2019学年江西省高二上期末理科数学试卷【含答案及解析】

合集下载

人教版2019学年高二上册理科数学期末试卷含答案(共六套)

人教版2019学年高二上册理科数学期末试卷含答案(共六套)

人教版2019学年高二理科数学期末试卷(一)一、选择题(共10小题,每小题4分,满分40分)1.直线3x+y+1=0的倾斜角是()A.30°B.60°C.120°D.150°2.如图所示,最左边的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是()A.①②B.②③C.③④D.①⑤3.已知圆M:(x﹣5)2+(y﹣3)2=9,圆N:x2+y2﹣4x+2y﹣9=0,则两圆圆心的距离等于()A.25 B.10 C.2D.54.抛物线x2﹣4y=0的准线方程是()A.y=﹣1 B.y=﹣C.x=﹣1 D.x=﹣5.以椭圆+=1的焦点为顶点,顶点为焦点的双曲线渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x6.“a=”是“直线l1:(a+2)x+(a﹣2)y=1与直线l2:(a﹣2)x+(3a﹣4)y=2相互垂直”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.设L、m、n表示不同的直线,α、β、γ表示不同的平面,给出下列三个命题:正确的是()①若m∥L且m⊥α,则L⊥α②若m∥L且m∥α,则L∥α③若α∩β=L,β∩γ=m,γ∩α=n,则L∥m∥n.A.0个B.1个C.2个D.3个8.已知M、N分别是四面体OABC的棱OA,BC的中点,P点在线段MN上,且MP=2PN,设=,=,=,则=()A.++B.++C.++D.++ 9.已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1 10.有下列命题:①设集合M={x|0<x≤3},N={x|0<x≤2},则“a∈M”的充分而不必要条件是“a∈N”;②命题“若a∈M,则b∉M”的逆否命题是“若b∈M,则a∉M”;③若p∧q是假命题,则p,q都是假命题;④命题P:“∃x0∈R,x02﹣x0﹣1>0”的否定¬P:“∀x∈R,x2﹣x﹣1≤0”则上述命题中为真命题的是()A.①②④B.①③④C.②④D.②③二、填空题(共5小题,每小题4分,满分20分)11.已知某几何体的三视图如图所示,则该几何体的体积为.12.点A(﹣2,3)关于直线l:3x﹣y﹣1=0的对称点坐标是.13.过双曲线的右焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的左顶点M,若△MAB是直角三角形,则此双曲线的离心率e的值为.14.斜率为1的直线经过抛物线y2=4x的焦点,与抛物线相交于A,B两点,则|AB|=.15.椭圆+y2=1上的点到直线x﹣y+3=0的距离的最小值是.三、解答题(共5小题,满分60分)16.已知圆C:(x﹣3)2+(y﹣4)2=4及圆内一点P(2,5).(1)求过P点的弦中,弦长最短的弦所在的直线方程;(2)求过点M(5,0)与圆C相切的直线方程.17.如图,在三棱锥P﹣ABC中,AC=BC=2,∠ACB=90°,侧面PAB为等边三角形,侧棱.(Ⅰ)求证:PC⊥AB;(Ⅱ)求证:平面PAB⊥平面ABC.18.已知△ABC的两个顶点A,B的坐标分别为(﹣2,0),(2,0),且AC,BC所在直线的斜率之积等于﹣.(1)求顶点C的轨迹方程;(Ⅱ)若斜率为1的直线l与顶点C的轨迹交于M,N两点,且|MN|=,求直线l的方程.19.如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,AD=2AB=2PA,E为PD的上一点,且PE=2ED,F为PC的中点.(Ⅰ)求证:BF∥平面AEC;(Ⅱ)求二面角E﹣AC﹣D的余弦值.20.已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线y2=8x 的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线l,交M于A,B两点.(1)求椭圆M的标准方程;(2)设点N(t,0)是一个动点,且,求实数t的取值范围.人教版2019学年高二理科数学期末试卷(二)一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.若命题“p∨q”为真,“¬p”为真,则()A.p真q真B.p假q假C.p真q假D.p假q真2.不等式3x﹣2y﹣6<0表示的区域在直线3x﹣2y﹣6=0的()A.右上方B.右下方C.左上方D.左下方3.双曲线﹣=1的焦点到渐近线的距离为()A.2 B.C.3 D.24.等差数列{a n}中,若a2+a8=15﹣a5,则a5的值为()A.3 B.4 C.5 D.65.如图:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点.若=,=,=,则下列向量中与相等的向量是()A.﹣++B.++C.﹣﹣+D.﹣+6.已知△ABC的周长等于20,面积等于10,a,b,c分别为△ABC内角A,B,C的对边,∠A=60°,则a为()A.5 B.7 C.6 D.87.命题“∀x∈R,x3﹣x2+1≤0”的否定是()A.不存在x∈R,x3﹣x2+1≤0 B.∃x0∈R,x﹣x+1≥0C.∃x0∈R,x﹣x+1>0 D.∀x∈R,x3﹣x2+1>08.抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.89.已知椭圆的中心为原点,离心率,且它的一个焦点与抛物线的焦点重合,则此椭圆方程为()A.B.C.D.10.已知两个不同的平面α,β和两条不重合的直线m,n,下列四个命题:①若m∥n,m⊥α,则n⊥α;②若m⊥α,m⊥β,则α∥β;③若m⊥α,m∥n,n⊂β,则α⊥β;④若m∥α,α∩β=n,则m∥n.其中正确命题的个数是()A.0个B.1个C.2个D.3个11.已知等比数列{a n}中,a2=1,则其前3项的和S3的取值范围是()A.(﹣∞,﹣1]B.(﹣∞,0)∪(1,+∞)C.[3,+∞)D.(﹣∞,﹣1]∪[3,+∞)12.E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=()A.B.C.D.二、填空题:本大题共4个小题,每小题5分.、共20分.13.设变量x,y满足约束条件则目标函数z=4x+y的最大值为.14.设S n为等差数列{a n}的前n项和,若S3=3,S6=24,则a9=.15.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,∠ACB=90°,CA=CB=CC1=1,则直线A1B与平面BB1C1C所成角的正弦值为.16.已知椭圆,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若=.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0(1)若a=,且p∧q为真,求实数x的取值范围.(2)若p是q的充分不必要条件,求实数a的取值范围.18.在△ABC中,bsinA=acosB.(Ⅰ)求角B的大小;(Ⅱ)若b=3,sinC=2sinA,求a,c的值.19.已知等差数列{a n}满足a3=7,a5+a7=26,数列{a n}的前n项和S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.20.已知曲线C上的点到直线x=﹣2的距离比它到点F(1,0)的距离大1.(Ⅰ)求曲线C的方程;(Ⅱ)过点F(1,0)做斜率为k的直线交曲线C于M,N两点,求证:+为定值.21.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°(I)求证:PB⊥AD;(II)若PB=,求二面角A﹣PD﹣C的余弦值.22.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的上顶点到焦点的距离为2,离心率为.(1)求a,b的值,(2)设P是椭圆C长轴上的一个动点,过点P作斜率为1的直线交椭圆于A,B两点,求△OAB面积的最大值.人教版2019学年高二理科数学期末试卷(三)一、选择题:共12小题,每小题5分,共60分.在每小题给出的两个选项中,只有一项是符合题目要求的.1.抛物线y2=8x的焦点坐标()A.(0,2)B.(2,0)C.(4,0)D.(0,4)2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现从这70人中用分层抽样的方法抽取一个容量为14的样本,则在高二年级的学生中应抽取的人数为()A.6 B.8 C.10 D.123.已知命题p:∀x>0,总有2x>1,则¬p为()A.∀x>0,总有2x≤1 B.∀x≤0,总有2x≤1C.D.4.“p或q为真命题”是“p且q为真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.阅读如图程序框图,为使输出的数据为15,则①处应填的数字为()A.3 B.4 C.5 D.66.在棱长为a正方体ABCD﹣A1B1C1D1中,AC1和BD1相交于点O,则有()A.B.C.D.7.已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.158.已知双曲线的离心率为,则该双曲线的渐近线方程为()A.y=±2x B. C. D.y=±4x9.已知函数f(x)=x2+x﹣2,x∈[﹣1,6],若在其定义域内任取一数x0使得f(x0)≤0概率是()A.B.C.D.10.已知正方体ABCD﹣A1B1C1D1的棱长为1,M为棱CC1的中点,则点M到平面A1BD 的距离是()A.B.C.D.11.如图,在底面半径和高均为4的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点.若过直径CD与点E的平面与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P的距离为()A.4 B. C. D.12.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1,F2是一对相关曲线的焦点,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,这一对相关曲线中椭圆的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,若从中抽取一个容量为50的样本,按照系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第3个号码为.14.在两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中任取一张卡片,则两数之和等于5的概率为.15.已知空间四点A(0,3,5),B(2,3,1),C(4,1,5),D(x,5,9)共面,则x=.16.已知两定点M(﹣2,0),N(2,0),若直线kx﹣y=0上存在点P,使得|PM|﹣|PN|=2,则实数k的取值范围是.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知A(﹣1,0),B(3,0),圆C以AB为直径.(1)求圆C的方程;(2)求直线l:3x+4y﹣8=0被圆C截得的弦长.18.从某校高二年纪800名学生中随机抽取100名测量身高,得到频率分布直方图如图.(1)求这100名学生中身高在170厘米以下的人数;(2)根据频率分布直方图估计这800名学生的平均身高.19.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5PM2.5的浓度y(微克/立方米)69 70 74 78 79(Ⅰ)根据上表数据求出y与x的线性回归直线方程,(Ⅱ)若周六同一时间段车流量是25万辆,试根据(Ⅰ)中求出的线性回归方程预测此时PM2.5的浓度是多少?(保留整数)参考公式其中==:方程.20.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为BB1,CD的中点.(Ⅰ)求证:D1F⊥平面ADE;(Ⅱ)求平面A1C1D与平面ADE所成的二面角(锐角)的余弦值.21.该试题已被管理员删除22.已知椭圆过点,且它的离心率为.(Ⅰ)求椭圆E的标准方程;(Ⅱ)与圆(x﹣1)2+y2=1相切的直线l:y=kx+t(k∈R,t∈R)交椭圆E于M、N两点,若椭圆E上一点C满足(O为坐标原点),求实数λ的取值范围.四、附加题:(本题各校可根据本校的教学进度自行选择,分值自定)23.已知函数f(x)=x3﹣bx2+4x(b∈R)在x=2处取得极值.(Ⅰ)求b的值;(Ⅱ)求f(x)在区间[0,4]上的最大值和最小值.人教版2019学年高二理科数学期末试卷(四)一、选择题共10小题,每小题4分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.下列命题中,真命题是()A.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直B.若一个平面经过另一个平面的平行线,那么这两个平面相互平行C.若一条直线平行于一个平面,则这条直线平行于平面内的任意直线D.若一条直线同时平行于两个不重合的平面,则这两个平面平行2.直线y=﹣2x+b一定通过()A.第一、三象限 B.第二、四象限C.第一、二、四象限 D.第二、三、四象限3.某建筑由相同的若干个房间组成,该楼的三视图如图所示,最高一层的房间在什么位置()A.左前 B.右前 C.左后 D.右后4.双曲线的一条渐近线方程为,则双曲线的离心率为()A.B.C.D.5.已知命题p,q,那么“p∧q为真命题”是“p∨q为真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.棱长为2的正方体的内切球的表面积为()A.2πB.4πC.8πD.16π7.抛物线y2=8x上到其焦点F距离为4的点有()个.A.1 B.2 C.3 D.48.将正方体的纸盒展开如图,直线AB、CD在原正方体的位置关系是()A.平行 B.垂直C.相交成60°角D.异面且成60°角9.如图,在正方体ABCD﹣A1B1C1D1中,E是DD1的中点,则直线BE与平面AA1D1D 所成角的正切值为()A.B.C.D.10.某化工厂有8种产品,由于安全原因,有些产品不允许存放在同一仓库.具体情况由下“╳”种产品?()A.2 B.3 C.4 D.5二、填空题共4小题,每小题3分,共12分.11.命题p:“∀x∈R,x2﹣x+1>0”,则¬p为.12.过点(0,2)且与两坐标轴相切的圆的方程为.13.已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.则椭圆的长轴长为.14.在平面直角坐标系xOy中,对于⊙O:x2+y2=1来说,P是坐标系内任意一点,点P到⊙O的距离S P的定义如下:若P与O重合,S P=r;若P不与O重合,射线OP与⊙O的交点为A,S P=AP的长度(如图).(1)直线2x+2y+1=0在圆内部分的点到⊙O的最长距离为;(2)若线段MN上存在点T,使得:①点T在⊙O内;②∀点P∈线段MN,都有S T≥S P成立.则线段MN的最大长度为.三、解答题共6小题,共48分.解答应写出文字说明,演算步骤或证明过程.15.已知直线l经过直线2x+y﹣5=0与x﹣2y=0的交点P.(Ⅰ)若直线l平行于直线l1:4x﹣y+1=0,求l的方程;(Ⅱ)若直线l垂直于直线l1:4x﹣y+1=0,求l的方程.16.如图,长方体ABCD﹣A1B1C1D1中,底面ABCD是正方形,AA1=2AB=2,E是DD1上的一点,且满足B1D⊥平面ACE.(Ⅰ)求证:A1D⊥AE;(Ⅱ)求二面角D﹣AE﹣C的平面角的余弦值.17.如图,有一个正方体的木块,E为棱AA1的中点.现因实际需要,需要将其沿平面D1EC 将木块锯开.请你画出前面ABB1A1与截面D1EC的交线,并说明理由.18.如图,在四棱锥P﹣ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,且PA=AB=2,E为PD中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)求二面角B﹣PC﹣D的大小.19.课本上的探索与研究中有这样一个问题:已知△ABC的面积为S,外接圆的半径为R,∠A,∠B,∠C的对边分别为a,b,c,用解析几何的方法证明:.小东根据学习解析几何的经验,按以下步骤进行了探究:(1)在△ABC所在的平面内,建立直角坐标系,使得△ABC三个顶点的坐标的表示形式较为简单,并设出表示它们坐标的字母;(2)用表示△ABC三个顶点坐标的字母来表示△ABC的外接圆半径、△ABC的三边和面积;(3)根据上面得到的表达式,消去表示△ABC的三个顶点的坐标的字母,得出关系式.在探究过程中,小东遇到了以下问题,请你帮助完成:(Ⅰ)为了△ABC的三边和面积表达式及外接圆方程尽量简单,小东考虑了如下两种建系方式;你选择第种建系方式.(Ⅱ)根据你选择的建系方式,完成以下部分探究过程:(1)设△ABC的外接圆的一般式方程为x2+y2+Dx+ =0;(2)在求解圆的方程的系数时,小东观察图形发现,由圆的几何性质,可以求出圆心的横坐标为,进而可以求出D=;(3)外接圆的方程为.20.已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)若直线l不过点M,求证:直线MA、MB与x轴围成一个等腰三角形.人教版2019学年高二理科数学期末试卷(五)一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角是()A.B.C. D.2.直线l过点P(2,﹣2),且与直线x+2y﹣3=0垂直,则直线l的方程为()A.2x+y﹣2=0 B.2x﹣y﹣6=0 C.x﹣2y﹣6=0 D.x﹣2y+5=03.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A.4πB.12πC.16πD.48π4.在空间中,下列命题正确的是()A.如果直线m∥平面α,直线n⊂α内,那么m∥nB.如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC.如果平面α外的一条直线m垂直于平面α内的两条相交直线,那么m⊥αD.如果平面α⊥平面β,任取直线m⊂α,那么必有m⊥β5.如果直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行.那么a等于()A.﹣1 B.C.3 D.﹣1或6.方程x2+2ax+y2=0(a≠0)表示的圆()A.关于x轴对称 B.关于y轴对称C.关于直线y=x轴对称D.关于直线y=﹣x轴对称7.如图,正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°8.如果过点M(﹣2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是()A.B. C.D.二、填空题:本大题共6小题,每小题5分,共30分.9.已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为.10.已知向量,且,则y=.11.已知点A(m,﹣2,n),点B(﹣5,6,24)和向量且∥.则点A的坐标为.12.直线2x+3y+6=0与坐标轴所围成的三角形的面积为.13.抛物线y2=﹣8x上到焦点距离等于6的点的坐标是.14.已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当△ABC的面积最小时,点C 的坐标为.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程. 15.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.16.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.17.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M在PD上.(I)求证:AD⊥PB;(Ⅱ)若,则当λ为何值时,平面BEM⊥平面PAB?(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.18.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,平面PCD⊥底面ABCD,PD⊥CD,PD=CD,E为PC的中点.(I)求证:AC⊥PB;(Ⅱ)求二面角P﹣BD﹣E的余弦值.19.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B 两点,|AB|=4.(I)求p的值;(Ⅱ)设经过点B和抛物线对称轴平行的直线交抛物线y2=2px的准线于点D,求证:A,O,D三点共线(O为坐标原点).20.已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围.人教版2019学年高二理科数学期末试卷(六)一、选择题(每小题5分,共40分)1.已知直线ax+y+2=0的倾斜角为π,则该直线的纵截距等于()A.1 B.﹣1 C.2 D.﹣22.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是()A.﹣2 B.0 C.2 D.43.下列命题错误的是()A.“若x≠a且x≠b,则x2﹣(a+b)x+ab≠0”的否命题是“若x=a或x=b,则x2﹣(a+b)x+ab=0”B.若p∧q为假命题,则p,q均为假命题C.命题“∃x0∈(0,+∞)lnx0=x0﹣1”的否定是“∀x∈(0,+∞),lnx≠x﹣1D.“x>2”是“<”的充分不必要条件4.已知函数y=的图象如图所示(其中f′(x)是定义域为R函数f(x)的导函数),则以下说法错误的是()A.f′(1)=f′(﹣1)=0B.当x=﹣1时,函数f(x)取得极大值C.方程xf′(x)=0与f(x)=0均有三个实数根D.当x=1时,函数f(x)取得极小值5.设α、β、γ为平面,m、n、l为直线,则m⊥β的一个充分条件是()A.α⊥β,α∩β=l,m⊥l B.α∩γ=m,α⊥γ,β⊥γC.α⊥γ,β⊥γ,m⊥α D.n⊥α,n⊥β,m⊥α6.已知圆x2+y2+2x﹣2y+2a=0截直线x+y+2=0所得弦长为4,则实数a的值是()A.﹣1 B.﹣2 C.﹣3 D.﹣47.设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,过F2的直线交椭圆于P,Q 两点,若∠F1PQ=60°,|PF1|=|PQ|,则椭圆的离心率为()A.B.C.D.8.抛物线y2=2px与直线2x+y+a=0交于A,B两点,其中A(1,2),设抛物线焦点为F,则|FA|+|FB|的值为()A.4 B.5 C.6 D.7二、填空题(每小题5分,共30分,将答案写在答题纸上)9.已知直线l1:x﹣3y+1=0,l2:2x+my﹣1=0.若l1∥l2,则实数m=.10.用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积是.11.图中的三个直角三角形是一个体积为20cm的几何体的三视图,该几何体的外接球表面积为cm212.已知函数f(x)=x3+bx(x∈R)在[﹣1,1]上是减函数,则b的取值范围是.13.已知抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=225相切,双曲线=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点是该抛物线的焦点,则双曲线实轴长.14.给出下列命题:①函数f(x)=x3+ax2+ax﹣a既有极大值又有极小值,则a<0或a>3;②若f(x)=(x2﹣8)e x,则f(x)的单调递减区间为(﹣4,2);③过点A(a,a)可作圆x2+y2﹣2ax+a2+2a﹣3=0的两条切线,则实数a的取值范围为a<﹣3或a>1;④双曲线=1(a>0,b>0)的离心率为e1,双曲线=1的离心率为e2,则e1+e2的最小值为2.其中为真命题的序号是.三、解答题(共80分)15.命题p:直线y=kx+3与圆x2+y2=1相交于A,B两点;命题q:曲线﹣=1表示焦点在y轴上的双曲线,若p∧q为真命题,求实数k的取值范围.16.已知圆N经过点A(3,1),B(﹣1,3),且它的圆心在直线3x﹣y﹣2=0上.(Ⅰ)求圆N的方程;(Ⅱ)求圆N关于直线x﹣y+3=0对称的圆的方程.(Ⅲ)若点D为圆N上任意一点,且点C(3,0),求线段CD的中点M的轨迹方程.17.在如图所示的四棱锥P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,∠BAD=90°,PA=AB=BC=1,AD=2,E为PD的中点.(Ⅰ)求证:CE∥面PAB(Ⅱ)求证:平面PAC⊥平面PDC(Ⅲ)求直线EC与平面PAC所成角的余弦值.18.已知函数f(x)=ax3+bx(x∈R),g(x)=f(x)+3x﹣x2﹣3,t(x)=+lnx(Ⅰ)若函数f(x)的图象在点x=3处的切线与直线24x﹣y+1=0平行,且函数f(x)在x=1处取得极值,求函数f(x)的解析式,并确定f(x)的单调递减区间;(Ⅱ)在(Ⅰ)的条件下,如果对于任意的x1,x2∈[,2],都有x1t(x1)≥g(x2)成立,试求实数c的取值范围.19.给定椭圆C:=1(a>b>0),称圆x2+y2=a2+b2为椭圆C的“伴随圆”,已知椭圆C的短轴长为2,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l与椭圆C交于A,B两点,与其“伴随圆”交于C,D两点,当|CD|=时,求△AOB面积的最大值.20.已知函数f(x)=lnx﹣ax在x=2处的切线l与直线x+2y﹣3=0平行.(1)求实数a的值;(2)若关于x的方程f(x)+m=2x﹣x2在上恰有两个不相等的实数根,求实数m 的取值范围;(3)记函数g(x)=f(x)+﹣bx,设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥,且g(x1)﹣g(x2)≥k恒成立,求实数k的最大值.参考答案:人教版2019学年高二理科数学期末答案(一)一、选择题(共10小题,每小题4分,满分40分)1.直线3x+y+1=0的倾斜角是()A.30°B.60°C.120°D.150°【考点】直线的倾斜角.【专题】计算题;规律型;直线与圆.【分析】求出直线的斜率,然后求解直线的倾斜角.【解答】解:直线3x+y+1=0的斜率为:,直线的倾斜角为:θ,tan,可得θ=120°.故选:C.【点评】本题考查直线的斜率与倾斜角的关系,考查计算能力.2.如图所示,最左边的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是()A.①②B.②③C.③④D.①⑤【考点】平面的基本性质及推论.【专题】对应思想;分析法;空间位置关系与距离.【分析】根据圆锥曲线的定义和圆锥的几何特征,分截面过旋转轴时和截面不过旋转轴时两种情况,分析截面图形的形状,最后综合讨论结果,可得答案【解答】解:当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时(1)符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时(5)符合条件;故截面图形可能是(1)(5),故选:D.【点评】本题考查的知识点是旋转体,圆锥曲线的定义,熟练掌握圆锥曲线的定义是解答的关键.3.已知圆M:(x﹣5)2+(y﹣3)2=9,圆N:x2+y2﹣4x+2y﹣9=0,则两圆圆心的距离等于()A.25 B.10 C.2D.5【考点】圆与圆的位置关系及其判定.【专题】计算题;函数思想;方程思想;转化思想;直线与圆.【分析】求出两个圆的圆心坐标,利用距离公式求解即可.【解答】解:圆M:(x﹣5)2+(y﹣3)2=9的圆心坐标(5,3),圆N:x2+y2﹣4x+2y﹣9=0的圆心坐标(2,﹣1),则两圆圆心的距离等于:=5.故选:D.【点评】本题考查圆的方程的应用,两点距离公式的应用,考查计算能力.4.抛物线x2﹣4y=0的准线方程是()A.y=﹣1 B.y=﹣C.x=﹣1 D.x=﹣【考点】抛物线的简单性质.【专题】计算题;规律型;函数思想;圆锥曲线的定义、性质与方程.【分析】利用抛物线方程,直接求出准线方程即可.【解答】解:抛物线x2﹣4y=0,即x2=4y,抛物线的直线方程为:y=﹣1,故选:A.【点评】本题考查抛物线的简单性质的应用,是基础题.5.以椭圆+=1的焦点为顶点,顶点为焦点的双曲线渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x【考点】椭圆的简单性质;双曲线的简单性质.【专题】计算题;规律型;函数思想;圆锥曲线的定义、性质与方程.【分析】求出椭圆的焦点与顶点坐标,即可求出双曲线的顶点与焦点坐标,然后求解双曲线渐近线方程.【解答】解:椭圆+=1的焦点(±1,0),顶点(±2,0),可得双曲线的a=1,c=2,b=,双曲线渐近线方程是:y=x.故选:B.【点评】本题考查椭圆与双曲线的简单性质的应用,考查计算能力.6.“a=”是“直线l1:(a+2)x+(a﹣2)y=1与直线l2:(a﹣2)x+(3a﹣4)y=2相互垂直”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】分类讨论;转化思想;简易逻辑.【分析】对a与直线的斜率分类讨论,可得两条直线相互垂直的充要条件.即可判断出结论.【解答】解:当a=2时,两条直线分别化为:4x=1,y=1,此时两条直线相互垂直;当a=时,两条直线分别化为:10x﹣2y=3,x=﹣3,此时两条直线不相互垂直,舍去;当a≠,2时,由于两条直线相互垂直,∴﹣×=﹣1,解得a=.综上可得:两条直线相互垂直的充要条件为:a=或3.∴“a=”是“直线l1:(a+2)x+(a﹣2)y=1与直线l2:(a﹣2)x+(3a﹣4)y=2相互垂直”的充分不必要条件.故选:A.【点评】本题考查了两条直线相互垂直的充要条件,考查了分类讨论方法、推理能力与计算能力,属于中档题.7.设L、m、n表示不同的直线,α、β、γ表示不同的平面,给出下列三个命题:正确的是()①若m∥L且m⊥α,则L⊥α②若m∥L且m∥α,则L∥α③若α∩β=L,β∩γ=m,γ∩α=n,则L∥m∥n.A.0个B.1个C.2个D.3个【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:由L、m、n表示不同的直线,α、β、γ表示不同的平面,知:①若m∥L且m⊥α,则由直线与平面垂直的判定定理得L⊥α,故①正确;②若m∥L且m∥α,则L∥α或L⊂α,故②错误;③正方体中相交的两个侧面同时与底相交,得到交线并不平行,故③错误.故选:B.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.8.已知M、N分别是四面体OABC的棱OA,BC的中点,P点在线段MN上,且MP=2PN,设=,=,=,则=()A.++B.++C.++D.++【考点】空间向量的基本定理及其意义.【专题】数形结合;转化思想;空间向量及应用.【分析】如图所示,=,=,=,=,=.代入化简整理即可得出.【解答】解:如图所示,=,=,=,=,=.∴=+=+=+=++=+.故选:C.【点评】本题考查了向量的三角形法则、平行四边形法则、线性运算,考查了推理能力与计算能力,属于中档题.9.已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.有下列命题:①设集合M={x|0<x≤3},N={x|0<x≤2},则“a∈M”的充分而不必要条件是“a∈N”;②命题“若a∈M,则b∉M”的逆否命题是“若b∈M,则a∉M”;③若p∧q是假命题,则p,q都是假命题;④命题P:“∃x0∈R,x02﹣x0﹣1>0”的否定¬P:“∀x∈R,x2﹣x﹣1≤0”则上述命题中为真命题的是()A.①②④B.①③④C.②④D.②③【考点】命题的真假判断与应用.【专题】计算题;规律型;函数思想;简易逻辑.【分析】利用充要条件判断①的正误;逆否命题判断②的正误;复合命题的真假判断③的正误;命题的否定形式判断④的正误.【解答】解:对于①,设集合M={x|0<x≤3},N={x|0<x≤2},a∈N则“a∈M”,a∈M不一定有a∈N,所以“a∈M”的充分而不必要条件是“a∈N”;①正确;对于②,命题“若a∈M,则b∉M”的逆否命题是“若b∈M,则a∉M”;满足逆否命题的形式,所以②正确.对于③,若p∧q是假命题,则p,q至少一个是假命题;所以③不正确;对于④,命题P:“∃x0∈R,x02﹣x0﹣1>0”的否定¬P:“∀x∈R,x2﹣x﹣1≤0”满足命题的否定形式,所以④正确.故①②④正确.故选:A.【点评】本题考查命题的真假的判断与应用,充要条件以及四种命题的逆否关系,复合命题的真假以及命题的否定的判断,基本知识的考查.二、填空题(共5小题,每小题4分,满分20分)11.已知某几何体的三视图如图所示,则该几何体的体积为.【考点】由三视图求面积、体积.。

2019学年江西省鹰潭市高二上学期期末理科数学试卷【含答案及解析】

2019学年江西省鹰潭市高二上学期期末理科数学试卷【含答案及解析】

2019学年江西省鹰潭市高二上学期期末理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. (2015秋•鹰潭期末)复数z=(﹣2﹣i)i在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2. (2014•海淀区校级模拟)命题“ ∃ x 0 ∈ R,x 3 ﹣x 2 +1>0”的否定是() A.∀ x ∈ R,x 3 ﹣x 2 +1≤0B.∃ x 0 ∈ R,x 3 ﹣x 2 +1<0C.∃ x 0 ∈ R,x 3 ﹣x 2 +1≤0D.不存在x ∈ R,x 3 ﹣x 2 +1>03. (2012•浙江)设a ∈ R,则“a=1”是“直线l 1 :ax+2y﹣1=0与直线l 2 :x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4. (2012•临沂二模)函数f(x)=e x sinx的图象在点(0,f(0))处的切线的倾斜角为()A.0 B. C.1 D.5. (2015秋•鹰潭期末)以抛物线y= x 2 的焦点为圆心,且过坐标原点的圆的方程为()A.x 2 +y 2 ﹣x=0 ______________ B.x 2 +y 2 ﹣2x=0C.x 2 +y 2 ﹣y=0 ______________ D.x 2 +y 2 ﹣2y=06. (2015秋•鹰潭期末)已知双曲线的左右焦点分别为F 1 ,F 2 ,以|F 1 F 2 |为直径的圆与双曲线渐近线的一个交点为(1,2),则此双曲线方程为()A. B. C. D.7. (2015秋•鹰潭期末)已知圆的方程为x 2 +y 2 ﹣2y﹣4=0,过点A(2,1)的直线被圆所截,则截得的最短弦的长度为()A. B.2 C. D.8. (2015秋•鹰潭期末)若函数f(x)=x 3 +ax 2 +(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.(﹣1,2)B.(﹣∞,﹣3)∪ (6,+∞)C.(﹣3,6)D.(﹣∞,﹣1)∪ (2,+∞)9. (2015秋•鹰潭期末)若方程x 3 ﹣3x+m=0在[0,2 ] 上只有一个解,则实数m的取值范围是()A.[﹣2,2 ]________B.(0,2 ]________C.[﹣2,0)∪ {2}________D.(﹣∞,﹣2)∪ (2,+∞)10. (2015秋•鹰潭期末)我们把由半椭圆 + =1(x>0)与半椭圆 +=1(x<0)合成的曲线称作“果圆”(其中a 2 =b 2 +c 2 ,a>b>c>0).如图,设点F 0 ,F 1 ,F 2 是相应椭圆的焦点,A 1 、A 2 和B 1 、B 2 是“果圆”与x,y轴的交点,若△ F 0 F 1 F 2 是腰长为1的等腰直角三角形,则a,b的值分别为()A.5,4 B. C. D.11. (2014•泰安二模)函数f(x)的定义域为R,f(﹣1)=1,对任意x ∈ R,f′(x)>3,则f(x)>3x+4的解集为()A.(﹣1,1) B.(﹣1,+∞) C.(﹣∞,﹣1) D.(﹣∞,+∞)12. (2015秋•鹰潭期末)已知圆,定点,点P为圆M上的动点,点Q在NP上,,()A.________B.C.D.二、填空题13. (2011•安徽模拟) =___________ .14. (2012•新课标)设x,y满足约束条件:;则z=x﹣2y的取值范围为___________ .15. (2015秋•鹰潭期末)已知F 1 ,F 2 为椭圆 + =1(3>b>0)的左右两个焦点,若存在过焦点F 1 ,F 2 的圆与直线x+y+2=0相切,则椭圆离心率的最大值为_________ .16. (2011•姜堰市校级模拟)设函数f(x)=ax 3 ﹣3x+1(x ∈ R),若对于任意的x ∈ [﹣1,1 ] 都有f(x)≥0成立,则实数a的值为___________ .三、解答题17. (2015秋•鹰潭期末)已知命题p:方程表示焦点在y轴上的椭圆,命题q:关于x的方程x 2 +2mx+2m+3=0无实根,(1)若命题p为真命题,求实数m的取值范围;(2)若“p ∧ q”为假命题,“p ∨ q” 为真命题,求实数m的取值范围.18. (2015秋•鹰潭期末)已知圆C:x 2 +y 2 ﹣8y+14=0,直线l过点(1,1)(1)若直线l与圆C相切,求直线l的方程;(2)当l与圆C交于不同的两点A,B,且|AB|=2时,求直线l的方程.19. (2015秋•鹰潭期末)已知抛物线C:y 2 =2px(p>0)上的一点M(3,y 0 )到焦点F的距离等于4.(Ⅰ )求抛物线C的方程;(Ⅱ )若过点(4,0)的直线l与抛物线C相交于A,B两点,求△ ABO 面积的最小值.20. (2015秋•鹰潭期末)已知函数f(x)=e x ﹣ax﹣1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(﹣2,3)上为减函数,若存在,求出a的取值范围,若不存在,说明理由.21. (2015秋•鹰潭期末)已知椭圆C:(a>b>0)的离心率为,左焦点为F(﹣1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.(1)求椭圆C的标准方程;(2)求k的取值范围;(3)在y轴上,是否存在定点E,使• 恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.22. (2015•山东一模)已知函数f(x)=aln(x+1)﹣ax﹣x 2 .(Ⅰ )若x=1为函数f(x)的极值点,求a的值;(Ⅱ )讨论f(x)在定义域上的单调性;(Ⅲ )证明:对任意正整数n,ln(n+1)<2+ .参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。

江西省临川第一中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省临川第一中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省临川第一中学2018-2019学年高二上学期期末考试数学(理)试题第Ⅰ卷选择题一,选择题:本大题共10个小题,每小题5分,共50分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.为创建文明城市,共建美好家园,某市教育局拟从3000名小学生,2500名初中生和1500名高中生中抽取700人参与“城市文明知识”问卷调查活动,应采用地最佳抽样方式是()A. 简单随机抽样法 B. 分层抽样法C. 系统抽样法D. 简单随机抽样法或系统抽样法【结果】B【思路】【思路】依据总体明显分层地特点采用分层抽样.【详解】依据题意,所有学生明显分成互不交叉地三层,即小学生,初中生,高中生,故采用分层抽样法.故选:B.【点睛】本题考查分层抽样地概念,属基础题.2.甲乙两名同学在班级演讲比赛中,得分情况如茎叶图所示,则甲乙两人得分地中位数之和为()A. 176B. 174C. 14D. 16【结果】A【思路】【思路】由茎叶图中地数据,计算甲,乙得分地中位数即可.【详解】由茎叶图知,甲地得分情况为76,77,88,90,94, 甲地中位数为88。

乙地得分情况为75,86,88,88,93,乙地中位数为88。

故甲乙两人得分地中位数之和为88+88=176.故选:A.【点睛】本题考查了茎叶图表示地数据地中位数地计算,注意先把数据按从小到大(或从大到小)先排序即可.3.下面表达中正确地是()A. 若事件与事件互斥,则B. 若事件与事件满足,则事件与事件为对立事件C. “事件与事件互斥”是“事件与事件对立”地必要不充分款件D.某人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”互为对立事件【结果】C【思路】【思路】对A,由互斥地定义判断即可,对B选项,利用几何概型判断即可,对C由互斥事件和对立事件地概念可判断结论,对D由对立事件定义判断,所以错误.【详解】对A,基本事件可能地有C,D…,故事件与事件互斥,但不一定有对B,由几何概型知,则事件与事件不一定为对立事件,。

人教版2019学年高二上册理科数学期末试卷含答案(共6套)

人教版2019学年高二上册理科数学期末试卷含答案(共6套)

人教版2019学年高二理科数学期末试卷(一)第一部分 基础测试(共100分)一、选择题:本大题共9小题,每小题5分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.双曲线22149x y -=的渐近线方程是( ) A . 23y x =± B. 49y x =± C. 32y x =± D. 94y x =±2.给出以下命题:①42,x R x x ∀∈>有;②,R α∃∈使得sin 22sin αα=;③,a R ∃∈对x R ∀∈使220x x a ++〉。

其中真命题的序号是( )A.②③B.①②C. ①③D.①②③ 3.已知P :2+2=5,Q:3>2,则下列判断正确的是( )A.“P 或Q ”为假,“非Q ”为假B.“P 且Q ”为假,“非P ”为假C.“P 或Q ”为真,“非Q ”为假D.“P 且Q ”为真,“P 或Q ”为假 4. 下列各组向量中不平行的是( ) A . B . C .D .5.“0x >”是“0x ≠”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.椭圆22221x y a b+=(a >b >0)的中心O 与一个焦点F 及短轴的一个端点M 组成等腰直角三角形FMO ,则它的离心率是 ( )A.127.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍. 为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 ( ) A .9B .27C .18D .368.如果数据1x 、2x 、……n x 的平均值为2,方差为0.1,则135x +,235x +,…… 35n x +的平均值和方差分别为( )A .2和0.1B .11和0.9C .11和0.1D .11 和28.59.椭圆上到点A(1,0)的距离最近的点P 的坐标是 ( )A.(,B .(,C .(,)D .(,) 二、填空题:本大题共3小题,每小题5分,共15分,把答案填写在答题卷中指定的横线上。

2019年高二上学期期末考试理数试题含答案

2019年高二上学期期末考试理数试题含答案

2019年高二上学期期末考试理数试题含答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间之间坐标系中,平面内有和两点,平面的一个法向量为,则等于()A. B. C. D.2.某几何体的三视图如图所示,则俯视图的面积为()A. B. C. D.3.已知,若直线与直线垂直,则等于()A. B. C. D.4.已知双曲线的一条渐近线的倾斜角是直线倾斜角的倍,则等于()A. B. C. D.5.已知命题,.若是假命题,则命题可以是()A.椭圆的焦点在轴上 B.圆与轴相交 C.若集合,则 D.已知点和点,则直线与线段无交点6.空间四边形中,,,,点在上,且,为中点,则等于()A. B. C. D.7.“”是“圆与圆有公共点”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件8.已知,是两个不同平面,,是两条不同直线,给出下列命题,其中正确的命题的个数是()(1)若,,则;(2)若,,,,则;(3)如果,,,是异面直线,那么与相交;(4)若,,且,,则且.A. B. C. D.9.如图,在四棱锥中,底面,底面是矩形,且,,、分别是、的中点,则点到平面的距离为()A. B. C. D.10.已知直线与圆相交于、两点,,且,则等于()A. B. C. D.11.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.12.已知点是抛物线与圆在第一象限的公共点,且点到抛物线焦点的距离等于.若抛物线上一动点到其准线与到点的距离之和的最小值为,为坐标原点,则直线被圆所截得的弦长为()A. B. C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.底面半径为的圆柱的侧面积是圆柱表面积的,则该圆柱的高为 .14.在平面直角坐标系中,正方形的中心坐标为,其一边所在直线的方程为,则边所在直线的方程为 .15.椭圆的右顶点和上顶点分别为和,右焦点为.若、、成等比数列,则该椭圆的离心率为 .16.在正方体中,是上一点,若平面与平面所成锐二面角的正切值为,设三棱锥外接球的直径为,则 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)在平面直角坐标系中,,,点在直线上.(1)若直线的斜率是直线的斜率的2倍,求直线的方程;(2)点关于轴对称点为,若以为直径的圆过点,求的坐标.18. (本小题满分12分)已知双曲线的离心率为,经过第一、三象限的渐近线的斜率为,且.(1)求的取值范围;(2)设条件;条件()()2:2220q m a m a a -+++≤.若是的必要不充分条件,求的取值范围.19. (本小题满分12分)在四棱锥中,底面,底面是一直角梯形,,,,,.(1)若,为垂足,求异面直线与所成角的余弦值;(2)求平面与平面所成的锐二面角的正切值.20. (本小题满分12分)已知过点的动直线与抛物线相交于、两点.当直线的斜率是时,.(1)求抛物线的方程;(2)设线段的中垂线在轴上的截距为,求的取值范围.21. (本小题满分12分)如图,四边形是矩形,平面,,且,,.(1)过作平面平面,平面与、分别交于、,求与平面所成角的正弦值;(2)为直线上一点,且平面平面,求的值.22. (本小题满分12分)已知、分别是椭圆的左、右焦点,点是椭圆上一点,且,.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于、两点,以为底作等腰三角形,顶点为,求的面积.试卷答案一、选择题1.C 由题意得,则,即,解得.2.B 由三视图可知,俯视图是一个直角梯形,上、下底和高分别为、和,其面积为.3.D 由题意得cos2sin2cos4sin cos0θθθθθ-=-=,,.4.A 由已知得双曲线的渐近线的倾斜角为,则,得.5.D 易判断命题是假命题,若是假命题,则为假命题,选项、、均正确,对于,作图知直线与线段有交点,所以选.6.A211211322322MN MO ON OA OB OC a b c=+=-++=-++.7.A 若圆与圆有公共点,则,解得或,故选.8.B 根据面面垂直的判定定理可知命题(1)正确;若,,,,则与平行或相交,故命题(2)错误;如果,,,是异面直线,那么与相交或平行,故命题(3)错误;由线面平行的性质定理可知命题(4)正确.故正确命题有个,故选.9.A 建立如图所示的空间直角坐标系,则,.设平面的法向量为,则即630,2630.2x zx y⎧-+=⎪⎪⎨⎪+=⎪⎩取,得.又,故点到平面的距离为.10.B ,直线与直线垂直,且圆心到直线的距离为,即23,2,31aa⎧=-=⎪+⎩,作图知,解得3,4.3ab⎧=-⎪⎨=⎪⎩则.11.D 该几何体的直观图如图所示.连接,则该几何体由直三棱柱和三棱锥组合而成,其体积为1112232238 232⨯⨯⨯+⨯⨯⨯⨯=.12.C 抛物线上一动点到其准线与到点的距离之和的最小值为,又,、、三点共线,且是线段的中点,,,,则,,圆心到直线的距离为,所求的弦长为.二、填空题13. 设高为,则由题意得,解得.14. 直线上的点关于点对称点为,设直线的方程为,则直线过,解得,所以边所在直线的方程为.15. 、、,由得,,,则,解得或(舍去).16. 过作交于,过作于,连接,则为平面与平面所成锐二面角的平面角,,,设,则,,则,,则三棱锥外接球的直径,.三、解答题17.解:(1)点在直线上,可设点,直线的斜率是直线的斜率的倍,,解得,则点,直线方程为,即.(2)点关于轴对称点,,以为直径的圆过点,,即,解得,即,圆的圆心坐标为. 18.解:(1)由已知得:,,,,解得,,,即的取值范围.(2)()()2222m a m a a -+++≤0,,即,是的必要不充分条件,解得,即的取值范围为.19.解:法一:(1)过点作交于,连接,则与所成角即为与所成角.在中,,由得,..2223333433a PA PE a PD a ⎛⎫ ⎪⎝⎭===,.32234433a a CD PE ME a PD a ∴===. 连接.在中,,,,,,,.又底面,,.平面.平面,.在中,.异面直线与所成角的余弦值为.法二:(1)如图建立空间直角坐标系,则,,,,,,,.设与所成角为,则()230cos a a a AE CD AE CD a a θ+===-+ 异面直线与所成角的余弦值为.(2)易知,,,则平面.平面的一个法向量为.设平面的一个法向量为,则,.而,,由,.得0,0.ax ay ax ay ⎧+=⎪⎨⎪-+=⎩令,. 设向量与所成角为, 则2225cos 511BC m BC m a α====++..平面与平面所成锐二面角的正切值为.20.解:(1)设,,当直线的斜率是时,的方程为,即.由得,又,,③由①②③及得:,,,即抛物线的方程为.(2)易知的斜率存在,且不为,设,的中点坐标为,由得,④,.线段的中垂线方程为,线段的中垂线在轴上的截距为.对于方程④,由得或,.21.解:(1)当时,平面平面.证明:连接,,,,,四边形是平行四边形,,,,,,平面平面,以为原点,,,所在直线分别为,,轴,建立空间直角坐标系(如图),则,,,,,,,,设平面的一个法向量,则令,则,,,设与平面所成角为,则sin cos,AF nθ===(2)设,,则,,,点的坐标为,平面,,欲使平面平面,只要,,,,得,.22.解:(1),,,,,.即,则,,,椭圆.(2)设直线的方程为.由221124y x mx y=+⎧⎪⎨+=⎪⎩得.①设、的坐标分别为、,的中点为,则,.因为是等腰的底边,所以.所以的斜率241334mkm-==--+,解得.此时方程①为,解得,,所以,,所以. 此时,点到直线的距离,所以的面积.$22375 5767 坧8Q 32922 809A 肚34793 87E9 蟩精品文档26756 6884 梄32198 7DC6 緆q23630 5C4E 屎24970 618A 憊实用文档。

2024-2025学年高二上学期数学期末模拟卷B卷(含解析)

2024-2025学年高二上学期数学期末模拟卷B卷(含解析)

高二上学期数学人教A 版(2019)期末模拟测试卷B 卷【满分:150分】一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆C :,P 为直线上一点,过点P 作圆C 的两条切线,切点分别为A 和B ,当四边形PACB 的面积最小时,直线AB 的方程为( )A. B. C. D.2.如图,已知点P 在正方体的对角线上,.设,则的值为( )D.3.已知椭圆E ()的左焦点为F ,过焦点F 作圆的一条切线l 交椭圆E 的一个交点为A ,切点为Q ,且(O 为坐标原点),则椭圆E 的离心率为( )4.牛顿在《流数法》一书中,给出了高次代数方程的一种数值解法——牛顿法.设是的根,选取作为的初始近似值,过点做曲线的切线l ,l 与x 轴的交点的横坐标为,称是r 的一次近似值;过点做曲线的切线,则该切线与x 轴的交点的横坐标为,称是r 的二次近似值.则222440x y x y +---=:20l x y ++=5530x y ++=5530x y -+=5530x y +-=5530x y --=ABCD A B C D -''''BD '60PDC ∠=︒D P D B λ''=λ1-3-221y b+=0a b >>222x y b +=2OA OF OQ +=r ()2f x x =+()100x x -=>01x =r ()()00,x f x ()y f x =1x 1x ()()11,x f x ()y f x =2x 2x( )的右顶点为圆心,焦点到渐近线的距离为半径的圆交抛物线6.数列的前n 项和为,,,设,则数列的前51项之和为()A.-149B.-49C.49D.1497.已知函数的定义域为R ,其导函数为,且满足,,则不等式A. B. C. D.8.设曲线的直线l 与C 交于A ,B 两点,线段的垂直平分线分别交直线二、选择题:本题共3小题.每小题6分.共18分.在每小题给出的选项中,有多项符合题目要求全部选对的得6分.部分选对的得部分分,有选错的得0分.9.已知实数x ,y 满足圆C 的方程,则下列说法正确的是( )A.圆心,半径为1B.过点作圆C 的切线,则切线方程为2x =219y =22y px=()0p >{}n a n S 11a =-*(1)()n n na S n n n =+-∈N (1)nn n b a =-{}n b ()f x ()f x '()()e xf x f x -+'=()00f =()()2e 1e xf x -<11,e ⎛⎫- ⎪⎝⎭1e ,e ⎛⎫ ⎪⎝⎭()1,1-()1,e -:C x =)AB x =+2220x y x +-=()1,0-()2,02x =D.的最大值是410.已知等差数列的前n 项和为,,,则下列说法正确的是( )A. B.C.为递减数列 D.11.已知函数,对于任意实数a ,b ,下列结论成立的有( )A.B.函数在定义域上单调递增C.曲线在点处的切线方程是D.若,则三、填空题:本题共3小题,每小题5分,共15分.12.已知等比数列中,,,公比,则__________.13.在正方体中,点P 、Q 分别在、上,且,,则异面直线与所成角的余弦值为___________.14.已知定点,动点P满足方程为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或者演算步骤.15.已知圆心为的圆经过点,直线.(1)求圆M 的方程;(2)写出直线l 恒过定点Q 的坐标,并求直线l 被圆M 所截得的弦长最短时m 的值及最短弦长.16.如图,四棱锥中,底面为正方形,平面,E 为的中点.22x y +{}n a n S 24a =742S =54a =21522n S n n =+n a n ⎧⎫⎨⎬⎩⎭11n n a a +⎧⎨⎩e ()x x f x =-min ()1f x =e ()x x f x =-e ()x x f x =-(0,1)1y =0a b =->()()f a f b >{}n a 47512a a ⋅=-38124a a +=q ∈Z 10a =1111ABCD A B C D -11A B 11C D 112A P PB =112C Q QD =BP DQ ()()4,0,1,0M N MN MP ⋅ ()2,1M --()1,3:0l x my m ++=P ABCD -ABCD PA ⊥ABCD PD(1)证明:平面;(2)若,,求平面与平面夹角的余弦值.17.已知函数(a 为实常数).(1)若,求证:在上是增函数;(2)当时,求函数在上的最大值与最小值及相应的x 值;(3)若存在,使得成立,求实数a 的取值范围.18.已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.19.已知双曲线C 的中心为坐标原点,左焦点为(1)求双曲线C的方程:(2)记双曲线C 的右顶点为A ,过点A 作直线,与C 的左支分别交于M ,N 两点,且,,为垂足.(i )证明:直线恒过定点P ,并求出点P 坐标[1,e]()(2)f x a x ≤+n 24n n S a =-{}n nS n T //PB AEC 2AB AD ==4AP =ADE ACE 2()ln f x a x x =+2a =-()f x (1,)+∞4a =-()f x [1,e]x ∈{}n a n S {}n a n (-MA NA MA NA ⊥AD MN ⊥D MN答案以及解析1.答案:A解析:由,得圆C 的圆心,半径.因.故PC 的方程为,即.联立,,解得.所以直线AB 的方程为,化简,得.2.答案:C解析:以D 为原点,以,,的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.不妨设,则,,,,所以,,,所以,因为,解得,由题可知,所以.故选:C3.答案:A解析:由题意可知:圆的圆心为点O ,半径为b ,,设椭圆E 的右焦点为,连接,因为,可知点Q 为的中点,且点O 为的中点,则()()22222440129x y x y x y +---=⇒-+-=()1,2C 3r =122S AP AC =⨯⋅=l ⊥21y x -=-10x y -+=1020x y x y -+=⎧⎨++=⎩x =y =31,22P ⎛⎫-- ⎪⎝⎭()()311122922x y ⎛⎫⎛⎫---+---= ⎪ ⎪⎝⎭⎝⎭5530x y ++=DA DC DD '1AD =()0,0,0D ()1,1,0B ()0,0,1D '()0,1,0C ()0,0,1DD '=()1,1,1D B =-' ()0,1,0DC = ()()0,0,11,1,1DP DD D P DD D B λλ'''=+=+=+-='(),,1λλλ-60PDC ∠=cos 60=︒=2210λλ+-=1λ=-1=-01λ≤≤1λ=-222x y b +=c b >2F 2AF 2OA OF OQ +=AF 2FF,因为Q为切点,可知,则,解得4.答案:C解析:由题意可得,,由导数的几何意义得过点做曲线的切线的斜率,所以,整理得,所以做曲线的切线的斜率该切线为,则,整理得5.答案:A的右顶点坐标为,焦点为,渐近线方程为,即,焦点到渐近线,所以题中圆的方程为,因为圆和抛物线的图象都关于轴对称,所以A,B两点关于x轴对称,不妨设点A,在第一象限,设,则,上,所以,//OQ AF222AF OQ==2222a AF a b-=-OQ AF⊥2AF AF⊥2222AF AF F+=()()2222242244b a bc a b+-==-23a==cea====()1f x=()21f x x'=+()1,1()y f x=l()113k f='=():131l y x-=-:32l y x=-1x=()2122133f x⎛⎫=+-=⎪⎝⎭21,39⎫⎪⎭()y f x=223k f⎛⎫'==⎪⎝⎭2l2172:933l y x⎛⎫-=-⎪⎝⎭73y x=2x=219y-=()2,0()32y x=±320x y±=)32x y+=3()2229x y-+=()2229x y-+=()220y px p=>x()()1111,0,0A x y x y>>()11,B x y-12y=1y=)2229x y-+=()21289x-+=解得或3,所以或,当,则,解得,当,则,解得故选:A.6.答案:B解析:因为,当时,,即,所以是以-1为首项,1,则,当时,所以,当时也成立,所以,可得数列的前51项之和为.故选:B.7.答案:C解析:由得,即,可设,当时,因得,所以,,因为,故为偶函数,,当时,因,,故,所以在区间上单调递增,因为,所以当时,又因为11x =(1,A (3,A (1,A 82p =4p =(3,A 86p =p =*(1)()n n na S n n n =+-∈N 2n ≥1()(1)n n n n na n S S S n n -=-=+-1(1)(1)n n n S nS n n ---=-11n S n --=-11a ==-n S n ⎧⎫⎨⎬⎩⎭112n n =-+-=-(2)n S n n =-2n ≥()11(3)n S n n -=--()()121(3)23n n n a S S n n n n n -==----=--1n =23n a n =-()()()1123nnn n b a n =-=--{}n b (11)(35)...(9597)99++-+++-+-2259949=⨯-=-()()e x f x f x -+'=()()e e 1x x x f x f +'=()e 1x f x '⎡⎤=⎣⎦()e xf x x m =+0x =()00f =0m =()e xf x x -=()()2e 1e x f x -<-()2e e 1e x x x --<-e e e x x x x --<()e e x xg x x x -=-()()e e x x g x x x g x --=-+=()g x ()e e e e x x x x g x x x --'=++-0x ≥e e 0x x x x -+≥e e 0x x --≥()e e e x x xg x x x -'=++e 0x --≥()g x [)0,+∞()11e e g -=-0x ≥()e x g x x =-e e xx -<-)0,1为偶函数,故.故选:C8.答案:D解析:因为曲线,,所以C是双曲线的右支,其焦点为,渐近线为.由题意,设(故A选项可排除),联立得,,所以,,解得.故选:D.9.答案:BD解析:对选项A:,即,圆心为,半径为,A错误;对选项B:在圆上,则和圆心均在x轴上,故切线与x轴垂直,为,B正确;对选项C:表示圆上的点到点的斜率,如图所示::1C x=≥()2211x y x-=≥221x y-=)F y x=±(:l y k x=(,y k xx⎧=-⎪⎨⎪=⎩()22221210k x x k--++=()2Δ410k=+>A Bx x+=A Bx x=Bx-==()g x()eg x<)1,1-=2A BNx x+==NMN x=-==(2k=±+2220x y x+-=22(1)1x y-+=(1,0)1r=(2,0)(2,0)2x=1yx+(,)x y(1,0)A-当与圆相切时,斜率最大,此时,,故,故此时斜率最大为C 错误;对选项D :表示圆上的点到原点距离的平方,故最大值为,D 正确.故选:BD.10.答案:BC解析:等差数列中,,解得,而,因此公差,通项,对于A ,,A 错误;对于B ,,B 正确;为递减数列,C 正确;的前5项和为11.答案:ACD解析:对A ,对求导,,令,即,解得.当时,,函数单调递减;当时,,函数单调递增.所以函数在处取得最小值,即,所以,A 选项正确.AB ||2AC =||1BC =AB BC ⊥tan 30︒=22x y +(,)x y 2(1)4r +={}n a ()177477422a a S a +===46a =24a =42142a a d -==-2(2)2n a a n d n =+-=+57a =2(32)15222n n n S n n ++==+1=n a n ⎧⎫⎨⎬⎩⎭11(2)(3)2n n n ==-+++11n n a a +⎫⎬⎭1111134457-+-++ 111838-=-=e ()x x f x =-)1(e x f x =-'()0f x '=e x -1=00x =0x <()0f x '<()f x 0x >()0f x '>()f x ()f x 0x =(0)1f =()min 1f x =对B ,由上述分析可知,上函数单调递减,上函数单调递增,B 选项错误.对C ,由于切线斜率为0,在点,切线方程为,C 选项正确.对D ,因为,则.则.令,则,则在单调递增.故.即,即.D 选项正确.故选:ACD 12.答案:512解析:,,,,则得,或者,,公比q 为整数,,,,解得,即,故答案为:512.解析:设正方体中棱长为3,以D 为原点,为x 轴,为y 轴,为z 轴,建立如图所示空间直角坐标系,则,,,,,,设异面直线(,0)-∞()f x (0,)+∞()f x ()()000e 010e 10.f f '=-==-=,()0,11y =0,0a b b a =->=-<()e ,()()e a a f a a f b f a a -=-=-=+()()f a f b -=e (e )e e 2a a a a a a a ----+=--()e e 2x x g x x -=--()e e 220x x g x -=+-'≥-=()g x (0,)+∞()(0)0g x g >=()()0f a f b ->()()f a f b >47512a a ⋅=- 38124a a +=3847512a a a a ∴⋅=⋅=-38124a a +=34a =-8128a =3128a =44a =- 34a ∴=-8128a =54128q ∴-=2q =-22108128(2)1284512a a q ==⨯-=⨯=1111ABCD A B C D -DA DC 1DD ()0,0,0D ()0,1,3Q ()3,3,0B ()3,2,3P ()0,1,3BP =- ()0,1,3DQ =与所成角为,则与所成角的余解析:设动点,则.又.化简得,动点P 的轨迹E的方.15.答案:(1)(2)最小值为.解析:(1)圆M的半径,圆M 的方程为.(2)直线l 的方程为,,令解得:,定点Q 的坐标为.,点Q 在圆M 的内部,故直线l 恒与圆M 相交.又圆心M 到直线l 的距离l 被圆M 截得的弦长为当d 取得最大值2时,弦长有最小值,最小值为.16.答案:(1)证明见解析;BP DQ θcos BP DQ BP DQθ⋅===⋅ BP DQ 213y =(),P x y ()()()4,,3,0,1,MP x y MN PN x y =-=-=-- MN MP ⋅ ()34x ∴--=2234x y +=213y +=∴23y +=213y =()()222125x y +++=0= 5r ==∴()()222125x y +++= 0x my m ++=(1)0x m y ∴++=010x y =⎧⎨+=⎩01x y =⎧⎨=-⎩∴()0,1-()()220211425++-+=< ∴2d ≤∴=0=解析:(1)证明:如图所示,连接,设,连接,因为四边形为正方形,则O 为的中点,因为E 是的中点,所以.又因为平面,平面,所以平面.(2)因为平面,四边形为正方形,以A 为坐标原点,分别以、、所在直线为x 、y 、z 轴建立如图所示空间直角坐标系,因为,,则、、、、、,设平面的法向量为,,,则,取,可得,又为平面的一个法向量,则所以,平面与平面BD AC BD O = OE ABCD BD PD //EO PB EO ⊂AEC PB ⊄AEC //PB AEC PA ⊥ABCD ABCD AB AD AP 2AB AD ==4AP =()0,0,0A ()2,0,0B ()0,0,4P ()0,2,0D ()0,1,2E ()2,2,0C AEC (),,m x y z = ()0,1,2AE = ()2,2,0AC = 20220m AE y z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 1z =()2,2,1m =- ()1,0,0n =ADE 2cos ,31m n m n m n ⋅===⋅⨯ ADE17.答案:(1)答案见解析(2)当有最小值为,当时,函数有最大值为(3)解析:(1)由题可知函数的定义域,因为,所以,所以令解得,所以在上是增函数(2)因为,所以,所以令解得解得所以在上单调递减,在上单调递增,所以在上单调递减,在上单调递增,所以当时,函数有最小值为,因为,所以当时,函数有最大值为.(3)由得,即,因为,所以,所以,且当时,所以在恒成立,所以即存在时,令()0f x'>()0f x'<()f x)+∞⎡⎣x=22ln2f=-2(e)e41f=->()f x()(2)f x a x≤+x=()f x22ln2f=-ex=()f x2(e)e4f=-[)1,-+∞(0,)+∞2a=-2()2lnf x x x=-+2()2f x xx'=-+=()0f x'>1x>()f x(1,)+∞4a=-2()4lnf x x x=-+4()2f x xx'=-+=x>0x<()f x⎤⎦()f x(1)1f=ex=2(e)e4f=-2(ln2)a x x a x≤++()2ln2a x x x x-≤-[1,e]x∈1,ln ln e1x x≥≤=lne lnx x≥≥1x=ln0x= lnx x>[1,e]x∈a≥[1,e]x∈a≥()g x=()g x'=令,令,解得,令,解得,所以在单调递减,单调递增,所以,所以时,恒成立,所以,所以实数a 的取值范围是.18.答案:(1)(2)答案见解析解析:(1),当时,,两式相减,得,整理得,即时,,又当时,,解得,数列是以4为首项,2为公比的等比数列,.(2)由(1)知,,令,易知,,设数列的前n 项和为,则,,n K 456321222322n n K n +=⨯+⨯+⨯++⋅ ②()22ln h x x x =+-22()1x h x x x-'=-=2()0x h x x -'=>2e x <≤2()0x h x x-'=<12x ≤<()h x [)1,2(]2,e ()(2)2(2ln 2)0h x h ≥=->[1,e]x ∈()2(1)(22ln )()0ln x x x g x x x -+-'=≥-min ()(1)1g x g ==-[)1,-+∞12n +24n n S a =- ∴2n ≥1124n n S a --=-()112424n n n n S S a a ---=---12n n a a -=2n ≥12n n a a -=1n =11124S a a ==-14a =∴{}n a 11422n n n a -+∴=⨯=1222424n n n S ++=⨯-=-224n n nS n n +∴=⋅-22,4n n n b n c n +=⋅=-()()1214212n n n c c c n n ++++=-⨯=-+ {}n b 34521222322n n K n +=⨯+⨯+⨯++⋅ ①由,得,即.(2)见解析解析:(1)由题意,双曲线C 的中心为坐标原点,左焦点为可得,解得,.(2)证明:(i )由(1)知,当直线斜率存在时,设直线方程为,联立方程组,整理得,,即,3456231222222n n n K n ++-=⨯+++++-⋅ ()()413332122212812n n n n K n n -++-∴=+-⋅=-⋅+--①②()4133332122222812n n n n n K n n -+++--=+-⋅=-⋅--()()()32112218n n n T K n n n n n +∴=-+=-⋅-++2116y =(-222c c e a b c a ⎧=⎪⎪==⎨⎪=-⎪⎩2,4a b ==2116y -=()2,0A MN MN y kx m =+221416y kx m x y =+⎧⎪⎨-=⎪⎩()22242160k x kmx m ----=()()2222444160k m k m ∆=+-+>22416k m -<设,,由韦达定理可得.因为,可得,即,即,整理得,即,即,可得,解得将代入直线,此时直线过定点,不合题意;将,此时直线过定点,当直线的斜率不存在时,不妨设直线方程为,因为,所以为等腰直角三角形,此时M 点坐标为,所以(舍)或此时过定点,综上可知,直线恒过定点(ii )因为,此时存在以为斜边的直角三角形,()11,M x y ()22,N x y 122212224,164km x x k m x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩MA ⊥2212y x =--()()1212220y y x x +--=()121212240y y x x x x +-++=()()()121212240kx m kx m x x x x +++-++=()()()2212121240k x x mk x x m ++-+++=()()22222162124044m km k mk m k k +++-++=--2234200m km k --=()()23100m k m k +-=2m km =-=2m k =-()2y kx m y k x =+⇒=-MN ()2,0A m =103y kx m y k x ⎛⎫=+⇒=+ ⎪⎝⎭MN 10,03P ⎛⎫-⎪⎝⎭MN x t =MA NA ⊥AMN (,t 22342002t t t t =-⇒+-=⇒=t =MN 10,03P ⎛⎫- ⎪⎝⎭MN 10,0,3P ⎛⎫- ⎪⎝⎭AD MN ⊥AP1 2AP=2,03⎛⎫-⎪⎝⎭所以存在定点Q为.AP。

2019江西省高二上学期数学(理)期末质量检测试题

2019江西省高二上学期数学(理)期末质量检测试题

高 二 数 学 试 卷 (理科)上学期期末质量检测本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.注意事项:1.第Ⅰ卷的答案填在答题卷方框里,第Ⅱ卷的答案或解答过程写在答题卷指定处,写在试题卷上的无效.2.答题前,考生务必将自己的“姓名”、“班级’’和“考号”写在答题卷上.3.考试结束,只交答题卷.第Ⅰ卷 (选择题共60分)一、选择题(每小题5分,共20个小题,本题满分60分) 1.命题“0,02>>∀x x ”的否定是( )A .0,02≤>∀x xB .0,02≤>∃x xC .0,02≤≤∀x xD .0,02≤≤∃x x2.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) A . 400,40 B . 200,10 C . 400,80 D . 200,203.甲乙两艘轮船都要在某个泊位停靠8小时,假定他们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停泊位时必须等待的概率( ) A .92 B .94 C .95 D .974.下列双曲线中,焦点在y 轴上且渐近线方程为x y 31±=的是A .1922=-y xB .1922=-x yC .1922=-y xD .1922=-x y5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第5行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是( ) 84421 25331 34578 60736 25300 73286 23457 88907 23689 6080432567 80843 67895 35577 34899 48375 22535 57832 45778 92345A .328B .623C .457D .0726.根据右边框图,当输入x 为2019时,输出的y 为( ) A .1 B .2 C .5D .107.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关。

2019届高二上学期期末考试(理科数学试卷及答案详解)

2019届高二上学期期末考试(理科数学试卷及答案详解)

2019届高二上学期期末考试试卷数学(理科)一、选择题: 本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.已知集合},3125|{R x x x M ∈≤-≤-=,},0)8(|{Z x x x x N ∈≤-=,则=N M ( )A. )20(,B. ]20[,C. }20{,D. }210{,,2.给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(0,1)上单调递减的函数序号是( ) A .②③ B.①② C. ③④ D. ①④3.已知变量x ,y 满足约束条件24240,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则2z x y =+的最大值为( )A. 0B. 2C. 4D. 84.已知,l m 是直线,α是平面,且m α⊂,则“l m ⊥”是“l α⊥”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件5.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为( ) A. 6 B. 7 C. 6或7 D. 不存在6.已知2log 3.45a =,4log 3.65b =,3log 0.31(5c =,则( )A. a b c >>B. b a c >>C. c a b >>D. a c b >>7.已知a 是函数x x f x21log 2)(-=的零点,若a x <<00,则)(0x f 的值满足( )A. 0)(0=x fB. 0)(0<x fC. 0)(0>x fD. )(0x f 的符号不确定 8.执行如图所示程序框图所表达的算法,若输出的x 值 为48,则输入的x 值为( )A .12B .8C .6D .3 9.为了得到函数sin 3cos3y x x =+的图象,可以 将函数y x =的图象( )A.向右平移12π个单位B.向右平移4π个单位C.向左平移12π个单位D.向左平移4π个单位10.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( ) A.163πB. 83πC.D.11.直线3y kx =+与圆22(2)(3)4x y -+-=相交于M 、N 两点,若32≥MN ,则k 的取值范围是( )A. 3[,0]4-B .[C .[D .2[,0]3-12.椭圆22195x y +=的左、右焦点分别是12,F F ,弦AB 过1F ,若2ABF ∆的内切圆周长为2π,,A B 两点的坐标分别为11(,)x y ,22(,)x y ,则12||y y -的值为( ) A.2 B.3 C.4 D.5二、填空题:本大题共4小题,每小题5分,共20分。

2019-2020年江西省赣州市高二上册期末数学试题(理科)(有答案)

2019-2020年江西省赣州市高二上册期末数学试题(理科)(有答案)

江西省赣州市高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∀n∈N*,f(n)∉N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.且f(n0)>nD.或f(n0)>n2.(5分)若复数=2﹣i其中a,b是实数,则复数a+bi在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知a,b,c均为实数,则“b2=ac”是“a,b,c构成等比数列”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4.(5分)抛物线2=y的准线方程是()A.y=1 B.y=﹣1 C.y=D.y=﹣5.(5分)在等差数列{an }中,a1=1,a3+a4+a5+a6=20,则a8=()A.7 B.8 C.9 D.106.(5分)已知△ABC的两个顶点A(5,0),B(﹣5,0),周长为22,则顶点C的轨迹方程是()A.B.C.D.7.(5分)函数,则()A.=e为函数f()的极大值点B.=e为函数f()的极小值点C.为函数f()的极大值点D.为函数f()的极小值点8.(5分)如图所示,在正方体ABCD﹣A1B1C1D1中,已知M,N分别是BD和AD的中点,则B1M与D1N所成角的余弦值为()A.B.C.D.9.(5分)已知数列{an },a1=1,,则a10的值为()A.5 B.C.D.10.(5分)若函数y=3+2+m+1是R上的单调函数,则实数m的取值范围是()A.(,+∞) B.(﹣∞,] C.[,+∞)D.(﹣∞,)11.(5分)已知,y∈(0,+∞),且满足,那么+4y的最小值为()A.B.C.D.12.(5分)如图,F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右两个焦点.若直线y=与双曲线C交于P、Q两点,且四边形PF1QF2为矩形,则双曲线的离心率为()A.2+B.2+C.D.二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.(5分)若,则= .14.(5分)= .15.(5分)椭圆C 的中心在坐标原点,左、右焦点F 1,F 2在轴上,已知A ,B 分别是椭圆的上顶点和右顶点,P 是椭圆上一点,且PF 1⊥轴,PF 2∥AB ,则此椭圆的离心率为 . 16.(5分)已知f (,y )=a+by ,若1≤f (1,1)≤2且﹣1≤f (1,﹣1)≤1,则f (2,1)的取值范围为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(10分)设数列{a n }满足a 1=1,a n+1=3a n ,n ∈N +. (Ⅰ)求{a n }的通项公式及前n 项和S n ;(Ⅱ)已知{b n }是等差数列,且满足b 1=a 2,b 3=a 1+a 2+a 3,求数列{b n }的通项公式.18.(12分)已知抛物线y 2=2p (p >0),焦点对准线的距离为4,过点P (1,﹣1)的直线交抛物线于A ,B 两点. (1)求抛物线的方程;(2)如果点P 恰是线段AB 的中点,求直线AB 的方程.19.(12分)如图,直三棱柱ABC ﹣A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC=CB=2,AB=2.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)求锐二面角D ﹣A 1C ﹣E 的余弦值.20.(12分)在圆2+y 2=4上任取一点P ,点P 在轴的正射影为点Q ,当点P 在圆上运动时,动点M 满足,动点M 形成的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)点A (2,0)在曲线C 上,过点(1,0)的直线l 交曲线C 于B ,D 两点,设直线AB 斜率为1,直线AD 斜率为2,求证:12为定值.21.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2AD=2,,PD ⊥AD,PD⊥DC.(Ⅰ)证明:平面PBC⊥平面PBD;(Ⅱ)若二面角P﹣BC﹣D为,求AP与平面PBC所成角的正弦值.22.(12分)设函数f()=2e.(1)求曲线f()在点(1,e)处的切线方程;(2)若f()<a对∈(﹣∞,0)恒成立,求a的取值范围;(3)求整数n的值,使函数F()=f()﹣在区间(n,n+1)上有零点.江西省赣州市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∀n∈N*,f(n)∉N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.且f(n0)>nD.或f(n0)>n【解答】解:因为全称命题的否定是特称命题,所以,命题“∀n∈N*,f(n)∉N*且f(n)≤n”的否定形式是:或f(n0)>n.故选:D.2.(5分)若复数=2﹣i其中a,b是实数,则复数a+bi在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数=2﹣i,其中a,b是实数,∴a+i=(2﹣i)(b﹣i)=2b﹣1﹣(2+b)i,∴,解得b=﹣3,a=﹣7.则复数a+bi在复平面内所对应的点(﹣7,﹣3)位于第三象限.故选:C.3.(5分)已知a,b,c均为实数,则“b2=ac”是“a,b,c构成等比数列”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【解答】解:由“b2=ac”推不出“a,b,c构成等比数列,比如a=b=c=0,反之成立,故选:A.4.(5分)抛物线2=y的准线方程是()A.y=1 B.y=﹣1 C.y=D.y=﹣【解答】解:因为抛物线的标准方程为:2=y,焦点在y轴上;所以:2p=,即p=,所以:=,所以准线方程y=﹣.故选:D.5.(5分)在等差数列{an }中,a1=1,a3+a4+a5+a6=20,则a8=()A.7 B.8 C.9 D.10【解答】解:设公差为d,则1+2d+1+3d+1+4d+1+5d=20,∴d=,∴a8=1+7d=9,故选C.6.(5分)已知△ABC的两个顶点A(5,0),B(﹣5,0),周长为22,则顶点C的轨迹方程是()A.B.C.D.【解答】解:△ABC的两个顶点A(5,0),B(﹣5,0),周长为22,则顶点C的轨迹是椭圆,可知c=5,2a=12,解得a=6,c=.则顶点C的轨迹方程是:.故选:B.7.(5分)函数,则()A.=e为函数f()的极大值点B.=e为函数f()的极小值点C.为函数f()的极大值点D.为函数f()的极小值点【解答】解:的定义域(0,+∞),求导f′()=,令f′()=>0,解得:0<<e,令f′()=<0,解得:>e,∴函数在(0,e)上递增,在(e,+∞)上递减,∴当=e时,函数有极大值,故选A.8.(5分)如图所示,在正方体ABCD﹣A1B1C1D1中,已知M,N分别是BD和AD的中点,则B1M与D1N所成角的余弦值为()A.B.C.D.【解答】解:建立如图所示的坐标系,设正方体的棱长为2,则B1(2,2,2),M(1,1,0),D1(0,0,2),N(1,0,0),∴=(﹣1,﹣1,﹣2),=(1,0,﹣2),∴B1M与D1N所成角的余弦值为||=,故选:A.9.(5分)已知数列{an },a1=1,,则a10的值为()A.5 B.C.D.【解答】解:∵数列{an },a1=1,,∴=,=,=,由此猜想an=.下面利用数学归纳法进行证明:①,成立;②假设a=,则==,成立,∴,∴a10=.故选:D.10.(5分)若函数y=3+2+m+1是R上的单调函数,则实数m的取值范围是()A.(,+∞) B.(﹣∞,] C.[,+∞)D.(﹣∞,)【解答】解:若函数y=3+2+m+1是R上的单调函数,只需y′=32+2+m≥0恒成立,即△=4﹣12m ≤0,∴m≥.故选C.11.(5分)已知,y∈(0,+∞),且满足,那么+4y的最小值为()A.B.C.D.【解答】解:∵,y∈(0,+∞),且满足,那么+4y=(+4y)=≥==+,当且仅当=2=时取等号.故选:C.12.(5分)如图,F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右两个焦点.若直线y=与双曲线C交于P、Q两点,且四边形PF1QF2为矩形,则双曲线的离心率为()A.2+B.2+C.D.【解答】解:由题意,矩形的对角线长相等,y=代入﹣=1,可得=±,∴•=c,∴2a2b2=(b2﹣a2)c2,∴2a2(c2﹣a2)=(c2﹣2a2)c2,∴2(e2﹣1)=e4﹣2e2,∴e4﹣4e2+2=0,∵e>1,∴e2=2+,∴e=.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.(5分)若,则= ﹣7 .【解答】解:,则=(﹣2,﹣1,5)•(7,﹣2,1)=﹣14+2+5=﹣7;故答案为:﹣7.14.(5分)= 1 .【解答】解:∫1e d=ln|1e=lne﹣ln1=1,故答案为115.(5分)椭圆C的中心在坐标原点,左、右焦点F1,F2在轴上,已知A,B分别是椭圆的上顶点和右顶点,P是椭圆上一点,且PF1⊥轴,PF2∥AB,则此椭圆的离心率为.【解答】解:如图所示,把=﹣c代入椭圆标准方程:+=1(a>b>0).则=1,解得y=±.取P,又A(0,b),B(a,0),F2(c,0),∴=﹣,==﹣.AB∵PF∥AB,∴﹣=﹣,化为:b=2c.2∴4c2=b2=a2﹣c2,即a2=5c2,解得a=c,∴e==.故答案为:.16.(5分)已知f(,y)=a+by,若1≤f(1,1)≤2且﹣1≤f(1,﹣1)≤1,则f(2,1)的取值范围为.【解答】解:f(,y)=a+by,若1≤f(1,1)≤2且﹣1≤f(1,﹣1)≤1,可得,画出不等式组的可行域如图:则f(2,1)=2a+b,当直线=2a+b经过A时取得最小值,经过B时取得最大值,由可得B(,),f(2,1)=2a+b的最小值为:!,最大值为:.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设数列{an }满足a1=1,an+1=3an,n∈N+.(Ⅰ)求{an }的通项公式及前n项和Sn;(Ⅱ)已知{bn }是等差数列,且满足b1=a2,b3=a1+a2+a3,求数列{bn}的通项公式.【解答】解:(Ⅰ)由题设可知{an}是首项为1,公比为3的等比数列,…(2分)所以,…(4分)…(6分)(Ⅱ)设数列{bn }的公差为d∵b1=a2=3,b3=a1+a2+a3=S3=13,∴b3﹣b1=10=2d,∴d=5,…(8分)∴bn=5n﹣2…(10分)18.(12分)已知抛物线y2=2p(p>0),焦点对准线的距离为4,过点P(1,﹣1)的直线交抛物线于A,B两点.(1)求抛物线的方程;(2)如果点P恰是线段AB的中点,求直线AB的方程.【解答】解:(1)由题设焦点对准线的距离为4,可知p=4,所以抛物线方程为y2=8;(2)方法一:设A(1,y1),B(2,y2),则1+2=2,y1+y2=﹣2,又,相减整理得,所以直线AB的方程是y=﹣4(﹣1)﹣1,即4+y﹣3=0.方法二:由题设可知直线AB的斜率存在,设直线AB的方程为y=(﹣1)﹣1,A(1,y1),B(2,y2),由,消去,得y2﹣8y﹣8﹣8=0,易知,又y1+y2=﹣2所以,所以直线AB的方程是y=﹣4(﹣1)﹣1,即4+y﹣3=0.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=2,AB=2.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)求锐二面角D﹣A1C﹣E的余弦值.【解答】解:(Ⅰ)连结AC1,交A1C于点O,连结DO,则O为AC1的中点,因为D为AB的中点,所以OD∥BC1,又因为OD⊂平面A1CD,BC1⊄平面A1CD,∴BC1∥平面A1CD…(4分)(Ⅱ)由,可知AC⊥BC,以C为坐标原点,方向为轴正方向,方向为y轴正方向,方向为轴正方向,建立空间直角坐标系Cy,则D(1,1,0),E(0,2,1),A1(2,0,2),,,设是平面A1CD的法向量,则即可取.…(6分)同理,设是平面A1CE的法向量,则,可取.…(8分)从而…(10分)所以锐二面角D ﹣A 1C ﹣E 的余弦值为…(12分)20.(12分)在圆2+y 2=4上任取一点P ,点P 在轴的正射影为点Q ,当点P 在圆上运动时,动点M 满足,动点M 形成的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)点A (2,0)在曲线C 上,过点(1,0)的直线l 交曲线C 于B ,D 两点,设直线AB 斜率为1,直线AD 斜率为2,求证:12为定值.【解答】解:(Ⅰ)设点M 的坐标为(,y ),则由题意知点P 的坐标为(,2y ) 因为P 在圆O :2+y 2=4,所以2+4y 2=4 故所求动点M 的轨迹方程为.…(4分)(Ⅱ)方法一:由题意知直线l 斜率不为0,设直线l 方程为=my+1,B (1,y 1),D (2,y 2) 由消去,得(m 2+4)y 2+2my ﹣3=0,易知△=16m 2+48>0,得…(8分)=.所以为定值…(12分)方法二:(ⅰ)当直线l斜率不存在时,所以…(6分)(ⅱ)当直线l斜率存在时,设直线l方程为y=(﹣1),B(1,y1),D(2,y2)由消去y,得(1+42)2﹣82+42﹣4=0,易知△=482+16>0,…(8分)=.所以为定值…(12分)21.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2AD=2,,PD ⊥AD,PD⊥DC.(Ⅰ)证明:平面PBC⊥平面PBD;(Ⅱ)若二面角P﹣BC﹣D为,求AP与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)∵PD⊥AD,PD⊥CDAD∩CD=D,AD⊂平面ABCDCD⊂平面ABCD∴PD⊥平面ABCD,BC⊂平面ABCD∴PD⊥BC…(2分)又∴又∴,∠ADB=90°,AD⊥BD,又AD∥BC∴BC⊥BD…(4分)又∵PD∩BD=D,BD⊂平面PBD,PD⊂平面PBD∴BC⊥平面PBD而BC⊂平面PBC,∴平面PBC⊥平面PBD…(6分)解:(Ⅱ)由(Ⅰ)所证,BC⊥平面PBD∴∠PBD即为二面角P﹣BC﹣D的平面角,即∠PBD=而,所以PD=1…(8分)分别以DA、DB、DP为轴、y轴、轴建立空间直角坐标系.则A(1,0,0),,,P(0,0,1)∴,=(﹣1,0,0),,设平面PBC的法向量为,则,即,取y=1,得…(10分)∴AP与平面PBC所成角的正弦值为:.…(12分)22.(12分)设函数f()=2e.(1)求曲线f()在点(1,e)处的切线方程;(2)若f()<a对∈(﹣∞,0)恒成立,求a的取值范围;(3)求整数n的值,使函数F()=f()﹣在区间(n,n+1)上有零点.【解答】解:(1)f'()=(2+2)e,∴f'(1)=3e,∴所求切线方程为y﹣e=3e(﹣1),即y=3e﹣2e;(2)∵f()<a,对∈(﹣∞,0)恒成立,∴,设g()=e,g'()=(+1)e,令g'()>0,得>﹣1,令g'()<0得<﹣1,∴g()在(﹣∞,﹣1)上递减,在(﹣1,0)上递增,∴,∴;(3)令F()=0,得,当<0时,,∴F()的零点在(0,+∞)上,令f'()>0,得>0或<﹣2,∴f()在(0,+∞)上递增,又在(0,+∞)上递减,∴方程仅有一解0,且∈(n,n+1),n∈,∵,∴由零点存在的条件可得,则n=0.。

江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)一,选择题(每小题5分,共12小题60分)1.已知命题,下面命题中正确地是( )A. B.C. D.【结果】C【思路】试题思路:命题,使地否定为,使,故选C.考点:特称命题地否定.2.若,且,则实数地值是()A. B. C. D.【结果】D【思路】试题思路:由得,,∴,故.考点:向量垂直地充要款件.3.对于简单随机抽样,每个个体每次被抽到地机会( )A. 相等B. 不相等C. 无法确定D.与抽取地次数相关【结果】A【思路】【思路】依据简单随机抽样地概念,直接选出正确选项.【详解】依据简单随机抽样地概念可知,每个个体每次被抽到地机会相等,故选A.【点睛】本小题主要考查简单随机抽要地概念,属于基础题.4.如图,在三棱柱中,为地中点,若,则下面向量与相等地是( )A. B. C. D.【结果】A【思路】【思路】利用空间向量加法和减法地运算,求得地表达式.【详解】由于是地中点,所以.故选A.【点睛】本小题主要考查空间向量加法和减法地运算,考查化归与转化地数学思想方式,属于基础题.5.如图是2013年某大学自主招生面试环节中,七位评委为某考生打出地分数地茎叶统计图,去掉一个最高分和一个最低分后,所剩数据地平均数和众数依次为()A. B. C. D.【结果】A【思路】【思路】先去掉最高分和最低分,然后计算出平均数和众数.【详解】去掉最高分,去掉最低分,剩余数据为,故众数为,平均数为,故选A.【点睛】本小题主要考查平均数地计算,考查众数地识别,考查阅读理解能力,属于基础题. 6.计算机执行下面地算法步骤后输出地结果是( )A. 4,-2B. 4,1C. 4,3D. 6,0【结果】B【思路】【思路】依据程序运行地顺序,计算出输出地结果.【详解】运行程序,,,,输出,故选B.【点睛】本小题主要考查计算程序输出结果,考查程序语言地识别,属于基础题.7.过点且与抛物线只有一个公共点地直线有()A. 1款B. 2款C. 3款D. 4款【结果】C【思路】【思路】画出图像,依据图像判断符合题意地公共点个数.【详解】画出图像如下图所示,由图可知,这两款直线与抛物线只有一个公共点,另外过点还可以作出一款与抛物线相切地直线,故符合题意地直线有款,故选C.【点睛】本小题主要考查直线和抛物线地位置关系,考查直线和抛物线交点个数问题,属于基础题.8.一个均匀地正方体玩具地各面上分别标以数(俗称骰子),将该玩具向上抛掷一次,设事件A表示向上地一面出现奇数(指向上地一面地数是奇数),事件B表示向上地一面地数不超过3,事件C表示向上地一面地数不少于4,则()A. A与B是互斥事件 B. A与B是对立事件C. B与C是对立事件D. A与C是对立事件【结果】C【思路】【思路】分别求得事件所包含地基本事件,由此判断正确选项.【详解】依题意可知,,.故不是互斥事件,不是对立事件,是对立事件,不是对立事件.故选C.【点睛】本小题主要考查互斥事件和对立事件地概念,属于基础题.9.有下面调查方式:①学校为了解高一学生地数学学习情况,从每班抽2人进行座谈。

2019-2020学年江西省高二统招班上学期联考数学理试题

2019-2020学年江西省高二统招班上学期联考数学理试题

山江湖协作体联考 2019-2020 学年高二数学试卷(理)(统招班)时间:120 分钟满分:150 分命卷人:路华敏审核人:颜绍平一、选择题(每小题 5 分,共 12 小题 60 分)1、若 , ,则不等式等价于( )A.或B.或C.或2、如果A. C.D.的解集为或有( )B.D.,那么对于函数3、已知,,,则( )A.4、已知点A. C.5、当B.和在直线时,不等式C.D.的两侧,则的取值范围是( )B.D.的解集是( )A. C.6、方程B. D.的曲线形状是( )A.B.C.D.7、若两个正实数 , 满足,且是( )A.B.恒成立,则实数 的取值范围C.D.8、对于实数 ,规定 表示不大于 的最大整数,那么不等式成立的 的取值范围是( )A.B.C.D.9、数列 的通项公式为,则数列 的前 项和 ( )A.B.C.D.10、在中,,则是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形11、已知等腰三角形的底边长为 ,一腰长为 ,则它的外接圆半径为( )A.B.C.D.12、已知函数,函数有四个不同的零点, , , ,且满足:,则的取值范围是( )A.B.C.D.二、填空题(每小题 5 分,共 4 小题 20 分)13、已知正数 满足,则的最小值为__________.14、设,若15、已知,若最大值为__________.16、在 上定义运算:实数 的取值范围是__________.若存在 x R 使得,则 __________.,且,则 的成立,则三、解答题(第 17 题 10 分,第 18 题 12 分,第 19 题 12 分,第 20 题 12 分,第 21 题12 分,第 22 题 12 分,共 6 小题 70 分)17、(1)关于 的不等式的解集非空,求实数 的取值范围;(2)已知 ,求函数的最大值.18、已知二次函数的两个零点为 和 ,且.(1)求函数 的解析式;(2)解关于 的不等式.19、在中,角(1)求角 ;(2)若的面积为的对边分别是 ,且 .,求实数 的取值范围.20、已知在等比数列 中, (1)求数列 的通项公式; (2)若数列 满足,且 是 和 的等差中项. ,求数列 的前 项和 .21、若变量 , 满足约束条件,求:(1)的最大值;(2)的取值范围;(3)的取值范围.22、已知函数 (1)若不等式( ). 的解集为 ,求 的取值范围;(2)当时,解不等式;(3)若不等式的解集为 ,若,求 的取值范围.上饶市山江湖协作体 2019 年高二联考数学(理)答案解析1-5 CCDBD 6-10CCABD 11-12 CD13. 14.15.-2 16.17.(1)设,则关于 的不等式的解集不是空集,在 上能成立,即(2)∵,∴的解集非空得 ,∴亦可得).仅当,解得或而时,.解得或.(或由,当且,∴,即时,上式等号成立,故当18.(1)由题意得:的两个根为 和 ,由韦达定理得,故∵,∴(2)由即,故 得, ,解得:,故,.,即,,故不等式的解集是.19.(1)由正弦定理得,∵,∴,又在中,,∴.(2)∵,∴,由余弦定理得:则实数 的取值范围为.,当且仅当20.(1)设公比为 ,则,,,∴时,等号成立,∴,∵是和解得或(2)则的等差中项,所以(舍),∴.,21.作出可行域,如图阴影部分所示.由,,.,即由,即由,即(1)如图可知,在点处取得最优解,.(2),可看成与的斜率范围,在点,处取得最优解,,,所以.(3)可看作与距离的平方,如图可知,所以在点处取得最大值,所以.22.(1);(2)(1)①当 ②当即时,即时,.;(3).,不合题意;,即,∴,∴.(2)即即.①当即时,解集为;②当即时,,∵,∴解集为;③当即时,,∵,所以,所以,∴解集为.(3)不等式的解集为 ,,即对任意的,不等式恒成立,即恒成立,因为恒成立,所以恒成立,设则,,所以,因为,当且仅当时取等号,所以,当且仅当时取等号,所以当时,, 所以.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019学年江西省高二上期末理科数学试卷【含答案及
解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. 已知实数,,则“ ”是“ ”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D .既不充分也不必要条件
2. 下面关于复数的四个命题:,,的共轭复数为,在复平面内对应点位于第四象限.其中真命题为()
A .、______________
B .、______________
C .、
____________________ D .、
3. 甲、乙、丙三位同学被问到是否去过,,三个城市时,
甲说:我去过的城市比乙多,但没去过城市;
乙说:我没去过城市;
丙说:我们三人去过同一城市.
有超级可判断乙去过的城市为()
A .____________________
B .____________________
C .
______________________________ D .不确定
4. 一个水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为的正方形,如图所示,则原平面图形的面积为()
A .______________
B .________________________
C .
______________ D .
5. 已知与之间的一组数据如下表:则关于的线性回归直线必过()
A .点______________
B .点____________________
C .点
______________ D .点
6. 椭圆以轴和轴为对称轴,经过点,长轴长是短轴长的倍,
则椭圆的方程为()
A.
B .___________
C.或________________________
D .或
7. 若点在椭圆上,、分别是椭圆的两焦点,且
,则的面积是()
A. B. C. D.
8. 执行如图所示的程序框图,若输出的结果是,则判断框内的取值范围是()
A ._________
B .______________
C .______________
D .
9. 已知两条不重合的直线和两个不重合的平面、,有下列命题:
①若,,则;
②若,,,则;
③若是两条异面直线,,,,则;
④若,,,,则.
其中正确命题的个数是()
A. B. C. D.
10. 某几何体的三视图如图所示,则该几何体的表面积为()
A .______________
B .______________
C .
______________ D .
11. 已知各顶点都在一个球面上的正四棱柱高为,体积为,则这个球的表面积是()
A. B. C. D.
12. 定义一种运算“ ”:对于自然数满足以下运算性质:(1),(2)
,则等于()
A .______________
B .____________________
C .______________
D .
二、填空题
13. “设的两边,互相垂直,则”拓
展到空间,类比平面几何的勾股定理,在立体几何中,可得类似的结论是“设三棱
锥中三边、、两两互相垂直,则___________” .
14. ①命题“存在”的否定是“不存在”
②若是纯虚数,则______________
③若,则或
④以直角三角形的一边为旋转轴,旋转一周所得的旋转体是圆锥
以上正确命题的序号是________ .
15. 在棱长为的正方体中,在正方体内
随机取一点,则点到点的距离大于的概率为________ .
16. 椭圆的左右焦点为,,椭圆上恰有
个不同点,使为等腰三角形,则椭圆的离心率的取值范围是
_______ .
三、解答题
17. 为何实数时,复数是:
( 1 )虚数;
(2)若,求.
18. 设命题:实数满足,其中,命题:实数满足
(1)若,且为真,求实数的取值范围;
(2)若是的充分不必要条件,求实数的取值范围.
19. 对某校高二年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(1)求出表中,及图中的值;
(2)若该校高二学生有人,试估计该校高二学生参加社区服务的次数在区间内的人数;
(3)在所取样本中,从参加社区服务的次数不少于次的学生中任选人,求至多一人参加社区服务次数在区间内的概率.
20. 对喜欢数学课程是否与性别有关系进行问卷调查,将调查所得数据绘制成二堆条形图,如图所示.
根据图中相关数据完成以下列联表,并计算有多大把握认为性别与是否喜欢数学课程有关系?
从该班喜欢数学的女生中随机选取人,参加学校数学兴趣课程班,已知该班女生喜欢数学课程,求女生被选中的概率.
参考数据与公式:由列联表中数据计算,
临界值表:
21. 如图,四棱锥的底面是正方形,底面,
,,点、、分别为棱、、的中点.
(1)求证:平面;
(2)求证:平面平面;
(3)求三棱锥的体积.
22. 已知椭圆的点到左、右两焦点,的距离之和为,离心率为.
(1)求椭圆的方程;
(2)过右焦点的直线交椭圆于、两点:
①若轴上一点满足,求直线斜率的值;
②是否存在这样的直线,使得的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】。

相关文档
最新文档