某轿车自车身模态分析
基于Hyperworks某乘用车白车身刚度及模态分析

Ma r .2 0 1 7
文 章编 号 : 1 6 7 2 — 6 1 9 7 ( 2 0 1 7 ) 0 2 — 0 0 4 0 — 0 4
基 于 Hy p e r wo r k s 某 乘 用 车 白车身 刚度 及模 态分 析
焦 学健 ,邢 帅 , 赵 慧 力 , 曲学 凯
中 图分类 号 :U4 6 3 . 8 2 文献标 志码 :A
Th e s t i f f ne s s a nd mo d a l a na l y s i s o n p a s s e n g e r
c a r S b o d y - i n — wh i t e ba s e d o n h y p e r wo r k s
t h e t o r s i o n r i g i d i t y i s l o w. Th e l o we r o r d e r mo d a l f r e q u e n c y o f BI W i s h i g h e r a n d h a s g o o d l o w
工况, 最终获取整车的刚度、 模态频率及振型. 有限元分析结果显示, 白车身有 良好的弯曲刚度 , 扭 转 刚度偏 低 ; 低 阶模 态 频率高 , 有 良好 的低 频特 性. 在后 续 改进 中应采取 相应 措施提 高 其扭 转 刚度.
关键 词 :白车身 ;扭 转 刚度 ;弯 曲刚度 ;模 态 分析 ;Hy p e r wo r k s
第 3 1 卷 第 2期
2 0 1 7年 3月
山 东 理 工 大 学 学 报( 自 然 科 学 版)
J o u r n a l o f S h a n d o n g Un i v e r s i t y o f Te c h n o l o g y ( Na t u r a l S c i e n c e Ed i t i o n )
轿车白车身模态分析

2
江苏大学硕士学位论文
了。虽然科技界对这一技术的掌握及发展速度不算慢,但在工程技术上的普遍应用 和推广还有待于各方面条件的成熟,如产品技术发展竞争的需要及模态分析技术手
段的进一步廉价化。
1.2立题意义和研究内容
车身是轿车的关键总成,是驾驶员的工作场所,也是容纳乘客和货物的场 所。车身应对驾驶员提供便利的工作环境,对乘员提供舒适的乘坐条件,保护司乘 人员免受汽车行驶时的振动、噪声、废气的侵袭以及外界恶劣气候的影响,并能保 证完好无损地运载货物且装载方便。从结构上讲,它的构造就决定了整车的造型, 要求曲线流畅和色彩和谐。同时它也决定了整车的总布置及各种附件的安装和固 定。更重要的是,它的力学特性能直接决定着整车的力学特性。尤其是承载式车 身,没有独立、完整的车架,发动机、底盘完全安装在车身上,车身承受着全部载 荷。我们仅仅研究白车身而不研究整车是因为整车在安装了各种附件后,它的非线 性过大,试验测试得出的数据误差就过大,对研究没有指导意义。据分析,白车身 对整车的刚度贡献达到60%以上。
only examine the integrative stiffness performance,but also provide a guidance for
people on structure optimization and response analysis.Based 0n the theory of f'mite
面向某轿车白车身的模态与试验分析

Ke r s Ca ;B d -n wh t ;A NS ywo d : r o y i- i e YS;M o a n lss d la ay i
l 引
言
能等有着 十分重要 的意义
。
车身结 构模 态分 析是轿 车新产 品开发 中结 构 分析 的主要 内容 。尤其 是车 身结构 的低 阶弹性模 态, 它不仅 反映 了汽车 车身 的振动特 性 , 且是影 而 响 车身结构 动态 强度 的关键 指标u 。 ]
Ab ta t ANS o t r s u e o e tb ih t e f i lme tmo e fc ri h a e.J d i g sr c : YS s fwa e i s d t sa l h i t ee n d lo a n t e p p r gn s ne u
的车身模 态分 布对提 高整 车 的可 靠性 和 NVH 性
收 稿 日期 :0 00— 1 2 1—30
I K] [ 一 。M]I 0 [ 一 () 2 解此 方程 可以得 到结构 的 ”对 特征值 和特 征 向量 , 对应 于结 构 的频 率 和振 型 。解 广义 特 征 值
的方法主要有广义雅可 比法 , 逆迭代法以及子空 间法 。当系统 的频 率 和振 型求 得 以后 , 可 以使 还 用振 型迭 加法求 得 系统 响应 。对 于计算 响应 比较
某轿车白车身模态仿真分析

某轿车白车身模态仿真分析田国红;齐登科;孙立国【摘要】以某国产轿车白车身为研究对象,用HyperWorks软件建立了以壳单元为主的白车身有限元模型,通过Nastran对该模型进行模态分析计算,得到白车身的各阶模态频率和模态特性.结合模态分析结果,分析汽车运行时来自于外界和内部激励源的振动,为该款车后续的动态特性改进设计提供参考.【期刊名称】《汽车实用技术》【年(卷),期】2015(000)010【总页数】3页(P38-40)【关键词】白车身;Hyperworks;模态分析;激励源;有限元【作者】田国红;齐登科;孙立国【作者单位】辽宁工业大学汽车与交通工程学院,辽宁锦州121000;辽宁工业大学汽车与交通工程学院,辽宁锦州121000;辽宁工业大学汽车与交通工程学院,辽宁锦州121000【正文语种】中文【中图分类】U467.3关键字:白车身;Hyperworks;模态分析;激励源;有限元10.16638/ki.1671-7988.2015.10.016CLC NO.: U467.3 Document Code: A Article ID: 1671-7988(2015)10-38-03 现代汽车可以看作一个复杂的多自由度振动系统,在受到外界激励时会产生振动。
当外界的激振源频率与汽车系统固有频率接近或相同时,会使汽车与其产生共振。
车身是轿车重要组成部分,被看作是一个连续的弹性结构系统,其固有振动频率表现为无限多的固有模态。
低阶模态多是整体振型,如整体扭转、弯曲振型;高阶模态多是一些局部的振型,如地板振型、车顶振型等。
汽车NVH性能对整车模态分布是否合理影响较大[1],因而模态分析在汽车设计和研究过程中得到广泛应用。
模态分析技术是一门重要的工程技术,对车身结构进行模态分析在车身结构动态特性分析和结构优化方面意义重大[2]。
本文以某款轿车为研究对象,先通过对3D白车身模型的建立,然后在Hypermesh中进行有限元划分,最后在对其进行模态计算和分析。
某轿车白车身模态试验分析研究

某轿车白车身模态试验分析研究张华鑫;童敏勇【摘要】新车型的设计研发过程中应首先考虑的是白车身的动态特性,通过试验得到的动态特性参数能很大程度的改变现有新车型开发周期长、成本高的现状,从而可以尽快的发布以及上市新车型。
通过试验方法对某一款汽车的两种白车身模态进行了分析对比,得到其各项模态性能参数,通过对结果的分析为以后进一步研究白车身NVH性能提供了试验依据。
%Dynamic characteristic should be first considered in the process of design research and development for body-in-white, dynamic characteristic parametersobtained by test can greatly change the long cycle of new model development, the presentsituation ofthe high cost, which can release aswell as the listing of new models as soon as possible.In this paper, two test methodsfor a body-in-white mode are analyzed and compared, the modalperformance parameters are got, analysisof the results can provide experimental evidences for thefurther research NVH performance of body-in-white.【期刊名称】《机械研究与应用》【年(卷),期】2014(000)003【总页数】3页(P107-109)【关键词】白车身;振动;频率;模态试验;结果分析【作者】张华鑫;童敏勇【作者单位】天津职业技术师范大学汽车与交通学院,天津 300222;天津职业技术师范大学汽车与交通学院,天津 300222【正文语种】中文【中图分类】TK4220 引言如今在世界各汽车公司竞争日渐白热化的趋势下,有效的缩短新车型的研发,不断变更新车型研发的方式。
轿车白车身模态分析及试验验证

元 尺 寸 对 白车 身进 行 网格 划 分 ,在 H E ME H 中 YP R S
进 行前 处 理 ,最 后 白车 身共 离散成 134 3个 节 点 , 5 1 165 6个 单 元 ,其 中共 有 焊 点 486个 。最 后 建 立 4 3 2
表 3中 车 身扭 转 是 指绕 z 扭 转 ;弯 曲是 指绕 Y 轴
限元软 件 中得到 广泛 地应 用 。 白车 身模 态分 析属 于基 轴 弯 曲;侧 向弯 曲是 指绕 轴 弯 曲。通 过 有 限元分 析 本振动 问题 ,模 型规 模 比较大 。对 车身 振动 贡献 主要 在 样 车试 制前 即可 预 知 白车 身 结构振 动特 性 ,根据 实
1 2 :3 5:9 4
0 0 2 5 4 17 .2 O .6 34 8 .9 52 6 . 3 6.7 94 O 8 5 2 6 9 .9l4 8 .2 43 7 .6 6.0 7 8 3 15 .4
测 点连线 应 能显 示 白车 身形 状 ,反 映 出振动 形态 『。 3 ]
开 来 自路面 和发 动机 怠速 运行 的激 励频 率 。有 限元分
地板 、 顶盖 弯 曲 侧 向 弯 曲 阶 弯 曲 前部扭转 顶盖 和 行 李 箱 隔板 振 动
一
析 结果模 态振 型 图 ,如 图 2所示 。
465 4 .0
49 7 3
..
48 . .
4 白车身模态试验验证
.
2 88 8 1 1 6 7 3 .9 2 3 5 .6 353 4 7 2 . 4 .0 061 4 17 l . 2 1 6 .8 29 9 .4 4 1 8 . 1 52 7 .8
某轿车白车身模态分析与优化

{ ( y f )=f x Y z e: H , ,, ) 6( , ,) l | '
() 3
其 中 : q 。 ,))为矢 量振 幅 ; { ( 'z b , ∞ 简谐 运 动 的角 频 率 。将其 代人 ( ) 得 : 2, 【 一∞ 】 b e p i i = ) K ( x (t O ) o) () 4 () 5
果 精 确度 降 低 ; 删 去 对 整 体 性 能 影 响 不 大 的 小 部 ③
件, 但保 证 总体 白车 身质 量与 实际 质量 相差 不大 。 现代轿 车 多采用 全 承载式 车 身 , 体骨 架结构 由 车
车体结 构件 及 覆 盖件 焊 接 而 成 】 白车 身 的焊 接 工 。
中 图分类号 : 4 U6 文献标识码 : A 文章编号 : 0 — 44 2 l ) 3 0 2 - 3 1 6 4 l (0 1 0 - 0 6 0 0
M o la a yБайду номын сангаасi nd o i ia i n o ar sbo y—i da n l ss a ptm z to fc d n—wh t ie Xi a y , F n a a Zh o- i e g L n—fn a g,W a g Ho g io,H u n-b n n -xa iYa o
A src:Fn e m n m dl n yiter i d c s db ey. df i l n m e cr oy i- ht( I b t t ii et oa a s o i us r f a ntee t o l f a’b d-n w i BW) a t de al sh y s s e i l n i e me d o a s e
研 穷 与 分 析
轿车白车身试验模态与计算模态相关性分析

轿车白车身试验模态与计算模态相关性分析为了确保轿车的安全性和稳定性,汽车制造商需要对车辆的白车身进行模态分析和计算模态分析,以研究其振动特性和动力性能。
本文将分析轿车白车身试验模态和计算模态之间的相关性,并探讨这些分析如何帮助汽车制造商改善车辆设计和生产质量。
试验模态是通过对车辆进行振动实验获得的振动特性,包括自然频率、振动模态等。
这些数据可以帮助汽车制造商确定车辆的动力学性能,并为车辆的噪音、振动和刚度问题提供支持。
相比之下,计算模态是通过有限元分析(FEA)计算得出的振动特性,采用数值模拟来预测车辆振动特性。
这些模拟数据通常会在早期设计阶段用于验证车辆结构设计,并指导车辆生产制造。
然而,在实践中,试验模态和计算模态之间存在某些差异。
主要是由于因受环境和测试装置、误差和测量等多种因素的影响,试验模态和计算模态之间的差异非常常见。
因此,为了确保模态分析的准确性和可靠性,汽车制造商通常需要对试验模态和计算模态进行比较,以确定它们之间的相关性,并查明差异的原因。
为了比较试验模态和计算模态之间的差异,通常需要使用频率响应函数(FRF)。
FRF是车辆振动试验中的一个重要参数,它用于测量车身的振动放大系数,并提供车身以响应不同动力的关键提示。
然后,通过比较试验模态和计算模态的FRF,可以确定它们之间的关系,并为制造商提供有关如何优化车辆的设计和改进生产质量的 information。
最后,需要指出的是,在对轿车白车身进行模态和计算模态的相关性分析时,需要考虑多种因素。
这些因素包括车辆的结构、材料和工艺,噪音、振动、气动特性等方面。
同时,在车辆运营期间,还需要考虑加速度四对噪声、驾驶人员行为特性等诸多因素。
因此,既要考虑到试验模态和计算模态之间的差异,也要综合研究其与车辆实际运作情况之间的关系,以完善轿车的设计和生产质量。
在轿车白车身的试验模态和计算模态的相关性研究中,还需要考虑车辆的不同工况下的振动特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
;
s ̄ oeo H p r s , dtew li -p t a i uae i em ee e tA m dl a s a ; o w l y eMeh a e n so s sm lt w t ba lm n a a l i w j f n h dg w d h . o ys s n
Y G N a -in 1 Q AN L-u G A h n — ig AN i j g, I i n, U N C a g m n n o 2 j
(S h o o c ie n uo o i n ier gHe i nv r t o e h ooy H f 3 0 9 C ia co l f Mahn r adA tm bl E g ei , f i s y f c n lg , ee 2 0 0 , hn ) y e n n e U e i T i
杨 年炯 钱 立军 关长 明 t ,
(合肥 工业大 学 机械 与汽 车学院 , 肥 2 00 ) 广 西工学 院 汽车 系 , 合 30 9( 柳州 5 50 ) 4 0 6
Mo a n lss o a o y i i d l ay i fa c rb d n wht a e
第 2期
机 械 设 计 与 制 造
M a h n r De in c ie y sg & Ma u a t r n fcu e 25 3
21 0 0年 2月
文 章 编 号 :0 1 3 9 ( 0 0 0 — 2 5 0 10 — 9 7 2 1 )2 0 3 — 3
某轿车 自车 身模态 分析 木
f a nw i t i Fr l, i i l o nc r o i ht s de . i tfal fn eee n o e o tec o i w i a b i b e u d so t me t d l h a b @ n ht w s ul i m f r e tn
0
:f n ua r unyad i a o oe o t a b i w i. o p r g h sh ote iu i ; a r fe ec b i m ds h c o n h e Cm a n e eusf h m l o t l q n vr n t er f t i t r s a n t ; w t ta o t t ee e t e es te nt e m n o e iv r e . i t f e , f ci n s o h f i l e t d ls ei d h h s f v f i e e m f i ;
: 【 摘 要】 以有限元模 态分析和试验模态分析的相关理论为基础,对某轿车白车身的模态进行 了 研 i : 究。 首先 , H pr eh 在 ye s 建立了白车身有限元模型 , M 并用梁单元模拟焊点。 N s a 软件中用 Lnz 方 i 在 ar tn aco s
: 法对 白车身进行 了 态分析, 模 得到白车身的固有频率及各阶振型。 其次, 采用随机信号对白车身进行两点 ; : 激励 , 用多点拾振方法采集响应信号 , 将信号处理后, 得到 白车身的固有频率及对应的振型。通过对比有 i
! 限元模 态分析 结果和试验 结果 , 5- @ -  ̄T所建有 限元模型 的有 效性。 i
;
关键词: 白车身; 有限元模态 ; 试验模态
;
【 btat B sdo e nt e m n dl nl i adtsn oa aa s hoy m dl A src】 ae nt i l et hf e e i moa aa s n t gm dl l i ter, ys ei ys n 胁 oa j
(D p r e t f uo o i n ie r g G a g i nvri f eh o g ,izo 4 0 6 C ia e at n o tm bl E g ei , u n x U ies yo T c nl yLuh u5 5 0 ,hn ) m A e n n t o
;
◆ 00 ◆ o0 ◆ o0 ● 00 ◆ 0 ◆ 00 ◆ 0o ◆ 00 ◆ 0o ◆ c0 ◆ 00 ◆ 00 ◆ 0 0● o 0◆ 0 0 ◆ 0 0 ◆ 0 o ◆ 0 o ◆ 00 ◆ 0 0● 0 0◆ 0 0 ◆ 0 o ◆ 0 0 ◆ 0 c ◆ 0 0 ◆ 0 0 ◆ 0o ◆ 00 ● 00 ● 00 ◆ 00 ◆ 0 0● 0 0◆ 0 0● 0 O● 0 0◆ 0 0◆ o 0◆
: d n oteclb i w i ytes aeo N sr s gteL nzsm to , d oet h a o n ht b o F atnui aco hda h  ̄w f a n h e n
rsh f : euso
i entr eunyadvbai dsScnl,s gterno i a wt o onst smu t auaf qec n irt nm e. eodyui adm s n i t it o t le l r o o n h gl h w p i a
:
0
cl o , dui u i o t t dopc-pr p ne i a, e i a w r e e b i : a b a s gm l- i h i u sos s n t gl a po s dt ot n n n tp n m o f k e e gl h s s c s o a n