀

作辅助线的方法一:中点、中位线,延线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

初中几何辅助线口诀和秘籍

初中几何辅助线口诀和秘籍

初中几何辅助线口诀和秘籍初中几何是数学学科中的一块重要内容,而几何辅助线是解决几何问题时常用的一种方法。

下面我将为大家介绍一些初中几何辅助线的口诀和秘籍。

一、角平分线角平分线是指将一个角分为两个相等的角的线段。

在解决几何问题时,我们常常需要用到角平分线来帮助我们求解。

如何画角平分线呢?下面是一个简单的口诀:“角平分线,一刀两半,角分两相等,求解题简单。

”二、三角形的中线三角形的中线是连接三角形的一个顶点与对边中点的线段。

在解决三角形相关问题时,中线也是一个常用的辅助线。

我们可以通过以下口诀来记忆中线的特点:“三角形中线,一条有三,中点连顶点,两边相等。

”三、垂直平分线垂直平分线是指将一个线段垂直分割并且分成两个相等部分的线段。

垂直平分线在解决线段相关问题时非常有用。

下面是一个简洁的口诀来帮助我们记忆垂直平分线的画法:“垂直平分线,画在线上,两边相等,线段垂直。

”四、角的对称线角的对称线是指将一个角按照对称轴对折后,得到的两个相等角的辅助线。

在解决角相关问题时,角的对称线可以帮助我们找到一些相等角。

以下是一个简单的口诀来帮助我们记忆角的对称线:“角的对称线,轴线中间,两边相等,角对称分。

”五、相似三角形的辅助线在解决相似三角形问题时,有一些特殊的辅助线可以帮助我们找到相似三角形之间的对应关系。

例如,高线可以帮助我们找到相似三角形的对应边的比例关系。

以下是一个简单的口诀来帮助我们记忆相似三角形的辅助线:“相似三角形辅助线,高线找比例,边线对应比例,找答案简单。

”通过以上口诀和秘籍,我们可以更加方便地使用几何辅助线来解决初中几何问题。

当然,在实际解题的过程中,我们还需要根据具体问题的要求灵活运用这些辅助线,以达到解题的目的。

总结起来,初中几何辅助线是解决几何问题时的重要工具。

通过记忆和掌握一些几何辅助线的特点和画法,我们能够更加高效地解决几何问题,提高我们的数学水平。

希望以上口诀和秘籍能够帮助到大家,让我们在初中几何学习中取得更好的成绩!。

初中几何辅助线大全-最全

初中几何辅助线大全-最全

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:例如:如图7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求证:AD=BC分析:欲证AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。

E 证明:分别延长DA,CB,它们的延长交于E点,∵AD⊥ACBC⊥BD(已知)∴∠CAE=∠DBE=90°(垂直的定义)在△DBE与△CAE中A BO EE()公共角∵DBECAE()已证D CBDAC(已知)图71∴△DBE≌△CAE(AAS)∴ED=ECEB=EA(全等三角形对应边相等)∴ED-EA=EC-EB即:AD=BC。

(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。

)二、连接四边形的对角线,把四边形的问题转化成为三角形来解决。

三、有和角平分线垂直的线段时,通常把这条线段延长。

例如:如图9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E。

求证:BD=2CEF分析:要证BD=2CE,想到要构造线段2CE,同时AE1B 12DC 图91CE与∠ABC的平分线垂直,想到要将其延长。

证明:分别延长B A,CE交于点F。

∵BE⊥CF(已知)∴∠BEF=∠BEC=90°(垂直的定义)在△BEF与△BEC中,12(已知)∵BEBE(公共边)BEFBEC()已证1C F(全等三角形对应边相等)∴△BEF≌△BEC(ASA)∴CE=FE=2∵∠BAC=90°BE⊥CF(已知)∴∠BAC=∠CAF=90°∠1+∠BDA=90°∠1+∠BFC=90°∴∠BDA=∠BFC在△ABD与△ACF中BACCAF(已证)BDABFC()已证AB=AC(已知)∴△ABD≌△ACF(AAS)∴BD=CF(全等三角形对应边相等)∴BD=2CE四、取线段中点构造全等三有形。

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)

初中几何辅助线—克胜秘笈之袁州冬雪创作等腰三角形1.作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2.作一腰上的高;3.过底边的一个端点作底边的垂线,与另外一腰的延长线相交,构成直角三角形.梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 毗连两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单.无论什么题目,第一位应该思索到题目要求,比方AB=AC+BD....这类的就是想法子作出另外一条AB等长的线段,再证全等说明AC+BD=另外一条AB,就行了.还有一些关于平方的思索勾股,A 字形等.三角形图中有角平分线,可向双方作垂线(垂线段相等).也可将图对折看,对称以后关系现.角平分线平行线,等腰三角形来添.角平分线加垂线,三线合一试试看.线段垂直平分线,常向两头把线连.要证线段倍与半,延长缩短可试验. 三角形中两中点,毗连则成中位线. 三角形中有中线,延长中线等中线.解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以思索过中点作中位线或把中线延长一倍来处理相关问题.②在比例线段证明中,常作平行线.作平行线时往往是保存结论中的一个比,然后通过一个中间比与结论中的另外一个比接洽起来.③对于梯形问题,常常使用的添加辅助线的方法有1、过上底的两头点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另外一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点.梯形外面作高线,平移一腰试试看. 平行移动对角线,补成三角形罕见. 证相似,比线段,添线平行成习惯. 等积式子比例换,寻找线段很关键. 直接证明有坚苦,等量代换少费事. 斜边上面作高线初中数学辅助线的添加浅谈人们从来就是用自己的聪明才干创造条件处理问题的,当问题的条件不敷时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能处理的问题,这是处理问题常常使用的战略.一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可近似添辅助线.2按基本图形添辅助线:每一个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循.举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形.出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形.(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形.(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线.出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形.(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形停止证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形.(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称便可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转.当几何问题中出现一组或两组相等线段位于一组对顶角双方且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两保持或过二端点添平行线(8)特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,操纵45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3停止证明二.基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍.含有中点的题目,常常操纵三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地处理了问题.方法2:含有平分线的题目,常以角平分线为对称轴,操纵角平分线的性质和题中的条件,构造出全等三角形,从而操纵全等三角形的知识处理问题.方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或操纵关于平分线段的一些定理.方法4:结论是一条线段与另外一条线段之和等于第三条线段这类题目,常采取截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另外一部分等于第二条线段.平行四边形(包含矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目标都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成罕见的三角形、正方形等问题处理,其常常使用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)毗连对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)毗连顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形.(5)过顶点作对角线的垂线,构成线段平行或三角形全等.梯形是一种特殊的四边形.它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来处理.辅助线的添加成为问题处理的桥梁,梯形中常常使用到的辅助线有:(1)在梯形外部平移一腰.(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两头点向下底作高(6)平移对角线(7)毗连梯形一顶点及一腰的中点.(8)过一腰的中点作另外一腰的平行线.(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线其实纷歧定是固定不变的、单一的.通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来处理,这是处理问题的关键.作辅助线的方法一:中点、中位线,延线,平行线.如遇条件中有中点,中线、中位线等,那末过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另外一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目标.二:垂线、分角线,翻转全等连.如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生.其对称轴往往是垂线或角的平分线.三:边边若相等,旋转做实验.如遇条件中有多边形的双方相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,便可以得到全等形,这时辅助线的做法仍会应运而生.其对称中心,因题而异,有时没有中心.故可分“有心”和“无心”旋转两种.四:造角、平、相似,和、差、积、商见.如遇条件中有多边形的双方相等或两角相等,欲证线段或角的和差积商,往往与相似形有关.在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段停止平移.故作歌诀:“造角、平、相似,和差积商见.”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)九:面积找底高,多边变三边.如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键.如遇多边形,想法割补成三角形;反之,亦成立.别的,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”.三角形中作辅助线的常常使用方法举例一、在操纵三角形三边关系证明线段不等关系时,若直接证不出来,可毗连两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:证明:(法一)将DE双方延长分别交AB、AC 于M、N,在△AMN中,AM+AN> MD+DE+NE;(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC(法二:)如图1-2,延长BD交 AC于F,延长CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF> BD+DG+GF (三角形双方之和大于第三边)(1)GF+FC>GE+CE(同上) (2)DG+GE>DE(同上) (3)由(1)+(2)+(3)得:AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE∴AB +AC >BD +DE +EC.二、在操纵三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可毗连两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再操纵外角定理:形中,没有直接的接洽,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E ,这时∠BDC 是△EDC的外角,∴∠BDC >∠DEC ,同理∠DEC >∠BAC ,∴∠BDC >∠BAC 证法二:毗连AD ,并延长交BC 于F∵∠BDF 是△ABD 的外角∴∠BDF >∠BAD ,同理,∠CDF >∠CAD ∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC.注意:操纵三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再操纵不等式性质证明.三、有角平分线时,通常在角的双方截取相等的线段,构造全等三角形,如:分析:要证BE +CF >EF ,可操纵三角形三边关系定理证明,须把BE ,CF ,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的双方截取相等的线段,操纵三角形全等对应边相等,把EN ,FN ,EF 移到同一个三角形中.证明:在DA 上截取DN =DB ,毗连NE ,NF ,则DN =DC ,ABCD EF G12-图AB CDEFN13-图1234在△DBE 和△DNE 中:∴△DBE ≌△DNE (SAS )∴BE =NE (全等三角形对应边相等) 同理可得:CF =NF在△EFN 中EN +FN >EF (三角形双方之和大于第三边) ∴BE +CF >EF.注意:当证题有角平分线时,常可思索在角的双方截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等.四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形.证明:延长ED 至M ,使DM=DE ,毗连CM ,MF.在△BDE 和△CDM 中,∴△BDE ≌△CDM (SAS )又∵∠1=∠2,∠3=∠4 (已知)∠1+∠2+∠3+∠4=180°(平角的定义) ∴∠3+∠2=90°,即:∠EDF =90° ∴∠FDM =∠EDF =90° 在△EDF 和△MDF 中∴△EDF ≌△MDF (SAS )∴EF =MF (全等三角形对应边相等)14-图ABCDEFM1234∵在△CMF 中,CF +CM >MF (三角形双方之和大于第三边) ∴BE +CF >EF注:上题也可加倍FD ,证法同上.注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中.五、有三角形中线时,常延长加倍中线,构造全等三角形.分析:要证AB +AC >2AD ,由图想到: AB +BD >AD,AC +CD >AD ,所以有AB +AC + BD +CD >AD +AD =2AD ,左边比要证结论多BD +CD ,故不克不及直接证出此题,而由2AD 想到要构造2AD ,即加倍中线,把所要证的线段转移到同一个三角形中去.证明:延长AD 至E ,使DE=AD ,毗连BE ,则AE =2AD∵AD 为△ABC 的中线 (已知) ∴BD =CD (中线定义) 在△ACD 和△EBD 中∴△ACD ≌△EBD (SAS )∴BE =CA (全等三角形对应边相等)∵在△ABE 中有:AB +BE >AE (三角形双方之和大于第三边)∴AB +AC >2AD.操练:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD. 六、截长补短法作辅助线.构造第三边AB -AC ,故可在AB 上截取AN 等于A BCDEAC ,得AB -AC =BN , 再毗连PN ,则PC =PN ,又在△PNB 中,PB -PN <BN ,即:AB -AC >PB -PC. 证明:(截长法)在AB 上截取AN =AC 毗连PN , 在△APN 和△APC 中∴△APN ≌△APC (SAS )∴PC =PN (全等三角形对应边相等)∵在△BPN 中,有PB -PN <BN (三角形双方之差小于第三边) ∴BP -PC <AB -AC证明:(补短法) 延长AC 至M ,使AM =AB ,毗连PM , 在△ABP 和△AMP 中∴△ABP ≌△AMP (SAS )∴PB =PM (全等三角形对应边相等)又∵在△PCM 中有:CM >PM -PC(三角形双方之差小于第三边) ∴AB -AC >PB -PC.七、延长已知边构造三角形:分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角. 证明:分别延长DA ,CB ,它们的延长交于E点,∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义)ABCD E 17-图O在△DBE 与△CAE 中∴△DBE ≌△CAE (AAS )∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC.(当条件缺乏时,可通过添加辅助线得出新的条件,为证题创造条件.)八 、毗连四边形的对角线,把四边形的问题转化成为三角形来处理. 分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来处理.证明:毗连AC (或BD ) ∵AB ∥CD AD ∥BC (已知)∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等) 在△ABC 与△CDA 中∴△ABC ≌△CDA (ASA )∴AB =CD (全等三角形对应边相等)九、有和角平分线垂直的线段时,通常把这条线段延长.分析:要证BD =2CE ,想到要构造线段2CE ,同时CE 与∠ABC 的平分线垂直,想到要将其延长.证明:分别延长BA ,CE 交于点F. ∵BE ⊥CF (已知)19-图D CBAEF12A BCD18-图1234∴∠BEF =∠BEC =90° (垂直的定义)在△BEF 与△BEC 中,∴△BEF ≌△BEC (ASA )∴(全等三角形对应边相等)∵∠BAC=90° BE ⊥CF (已知)∴∠BAC =∠CAF =90°∠1+∠BDA =90°∠1+∠BFC =90°∴∠BDA =∠BFC在△ABD 与△ACF 中∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE十、毗连已知点,构造全等三角形.分析:要证∠A =∠D ,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC ,AC =BD ,若毗连BC ,则△ABC 和△DCB 全等,所以,证得∠A =∠D.证明:毗连BC ,在△ABC和△DCB 中∴△ABC ≌△DCB (SSS)∴∠A =∠D (全等三角形对应边相等) 十一、取线段中点构造全等三有形.分析:由AB =DC ,∠A =∠D ,想到如取AD 的中点N ,毗连NB ,NC ,再由SAS 公理有△ABN ≌△DCN ,故BN =CN ,∠ABN =∠DCN.下面只需证∠NBC =∠NCB ,再取BC 的中点M ,毗连MN ,则由SSS 公理有△NBM ≌△DCB A 110-图ONCM ,所以∠NBC =∠NCB.问题得证.证明:取AD ,BC 的中点N 、M ,毗连NB ,NM ,NC.则AN=DN ,BM=CM ,在△ABN 和△DCN 中∵⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN∴△ABN ≌△DCN (SAS )∴∠ABN =∠DCN NB =NC (全等三角形对应边、角相等)在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM ,(SSS)∴∠NBC =∠NCB (全等三角形对应角相等)∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB.巧求三角形中线段的比值例1. 如图1,在△ABC 中,BD :DC =1:3,AE :ED =2:3,求AF :FC. 解:过点D 作DG//AC ,交BF 于点G 所以DG :FC =BD :BC因为BD :DC =1:3 所以BD :BC =1:4 即DG :FC =1:4,FC =4DG因为DG :AF =DE :AE 又因为AE :ED =2:3 所以DG :AF =3:2 即所以AF :FC =:4DG =1:6例2. 如图2,BC =CD ,AF =FC ,求EF :FD解:过点C 作CG//DE 交AB 于点G ,则有EF :GC =AF :AC 因为AF =FC 所以AF :AC =1:2 即EF :GC =1:2,因为CG :DE =BC :BD 又因为BC =CD111-图DCBA M N所以BC:BD=1:2 CG:DE=1:2 即DE=2GC因为FD=ED-EF=所以EF:FD=小结:以上两例中,辅助线都作在了“已知”条件中出现的两条已知线段的交点处,且所作的辅助线与结论中出现的线段平行.请再看两例,让我们感受其中的奇妙!例3. 如图3,BD:DC=1:3,AE:EB=2:3,求AF:FD.解:过点B作BG//AD,交CE延长线于点G.所以DF:BG=CD:CB因为BD:DC=1:3 所以CD:CB=3:4即DF:BG=3:4,因为AF:BG=AE:EB 又因为AE:EB=2:3所以AF:BG=2:3 即所以AF:DF=例4. 如图4,BD:DC=1:3,AF=FD,求EF:FC.解:过点D作DG//CE,交AB于点G所以EF:DG=AF:AD因为AF=FD 所以AF:AD=1:2 图4即EF:DG=1:2因为DG:CE=BD:BC,又因为BD:CD=1:3,所以BD:BC=1:4即DG:CE=1:4,CE=4DG因为FC=CE-EF=所以EF:FC==1:7操练:1. 如图5,BD=DC,AE:ED=1:5,求AF:FB.2. 如图6,AD:DB=1:3,AE:EC=3:1,求BF:答案:1、1:10; 2. 9:1初中几何辅助线一初中几何罕见辅助线口诀人说几何很坚苦,难点就在辅助线.辅助线,如何添?掌控定理和概念.还要吃苦加钻研,找出规律凭经历.三角形图中有角平分线,可向双方作垂线.也可将图对折看,对称以后关系现.角平分线平行线,等腰三角形来添.角平分线加垂线,三线合一试试看.线段垂直平分线,常向两头把线连.线段和差及倍半,延长缩短可试验.线段和差不等式,移到同一三角去.三角形中两中点,毗连则成中位线.三角形中有中线,延长中线等中线.四边形平行四边形出现,对称中心等分点.梯形问题巧转换,变成△和□.平移腰,移对角,两腰延长作出高.如果出现腰中点,细心连上中位线.上述方法不奏效,过腰中点全等造.证相似,比线段,添线平行成习惯.等积式子比例换,寻找线段很关键.直接证明有坚苦,等量代换少费事.斜边上面作高线,比例中项一大片.切勿自觉乱添线,方法矫捷应多变.分析综合方法选,坚苦再多也会减.虚心勤学加苦练,成绩上升成直线. 二 由角平分线想到的辅助线 口诀:图中有角平分线,可向双方作垂线.也可将图对折看,对称以后关系现.角平分线平行线,等腰三角形来添.角平分线加垂线,三线合一试试看.角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角双方的间隔相等.对于有角平分线的辅助线的作法,一般有两种.①从角平分线上一点向双方作垂线;②操纵角平分线,构造对称图形(如作法是在一侧的长边上截取短边).通常情况下,出现了直角或是垂直等条件时,一般思索作垂线;其它情况下思索构造对称图形.至于选取哪类方法,要连系题目图形和已知条件.与角有关的辅助线(一)、截取构全等几何的证明在于猜测与测验测验,但这种测验测验与猜测是在一定的规律基本图1-1B之上的,希望同学们能掌握相关的几何规律,在处理几何问题中大胆地去猜测,按一定的规律去测验测验.下面就几何中罕见的定理所涉及到的辅助线作以先容.如图1-1,∠AOC=∠BOC ,如取OE=OF ,并毗连DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件.例1.如图1-2,AB//CD ,BE平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD.分析:此题中就涉及到角平分线,可以操纵角平分线来构造全等三角形,即操纵解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常常使用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段.但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目标.简证:在此题中可在长线段BC 上截取BF=AB ,再证明CF=CD ,从而达到证明的目标.这外面用到了角平分线来构造全等三角形.别的一个全等自已证明.此题的证明也可以延长BE 与CD 的延长线交于一点来证明.自已试一试.例2.已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥AC分析:此题还是操纵角平分线来构造全等三角形.构造的方法还是截取线段相等.其它问题自已证明.图1-2DBCABC例3.已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题.用到的是截取法来证明的,在长的线段上截取短的线段,来证明.试试看能否把短的延长来证明呢?操练1.已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC2.已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC ,求证:AE=2CE3.已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点.求证:BM-CM>AB-AC4.已知:D 是△ABC 的∠BAC 的外角的平分线AD 上的任一点,毗连DB 、DC.求证:BD+CD>AB+AC.(二)、角分线上点向角双方作垂线构全等过角平分线上一点向角双方作垂线,操纵角平分线上的点到双方间隔相等的性质来证明问题.例1.如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC.求证:∠ADC+∠B=180分析:可由C 向∠BAD 的双方作垂线.近而证∠ADC 与∠B 之和为平角.例2.如图2-2,在△ABC 中,∠A=90 ,AB=AC ,∠ABD=∠CBD.图1-4ABC图2-1BC求证:BC=AB+AD分析:过D 作DE ⊥BC 于E ,则AD=DE=CE ,则构造出全等三角形,从而得证.此题是证明线段的和差倍分问题,从中操纵了相当于截取的方法.例3. 已知如图2-3,△ABC 的角平分线BM 、CN相交于点P.求证:∠BAC 的平分线也颠末点P.分析:毗连AP ,证AP 平分∠BAC 即可,也就是证P 到AB 、AC 的间隔相等.操练:1.如图2-4∠AOP=∠BOP=15 ,PC//OA ,PD ⊥OA ,如果PC=4,则PD=( )A 4B 3C 2D 1 2.已知在△ABC 中,∠C=90 ,AD 平分∠CAB ,CD=1.5,DB=2.5.求AC.3.已知:如图2-5, ∠BAC=∠CAD,AB>AD ,CE ⊥AB ,AB+AD ).求证:∠D+∠B=180 .4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,∠FAE=∠DAE.求证:AF=AD+CF.5.已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH//AB 交BC 于H.求证CF=BH.图2-2BC图2-3ABC图2-4OADABD(三):作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的双方相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以操纵中位线的性质与等腰三角形的三线合一的性质.(如果题目中有垂直于角平分线的线段,则延长该线段与角的另外一边相交).例1.已知:如图3-1,∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中点.求证:(AB-AC)分析:延长CD交AB于点E,则可得全等三角形.问题可证.例2.已知:如图3-2,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE.分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与别的一边相交,近而构造出等腰三角形.例3.已知:如图3-3在△ABC中,AD、AE分别∠BAC的内、外角平分线,过顶点B作BFAD,交AD的延长线于F,保持FC并延长交AE于M.求证:AM=ME.分析:由AD、AE是∠BAC表里角平分线,可得EA⊥AF,从而有BF//AE,所以想到操纵比例线段证相等.例4.已知:如图3-4,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于M.求证:AB+AC)B图3-3E分析:题设中给出了角平分线AD ,自然想到以AD 为轴作对称变换,作△ABD 关于AD 的对称△AED ,然后只需证,别的由求证的成果(AB+AC ),即2AM=AB+AC ,也可测验测验作△ACM 关于CM 的对称△FCM ,然后只需证DF=CF 即可.操练:1.已知:在△ABC 中,AB=5,AC=3,D 是BC 中点,AE 是∠BAC的平分线,且CE ⊥AE 于E ,毗连DE ,求DE.2.已知BE 、BF 分别是△ABC 的∠ABC 的内角与外角的平分线,AF ⊥BF 于F ,AE ⊥BE 于E ,毗连EF 分别交AB 、AC 于M 、N ,求证(四)、以角分线上一点做角的另外一边的平行线有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与别的一边的反向延长线相交,从而也构造等腰三角形.如图4-1和图4-2所示.例4 如图,AB>AC, ∠1=∠2,求证:AB -AC>BD -CD.例 5 如图,BC>BA ,BD 平分∠ABC ,且AD=CD ,求证:∠A+∠C=180.例 6 如图,AB ∥CD ,AE 、DE 分别平分∠BAD 各∠ADE ,求证:AD=AB+CD.操练:1. 已知,如图,∠C=2∠A ,AC=2BC.求证:△ABC 是直角三角形.1 2ACDBBDC AAEC DC。

初中几何辅助线大全-最全汇总

初中几何辅助线大全-最全汇总

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。

证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE (AAS )∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。

(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。

)二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。

三、有和角平分线垂直的线段时,通常把这条线段延长。

分析:要证BD =2CE ,想到要构造线段2CE ,同时CE19-图DCBAEF12ABCDE17-图O与∠ABC 的平分线垂直,想到要将其延长。

证明:分别延长BA ,CE 交于点F 。

∵BE ⊥CF (已知)∴∠BEF =∠BEC =90° (垂直的定义)在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE=21CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知)∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE四、取线段中点构造全等三有形。

初中几何辅助线口诀和秘籍

初中几何辅助线口诀和秘籍

初中几何辅助线口诀和秘籍初中几何学是数学学科中的一门重要课程,学习几何学除了需要掌握基本的概念和定理外,还需要学会灵活运用辅助线。

辅助线是指在几何图形中,为了解决问题而临时引入的辅助线段或辅助点。

正确使用辅助线可以帮助我们更好地理解和解决几何问题。

下面,我将为大家介绍一些初中几何中常用的辅助线口诀和秘籍。

一、辅助线口诀1. 平分线辅助口诀:平分线的作用是将线段、角等等平均分成两份。

当我们遇到需要将线段或角平分的问题时,可以使用平分线来解决。

平分线的特点是与所要平分的线段或角相交于一点,并将其平分为两份。

2. 垂直平分线辅助口诀:垂直平分线的作用是将线段平分,并且垂直于所要平分的线段。

当我们需要将线段垂直平分时,可以使用垂直平分线来解决。

垂直平分线的特点是与所要平分的线段相交于中点,并且与该线段垂直。

3. 高线辅助口诀:高线的作用是求解三角形的高。

当我们需要求解三角形的高时,可以使用高线来解决。

高线的特点是从一个顶点引垂线到对边,该垂线即为三角形的高。

4. 中位线辅助口诀:中位线的作用是将三角形的两个顶点与对边的中点连线。

当我们需要求解三角形的中位线时,可以使用中位线来解决。

中位线的特点是连接三角形的两个顶点与对边中点,将三角形分成两个相等的小三角形。

5. 角平分线辅助口诀:角平分线的作用是将角平分为两个相等的角。

当我们需要将角平分时,可以使用角平分线来解决。

角平分线的特点是从角的顶点引一条线段与角的两边相交于一点,并将角平分为两个相等的角。

二、辅助线秘籍1. 利用垂直平分线求解线段的长度:当我们需要求解一个线段的长度时,可以通过引入垂直平分线的方式来解决。

首先,我们将该线段的两个端点与垂直平分线的两个交点相连,然后利用勾股定理求解。

2. 利用高线求解三角形的面积:当我们需要求解一个三角形的面积时,可以通过引入高线的方式来解决。

首先,我们从一个顶点引垂线到对边,然后利用面积公式S=底×高/2求解。

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结初中数学中,辅助线是解题的一种重要方法,可以帮助我们清晰地理解题意和问题,并找到解题的思路。

下面是关于初中数学做辅助线的方法总结。

一、直线法1.作垂线:当题目中出现垂直关系时,我们可以通过作垂线来解决问题。

例如,求两个直线的垂直平分线、两个线段的中垂线等。

2.作平行线:当需要证明两条直线平行时,可以通过作一条与已知直线平行的辅助线,再应用平行线的性质进行证明。

二、角度法1.作角平分线:当需要求一个角平分线时,可以通过作一个角的辅助线将该角分成两个相等的角,进而求出角平分线。

2.作等角:当题目中需要证明两个角相等时,可以通过作一条等角的辅助线,将两个角变成等角,然后再应用等角的性质进行证明。

三、三角形法1.作高:当需要求一个三角形的高时,可以通过作条辅助线,形成一个矩形或直角三角形,从而利用高的性质求解。

2.作中线:当需要求一个三角形的中线时,可以通过作条辅助线,形成一个平行四边形或直角三角形,从而利用中线的性质求解。

3.作角平分线:当需要求一个三角形的角平分线时,可以通过作条辅助线,将该角分成两个相等的角,进而求出角平分线。

四、平行四边形法1.作对角线:当题目中出现平行四边形时,可以通过作对角线来将该平行四边形分成两个相等的三角形,进而利用三角形的性质进行求解。

五、轴对称法1.关于对称轴作对称点:当题目中出现轴对称图形时,可以通过作关于对称轴的对称点,将原图形和对称点所成的线段连结起来,形成对称图形,从而利用对称性进行求解。

六、相似三角形法1.作比例:当需要求解两个三角形相似的比例时,可以通过作条辅助线,形成相似三角形,并利用相似三角形的性质求解。

七、图形拓展法1.分割图形:当需要对一个复杂的图形进行分析时,可以通过作一些辅助线,将复杂图形分割成若干个简单的图形,进而分别求解。

总之,在初中数学中,辅助线是解题的有力工具,可以帮助我们合理分析题目,找到解题的思路,解决数学问题。

初中辅助线102种方法

初中辅助线102种方法

初中辅助线102种方法1. 为什么需要辅助线?在学习数学的过程中,初中生常常会遇到一些几何问题,如作图、求证等。

这些问题可能会涉及到各种角度、长度和形状的关系。

为了更好地解决这些问题,使用辅助线是非常有帮助的。

辅助线可以帮助我们发现并利用图形的特点,从而更好地理解和解决问题。

通过引入合适的辅助线,我们可以将复杂的几何问题转化为简单且易于理解的形式。

2. 常见的辅助线方法2.1. 连接中点当我们需要证明一个四边形是平行四边形时,可以通过连接两对对角线的中点来引入辅助线。

这样可以将原来复杂的四边形转化为两个相似三角形。

2.2. 连接垂直当我们需要证明一个角是直角时,可以通过连接该角的两条边上某个点与另一条边上某个点,并证明所得的两条直线垂直。

这样可以将原来复杂的问题转化为一个直角三角形。

2.3. 分割等分当我们需要将一个线段分割成若干等分时,可以通过引入一条平行于该线段的辅助线,并利用相似三角形的性质来实现。

2.4. 构造相似当我们需要证明两个三角形相似时,可以通过引入一条平行于某边的辅助线,并利用平行线分割比例的性质来实现。

2.5. 引入圆当我们遇到关于圆的问题时,可以通过引入圆来简化问题。

例如,在证明两条直线垂直时,可以通过构造一个与这两条直线相切的圆,并利用切线与半径垂直的性质来证明。

3. 常见问题及解决方法3.1. 如何作图?作图是初中数学中非常重要的一部分。

在作图过程中,使用辅助线可以帮助我们更好地理解和解决问题。

首先,我们需要仔细阅读题目,理解所给条件和要求。

然后,根据题目中提到的几何关系,在纸上画出基本图形。

接下来,我们可以根据需要选择合适的辅助线方法,并在图形上进行标记和计算。

最后,检查所画图形是否满足题目要求,并进行必要的修正和调整。

3.2. 如何证明一个三角形相似?证明两个三角形相似时,可以通过引入辅助线来简化问题。

例如,我们可以通过连接两个三角形的顶点与对应边上的某个点,并利用相似三角形的性质来证明它们相似。

(完整)初中数学几何辅助线技巧

(完整)初中数学几何辅助线技巧

几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径联。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

由角平分线想到的辅助线一、截取构全等:如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE与CD的延长线交于一点来证明。

自己试一试。

二、角分线上点向两边作垂线构全等:如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。

求证:∠ADC+∠B=180分析:可由C向∠BAD的两边作垂线。

近而证∠ADC与∠B之和为平角。

三、三线合一构造等腰三角形:如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。

初中辅助线102种方法

初中辅助线102种方法

初中辅助线102种方法初中数学中,辅助线是解题的重要方法之一、通过合理地引入辅助线,能够简化问题,帮助学生更好地理解和解决数学问题。

下面是一些常见的辅助线方法,总结了102种用辅助线解题的方法。

一、平行四边形和三角形(12种方法)1、分许由对角线2、分许由平行边3、形状做法4、补全四边形5、平行线判定6、直角判定7、等腰判定8、矩形判定9、菱形判定10、全等判定11、相似判定12、中点延长线二、倍数关系(6种方法)1、倍数关系长方形2、被圆分割成n个三角形3、被弦分割成n个扇形4、内切正多边形5、圆切割三角形6、两个相似图形三、角的平分线和垂线(8种方法)1、垂直外角2、垂直内角3、垂直交角4、等角判定5、三角形内角和6、两侧和等于第三侧7、外角和等于第四角的补角8、两个相似三角形四、四边形(8种方法)1、等角判定2、平行线判定3、等腰判定4、全等判定5、相似判定6、斜线等分线段7、低线两边相等8、对角线平分四边形五、边和边平行关系(6种方法)1、等角判定2、平行线判断3、合同判定4、全等判定5、相似判定6、横截线段相等六、圆和直线关系(14种方法)1、相切公切线2、点在圆上3、相交的弦等分圆4、是否平行5、是否垂直6、是否相似7、是否全等8、是否合同9、切线垂直半径10、相似三角形11、距离公式12、两个平行线13、切线与弦的垂直关系14、切线两点之间的线段相等七、平行线关系(12种方法)1、内部角和2、外部角和3、迭代序列4、两个相似形状5、形状判定6、三个平行关系7、三角形内角和8、三角形外角和9、三角形相似10、勾股定理11、水平线距离12、角平分线八、相似三角形(10种方法)1、内切椭圆2、相似判定3、垂直交角4、对称判定5、角平分判定6、高线比例关系7、内角和定理8、充分条件9、相似比例关系10、线段比例关系九、勾股定理(10种方法)1、勾股定理判定2、勾股定理特殊情况3、勾股定理特点4、勾股定理形式类比5、勾股定理直角判断6、勾股定理相似关系7、勾股定理扇形等分8、勾股定理四边形判定9、勾股定理和比例关系10、勾股定理和角平分线十、全等三角形(8种方法)1、全等三角形定理2、全等三角形的性质3、等腰三角形4、直角三角形5、相似三角形6、全等三角形的斜线相等7、全等三角形的线段比例关系8、全等三角形的勾股定理十一、正多边形(6种方法)1、内切圆2、相似判定3、垂直交角4、直径5、内角和定理6、线段比例以上就是102种初中数学中常用的辅助线方法。

初中几何辅助线大全很详细

初中几何辅助线大全很详细

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)初中几何辅助线―克胜秘籍等腰三角形1.作底边上的高,形成两个全等的直角三角形,这就是改得最少的一种方法;2.并作一腰上的高;3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1.旋转轴平行边2.垂直于下底,延长上底作一腰的平行线3.平行于两条斜边4.作两条垂直于下底的垂线5.延长两条斜边做成一个三角形菱形1.相连接两对角2.搞低平行四边形1.旋转轴平行边2.作对角线――把一个平行四边形分成两个三角形3.做高――形内形外都要注意矩形1.对角线2.作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如ab=ac+bd....这类的就是想办法作出另一条ab等长的线段,再证全等说明ac+bd=另一条ab,就好了。

还有一些关于平方的考虑勾股,a字形等。

三角形图中存有角平分线,可以向两边并作垂线(垂线段成正比)。

也可以将图对折看看,等距以后关系现。

角平分线平行线,等腰三角形去迎。

角平分线提垂线,三线合一试一试。

线段垂直平分线,常向两端把线连。

必须证线段倍与半,缩短延长可以试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

求解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果得出中点或中线,可以考虑过中点并作中位线或把中线缩短一倍去化解有关问题。

②在比例线段证明中,常作平行线。

并作平行线时往往就是留存结论中的一个比,然后通过一个中间比与结论中的另一个比联系出来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线平行6、并作梯形的中位线7、缩短两腰并使之平行四边形平行四边形发生,对称中心等分点。

梯形里面并作高线,位移一腰试一试。

平行移动对角线,补成三角形常用。

初中几何辅助线大全及口诀

初中几何辅助线大全及口诀

初中几何辅助线大全及口诀
初中几何辅助线大全及口诀可以帮助同学们在解题时更高效地添加辅助线,解决几何问题。

下面是一些常见的辅助线和口诀:
一、常见辅助线:
1. 过中点作中位线;
2. 见中线延长一倍;
3. 见中点,引中位线;
4. 遇比例线段,常作平行线;
5. 梯形问题,常作垂线;
6. 遇切线问题,常连结过切点的半径;
7. 遇弦的问题,常作弦心距。

二、常见定理:
1. 三角形内角和定理;
2. 平行线的性质定理;
3. 中位线定理;
4. 命题等价性定理;
5. 相似三角形判定定理;
6. 直角三角形判定定理。

三、口诀:
1. 直角三角形直角边平方等于斜边平方加直角边平方;
2. 三角形两边之和大于第三边;
3. 三角形三边长度比等于斜边夹角角度比;
4. 梯形问题,常作垂线;
5. 遇切线问题,常连结过切点的半径;
6. 遇弦的问题,常作弦心距。

这些辅助线和口诀可以帮助同学们更好地解决几何问题,提高解题效率。

同时,辅助线添加的技巧也需要同学们在实际解题中不断练习和总结,才能更好地掌握和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学几何辅助线技巧汇总
几何是初中数学的半壁江山,囊括了无数的重点知识、难点知识、无数的中考考点……学好几何,初中数学就不在话下!!
在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解题轻松又快速!辅助线画不对,解题可能就会绕弯又出错!如何快速添加利于解题的辅助线??诀窍都在下面了!↓↓
几何常见辅助线口诀
三角形
图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形
平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形
半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

由角平分线想到的辅助线
一、截取构全等
如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE与CD的延长线交于一点来证明。

自己试一试。

二、角分线上点向两边作垂线构全等
如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。

求证:∠ADC+∠B=180°。

分析:可由C向∠BAD的两边作垂线。

近而证∠ADC与∠B之和为平角。

三、三线合一构造等腰三角形
如图,AB=AC,∠BAC=90° ,BD为∠ABC的平分线,CE⊥BE。

求证:BD=2CE。

分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。

四、角平分线+平行线
如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

分析:在AB上截取AE=AC,通过全等和组成三角形的三边关系可证。

由线段和差想到的辅助线
截长补短法
AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。

分析:过C点作AD垂线,得到全等即可。

由中点想到的辅助线
一、中线把三角形面积等分
如图,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。

已知ΔABC的面积为2,求ΔCDF的面积。

分析:利用中线平分三角形的面积求解。

二、中点联中点得中位线
如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线于点G、H。

求证:∠BGE=∠CHE。

分析:取BD的中点M,连接ME、MF,通过中位线得平行传递角度。

三、倍长中线
如图,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。

分析:倍长中线得到全等易得。

四、RTΔ斜边中线
如图,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求证:AC=BD。

分析:取AB的中点E,得RTΔ斜边中线,得到等量关系。

由全等三角形想到的辅助线
一、倍长过中点得线段
已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围。

分析:利用倍长中线做。

二、截长补短
如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°。

分析:在BC上截取BE=AB,通过全等求证。

三、平移变换
如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE。

分析:将△ACE平移使EC与BD重合。

四、旋转
正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数。

分析:将△ADF旋转使AD与AB重合。

全等得证。

由梯形想到的辅助线
一、平移一腰
如图所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17. 求CD的长。

分析:利用平移一腰把梯形分割成三角形和平行四边形。

二、平移两腰
如图,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,连接EF,求EF的长。

分析:利用平移两腰把梯形底角放在一个三角形内。

三、平移对角线
已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形ABCD的面积。

分析:通过平移梯形一对角线构造直角三角形求解。

四、作双高
在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。

分析:作梯形双高利用勾股定理和三角形三边的关系可得。

五、作中位线
(1)如图,在梯形ABCD中,AD//BC,E、F分别是BD、AC的中点,求证:EF//AD。

分析:连DF并延长,利用全等即得中位线。

(2)在梯形ABCD中,AD∥BC, ∠BAD=90°,E是DC上的中点,连接AE和BE,求证:∠AEB=2∠CBE。

分析:在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的。

相关文档
最新文档