实验:探究单摆的摆长和周期的关系 (2)

合集下载

实验一 探究单摆的周期与摆长的关系

实验一 探究单摆的周期与摆长的关系

(2)作l-T2图线解决物理问题,可以提示我们:若摆球的质 量分布不均匀,对测量结果将________(填“有影响”或 “没有影响”)。
要点整合 热点聚焦
解析 (1)由单摆的周期公式 T=2π gl ,得摆长与周期的关系 为 l=4gπ2T2,图象的斜率 k=4gπ2,由图象中的 A、B 两点坐标 可得:4gπ2=xy22--yx11,解得重力加速度为 g=4πx22y-2-x1y1。(2)摆 球的质量分布不影响图象的斜率,对测量结果没有影响。 答案 (1)4πx22y-2-x1y1 (2)没有影响
要点整合 热点聚焦
热点二 对实验数据处理的考查 【例2】 在用单摆测重力加速度的实验中: (1)某同学实验
时改变摆长,测出几组摆长l和对应的周期T的数据,作 出l-T2图线,如图4所示。利用图线上任两点A、B的坐 标(x1,y1)、(x2,y2),便可求得重力加速度g=________。
图4
要点整合 热点聚焦
实验一 探究单摆的周期与摆长的关系
要点整合 热点聚焦
要点整合 热点聚焦
注意事项 1.悬线顶端不能晃动,需用夹子夹住,保证顶点固定。 2.强调在同一平面内振动且摆角小于10°。 3.选择在摆球摆到平衡位置处开始计时,并数准全振动的
次数。 4.小球自然下垂时,用毫米刻度尺量出悬线长l′,用游标卡
尺测量小球的直径,然后算出摆球的半径r,则摆长l=l′ +r。 5.选用一米左右的细线。
要点整合 热点聚焦
要点整合 热点聚焦
解析 由单摆周期公式 T=2π h+g l,即 T2=4gπ2l+4πg2h,纵 轴截距大于 0,图线应为题图乙中的图线 a;由图象的截距得 h =0.3 m;由斜率可求得 g=4kπ2=41π.22 m/s2=π2 m/s2≈9.86 m/s2。

高考物理总复习第53讲实验十一单摆的周期与摆长的关系受迫振动和共振讲义word版本

高考物理总复习第53讲实验十一单摆的周期与摆长的关系受迫振动和共振讲义word版本

第 53 讲实验十一单摆的周期与摆长的关系受迫振动和共振考情分析观察内容考纲领求观察年份观察详情能力要求实验、研究:单摆的周期与摆长的关系T12( B)(2)-解答,理解、实验与研究受迫振动和共振Ⅰ14 年单摆的周期与摆长的关系知识整合一、单摆1.定义:假如细线的质量与小球对比可以 ____________,球的直径与线的长度对比也可以 ____________,这样的装置就叫做单摆.单摆是实质摆的 ____________模型.2.回复力供给:单摆振动时的回复力由 ____________供给.3.在摆角小于10°时,单摆的振动可看作简谐运动.二、单摆周期公式L1.表达式: T= 2πg,单摆周期取决于________和________,与振幅和小球质量________.2.摆长:从 ________到 ________的距离.3. g:当地的重力加快度.三、用单摆测定重力加快度1.实验目的用单摆测定重力加快度.2.实验原理单摆在偏角很小( 不超出 10°) 时的摇动,可以为是简谐运动,其固有周期为________,由此可得g= ________. 只要测出摆长L 和周期 T,即可算出当地的重力加快度值.3.实验器械长约 1 m的细丝线一条,经过球心开有小孔的金属小球一个、带有铁夹的铁架台一个,________一把, ________一块.4.实验步骤(1)让线的一端穿过小球的小孔,而后打一个比小孔大一些的线结,做成单摆;(2)把线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面之外,让摆球 ________,在单摆均衡地点处做上标志;(3)用刻度尺丈量单摆的摆长 ( 悬点到球心间的距离 ) ;(4)把单摆从均衡地点拉开一个很小的角度 ( 不超出 10° ) ,而后松开小球让它摇动,再用秒表测出单摆完成 30 次或 50 次全振动的时间,计算出均匀完成一次全振动的时间,这个时间就是单摆的________;(5)改变摆长,重做几次实验;(6)依据单摆的周期公式,计算出每次实验的重力加快度,求出几次实验获取的重力加快度的均匀值,即是当地区的重力加快度的值;(7)将测得的重力加快度数值与当地重力加快度值加以比较,分析产生偏差的可能原因.5.注意事项(1)摆线不可以很短或过长或易伸长、摆长应是悬点到球心间的距离.摆球用密度大、直径小的金属球.(2)摆球摇动时应使偏角不超出10°,且在同一竖直面内,不要形成圆锥摆,摆中悬点不可以松动.(3)积累法测周期时,应从最低地点开始计时和记录全振动次数.(4)使用秒表方法是三次按按钮:一是“走时”,二是“停止”,三是“复零”.读数:先读分针刻度 ( 包含半分钟 ) ,再读秒针刻度 ( 最小刻度为 0.1 s,不要再估读 ) .(5) 办理数据时,采纳图象法,画出T2- L 图象,求得直线的斜率k,即有 g= 4π2/k.6.偏差分析(1)本实验系统偏差主要本源于单摆模型自己能否吻合要求.即:悬点能否固定,摆球能否可看作质点,球、线能否吻合要求,振动是圆锥摆还是在同一竖直平面内振动以及丈量哪段长度作为摆长等等.只要注意了上边这些问题,就可以使系统偏差减小到远远小于有时偏差而达到忽视不计的程度.(2)本实验有时偏差主要来自时间 ( 即单摆周期 ) 的丈量上,所以,要注意测准时间 ( 周期) .要从摆球经过均衡地点开始计时,并采纳倒数计时计数的方法,不可以多计或漏计振动次数.为了减小有时偏差,应进行多次丈量后取均匀值.(3)本实验中进行长度 ( 摆线长、摆球的直径 ) 的丈量时,读数读到毫米位即可 ( 即便用游标卡尺测摆球直径也只要读到毫米位 ) .时间的丈量中,秒表读数的有效数字的末位在“秒”的十分位即可.四、振动的分类按振子受力的不一样可将振动分为:1.自由振动 ( 又称固有振动 )回复力是系统内部的互相作用力,没有附带其余的外力作用.弹簧振子的____________是系统内部的力,单摆的________________也是系统内部的力.2.阻尼振动系统遇到摩擦力或其余阻力,系统战胜阻尼的作用要耗费________,因此 ________减小,最后停下来,阻尼振动的图象以以下图.物体做阻尼振动时,振幅虽不停减小,但振动的频率仍由自己结构特色所决定,其实不会随振幅的减小而变化.比方:用力敲锣,因为锣遇到空气的阻尼作用,振幅起来越小,锣声减弱,但音调不变.3.受迫振动(1)定义:如系统遇到周期性外力的作用,就可以利用外力对系统做功,赔偿系统因阻尼作用而损失的能量,使系统连续地振动下去.这类周期性的外力叫________.系统在驱动力作用下的振动叫________.(2)特色:系统做受迫振动的频率老是等于________的频率,与系统的________没关.五、共振1.共振:系统做受迫振动时,假如驱动力的频率可以调理,把不一样频率的驱动力先后作用于同一个振动系统,其受迫振动的振幅将不一样,驱动力频率f________ 系统的固有频率 f 0时,受迫振动的振幅________,这类现象叫做共振.2.共振曲线:横轴表示 ________ 的频率,当 ________时物体的振幅最大.图中 ________是物体的固有频率. f 驱与 f 固相差越大,物体做受迫振动的振幅________.3.共振的应用与防范(1)共振的应用:由共振的条件知,要利用共振就应尽量使驱动力的频率与物体的固有频率一致,如:共振筛、共振转速计、共鸣箱、核磁共振仪等.(2)共振的防范:由共振曲线可知,在需要防范共振时,要尽量使驱动力的频率和物体振动的固有频率不相等,并且相差越多越好.如:队伍过桥时,为防范周期性的驱动力使桥发生共振,应便步走.(3)自由振动、受迫振动和共振的关系比较振动种类项目自由振动受迫振动共振受力状况仅受回复力周期性驱动力作用周期性驱动力作用由系统自己性质决由驱动力的周期或频振动周期或频率定,即固有周期或固率决定,即 T= T 驱或 f T 驱= T 固或 f 驱= f 固有频率= f 驱振动能量振动物体的机械能不由产生驱动变力的物体供给振动物体获取的能量最大常有例子弹簧振子或单摆机械工作时底座发生共振筛、转速计等( θ ≤ 10°)的振动方法技巧考点1单摆【典型例题1】某单摆由 1 m长的摆线连接一个直径 2 cm的铁球构成,关于单摆周期,以下说法正确的选项是()A.用等大的铜球取代铁球,单摆的周期不变B.用大球取代小球,摆长会变化,单摆的周期不变C.摆角从5°改为3°,单摆的周期会变小D.将单摆从赤道移到北极,单摆的周期会变大1. 以以下图,圆滑轨道的半径为 2 m, C 点为圆心正下方的点,A、 B 两点与 C 点相距分别为 6 cm与 2 cm, a、 b 两小球分别从A、B 两点由静止同时开释,则两小球相碰的地点是()A.C点B.C点右边C.C点左边D.不可以确立【典型例题2】用单摆测定重力加快度的实验如图 1 所示.(1)( 多项选择 ) 组装单摆时,应在以下器械中采纳______( 选填选项前的字母 ) .A.长度为 1 m左右的细线B.长度为30 cm左右的细线C.直径为cm的塑料球.直径为cm 的铁球D图1图2图3(2) 测出悬点O 到小球球心的距离( 摆长 )L 及单摆完成n 次全振动所用的时间t. 则重力加快度g= ____________ .( 用 L, n, t 表示 )(3)下表是某同学记录的 3 组实验数据,并做了部分计算办理.组次123摆长 L/ cm50 次全振动时间 t/s振动周期 T/ s重力加快度 g/( ·s- 2)m请计算出第 3 组实验中的 T= ______, g= ______ /2;s m s(4) 用多组实验数据做出T2- L 图象,也可以求出重力加快度g,已知三位同学做出的T2- L 图线的表示图如图 2 中的 a,b, c 所示,此中 a 和 b 平行, b 和 c 都过原点,图线 b对应的 g 值最凑近当地重力加快度的值.则有关于图线b,以下分析正确的选项是( 选填选项前的字母 )().出现图线 a 的原由可能是误将悬点到小球下端的距离记为摆长LAB.出现图线c的原由可能是误将49次全振动记为50 次.图线 c 对应的 g 值小于图线 b 对应的 g 值C(5) 某同学在家里测重力加快度,他找到细线和铁锁,制成一个单摆,如图 3 所示,因为家里只有一根量程为30 cm的刻度尺,于是他在细线上的 A 点做了一个标志,使得悬点 O到 A 点间的细线长度小于刻度尺量程.保持该标志以下的细线长度不变,经过改变 O、A 间细线长度以改变摆长.实验中,当O、A 间细线的长度分别为l 1、l 2时,测得相应单摆的周期为 T1、T2. 由此可得重力加快度g= ____________( 用 l 1、l 2、 T1、 T2表示 ) .考点 2受迫振动和共振【典型例题3】 (16年扬州一模 )( 多项选择 ) 以以下图, A、 B、C 三个小钢球的质量分别1为 2m、2m、m,A 球振动后,经过张紧的水平细绳给其余各摆施加驱动力.当B、C 振动达到稳准时,以下说法中正确的选项是 ()A.B的振动周期最大B.C的振幅比B的振幅小C.C的振幅比B的振幅大D.A、B、C的振动周期相等【典型例题4】( 多项选择 ) 如图为单摆在两次受迫振动中的共振曲线,则以下说法正确的是()A.若两次受迫振动分别在月球上和地球长进行,且摆长相同,则图线Ⅰ表示月球上单摆的共振曲线B.若两次受迫振动是在地球上同一地点进行,则两次摆长之比l Ⅰ∶ l Ⅱ= 25∶4 C.图线Ⅱ假如在地面上完成的,则该摆摆长约为 1 mD.若摆长均为 1 m,则图线Ⅰ是在地面上完成的2.( 多项选择 ) 将测力传感器接到计算机上可以丈量快速变化的力,将单摆挂在测力传感器的探头上,测力探头与计算机连接,用此方法测得的单摆摇动过程中摆线上2拉力的大小随时间变化的曲线以以下图,g 取 10 m/ s . 某同学由此图象供给的信息做出了以下判断,此中正确的选项是()A.摆球的周期T=sB.单摆的摆长l = 1 mC.t=s 时摆球正经过最低点D.摆球运动过程中周期愈来愈小当堂检测 1. 以以下图,把两个弹簧振子悬挂在同一支架上,已知甲弹簧振子的固有频率为8 Hz,乙弹簧振子的固有频率为72 Hz,当支架在遇到竖直方向且频率为9 Hz 的驱动力作用下做受迫振动时,两个弹簧振子的振动状况是()第 1题图A.甲的振幅较大,且振动频率为8 HzB.甲的振幅较大,且振幅频率为9 HzC.乙的振幅较大,且振动频率为9 HzD.乙的振幅较大,且振幅频率为72 Hz2. ( 多项选择 ) 以下说法正确的选项是()A.在同一地点,单摆做简谐振动的周期的平方与其摆长成正比B.弹簧振子做简谐振动时,振动系统的势能与动能之和保持不变C.在同一地点,当摆长不变时,摆球质量越大,单摆做简谐振动的周期越小D.系统做稳固的受迫振动时,系统振动的频率等于周期性驱动力的频率3.一个理想的单摆,已知其周期为T. 假如因为某种原由( 如转移到其余星球) 自由落体运动的加快度变为本来的1/2 ,振幅变为本来的1/3 ,摆长变为本来的1/4 ,摆球质量变为本来的1/5 ,它的周期变为__________ .4.如图是一个单摆的共振曲线,此单摆的固有周期T 是 ________s,若将此单摆的摆长增大,共振曲线的最大值将________( 选填“向左”或“向右”) 挪动.第 4题图5.图甲是一个单摆振动的情况, O 是它的均衡地点, B、 C 是摆球所能到达的最远地点.设摆球向右方向运动为正方向.图乙是这个单摆的振动图象.依据图象回答:(1)单摆振动的频率是多大?(2)开始时辰摆球在何地点?(3) 若当地的重力加快度为π 2m/s2,试求这个摆的摆长是多少?第 5题图第 53 讲 实验十一:单摆的周期与摆长的关系 受迫振动和共振知识整合 基础自测 一、 1. 不计二、 1. 摆长不计 理想化重力加快度2.没关重力沿切线方向的分力2. 悬点 球心三、 2. T = 2πL 4π 2L3. 毫米刻度尺 秒表4.(2) 自由下垂(4) 振动周期gT2四、 1. 弹力 重力的切向重量2.机械能 振幅3. (1) 驱动力 受迫振动(2) 驱动力固有频率五、 1. 等于 最大2.驱动力 f =f ′f ′ 越小方法技巧·典型例题 1· A 【分析】 依据单摆周期公式和单摆做简谐运动的等时性可知,用等大的铜球取代铁球,单摆的周期不变,选项A 正确;因为摆长是从悬点到摆球中心的长度,故在用相同长的摆线连接铁球时,用大球取代小球,摆长会变化,单摆的周期会改变,选项 B 错误;单摆在小摆角下的摇动周期相同, 选项 C 错误;将单摆从赤道移到北极,重力加快度增大,单摆的周期会变小,选项D 错误.·变式训练1· A【分析】因为半径远大于运动的弧长,小球都做简谐运动,类似于单摆.因为在同一地点,周期只与半径有关,与运动的弧长没关,故两球同时到达 C点,应选项 A 正确.·典型例题 2·(1) AD(2) 4π n2Lt2(4)B(5)4π 2(l1 - l2 )【分析】(1) 单摆的模型要求细线要T21- T 2长些、轻些,这样丈量相对偏差小、易观察摆球的地点变化等,A 正确.摆球的使用小重球,减小阻力、相对细线质量较大.D 正确. (2) 依据单摆周期公式=2πL,单摆完Tgπ 2n2L成 N 次全振动的时间为t , T = t / n 可求当地的重力加快度g = t2 .π 2n2L2(3) 据 T = t / n =4可求. (4) 图线 b 对应的 g 值最凑近s 和 g =t2=m/s当地重力加快度的值,说明图线b 对应的是较正确丈量方式.依据单摆的周期公式= 2TπL2=4π 2L 2图象的斜率 k = 4π 2g 得: T,依据数学知识可知,T - Lg ,当地的重力加快度gπ 22π 2L44g = k .A 项若丈量摆长时忘了加上摆球的半径, 则摆长变为摆线的长度l ,则有 T = g4π 2(l +r ) 4π 2 4π2r224π 2 4π 2r =g= g l + g,依据数学知识可知, 对 T - L 图象来说, T =g l +g24π2lπ2r24与 b 线 T =g斜率相等,二者应当平行,g 是截距;故做出的T - L 图象中 a 线的原由可能是误将悬点到小球上端的距离记为摆长. 故 A 错误. B 项实验中误将 49 次全振L动记为 50 次,则周期的丈量值偏小,以致重力加快度的丈量值偏大,图线的斜率k 偏小,故 B 正确; C 项由图可知,图线 c 对应的斜率 k 偏小,依据 T2- L 图象的斜率 k=4π2,当g4π 2地的重力加快度g=k可知, g 值大于图线 b 对应的 g 值,故C错误.应选 B.L l1l2(5) 依据单摆的周期公式T=2πg,第一次: T1=2πg第二次: T2=2πg4π 2( l1-l2 ).联立解得: g=T21-T2·典型例题 3· CD 【分析】因为 A自由振动,其周期就等于其固有周期,而B、 C 在驱动力作用下的受迫振动,受迫振动的周期等于驱动力的周期,所以三个单摆的振动周期相等,故 A 错误;因为、C 摆长相等,产生共振,所以C的振幅比B大,故 C 、D正A确.·典型例题 4· ABC 【分析】受迫振动的频率与固有频率没关,但当驱动力的频率与物体固有频率相等时,受迫振动的振幅最大,所以,可以依据物体做受迫振动的共振l曲线判断出物体的固有频率.依据单摆振动周期公式T=2πg,可以获取单摆固有频11g率 f =T=2πl,依据图象中 f 的信息可以推测摆长或重力加快度的变化状况.·变式训练 2· BC【分析】由题图可知,单摆两次拉力极大值的时间差为 1 s,所以单摆的振动周期为 2 s ,选项 A 错误;依据单摆的周期公式= 2πl可得摆长l =T g1 m,选项 B 正确;t= 0.5 s时摆线的拉力最大,所以摆球正经过最低点,选项 C 正确;摆线拉力的极大值发生变化,说明摆球在最低点时的速度发生了变化,所以摆球做阻尼振动,振幅愈来愈小,因为周期与振幅没关,所以单摆的周期不变,选项 D 错误.当堂检测1. B【分析】支架在遇到竖直方向且频率为9 Hz 的驱动力作用下做受迫振动时,甲乙两个弹簧振子都做受迫振动,它们振动的频率都等于驱动力的频率9 Hz ,因为甲的频率凑近于驱动力的频率,所以甲的振幅较大,故B 正确, ACD错误.2.ABD 【分析】T=2πL依据单摆周期公式:g可以知道,在同一地点,重力加速度 g 为定值,故周期的平方与其摆长成正比,应选项 A 正确;弹簧振子做简谐振动时,只有动能和势能参加转变,依据机械能守恒条件可以知道,振动系统的势能与动能之和保B 正确;依据单摆周期公式:T=2πL持不变,应选项g可以知道,单摆的周期与质量无关,应选项 C 错误;当系统做稳固的受迫振动时,系统振动的频率等于周期性驱动力的频率,选项 D正确.高考物理总复习第53讲实验十一单摆的周期与摆长的关系受迫振动和共振讲义word版本2依据单摆的周期公式= 2πL1倍,摆长减3.【分析】,重力加快度减小为2T g2 12小为4倍,故单摆周期减小为本来的 2 倍.4.向左【分析】当驱动力频率与单摆的固有频率相等时,振幅最大的现象叫做共振现象.由图象可以看出,当 f =0.4 Hz时,振幅最大,发生共振现象;故单摆的固有频率为 0.4 Hz 2.5 s ;若将此单摆的摆长增大,依据公式T=2πL,故周期为g,周期变大,固有频率减小,故共振曲线的最大值将向左挪动.5. (1)1.25 Hz(2) B点(3)0.16 m【分析】 (1)由乙图知周期 T=0.8 s1则频率 f =T=1.25 Hz(2)由乙图知, 0 时辰摆球在负向最大位移处,因向右为正方向,所以开始时辰摆球在 B点L gT2(3) 由T= 2πg得 L=4π2=0.16 m.。

单摆运动的周期与摆长的关系探究

单摆运动的周期与摆长的关系探究

单摆运动的周期与摆长的关系探究摆是我们日常生活中非常常见的物体,如钟摆、秋千等。

而单摆作为一种简单的物理振动系统,也是研究摆动现象的基础。

在单摆运动中,周期是一个重要的物理量,它与摆长之间存在着一定的关系。

一、周期的定义和测量方法周期是指一个周期性现象从起点到终点并回到起点所经历的时间间隔。

在单摆运动中,周期可以通过测量摆动一次所需的时间来确定。

测量单摆的周期可以使用简单的实验方法。

首先,将一根线或者细线拴在一个固定的支点上,然后在线的另一端挂上一个重物。

当重物被拉向一侧后释放,它将开始进行摆动。

使用计时器来记录从某一固定位置(例如摆球运动的最高点)开始,到下一次回到固定位置所经历的时间。

重复多次测量,然后取平均值作为实验结果。

二、周期与摆长的关系在单摆运动中,周期与摆长之间存在着一定的关系,可以表达为周期的平方与摆长的比例关系。

考虑一个简单的单摆系统,重物的质量为m,线的长度为L,重力加速度为g。

摆球在摆动过程中,受力有两个分量:沿摆线方向的重力分量和垂直摆线方向的张力分量。

根据牛顿第二定律,可以得到运动方程。

解决运动方程可以得到单摆运动的周期T的表达式:T = 2π * √(L/g)从上式可以看出,周期T与摆长L成正比。

当摆长增加时,周期也会随之增加。

这是因为较长的摆长对应着更大的牵引力,使得摆球运动的速度更慢,从而导致周期增加。

三、单摆周期与摆长关系的实验验证为了验证周期与摆长之间的关系,可以进行一系列实验。

首先,固定摆球的质量和重力加速度,分别改变摆线的长度,测量不同摆长下的周期。

在实验中选择不同的摆长,可以使用一个可调节的固定支点,或者调节线的长度。

固定起点、记录时间,进行多次测量取平均值。

通过计算周期的平方与摆长之间的比值,可以验证周期与摆长的关系。

实验结果会呈现出周期的平方与摆长的线性关系,验证了周期与摆长之间的关系。

结论通过对单摆运动的周期与摆长的关系进行探究,可以发现它们之间存在着一定的关联。

实验九 探究单摆的周期与摆长的关系

实验九  探究单摆的周期与摆长的关系

2.数据处理 (1)公式法:利用多次测得的单摆周期及对应摆长,借助公式 4π2l g= T2 求出加速度 g,然后算出 g 的平均值. 4π2l (2)图象法:由公式 g= T2 ,分别测出一系 列摆长 l 对应的周期 T, 作出 l-T2 的图象, 如图实-9-2 所示,图象应是一条通过原 点的直线,求出图线的斜率 k,即可求得 g 值. l Δl g=4π k,k=T2=ΔT2.
[解析 ]
本实验主要考查用单摆测定重力加速度的实验步
骤、实验方法和数据处理方法. (1)测量筒的下端口到摆球球心之间的距离 L,用到毫米刻 度尺,测单摆的周期用秒表,所以测量工具选 B、D. (2)设摆线在筒内部分的长度为 h,由 T=2π
2 2 4π 4π T2= g L+ g h,可知 T2-L 关系图象为 a.
近速率甚小,滞留时间不易确定,引起的时间误差较 大. 8.要准确记好摆动次数,不要多记或少记次数.
六、误差分析
1.本实验的系统误差主要来源于单摆模型本身是否符合 要求,即:悬点是否固定,球、线是否符合要求,振 动是圆锥摆还是在同一竖直平面内的振动等. 2.本实验的偶然误差主要来自时间的测量,因此,要从
(4)BD
[例2] 将一单摆装置竖直悬挂于某一深度为h(未知)且开口 向下的小筒中(单摆的下部分露于筒外),如图实-9-4甲所 示,将悬线拉离平衡位置一个小角度后由静止释放,设单 摆摆动过程中悬线不会碰到筒壁,如果本实验的长度测量
工具只能测量出筒的下端口到摆球球心的距离L,并通过改
变L而测出对应的摆动周期T,再以T2为纵轴、L为横轴作出 函数关系图象,那么就可以通过此图象得出小筒的深度h和 当地的重力加速度g.
台(带铁夹)、刻度尺、秒表、游标卡尺.

探究单摆周期与摆长的关系PPT课件

探究单摆周期与摆长的关系PPT课件
20 49 18 47 16
3、注意摆动时摆角不易过大,不能超过10º,以保 证单摆做简谐运动;
4、摆球摆动时,要使之保持在同一个竖直平面内, 不要形成圆锥摆;
5、测量从球通过平衡位置时开始计时,因为在此位 置摆球速度最大,易于分辨小球过此位置的时刻。
6、为了减少偶然误差改变摆长,多次测量求平均 值。
-
7
小结
1、游标卡尺及秒表的使用和读数方法 2、用单摆测重力加速度 (1)原理 (2)器材选择 (3)摆长和周期的测量方法
3、测周期:把单摆从平衡位置拉开一个角度(<10°)放开它,用 秒表测量单摆完成30次全振动(或50次)所用的时间t,求出完 成一次全振动所需要的时间,这个平均时间就是单摆的周期。
T= t / n
4、求重力加速度:把测得的周期和摆长的数值代入公式,求出重 力加速度g的值来。
5、多次测量求平均值:改变摆长,重做几次实验. 计算出每次实验
小的等分刻度它们的总长等于9mm,因此游
标尺的每一分度与主尺的最小分度相差0.1mm,
当左右测脚合在一起,游标的零刻度线与主尺
的零刻度线重合时,只有游标的第10条刻度线
与主尺的9mm刻度线重合,其余的刻度线都不
重合。游标的第一条刻度线在主尺的1mm刻度左边0.源自mm处,游标的第二条刻度线在主尺的
2mm刻度左边0.2mm处- ,等等。
⑤计算周期时,将(n-1)次全振动误记为n 次全振动.
-
10
3、一位同学用单摆测重力加速度的实验.他将摆挂起 来后,进行了如下步骤:
(A)测摆长L:用米尺量出摆线的长度. (B)测周期T:将摆球拉起,然后放开.在摆球某次通过 最低点时,按下秒表开始计时,同时将此次通过最低点作 为第一次,接着一直数到摆球第60次通过最低点时,按秒 表停止计时.读出这段时间t,算出单摆的周期 T=t/60

关于单摆的实验报告

关于单摆的实验报告

竭诚为您提供优质文档/双击可除关于单摆的实验报告篇一:单摆(实验报告样板)(实验报告样板)华南师范大学物理与电信工程学院普通物理实验报告专业实验日期姓名张三教师评定实验题目单摆一、实验目的(1)学会用单摆测定当地的重力加速度。

(2)研究单摆振动的周期和摆长的关系。

(3)观察周期与摆角的关系。

二、实验原理当单摆摆动的角度小于5度时,可证明其振动周期T满足下式T?2?L(1)gg?4?2L2(2)T若测出周期T、单摆长度L,利用上式可计算出当地的重力加速度g。

2从上面公式知T2和L具有线性关系,即T2?4?L。

对不同的单摆长度L测量得出相对应的周期,g可由T2~L图线的斜率求出g值。

当摆动角度θ较大(θ>5°)时,单摆的振动周期T和摆动的角度θ之间存在下列关系222T?2?L?1??1?sin21??3?sin4?g???2?2?2??4?2??三、实验仪器单摆,秒表,米尺,游标卡尺。

四、实验内容1、用给定摆长测定重力加速度①选取适当的摆长,测出摆长;②测出连续摆动50次的总时间t;共测5次。

③求出重力加速度及其不确定度;④写出结果表示。

2、绘制单摆周期与摆长的关系曲线①分别选取5个不同的摆长,测出与其对应的周期。

②作出T2-L图线,由图的斜率求出重力加速度g。

3、观测周期与摆角的关系定性观测:对一定的摆长,测出3个不同摆角对应的周期,并进行分析。

五、数据处理1、用给定单摆测定重力加速度摆长:??/2?915.6?5.43?921.03mm=0.92103m=96.60/50=1.932s重力加速度:?4?220.921034?==9.742m/s2221.932?d?t??d15i?d?2n(n?1)?2.78?10.85?10.862?10.84?10.862?(10.86?10.86)2?(10.87?10.86)2?(10.88?10.86)2(55?1)=0.02mm取游标卡尺的仪器不确定度为σb=0.02mm,则?d??d2??b2?0.022?0.022?0.03mm?l?t??l15i?l?2n(n?1)?2.78?915.6?915.62?915.4?915.62?(915.8?915.6)2?(915.5?915 .6)2?(915.7?915.6)2=0.2mm(55?1)取米尺的仪器不确定度为σb=0.5mm,则因线长的不确定度远大于直径的0.03mm,所以?l??l2??b2?0.22?0.52?0.6mm?L??l?0.6mm?50T?t?2.78???50T?50T?i152n(n?1)?96.50?96.60?2??96.43?96.60?2??96.56?96.60?2??9 6.71?96.60?2??96.80?96.60?255?1=0.2s?T??50T/50?0.004s??eg2??2222?0.004??0.62?0.42%?915.61.932??=9.742×0.42%=0.05m/s2重力加速度:g=??=(9.74±0.05)m/s2广州的重力加速度:g=9.788m/s2百分误差:e0?9.788?9.?100%=4.7%34.00L(m)在曲线中取A、b两点,得:k?3.95?2.00?3.99(s2/m)(0.900?0.500)2g?4?2/k?4?2/3.99?9.89(m/s)9.7884.周期与摆角关系的定性研究小球半径r=0.00543mL=l+r=0.9058m百分误差:e0?9.788?9.89?100%=1.1%结论:由表中数据可知,周期随着角度的增加而略为变大。

实验九 探究单摆的周期与摆长的关系

实验九  探究单摆的周期与摆长的关系

(3)将T2=0,L=-30 cm代入上式可得:
h=30 cm=0.3 m;
将T2=1.20,L=0代入上式可求得:g=π2 m/s2=9.86 m/s2. [答案] (1)BD (2)a (3)0.3 9.86
1.(2011· 北京海淀区测试)某同学做“用单摆测定重力加速 度”的实验时,测得的重力加速度数值明显大于当地的重 力加速度的实际值.造成这一情况的可能原因是 A.测量摆长时,把悬挂状态的摆线长当成摆长 B.测量周期时,当摆球通过平衡位置时启动秒表,此后 摆球第 30 次通过平衡位置时制动秒表,读出经历的时 t 间为 t,并由计算式 T= 求得周期 30 C.开始摆动时振幅过小 D.所用摆球的质量过大 ( )
图实-9-9
(2)如果测得的g值偏小,可能的原因是________(填写代号). A.测摆长时,忘记了摆球的半径 B.摆线上端悬点未固定,振动中出现松动,使摆线长度增 加了
C.开始计时时,秒表过早按下
D.实验中误将39次全振动次数记为40次
(3)某同学在实验中,测量6种不同摆长情况下单摆的振动 周期,记录表格如下: l/m 0.4 0.5 0.8 0.9 1.0 1.2
图实-9-7
解析:(1)小球应放在测脚下部位置,图乙正确. (2)由R随t的变化图象可知,单摆半个周期的时间为(t1+
t0)-t1=t0,所以单摆的周期为2t0.当换用直径为原来2倍
的小球做实验时,该单摆的摆长将会变大,故周期T将会 变大.Δt表示小球通过光敏电阻与激光器之间的时间, 当摆球直径变大时,通过的时间将变长. 答案:(1)乙 (2)2t0 变大 变大
台(带铁夹)、刻度尺、秒表、游标卡尺.
四、实验操作
1.实验步骤 (1)做单摆:让细线的一端穿过小球的小孔, 并打一个比小孔大一些的结,然后把线 的另一端用铁夹固定在铁架台上,并把

单摆的周期与摆长的关系练习题

单摆的周期与摆长的关系练习题

单摆的周期与摆长的关系练习题【基础达标】1.在“探究单摆周期与摆长的关系”的实验中:(1)需要测量悬线长度,现用最小分度为1mm的米尺测量,图中箭头所指位置是拉直的悬线两端在米尺上相对应的位置,测得悬线长度为______mm。

(2)一组同学测得不同摆长l单摆对应的周期T,将数据填入表格中,根据表中数据,在坐标纸上描点,以T为纵轴,l为横轴,作出做简谐运动的单摆的T-l图像。

根据作出的图像,能够得到的结论是_________。

A. 单摆周期T与摆长l成正比B. 单摆周期T与摆长l成反比C. 单摆周期T与摆长l的二次方根成正比D. 单摆摆长l越长,周期T越大(3)另一组同学进一步做“用单摆测定重力加速度”的实验,讨论时有同学提出以下几点建议,其中对提高测量结果精确度有利的是______。

A. 适当加长摆线B. 质量相同、体积不同的摆球,选用体积较大的C. 单摆偏离平衡位置的角度不能太大D. 当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期【答案】(1)987.0;(2)D;(3)AC【解析】(1)悬线长度为987.0mm;(2)根据解得:,即周期的平方与摆长成正比,单摆摆长l 越长,周期T越大;故选D.(3)加大摆长可以减小测量摆长的相对误差,选项A正确;选用体积小质量大的小球可减小空气的相对阻力,选项B错误;单摆偏离平衡位置的角度不能太大,否则就不是简谐振动,选项C正确;经过一次全振动后停止计时,这样会增加测量周期的误差,因至少测量30-50次全振动的时间计算周期,选项D错误;故选AC.2.某同学在做“利用单摆测重力加速度”的实验时,先测得摆线长为101.00cm,摆球直径为2.00cm,然后用秒表记录了单摆振动50次所用的时间为101.5s,则(1)他测得的重力加速度g=________m/s2。

(π2=9.86)(2)他测得的g值偏小,可能的原因是________A.测摆线长时摆线拉得过紧B.摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了C.开始计时时,秒表过迟按下D. 实验中误将49次全振动数为50次(3)为了提高实验精度,在实验中可改变几次摆线长l并测出相应的周期T,从而得出一组对应的l与T的数据,再以l为横坐标。

单摆运动周期与摆长关系

单摆运动周期与摆长关系

单摆运动周期与摆长关系摆长是指单摆的线长,即摆锤离摆轴的距离。

在物理学中,单摆是一个重要的研究对象,它的运动周期与摆长之间存在着一定的关系。

本文将探讨单摆运动周期与摆长的关系,并从理论和实验两个方面进行讨论。

一、理论分析单摆的运动周期与摆长之间存在着一个简单的数学关系,即周期的平方与摆长成正比。

这个关系由物理学家伽利略在16世纪提出,并由后来的科学家进行了验证和推广。

假设单摆的摆长为L,重力加速度为g,摆锤的质量为m。

根据牛顿第二定律,摆锤在重力作用下受到一个向心力,大小为mg*sinθ,其中θ为摆锤与竖直方向的夹角。

根据几何关系,可以得到sinθ=L/L0,其中L0为摆锤在最低点时的线长。

根据牛顿第二定律和几何关系,可以得到摆锤的运动方程为:m*L0*d^2θ/dt^2 = -m*g*sinθ化简后得到:d^2θ/dt^2 + g/L0*sinθ = 0这是一个非线性的微分方程,很难直接求解。

但是,当θ很小的时候,可以近似地认为sinθ≈θ,即θ的弧度近似等于它的正弦值。

这个近似成立的条件是θ的弧度要远小于1弧度,即θ要远小于π/2。

在这个近似条件下,可以将微分方程简化为:d^2θ/dt^2 + g/L0*θ = 0这是一个简谐振动的微分方程,它的解可以表示为:θ(t) = A*sin(ωt + φ)其中A为振幅,ω为角频率,φ为初相位。

通过对微分方程的求解,可以得到角频率ω的表达式:ω = √(g/L0)根据周期的定义,周期T等于振动一周所需的时间,即T = 2π/ω。

代入角频率的表达式,可以得到周期与摆长的关系:T = 2π*√(L0/g)由此可见,单摆的运动周期与摆长的平方根成正比。

二、实验验证为了验证理论分析的结果,可以进行实验来测量单摆的运动周期与摆长的关系。

实验的步骤如下:1. 准备一个单摆装置,包括一个摆轴和一个可调节摆长的摆锤。

2. 将摆锤拉至一定角度,然后释放,观察摆锤的运动。

实验十三探究单摆的摆长与周期的关系

实验十三探究单摆的摆长与周期的关系

实验十三探究单摆的摆长与周期的关系实验十三探究单摆的摆长与周期的关系一、实验目的1.理解和掌握单摆的周期公式。

2.探究单摆的摆长与周期的关系。

3.学习使用控制变量法进行科学实验。

二、实验原理单摆是指一个固定在一点的细线上悬挂的质点,在重力作用下进行周期性往复振动。

单摆的周期公式为T=2π√(L/g),其中T为单摆周期,L为单摆摆长,g为重力加速度。

通过改变摆长,观察单摆周期的变化,可以得出摆长与周期的关系。

三、实验步骤1.准备实验器材:细线、小球、支架、秒表等。

2.将小球悬挂在支架上,调整细线的长度,使小球保持平衡状态。

3.将秒表记录时间功能开启,同时释放小球开始摆动。

4.观察并记录当小球完成一个完整的振动周期时,秒表记录的时间。

5.改变细线的长度,使小球的摆长改变,重复步骤3和4,至少进行五组实验。

6.将实验数据整理成表格,分析摆长与周期的关系。

四、实验数据分析实验数据如下表:时,周期也相应增加。

通过线性拟合,可以进一步验证这个关系。

五、实验结论通过本实验,我们验证了单摆周期公式T=2π√(L/g)。

实验数据表明,摆长与单摆周期存在明显的正比关系。

当摆长增加时,单摆周期也相应增加。

这一结论对于理解和掌握单摆的运动特性具有重要意义。

六、实验思考与改进虽然我们在本次实验中成功地探究了单摆摆长与周期的关系,但实验过程中可能存在一些误差来源。

以下是对实验的进一步思考与改进:1.实验过程中应尽量保持小球在同一直线上振动,以减小空气阻力对实验结果的影响。

2.尽量选择质量较重的小球进行实验,以提高实验的精确度。

因为小球的质量越大,对摆长的敏感度越高,有利于更准确地观察摆长与周期的关系。

3.在改变摆长时,尽量保持其他条件不变,如保持悬点位置不变,以避免由于悬点位置变化引起的小球重力加速度的变化对实验结果的影响。

4.在记录数据时,应尽量减少人为误差。

可以通过多次测量求平均值的方法来减小误差。

例如,可以在每次测量后进行一次校准,以减小秒表计时误差。

实验13 探究单摆的摆长与周期的关系 (共26张PPT)

实验13 探究单摆的摆长与周期的关系 (共26张PPT)

图实132
A.出现图线 a 的原因可能是误将悬点到小球下端的距离记为摆长 L B.出现图线 c 的原因可能是误将 49 次全振动记为 50 次 C.图线 c 对应的 g 值小于图线 b 对应的 g 值
⑤某同学在家里测重力加速度.他找到细线和铁锁,制成一个单摆,如图 实133 所示,由于家里只有一根量程为 0~30 cm 的刻度尺,于是他在细线上 的 A 点做了一个标记,使得悬点 O 到 A 点间的细线长度小于刻度尺量程.保持 该标记以下的细线长度不变,通过改变 O、A 间细线长度以改变摆长.实验中, 当 O,A 间细线的长度分别为 l1、l2 时,测得相应单摆的周期为 T1、T2.由此可得 重力加速度 g=________(用 l1、l2、T1、T2 表示).
图实131
②测出悬点 O 到小球球心的距离(摆长)L 及单摆完成 n 次全振动所用的时间 t,则重力加速度 g=________(用 L、n、t 表示). ③下表是某同学记录的 3 组实验数据,并做了部分计算处理. 组次 摆长 L/cm 50 次全振动时间 t/s 振动周期 T/s 重力加速度 g/(m·s )
图实135
【解析】 ①组装单摆时,悬线应选用不易伸长的细线;摆球选择体积小、 密度大的摆球; 单摆摆动时在同一竖直面内摆动; 摆的振幅尽量小一些. 选项 B、 C 正确.
②设单摆的周期为 T1 时摆长为 L1,周期为 T2 时摆长为 L2 L1 则 T1=2π g L2 T2=2π g 且 L1-L2=ΔL 4π2ΔL 联立①②③式得 g= 2 2 . T1-T2
图实136
②他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺从悬点量到摆 球的最低端的长度 L=0.999 0 m,再用游
图实137 标卡尺测量摆球直径,结果如图实137 所示,则该摆球的直径为 ________mm,单摆摆长为________m.

实验十二探究单摆周期与摆长的关系

实验十二探究单摆周期与摆长的关系

后,测出几组不同摆长L和周期T旳
数值,画出如图7旳T2—L图象,并算
出图线旳斜率为k,则本地旳重力加 图7
速度g=
(用符号表达).
(3)丙、丁两同学合作测量重力加速度,也测出
几组不同摆长L和周期T旳数值.丙用T2—L图象
法处理求得重力加速度为g丙;丁用公式法T=

L g
处理求得重力加速度为g丁,试验后他们发
图4
(1)既有如下测量工具:A.时针;B.秒表;C.天平;
D.毫米刻度尺.本试验所需旳测量工具有
.
(2)假如试验中所得到旳T2-L关系图象如图乙所
示,那么真正旳图象应该是a、b、c中旳
.
(3)由图象可知,小筒旳深度h=
m;本地旳
重力加速度g= m/s2.
解析 本试验主要考察用单摆测重力加速度旳
试验环节、试验措施和数据处理措施.
卡尺测出摆球旳直径d,即得出小球旳半径为d ,
计算出摆长l=l′+ d .
2
4.把单摆从平衡位置处2 拉开一种很小旳角度(不超
过5°),然后放开小球,让小球摆动,待摆动平稳
后测出单摆完毕N(一般为30~50)次全振动所

旳时间t,计算出小球完毕1次全振动所用旳时间,
这个时间就是单摆旳振动周期,即T=
大旳小球,摆角不超出5°. 2.要使摆球在同一竖直面内摆动,不能形成圆锥摆,
措施是将摆球拉到一定位置后由静止释放. 3.测周期旳措施:
(1)要从摆球过平衡位置时开始计时,因为此处速 度大、计时误差小,而最高点速度小、计时误差大. (2)要测屡次全振动旳时间来计算周期.如在摆 球过平衡位置开始计时,且在数“零”旳同步按 下秒表,后来摆球从同一方向经过最低位置时计 数1次.

实验探究单摆的摆长和周期的关系

实验探究单摆的摆长和周期的关系

实验十四 探究单摆的摆长与周期的关系1.实验原理当偏角很小时,单摆做简谐运动,其运动周期为T =2πlg,它与偏角的大小及摆球的质量无关,由此得到g =4π2lT 2.因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度g 的值. 2.实验器材带有铁夹的铁架台、中心有小孔的金属小球、不易伸长的细线(约1 m)、秒表、毫米刻度尺和游标卡尺. 3.实验步骤(1)让细线的一端穿过金属小球的小孔,然后打一个比小孔大一些的线结,做成单摆. (2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图1所示.图1(3)用毫米刻度尺量出摆线长度l ′,用游标卡尺测出摆球的直径,即得出金属小球半径r ,计算出摆长l =l ′+r .(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t ,计算出金属小球完成一次全振动所用时间,这个时间就是单摆的振动周期,即T =tN (N 为全振动的次数),反复测3次,再算出周期的平均值T =T 1+T 2+T 33.(5)根据单摆周期公式T =2πl g ,计算当地的重力加速度g =4π2l T2. (6)改变摆长,重做几次实验,计算出每次实验的重力加速度值,求出它们的平均值,该平均值即为当地的重力加速度值.(7)将测得的重力加速度值与当地的重力加速度值相比较,分析产生误差的可能原因.1.注意事项(1)构成单摆的条件:细线的质量要小、弹性要小,选用体积小、密度大的小球,摆角不超过5°.(2)要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放.(3)测周期的方法:①要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大.②要测多次全振动的时间来计算周期.如在摆球过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过平衡位置时计数1次.(4)本实验可以采用图象法来处理数据.即用纵轴表示摆长l ,用横轴表示T 2,将实验所得数据在坐标平面上标出,应该得到一条倾斜直线,直线的斜率k =g4π2.这是在众多的实验中经常采用的科学处理数据的重要方法. 2.数据处理处理数据有两种方法:(1)公式法:测出30次或50次全振动的时间t ,利用T =tN 求出周期;不改变摆长,反复测量三次,算出三次测得的周期的平均值T ,然后利用公式g =4π2lT2求重力加速度.(2)图象法:由单摆周期公式不难推出:l =g4π2T 2,因此,分别测出一系列摆长l 对应的周期T ,作l -T 2的图象,图象应是一条通过原点的直线,如图2所示,求出图线的斜率k =ΔlΔT 2,即可利用g =4π2k 求重力加速度.图23.误差分析(1)系统误差的主要来源:悬点不固定,球、线不符合要求,振动是圆锥摆而不是在同一竖直平面内的振动等.(2)偶然误差主要来自时间的测量,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计全振动次数.命题点一教材原型实验例1某同学用实验的方法探究影响单摆周期的因素.(1)他组装单摆时,在摆线上端的悬点处,用一块开有狭缝的橡皮夹牢摆线,再用铁架台的铁夹将橡皮夹紧,如图3所示,这样做的目的是________(填字母代号).图3A.保证摆动过程中摆长不变B.可使周期测量更加准确C.需要改变摆长时便于调节D.保证摆球在同一竖直平面内摆动(2)他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺从悬点量到摆球的最低端的长度L=0.999 0 m,再用游标卡尺测量摆球直径,结果如图4所示,则该摆球的直径为________ mm,单摆摆长为________ m.图4(3)下列振动图象真实地描述了对摆长约为1 m的单摆进行周期测量的四种操作过程.图中横坐标原点表示计时开始,A、B、C均为30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四种操作过程合乎实验要求且误差最小的是________(填字母代号).答案 (1)AC (2)12.0 0.993 0 (3)A解析 (1)橡皮的作用是使摆线摆动过程中悬点位置不变,从而保证摆长不变,同时又便于调节摆长,A 、C 正确;(2)根据游标卡尺读数规则可得摆球直径为d =12 mm +0.1 mm ×0=12.0 mm ,则单摆摆长为L 0=L -d2=0.993 0 m(注意统一单位);(3)单摆摆角不超过5°,且计时位置应从最低点(即速度最大位置)开始,故A 项的操作符合要求.变式1 某同学用单摆测当地的重力加速度.他测出了摆线长度L 和摆动周期T ,如图5(a)所示.通过改变悬线长度L ,测出对应的摆动周期T ,获得多组T 与L ,再以T 2为纵轴、L 为横轴画出函数关系图象如图(b)所示.由图象可知,摆球的半径r =________ m ,当地重力加速度g =________ m/s 2;由此种方法得到的重力加速度值与实际的重力加速度值相比会________(选填“偏大”“偏小”或“一样”)图5答案 1.0×10-2 9.86 一样 命题点二 实验拓展与创新例2 (2015·天津理综·9(2))某同学利用单摆测量重力加速度. (1)为了使测量误差尽量小,下列说法正确的是________. A.组装单摆须选用密度和直径都较小的摆球 B.组装单摆须选用轻且不易伸长的细线 C.实验时须使摆球在同一竖直面内摆动D.摆长一定的情况下,摆的振幅尽量大(2)如图6所示,在物理支架的竖直立柱上固定有摆长约1 m的单摆.实验时,由于仅有量程为20 cm、精度为1 mm的钢板刻度尺,于是他先使摆球自然下垂,在竖直立柱上与摆球最下端处于同一水平面的位置做一标记点,测出单摆的周期T1;然后保持悬点位置不变,设法将摆长缩短一些,再次使摆球自然下垂,用同样方法在竖直立柱上做另一标记点,并测出单摆的周期T2;最后用钢板刻度尺量出竖直立柱上两标记点之间的距离ΔL.用上述测量结果,写出重力加速度的表达式g=________.图6答案(1)BC(2)4π2ΔLT21-T22解析(1)在利用单摆测重力加速度实验中,为了使测量误差尽量小,须选用密度大、半径小的摆球和不易伸长的细线,摆球须在同一竖直面内摆动,摆长一定时,振幅尽量小些,以使其满足简谐运动条件,故选B、C.(2)设第一次摆长为L,第二次摆长为L-ΔL,则T1=2πLg,T2=2πL-ΔLg,联立解得g=4π2ΔLT21-T22.变式2为了研究滑块的运动,选用滑块、钩码、纸带、毫米刻度尺、带滑轮的木板以及由漏斗和细线构成的单摆等组成如图7甲所示装置,实验中,滑块在钩码作用下拖动纸带做匀加速直线运动,同时让单摆垂直于纸带运动方向做小摆幅摆动,漏斗可以漏出很细的有色液体,在纸带上留下的痕迹记录了漏斗在不同时刻的位置,如图乙所示.图7(1)漏斗和细线构成的单摆在该实验中所起的作用与下列哪个仪器相同?________(填写仪器序号).A.打点计时器B.秒表C.毫米刻度尺D.电流表(2)已知单摆周期T=2 s,在图乙中AB=24.10 cm,BC=27.90 cm、CD=31.90 cm、DE=36.10 cm,则单摆在经过D点时,滑块的瞬时速度为v D=________ m/s,滑块的加速度为a=________ m/s2(结果保留两位有效数字).答案(1)A(2)0.340.040解析(1)单摆振动具有周期性,摆球每隔半个周期经过纸带中线一次,单摆在该实验中所起的作用与打点计时器相同,故选A.(2)在匀变速直线运动中,中间时刻的瞬时速度大小等于该过程中的平均速度大小,故有v D=x CET=0.34 m/s据匀变速直线运动的推论Δx=aT2,有:a=CD+DE-(AB+BC)T2=0.040 m/s2。

人教版物理选修(高考专用版)第十一章 机械振动 实验:探究单摆周期与摆长的关系 含答案

人教版物理选修(高考专用版)第十一章 机械振动 实验:探究单摆周期与摆长的关系 含答案

一、游标卡尺
1.构造:
图1
测量厚度、长度、深度、内径、外径.
利用主尺的最小分度与游标尺的最小分度的差值制成.
不管游标尺上有多少个小等分刻度,它的刻度部分的总长度比主尺上的同样多的
一、实验器材与注意事项

图2
例浙江名校新高考研究联盟第三次联
图3
图4
摆球直径用游标卡尺进行测量,测量方法和游标刻度如图
.(请注意单位,本空保留四位有效数字
图5
~14.06 0.483 0~0.484 5
浙江10月选
图6
因小球通过平衡位置时的速度较大,有利于计时.故选乙.

图7
AD
游标卡尺的主尺读数为2 cm,游标尺上第10个刻度和主尺上某一刻度对
×0.05 mm=0.50 mm,所以最终读数为:

图8
.保证摆动过程中摆长不变
.保证摆球在同一竖直平面内摆动
1.(实验器材与注意事项)(20xx·宁波“十校联考”期末)在“用单摆测定重力加速度”的实验中
图9 图10
图11
测单摆周期时,为减小测量误差,应________.
图12
某同学在实验时忘了测量小球直径,但是改变摆线长度做了多次测量,得到的实验数据,根据这些数据,该同学能否求得当地的重力加速度?
图14
23.68(23.60~23.74) (3)117.4 s
为减小实验误差,应选择1 m左右的摆线,为减小空气阻力影响,摆球应选质量大的金属球,因此需要的实验器材是A、
题图所示仪器为游标卡尺,读数为:23 mm+0.02×。

高中物理选修3-4第十一章第50讲 实验、探究:单摆的周期与摆长的关系

高中物理选修3-4第十一章第50讲 实验、探究:单摆的周期与摆长的关系

第50讲实验、探究:单摆的周期与摆长的关系考情剖析(注:①考纲要求及变化中Ⅰ代表了解和认识,Ⅱ代表理解和应用;②命题难度中的A知识整合知识网络基础自测一、实验目的:用单摆测定重力加速度二、实验原理单摆在偏角很小(不超过10°)时的摆动,可认为是简谐运动,其固有周期为____________,由此可得____________.只要测出摆长L和周期T,即可算出当地的重力加速度值.三、实验器材长约1 m的细丝线一条,通过球心开有小孔的金属小球一个、带有铁夹的铁架台一个,____________一根,____________一块.四、实验步骤①让线的一端穿过小球的小孔,然后打一个比小孔大一些的线结,做成单摆;②把线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球____________,在单摆平衡位置处做上标记;③用刻度尺测量单摆的摆长(悬点到球心间的距离);④把单摆从平衡位置拉开一个很小的角度(不超过10°),然后放开小球让它摆,再用秒表测出单摆完成30次或50次全振动的时间,计算出平均完成一次全振动的时间,这个时间就是单摆的____________;⑤改变摆长,重做几次实验;⑥根据单摆的周期公式,计算出每次实验的重力加速度,求出几次实验得到的重力加速度的平均值,即是本地区的重力加速度的值;⑦将测得的重力加速度数值与当地重力加速度值加以比较,分析产生误差的可能原因.五、注意事项①摆线不能过短或过长或易伸长、摆长应是悬点到球心间的距离.摆球用密度大、直径小的金属球.②摆球摆动时应使偏角不超过10°,且在同一竖直面内,不要形成圆锥摆,摆中悬点不能松动.③累积法测周期时,应从最低位置开始计时和记录全振动次数.④使用秒表方法是三次按按钮:一是“走时”,二是“停止”,三是“复零”.读数:先读分针刻度(包括半分钟),再读秒针刻度(最小刻度为0.1s,不要再估读).⑤处理数据时,采用图像法,画出T2-L图像,求得直线的斜率k,即有g=4π2/k.六、误差分析①本实验系统误差主要来源于单摆模型本身是否符合要求.即:悬点是否固定,摆球是否可看作质点,球、线是否符合要求,振动是圆锥摆还是在同一竖直平面内振动以及测量哪段长度作为摆长等等.只要注意了上面这些问题,就可以使系统误差减小到远远小于偶然误差而达到忽略不计的程度.②本实验偶然误差主要来自时间(即单摆周期)的测量上,因此,要注意测准时间(周期).要从摆球通过平衡位置开始计时,并采用倒数计时计数的方法,不能多计或漏计振动次数.为了减小偶然误差,应进行多次测量后取平均值.③本实验中进行长度(摆线长、摆球的直径)的测量时,读数读到毫米位即可(即使用卡尺测摆球直径也只需读到毫米位).时间的测量中,秒表读数的有效数字的末位在“秒”的十分位即可.重点阐述易错诊所一、秒表读数1.秒表构造外壳按钮:使指针启动、停止和回零,如图所示.表盘刻度:秒针指示大圆周的刻度,其最小分度值常见为0.1秒、0.2秒或0.5秒;秒钟转一周历时30秒;分针指示小圆周的刻度,其最小分度值常见为0.1分或0.5分,分针转一周历时15分.2.秒表的工作原理机械秒表靠发条转动力矩,通过内部齿轮驱动调节器调节摆动的秒针和分针,即将发条的弹性势能转化为动能,使指针摆.3.秒表的读数不足30秒即秒针转不到一周时,直接读大圆周上秒针所指的黑体分度值,因为大圆周上有红、黑两种字体,黑字0~30,红字31~60,意思是秒针转两周才60秒;同理分针所指的小圆周上也有两种字体,黑字0~15,红字16~31,分针转两周才30分;通常是分针读红字,秒针读红字,分针读黑字,秒针读黑字,计时为两个示数之和.4.秒表的使用方法①按钮开始计时,分针、秒针都启动②按钮停止计时,分针、秒针都停止③按钮分针、秒针回“0”位,此时在使用有两个按钮的表时,应按“0”位侧边的钮1.做单摆:取约1米长的线绳穿过带孔的小钢球,并打一个比小孔大一些的结,然后拴在桌这的支架上.2.用米尺量出悬线长l,准确到毫米,用游标卡尺测摆球直径,算出半径r也准确到毫米,则摆长为l+r(注意长即摆绳长的量法).3.把单摆从平衡位置拉开一个角度放开它,用秒表测量单摆完成30次全振动(或50次)所用的时间,求出完成一次全振动所需要的时间,这个平均时间就是单摆的周期,反复测量三次,再算出测得周期数值的平均值.4.把测得的周期(用平均值)和摆长的数值代入公式,求出重力加速度g的值来.【典型例题】(1)在做用单摆测定重力加速度的实验时,用摆长l和周期T计算重力加速度的公式是g=________.如果已知摆球直径为2.00 cm,让刻度尺的零点对准摆线的悬点,摆线竖直下垂,如图甲所示,那么单摆摆长是________.如果测定了40次全振动的时间如图乙中秒表所示,那么秒表读数是________s.单摆的摆动周期是________s.甲乙(2)以l g =________. 温馨提示熟悉秒表读数的方法,熟练应用单摆周期公式及其变形,学会应用图象解决问题.记录空间【变式训练】 用单摆测定重力加速度实验中:(1)除了细线、摆球、铁架台、铁夹、米尺之外,必需的仪器还有________; (2)为了减小实验误差:当摆球的直径约为2 cm 时,比较合适的摆长应选________(选填:80 cm 、30 cm 、10 cm)(3)实验中,利用g =4π2LT2,求得g ,其摆长L 和周期T 的误差都会使最后结果产生误差,两者相比,________的误差影响较大;(4)在某次实验中,测得单摆振动50次全振动的时间如图所示,则单摆的周期T =________s.随堂 演练1.在“用单摆测重力加速度”的实验中,摆线应选用( ) A .长约10 cm 的细线 B .长约1 m 的细线 C .长约1 m 的粗绳 D .80 cm 长的橡皮绳 2.以下实验操作错误的是( )A.单摆的最大偏角不小于10°B.测摆长时,应先把摆球挂起来再测量C.用秒表测周期时,应从摆球经过最高点时开始计时D.记下摆球从第一次经过最低点到第60次经过最低点的时间t,则单摆振动周期t592 3.宇航员在绕地球做圆周运动的空间站内研究处于完全失重状态下弹簧振子的周期T 与振子质量m的关系.身边的器材有:弹簧、完全相同的螺帽若干个、天平、秒表、刻度尺、温度计等.(1)宇航员利用上述器材中的螺帽和弹簧连接组成弹簧振子,为完成实验,还应从选择的一个器材是________;他以螺帽的个数n为横坐标得出一条倾斜直线,那么他是以________为纵坐标的.由表中数据,在图示坐标系中作出该直线;(3)根据作出的图线,得出T与n的关系式为T=________(s),若每个螺帽的质量用m0表示,用T与m的关系式为T=________(s);(4)若用一未知质量的物体做振子时,测得周期为1.26 s,则该物体质量为________m0.第3题图4.(1)在“探究单摆周期与摆长的关系”实验中,两位同学用游标卡尺测量小球的直径如图甲、乙所示.测量方法正确的是________(填“甲”或“乙”).(2)实验时,若摆球在垂直纸面的平面内摆动,为了将人工记录振动次数改为自动记录振动次数,在摆球运动最低点的左、右两侧分别放置一激光光源与光敏电阻,如图丙所示.光敏电阻与某一自动记录相连,该仪器显示的光敏电阻阻值R随时间t变化图线如图丁所示,则该单摆的振动周期为________.若保持悬点到小球顶点的绳长不变,改用直径是原小球直径2倍的另一小球进行实验,则该单摆的周期将________(填“变大”、“不变”或“变小”),图丁中的△t将________(填“变大”、“不变”或“变小”).丙丁第4题图第5题图5.(12年江苏模拟)在“用单摆测定重力加速度”的实验中,将一单摆装置竖直悬于某一深度为h(未知)且开口向下的固定小筒中(单摆的下部分露于筒外),如图甲所示.将悬线拉离平衡位置一个小角度后由静止释放,设单摆摆动过程中悬线不会碰到筒壁.如果本实验的长度测量工具只能测量出筒下端口到摆球球心之间的距离l,并通过改变l而测出对应的摆动周期T,再以T2为纵轴、l为横轴,作出T2-l图象,则可以由此图象得出我们想要测量的物理量.(1)现有如下测量工具:A.时钟;B.秒表;C.天平;D.毫米刻度尺,本实验所需的测量工具有________.(2)如果实验中所得到的T2-l关系图象如图乙所示,那么真正的图象应该是a、b、c中的________.(3)由图象可知,小筒的深度h=________cm;当地重力加速度g=________m/s2(π取3.14,计算结果保留到小数点后两位).第50讲 实验、探究:单摆的周期与摆长的关系知识整合 基础自测 2.T =2πL/g g =4π2LT23.毫米刻度尺 秒表4.②自由下垂 ④振动周期 重点阐述【典型例题】 (1)在做用单摆测定重力加速度的实验时,用摆长l 和周期T 计算重力加速度的公式是g =________.如果已知摆球直径为2.00 cm ,让刻度尺的零点对准摆线的悬点,摆线竖直下垂,如图甲所示,那么单摆摆长是________.如果测定了40次全振动的时间如图乙中秒表所示,那么秒表读数是________s .单摆的摆动周期是________s.甲乙(2)以l 为横坐标,T 为纵坐标,作出T -l 图象,利用此图线得重力加速度g =________. 【答案】 (1)4π2lT 2 87.40 cm 75.2 1.88 (2)图象如图所示 9.96 m/s 2【解析】 (1)由单摆周期公式T =2πlg,得g =4π2l/T 2,图中读出长度为88.40 cm ,则摆长l =88.40 cm -d/2 cm =87.40 cm ,短针是分针,一格是60 s ,长针是秒针,长针又指15.2 s ,故秒表读数是t =60 s +15.2 s =75.2 s ,单摆周期T =t/n =75.2/40 s =1.88 s.(2)由T =2πl g ,可得T 2=4π2l g,所以T 2-l 图线是过坐标原点的一条直线,直线斜率是k =4π2/g ,g =4π2k.在图线上取较远的两点(l 1,T 21),(l 2,T 22),则k =T 22-T 21l 2-l 1,所以g =4π2(l 2-l 1)T 22-T 21. 作出图象如图所示,由直线上的点(0.5,2.02)和点(1.0,4.00)可求出k =4.00-2.021.0-0.5=3.96,g =4π2k =4×3.1423.96m/s 2=9.96 m/s 2.变式训练 (1)秒表 游标卡尺 (2)80cm (3)周期 (4)2.018【解析】 (1)除了细线、摆球、铁架台、铁夹、米尺之外,还需要秒表测周期,游标卡尺测摆球直径;(2)为了减小实验误差,当摆球的直径约为2 cm 时,比较合适的摆长应选80 cm ;(3)实验中,利用g =4π2LT 2,求得g ,其摆长L 和周期T 的误差都会使最后结果产生误差,两者相比,周期有平方,周期的误差影响较大;(4)读图可知,秒表读数为1.5×60+10.9=100.9,则周期T =100.950s =2.018 s.随堂演练1.B 【解析】 本题考察实验器材的选取,由于便于实验操作,通常选1m 长的细绳.2.ABC 【解析】 单摆的最大偏角应不大于5°,摆长等于长加上小球半径,而小球半径需要用卡尺测量;测量周期时,应从最低点计时,故ABC 错.3.(1)秒表 (2)T 2 (3)0.2n0.2mm 0(4)7.94 【解析】 (1)要测量出全振的时间,故还需要秒表(2)由数据表中的数据可知T 2与n 成正比 (3)由T 2n 图线可得T 2=0.2n ,即T =0.2n ,每个螺帽的质量为m 0时,T 2=0.2n =0.2mm 0,即T =0.2mm 0(4)由T =0.2m m 0, m =T 20.2·m 0=5×1.262m 0=7.94m 0第3题图4.(1)乙 (2)2t 0 变大 变大【解析】 (1)应将待测物体正确地放在测脚中如乙图;(2)单摆1个周期遮光两次;单摆周期与小球质量、大小无关,但若改用直径变为原小球直径的2倍,周期变大,但遮光时间Δt 变大.5.(1)BD (2)a (3)30 9.86 【解析】 (1)本实验需要使用秒表测量单摆振动的周期,还需要使用毫米刻度尺测量筒下端口到摆球球心之间的距离l ,所以,本题答案为BD. (2)根据单摆的周期公式T =2πl g ,可得T 2l =4π2g=k(常数),可见,在理论上T 2与摆长l 成正比,其T 2-l 图象如图乙中实线b 所示;又因为Δ(T 2)Δl =Δ(kl )Δl =k(常数),所以,即使l 不是摆长,而是筒下端口到摆球球心之间的距离,根据所得数据得到的T 2-l 图线的斜率是不变的;因为本实验的记录数据中,与周期T 相对于的摆长l 比实际摆长偏小,据此可知,实验得到T 2-l 图象应该是图线a. (3)根据T 2l =4π2g =k 可得g =4π2k,而图线a 的斜率k =1.2s 20.3m =4s 2/m ,所以,当地重力加速度g =π2=9.86m/s 2,根据图线a 可知,当l =0时,实际摆长为小筒的深度h ,此时,T 2=1.2s 2,根据T =2πhg,代入数据,可得h =30cm.。

单摆的研究实验报告

单摆的研究实验报告

单摆的研究实验报告单摆的研究实验报告引言:单摆是物理学中一个经典的实验,用于研究摆动的规律和物体受力情况。

本实验通过观察和测量单摆的摆动周期和摆长,旨在探究摆动的特性和影响因素,进一步理解物理学中的振动现象。

实验目的:1. 理解单摆的基本概念和原理;2. 研究单摆的摆动周期与摆长的关系;3. 探究摆动幅度对单摆摆动的影响。

实验器材:1. 一根轻质细线;2. 一个小铅球;3. 一个支架。

实验步骤:1. 将支架固定在实验台上,确保其稳定;2. 将细线固定在支架上,并将小铅球系于细线下端;3. 调整细线的长度,使小铅球能够自由摆动;4. 将小铅球拉至一侧,释放后开始计时,记录小铅球的摆动周期;5. 重复实验多次,取平均值以提高数据的准确性;6. 改变细线的长度,重复步骤4-5,记录不同长度下的摆动周期;7. 改变小铅球的摆动幅度,重复步骤4-5,记录不同摆动幅度下的摆动周期。

实验结果与讨论:通过实验观察和测量,我们得到了不同摆长和摆动幅度下的摆动周期数据。

根据实验数据,我们可以得出以下结论:1. 摆动周期与摆长的关系:在实验中,我们发现摆动周期与摆长之间存在着一定的关系。

当摆长增加时,摆动周期也相应增加。

这是因为摆长增加会导致重力对小铅球产生更大的作用力,从而使摆动周期延长。

2. 摆动幅度对摆动周期的影响:我们还观察到摆动幅度对摆动周期有一定的影响。

当摆动幅度增大时,摆动周期略微减小。

这是因为摆动幅度增大会导致摆动过程中的摩擦力增加,从而使摆动周期缩短。

3. 摆动过程中的能量转化:在单摆的摆动过程中,能量会不断地在重力势能和动能之间转化。

当小铅球摆动到最高点时,重力势能最大,动能最小;而当小铅球摆动到最低点时,重力势能最小,动能最大。

这种能量转化使得摆动过程保持稳定。

结论:通过本实验的观察和测量,我们进一步理解了单摆的摆动特性和受力情况。

摆动周期与摆长、摆动幅度之间存在一定的关系,而摆动过程中的能量转化使得摆动过程保持稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十四 探究单摆的摆长与周期的关系
1.实验原理
当偏角很小时,单摆做简谐运动,其运动周期为T =2π
l
g
,它与偏角的大小及摆球的质量无关,由此得到g =4π2l
T 2.因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度
g 的值. 2.实验器材
带有铁夹的铁架台、中心有小孔的金属小球、不易伸长的细线(约1 m)、秒表、毫米刻度尺和游标卡尺. 3.实验步骤
(1)让细线的一端穿过金属小球的小孔,然后打一个比小孔大一些的线结,做成单摆. (2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图1所示.
图1
(3)用毫米刻度尺量出摆线长度l ′,用游标卡尺测出摆球的直径,即得出金属小球半径r ,计算出摆长l =l ′+r .
(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t ,计算出金属小球完成一次全振动所用时间,这个时间就是单摆的振动周期,即T =t
N (N 为全振动的次数),反复测3次,
再算出周期的平均值T =T 1+T 2+T 3
3
.
(5)根据单摆周期公式T =2π
l g ,计算当地的重力加速度g =4π2l T
2. (6)改变摆长,重做几次实验,计算出每次实验的重力加速度值,求出它们的平均值,该平均值即为当地的重力加速度值.
(7)将测得的重力加速度值与当地的重力加速度值相比较,分析产生误差的可能原因.
1.注意事项
(1)构成单摆的条件:细线的质量要小、弹性要小,选用体积小、密度大的小球,摆角不超过5°.
(2)要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放.
(3)测周期的方法:①要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大.
②要测多次全振动的时间来计算周期.如在摆球过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过平衡位置时计数1次.
(4)本实验可以采用图象法来处理数据.即用纵轴表示摆长l ,用横轴表示T 2,将实验所得数据在坐标平面上标出,应该得到一条倾斜直线,直线的斜率k =g
4π2.这是在众多的实验中经常采
用的科学处理数据的重要方法. 2.数据处理
处理数据有两种方法:
(1)公式法:测出30次或50次全振动的时间t ,利用T =t
N 求出周期;不改变摆长,反复测量
三次,算出三次测得的周期的平均值T ,然后利用公式g =4π2l
T
2求重力加速度.
(2)图象法:由单摆周期公式不难推出:l =g
4π2T 2,因此,分别测出一系列摆长l 对应的周期T ,
作l -T 2的图象,图象应是一条通过原点的直线,如图2所示,求出图线的斜率k =Δl
ΔT 2,即
可利用g =4π2k 求重力加速度.
图2
3.误差分析
(1)系统误差的主要来源:悬点不固定,球、线不符合要求,振动是圆锥摆而不是在同一竖直平面内的振动等.
(2)偶然误差主要来自时间的测量,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计全振动次数.
命题点一教材原型实验
例1某同学用实验的方法探究影响单摆周期的因素.
(1)他组装单摆时,在摆线上端的悬点处,用一块开有狭缝的橡皮夹牢摆线,再用铁架台的铁夹将橡皮夹紧,如图3所示,这样做的目的是________(填字母代号).
图3
A.保证摆动过程中摆长不变
B.可使周期测量更加准确
C.需要改变摆长时便于调节
D.保证摆球在同一竖直平面内摆动
(2)他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺从悬点量到摆球的最低端的长度L=0.999 0 m,再用游标卡尺测量摆球直径,结果如图4所示,则该摆球的直径为________ mm,单摆摆长为________ m.
图4
(3)下列振动图象真实地描述了对摆长约为1 m的单摆进行周期测量的四种操作过程.图中横坐标原点表示计时开始,A、B、C均为30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四种操作过程合乎实验要求且误差最小的是________(填字母代号).
答案 (1)AC (2)12.0 0.993 0 (3)A
解析 (1)橡皮的作用是使摆线摆动过程中悬点位置不变,从而保证摆长不变,同时又便于调节摆长,A 、C 正确;
(2)根据游标卡尺读数规则可得摆球直径为d =12 mm +0.1 mm ×0=12.0 mm ,则单摆摆长为L 0=L -d
2
=0.993 0 m(注意统一单位);
(3)单摆摆角不超过5°,且计时位置应从最低点(即速度最大位置)开始,故A 项的操作符合要求.
变式1 某同学用单摆测当地的重力加速度.他测出了摆线长度L 和摆动周期T ,如图5(a)所示.通过改变悬线长度L ,测出对应的摆动周期T ,获得多组T 与L ,再以T 2为纵轴、L 为横轴画出函数关系图象如图(b)所示.由图象可知,摆球的半径r =________ m ,当地重力加速度g =________ m/s 2;由此种方法得到的重力加速度值与实际的重力加速度值相比会________(选填“偏大”“偏小”或“一样”)
图5
答案 1.0×10-
2 9.86 一样
命题点二 实验拓展与创新
例2 (2015·天津理综·9(2))某同学利用单摆测量重力加速度. (1)为了使测量误差尽量小,下列说法正确的是________. A.组装单摆须选用密度和直径都较小的摆球 B.组装单摆须选用轻且不易伸长的细线 C.实验时须使摆球在同一竖直面内摆动
D.摆长一定的情况下,摆的振幅尽量大
(2)如图6所示,在物理支架的竖直立柱上固定有摆长约1 m 的单摆.实验时,由于仅有量程为20 cm 、精度为1 mm 的钢板刻度尺,于是他先使摆球自然下垂,在竖直立柱上与摆球最下端处于同一水平面的位置做一标记点,测出单摆的周期T 1;然后保持悬点位置不变,设法将摆长缩短一些,再次使摆球自然下垂,用同样方法在竖直立柱上做另一标记点,并测出单摆的周期T 2;最后用钢板刻度尺量出竖直立柱上两标记点之间的距离ΔL .用上述测量结果,写出重力加速度的表达式g =________.
图6
答案 (1)BC (2)4π2ΔL T 21-T 22
解析 (1)在利用单摆测重力加速度实验中,为了使测量误差尽量小,须选用密度大、半径小的摆球和不易伸长的细线,摆球须在同一竖直面内摆动,摆长一定时,振幅尽量小些,以使其满足简谐运动条件,故选B 、C.
(2)设第一次摆长为L ,第二次摆长为L -ΔL ,则T 1=2πL
g
,T 2=2πL -ΔL
g
,联立解得g =4π2ΔL
T 21-T 22
.
变式2 为了研究滑块的运动,选用滑块、钩码、纸带、毫米刻度尺、带滑轮的木板以及由漏斗和细线构成的单摆等组成如图7甲所示装置,实验中,滑块在钩码作用下拖动纸带做匀加速直线运动,同时让单摆垂直于纸带运动方向做小摆幅摆动,漏斗可以漏出很细的有色液体,在纸带上留下的痕迹记录了漏斗在不同时刻的位置,如图乙所示.
图7
(1)漏斗和细线构成的单摆在该实验中所起的作用与下列哪个仪器相同?________(填写仪器序号).
A.打点计时器
B.秒表
C.毫米刻度尺
D.电流表
(2)已知单摆周期T=2 s,在图乙中AB=24.10 cm,BC=27.90 cm、CD=31.90 cm、DE=36.10 cm,则单摆在经过D点时,滑块的瞬时速度为v D=________ m/s,滑块的加速度为a=________ m/s2(结果保留两位有效数字).
答案(1)A(2)0.340.040
解析(1)单摆振动具有周期性,摆球每隔半个周期经过纸带中线一次,单摆在该实验中所起的作用与打点计时器相同,故选A.
(2)在匀变速直线运动中,中间时刻的瞬时速度大小等于该过程中的平均速度大小,故有v D
=x CE
T=0.34 m/s据匀变速直线运动的推论Δx=aT
2,有:
a=CD+DE-(AB+BC)
T2=0.040 m/s
2。

相关文档
最新文档