2018年全国成人高考数学真题与答案本)
2018年成人高考《高等数学(一)》真题及答案
A.1B. 2 C. 3 D. 4 解:
设 f x 4x ln 4 x 4 ln x k , x 0,.①
f x 4 4 ln3 x 4 4 x ln3 x 1
则
x
xx
.②
令 f x 0 ,得驻点 x 1.
因为当 x 0,1 时,f x 0 ,故 f x 在 x 0,1单调减少;而当 x 1,时,f x 0 故 f x
x
x
.
第 3 页 共 18 页
综合上述分析可画出 y f x的草图,易知交点个数为 2.
16.设
ln
f
t
cos t
,则
tf f
ttdt
(A)
A. t cost sin t C B. t sin t cost C
C. tcos t sin t C D. t sin t C
lim ln n 1 1 2 1 2 2 1 n 2 17. n n n n (B)
sin x dx
sin 2x dx
2.函数 y 8x 的反函数是(C). A. y 3log 2 x(x 0) ;B. y 8x ;
C.
y
1 3
log 2
x(x
0)
;D.
y
8 x
(x
0)
.
xn
1 n
,当n为奇数,
3.设
107 ,当n为偶数, 则(D)
A.
lim
n
xn
0
;B.
lim
n
xn
107 ;
0, n为奇数,
lim
n
2
2
C. 2 cos y D. 2 cos x
dy 解:因为 dx
2018年成人高考数学分析(Ⅱ)试题与参考答案知识点复习考点归纳总结参考
数学分析(2)期末试题课程名称 数学分析(Ⅱ) 适 用 时 间一、单项选择题(每小题3分,3×6=18分)1、 下列级数中条件收敛的是( ).A .1(1)nn ∞=-∑ B . 1nn ∞= C .21(1)nn n∞=-∑ D . 11(1)nn n ∞=+∑2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数在它的间断点x 处 ( ).A .收敛于()f xB .收敛于1((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是( ).A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x '=( )A .1x B .ln x x C . 21x- D . x e 5、已知反常积分20 (0)1dxk kx +∞>+⎰收敛于1,则k =( ) A . 2π B .22π C . D . 24π6、231ln (ln )(ln )(1)(ln )n nx x x x --+-+-+ 收敛,则( )A . x e <B .x e >C . x 为任意实数D . 1e x e -<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为 .2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u = ,和S = . 3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1()()bxxaef e dx f x dx =⎰⎰,则a = ,b = .5、数集(1)1, 2 , 3, 1nn n n ⎧⎫-=⎨⎬+⎩⎭的聚点为 . 6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为 .65三、计算题(每小题6分,6×5=30分) 1、(1)dx x x +⎰. 2、2ln x x dx ⎰. 3、 0 (0)dx a >⎰. 4、 2 0cos limsin xx t dt x→⎰.5、dx ⎰.四、解答题(第1小题6分,第2、3 小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)-∞+∞上的一致收敛性. 2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =, 将f 在(,)ππ-上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤= ,证明:级数1nn b∞=∑也收敛.2、证明:22 0sin cos nn x dx x dx ππ=⎰⎰.66试题参考答案与评分标准课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业一、 单项选择题(每小题3分,3×6=18分)⒈ B ⒉ B ⒊ A ⒋ C ⒌ D ⒍ D二、 填空题(每小题3分,3×6=18分)⒈ 2 ⒉ 2, =2(1)n u S n n =+ ⒊ ln 2⒋ 1, a b e == ⒌ 1± ⒍ 201, (,)!nn x x n ∞=∈-∞+∞∑三、 计算题(每小题6分,6×5=30分)1. 解111(1)1x x x x=-++ 1(1)dx x x ∴+⎰ (3分)11()1dx x x=-+⎰ln ln 1.x x C =-++ (3分)2. 解 由分部积分公式得231ln ln 3x xdx xdx =⎰⎰ 3311ln ln 33x x x d x =-⎰ (3分) 33111ln 33x x x dx x =-⋅⎰ 3211ln 33x x x dx =-⎰ 3311ln 39x x x C =-+ (3分) 3. 解 令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得0⎰2220cos atdt π=⎰(3分)6768220(1cos 2)2a t dt π=+⎰2201(sin 2)22a t t π=+2.4a π=(3分)4. 解 由洛必达(L 'Hospital)法则得200cos limsin xx tdtx →⎰20cos lim cos x x x →= (4分) 0lim cos x x →=1= (2分)5. 解= (2分)20sin cos x x dx π=-⎰4204(cos sin ) (sin cos )x x dx x x dx πππ=-+-⎰⎰ (2分)2404(sin cos )(sin cos )x x x x πππ=+-+2.= (2分)四、 解答题(第1小题6分,第2、3小题各8分,共22分)1. 解 (, ), x n ∀∈-∞∞∀+(正整数)22sin 1nx n n ≤ (3分) 而级数211n n ∞=∑收敛,故由M 判别法知,21sin n nxn ∞=∑在区间(,)-∞+∞上一致收敛. (3分)2. 解 幂级数1nn x n∞=∑的收敛半径1R ==,收敛区间为(1,1)-. (2分)易知1nn x n ∞=∑在1x =-处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)-. (2分) 01, (1, 1)1n n x x x ∞==∈--∑ (2分)逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈--∑⎰⎰. 即101ln(1), (1,1).1n nn n x x x x n n+∞∞==--==∈-+∑∑ (2分)3. 解 函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。
2018_年成人高等学校专升本招生全国统一考试__高等数学(二)
2019/11、12一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的。
1.lim x →0x cos x=A.eB.2C.1D.02.若y =1+cos x ,则d y =A.(1+sin x )d x B.(1-sin x )d x C.sin x d x D.-sin x d x3.若函数f (x )=5x ,则f '(x )=A.5x-1B.x 5x-1C.5xln5 D.5x4.曲线y =x 3+2x 在点(1,3)处的法线方程是A.5x +y -8=0B.5x -y -2=0C.x +5y -16=0D.x-5y +14=05.∫12-xd x =A.ln 2-x +C B.-ln 2-x +C C.-1(2-x )2+C D.1(2-x )2+C 6.∫f '(2x )d x =A.12f (2x )+CB.f (2x )+CC.2f (2x )+CD.12f (x )+C7.若f (x )为连续的奇函数,则1-1∫f (x )d x =A.0B.2C.2f (-1)D.2f (1)8.若二元函数z =x 2y +3x +2y ,则əz əx=A.2xy +3+2yB.xy +3+2yC.2xy +3D.xy +39.设区域D ={(x ,y )0≤y ≤x 2,0≤x ≤1},则D 绕x 轴旋转一周所得旋转体的体积为A.π5 B.π3C.π2D.π10.设A ,B 为两个随机事件,且相互独立,P (A )=0.6,P (B )=0.4,则P (A-B )=A.0.24B.0.36C.0.4D.0.6二、填空题:每小题4分,共40分。
11.曲线y =x 3-6x 2+3x +4的拐点为.12.lim x →0(1-3x )1x=.13.若函数f (x )=x-arctan x ,则f '(x )=.14.若y =e 2x ,则d y =.15.设f (x )=x 2x ,则f '(x )=.16.∫(2x+3)d x=.17.1-1∫(x 5+x 2)d x=.18.π0∫sin x 2d x=.19.+∞0∫e -xd x=.20.若二元函数z=x 2y 2,则ə2z əx əy=.三、解答题:本大题共8小题,共70分。
2018年安徽成人高考高起点数学(理)真题及答案
2018年安徽成人高考高起点数学(理)真题及答案第Ⅰ卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合={2,4,8},{2,4,6,8},A B =则A B ⋃=A . {2,4,6,8}B .{2,4}C .{2,4,8}D .{6}2.不等式220x x -<的解集为A . {}02x x x <>或B . {}-20x x <<C . {}02x x <<D .{}-20x x x <>或 3.曲线21y x=-的对称中心是 A .1,0-() B . 0,1() C . 2,0() D .1,0() 4.下列函数中,在区间0,+∞()为增函数的是 A . 1y x -= B .2y x = C . sin y x = D .3x y -=5.函数()tan(2)3f x x π=+的最小正周期是 A . 2π B .2π C . π D .4π 6.下列函数中,为偶函数的是A .y =B .2x y -=C .11y x -=-D .31y x -=+7.函数2log (2)y x =+的图像向上平移1个单位后,所得图像对应的函数为A .2log (1)y x =+B .2log (3)y x =+C .2log (2)1y x =+-D .2log (2)+1y x =+ 8.在等差数列{}n a 中,11a =,公差2360,,,d a a a ≠成等比数列,则d =A .1B .1-C .2-D .29.从1,2,3,4,5中任取2个不同的数,这2个数都是偶数的概率为A .310B .15C .110D .3510.圆222660x y x y ++--=的半径为A B .4 C D .1611.双曲线223412x y -=的焦距为A .B .C . 4D .212.已知抛物线26y x =的焦点为F ,点(0,1)A -,则直线AF 的斜率为A .32 B .32- C .23- D .2313.若1名女生和3名男生排成一排,则该女生不在两端的不同排法共有( )种A .24B .12C .16D .814.已知平面向量(1,),(1,2)a t b ==-,若+m a b 平行于向量(2,1)-,则 A .2310t m -+= B .2+310t m += C .2310t m --=D .2+310t m -=15.函数()2cos(3)3f x x π=-在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值是A .0BC .2D .-116.函数223y x x =-+的图像与直线1y x =+交于,A B 两点,则AB =A .B .45.1CD .17.设甲:()y f x =的图像有对称轴;乙:()y f x =是偶函数,则A .甲是乙的充分条件但不是必要条件B .甲既不是乙的充分条件也不是乙的必要条件C .甲是乙的充要条件D .甲是乙的必要条件但不是充分条件第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)(18)过点()1,2-且与直线310x y +-=垂直的直线方程为 .(19)掷一枚硬币时,正面向上的概率为12,掷这枚硬币4次,则恰有2次正面向上的概率是 .(20)已知3sin 5x =-,且x 为第四象限角,则sin 2x = . (21)曲线21x y x e =-+在点()0,0处的切线方程为 .三、解答题(本大题共4小题,共49分。
2018年成人高考数学试题及答案(专升本)
2 2 ,两边同时对 求导得 2 + 2,
故
2 +2 2 2
+1 .
16.【答案】 2 + +
【考情点拔】本题考查了不定积分的知识点.
【应试指导】 2 +
2+ + .
17.【答案】
【考情点拨】本题考查了定积分的知识点.
【应试指】
1 1
+2
1 是
是+1
1 1
2.
18.【答案】2
【考情点拔】本题考查了定积分的知识点.
1 2
2
2+
1 2
2
+.
【考情点拨】本题考查了定积分的性质的知识点.
【应试指导】因为
是连续的奇函数,故
1 1
.
8.【答案】C
【考情点拨】本题考查了一阶偏导数的知识点.
【应试指导】 2 + + 2 ,故 2 + .
9.【答案】A
【考情点拨】本题考查了旋转体的体积的知识点.
【应试指导】
12
1
1.
10.【答案】B 【考情点拨】本题考查了独立事件的知识点.
+ + 2+2 2 1 ,
,
2+2
令,
2+
,
, 2+2 2 1
解得驻点 1 2 和 1 2 ,
且
12
1, 1 2
1.
故函数 , 在条件 2 + 2 2 1 下的最小值为 1,最大值为1.
2018 年成人高考专升本数学试题
1. lim
th
A.
B. 2
C. 1
2018年成人高考专升本《高等数学(一)》考试及参考答案(共三套)
2018年成人高等学校专升本招生全国统一考试高等数学(一)。
答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。
2018年成人高考数学真题(理工类)版(最新整理)
数学试题(理工农医类)
第Ⅰ卷(选择题,共 85 分) 一、选择题(本大题共 17 小题,每小题 5 分,共 85 分,在每小题给出的四个选项中,只有一项是
符合题目要求的)
1.设集合 M {x -1 x 2}, N {x x 1}, 则 M N
(25)(本小题满分 12 分)设椭圆的焦点为 F1( 3,0), F2 ( 3,0) ,其长轴长为 4.
(1)求椭圆的方程;
(2)若直线 y 3 x m 与椭圆有两个不同的交点,求 m 的取值范围. 2
(22)(本小题满分 12 分)已知 ABC 中, A 60o , AB 5, AC 6, 求 BC .
(23)(本小题满分
12
分)已知数列 an的前 n
项和
sn
1
1 2n
,求‘
(1) an的前 3 项;
(2) an 的通项公式.
(24)(本小题满分 12 分)设函数 f (x) x3 3x2 9x .求 (1)函数 f (x) 的导数; (2)函数 f (x) 在区间[1,4]的最大值与最小值.
C . -2
D . -3
13 .每次射击时,甲击中目标的概率为 0.8 ,乙击中目标的概率为 0.6 ,甲、乙各自独立地射向目标,
则恰有一人击中的概率为
A . 0.44
B . 0.6
C . 0.8
D .1
14 .已知一个球的体积为 32 ,则它的表面积为 3
A . 4 B . 8 C .16
D . 24
B . y x-1 2
C . y 2x 1 D . y 1-2x
7 .若 a, b, c 为实数,且 a 0 。设甲: b2 4ac 0 ,乙: ax2 bx c 0 有实数根,则
2018年成人高考《高等数学(二)》真题和答案解析
B. C.对立事件 D.互不相容事件 二、填空题:11~20 小题,每小题 4 分,共 40 分.把答案填在题中横线上.
11.
12.
13. 14.设函数 y=In(1+x2),则 dy=__________.
15.
16.Leabharlann 17.18.19. 20.由曲线 y=x 和 y=x2 围成的平面图形的面积 S=__________. 三、解答题:21~28 小题,共 70 分.解答应写出推理、演算步骤.
18.【答案】应填 1. 【解析】 利用偶函数在对称区间定积分的性质,则有 19. 【解析】 对于对数函数应尽可能先化简以便于求导.因为
20.【答案】应填吉.
【解析】 画出平面图形如图 2-3—2 阴影部分所示,则
三、解答题 21.本题考查的知识点是重要极限Ⅱ. 【解析】 对于重要极限Ⅱ:
第6页共9页
22.本题考查的知识点是求复合函数在某一点处的导数值. 【解析】 先求复合函数的导数 yˊ,再将 x=1 代入 yˊ.
23.本题考查的知识点是定积分的计算方法. 【解析】 本题既可用分部积分法计算,也可用换元积分法计算.此处只给出分部积分法,有兴趣的读者可以 尝试使用换元积分法计算.
24.本题主要考查原函数的概念和不定积分的分部积分计算方法. 【解析】 这类题常见的有三种形式:
等式右边部分拿出来,这就需要用凑微分法(或换元积分法)将被积表达式写成能利用公式的不定积分的结构式, 从而得到所需的结果或答案.考生如能这样深层次理解基本积分公式,则无论是解题能力还是计算能力与水平 都会有一个较大层次的提高. 基于上面对积分结构式的理解,本题亦为:
第4页共9页
7.【答案】 应选 B. 【解析】 本题考查的知识点是已知导函数求原函数的方法.
2018年成人高等学校招生全国统一考试专升本《高等数学(二)》试题及答案解析
2018年成人高等学校招生全国统一考试专升本高等数学(二)本试卷分第Ⅰ卷(选择题)和第卷(非选择题)两部分,满分150分,考试时间120分.第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. lim x→0xcosx =( )A. eB.2C. 1D. 02. 若y =1+cosx ,则dy = ( )A. (1+ sinx)dxB. (1−sinx)dxC. sinxdxD.−sinxdx3. 若函数f(x)=5x ,则f′(x)= ( )A. 5x−1B. x5x−1C. 5x ln5D.5x4. 曲线y =x 3+2x 在点(1,3)处的法线方程是 ( )A. 5x +y −8=0B. 5x −y −2=0C. x +5y −16=0D. x −5y +14=05. ∫12−xdx =( )A. ln |2−x|+CB. −ln |2−x|+CC.−1(2−x)2+C D. 1(2−x )2+C6. ∫f′(2x)dx = ( )A. 12f(2x)+CB. f(2x)+CC. 2f(2x)+CD. 12f(x)+C7. 若f(x)为连续的奇函数,则∫f(x)1−1dx = ( )A. 0B. 2C. 2f(−1)D. 2f(1)8. 若二元函数z =x 2y +3x +2y ,则ðz ðx=( )A. 2xy +3+2yB. xy +3+2yC. 2xy +3D. xy +39. 设区域D ={(x ,y)|0≤y ≤x 2,0≤x ≤1},则D 绕x 轴旋转一周所得旋转体的体积为 ( )A. π5B. π3C. π2D. π10. 设A ,B 为两个随机事件,且相互独立,P(A)=0.6,P(B)=0.4,则P(A −B )=( )A. 0.24B. 0.36C. 0.4D. 0.6第Ⅱ卷(非选择题,共110分)二、填空题(11~20小题,每小题4分,共40分)11. 曲线y =x 3−6x 2+3x +4的拐点为 . 12. lim x→0(1−3x )1x = .13.若函数f(x)=x −arctanx ,则f′(x)= . 14. 若y =e 2x 则dy = . 15. 设f(x)=x 2x ,则f′(x)= . 16. ∫(2x +3)dx = . 17. ∫(x 5+x 2)1−1dx = . 18. ∫sin x 2π0dx = . 19. ∫e−x +∞0dx = .20. 若二元函数:z =x 2y 2,则ð2z ðxðy= .三、解答题(21~28题,共70分。
2018年成人高考数学试题
2018年成人高考数学试题一、选择题1. (2018年成人高考数学试题)设函数f(x) = 2x + 3,求f(-1)的值。
A. -2B. 1C. 5D. 72. (2018年成人高考数学试题)已知一个等差数列的前三项分别是a1 = 2, a2 = 5, a3 = 8,求该等差数列的公差d。
A. 1B. 3C. 5D. 73. (2018年成人高考数学试题)在一个直角坐标系中,点P(2,3)关于y轴的对称点的坐标是:A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)4. (2018年成人高考数学试题)已知一个圆的半径为5cm,求该圆的面积(保留一位小数)。
A. 78.5B. 65.4C. 50.0D. 25.05. (2018年成人高考数学试题)若集合A = {1, 2, 3},集合B = {2, 3, 4},则A与B的交集A∩B的元素个数是:A. 1B. 2C. 3D. 4二、填空题6. (2018年成人高考数学试题)已知一个等比数列的前两项是6和-3,其第三项为______。
7. (2018年成人高考数学试题)在直角坐标系中,直线y = 2x + 5与x轴的交点坐标为______。
8. (2018年成人高考数学试题)一个圆的周长是15π,那么该圆的半径是______。
9. (2018年成人高考数学试题)设函数g(x) = x^2 - 4x + 3,求g(x)的最小值,记为______。
三、解答题10. (2018年成人高考数学试题)解方程组:\begin{cases}x + y = 6 \\x - y = 2\end{cases}11. (2018年成人高考数学试题)已知一个直角三角形的两条直角边长分别为3cm和4cm,求该直角三角形的斜边长。
12. (2018年成人高考数学试题)一个班级有40名学生,其中20%的学生参加了篮球队,30%的学生参加了足球队,有5名学生既参加了篮球队又参加了足球队。
2018年成人高考数学分析试卷及答案6套知识点复习考点归纳总结参考
一. (8分)用数列极限的N ε-定义证明1n =.二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x ag x b →=;(2) 0()x U a ∀∈,有0()()g x U b ∈ (3) lim ()u bf u A →=用εδ-定义证明, lim [()]x af g x A →=.三. (10分)证明数列{}n x :cos1cos 2cos 1223(1)n nx n n =+++⋅⋅⋅+ 收敛. 四. (12分)证明函数1()f x x=在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点.七. (12分)确定,a b 使lim )0x ax b →+∞-=.八. (14分)求函数32()2912f x x x x =-+在15[,]42-的最大值与最小值.九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使24()()()()f f b f a b a ζ''≥--.一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常数, 证明{}n a 收敛,并求其极限.二. (10分)设0lim ()0x x f x b →=≠, 用εδ-定义证明011lim()x x f x b→=. 三. (10分)设0n a >,且1lim1nn n a l a →∞+=>, 证明lim 0n n a →∞=.四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且lim ()x a f x +→,lim ()x bf x -→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且()0f a ≠,而函数2[()]f x 在a 可导,则函数()f x 在a 可导.七. (12分)求函数()1f x x x ααα=-+-在的最大值,其中01α<<.八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有12()()f x f x ''≤.九. (12分)设(),0()0,0g x x f x x x ⎧ ≠⎪=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰2. xe dx -⎰3.ln 0⎰4.20sin 1cos x xdx xπ+⎰二.(10分)设()f x 是上的非负连续函数, ()0baf x dx =⎰.证明()0f x = ([,])x a b ∈.三. (10分)证明20sin 0xdx xπ>⎰. 四. (15分)证明函数级数0(1)n n x x ∞=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.五. (10分)将函数,0(),0x x f x x x ππππ+ ≤≤⎧=⎨- <≤⎩展成傅立叶级数.六. (10分)设22220(,)0,0xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;(3) (,)f x y 在(0,0)可微.七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板?八. (15分)设01σ<<, 证明111(1)n n n σσ∞=<+∑.一. (各5分,共20分)求下列不定积分与定积分:1.(0)a >2.1172815714x x dx x x++⎰3.1arcsin x dx ⎰4.1000π⎰二. (各5分,共10分)求下列数列与函数极限:1. 221lim nn k nn k →∞=+∑2. 20lim1xt xx xe dt e →-⎰三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有()()0baf xg x dx =⎰.证明()0f x = ([,])x a b ∈.四. (15分)定义[0,1]上的函数列2212,211()22211n n x x n f x n n x x n n x n ⎧ , 0≤≤⎪⎪⎪=- , <≤⎨⎪⎪0 , <≤⎪⎩证明{()}n f x 在[0,1]不一致收敛.五. (10分)求幂级数0(1)n n n x ∞=+∑的和函数.六. (10分)用εδ-定义证明2(,)(2,1)lim (43)19x y x y →+=.七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.八. (13分)设正项级数1n n a ∞=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞=.一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程.z zxy z xy x y∂∂+=-∂∂ 二 (10分) 设n 个正数12, , , n x x x 之和是a,求函数u =. 三 (14分) 设无穷积分() af x dx +∞⎰收敛,函数()f x 在[, )a +∞单调,证明1()() ().f x o x x=→+∞四 (10分) 求函数1220() ln() F y x y dx =+⎰的导数(0).y >五 (14分) 计算0sin sin (0, ).pxbx axI e dx p b a x+∞--=>>⎰六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面111111122222223333333 ,, = 0 , , a x b y c z h a b c a x b y c z h a b c a x b y c z h a b c ++=±⎧⎪++=±∆≠⎨⎪++=±⎩ 所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22C xdy ydxx y -+⎰,其中C 是光滑的不通过原点的正向闭曲线.九 (10分) 求dS z∑⎰⎰,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部.数学分析-3样题(二)一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞=,证明无穷积分1() f x dx +∞⎰与级数1001()n f n =∑同时收敛或同时发散.四 (12分) 证明ln (0).ax bx e e bdx a b x a--+∞-=<<⎰五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有01lim [()()] ()().xa h f t h f t dt f x f a h→+-=-⎰六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .七 (10分) 设222()() VF t f x y z dx dy dz =++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,f 是连续函数,求'()F t .八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数.九 (12分) 计算 Sxyz dx dy ⎰⎰,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。
2018年成人高考专升本《高等数学(二)》试题及参考答案(共三套)
2018年成人高等学校专升本招生全国统一考试高等数学(二)(模拟试题)答案必须答在答题卡上指定的位置,答在试卷上无效。
.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.1.当x→2时,下列函数中不是无穷小量的是().A.B.C.D.2.A.-3B.一1C.0D.不存在3.A.B.C.D.4.A.B.C.D.5.A.0B.2x3C.6x2D.3x26.设ƒ(x)的一个原函数为Inx,则ƒ(x)等于().A.B.C.D.7.A.y=x+1B.y=x-1C.D.8.A.0B.e一1C.2(e-1)D.9.A.y4cos(xy2)B.- y4cos(xy2)C.y4sin(xy2)D.- y4sin(xy2)10.设100件产品中有次品4件,从中任取5件的不可能事件是().A.“5件都是正品”B.“5件都是次品”C.“至少有1件是次品”D.“至少有1件是正品”第Ⅱ部分(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.把答案填在题中横线上.11.12.13.14.15.16.17.18.19.20.三、解答题:21~28题,共70分.解答应写出推理、演算步骤.21.22.23.24.25.(本题满分8分)设事件A与B相互独立,且P(A)=0.6,P(B)=0.7,求P(A+B). 26.27.28.(本题满分10分)求由曲线y=2-x2,),=2x-1及X≥0围成的平面图形的面积S以及此平面图形绕X轴旋转一周所得旋转体的体积Vx.模拟试题参考答案一、选择题1.【答案】应选C.2.【答案】应选D.【解析】本题考查的知识点是分段函数在分段点处的极限计算.分段点处的极限一定要分别计算其左、右极限后,再进行判定.3.【答案】应选A.【提示】本题考查的知识点是基本初等函数的导数公式.只需注意e3是常数即可.4.【答案】应选D.5.【答案】应选C.【解析】本题考查的知识点是函数在任意一点x的导数定义.注意导数定义的结构式为6.【答案】应选A.【提示】本题考查的知识点是原函数的概念,因此有所以选A.7.【答案】应选B.【解析】本题考查的知识点是:函数y=ƒ(x)在点(x,ƒ(x))处导数的几何意义是表示该函数对应曲线过点(x,ƒ(x)))的切线的斜率.由可知,切线过点(1,0),则切线方程为y=x-1,所以选B.8.【答案】应选C.【解析】本题考查的知识点是奇、偶函数在对称区间上的定积分计算.注意到被积函数是偶函数的特性,可知所以选C.9.【答案】应选D.【提示】z对x求偏导时应将y视为常数,则有所以选D.10.【答案】应选B.【解析】本题考查的知识点是不可能事件的概念.不可能事件是指在一次试验中不可能发生的事件.由于只有4件次品,一次取出5件都是次品是根本不可能的,所以选B.二、填空题11.【答案】应填2.12.13.【答案】应填一2sin 2x.【提示】用复合函数求导公式计算即可.14.【答案】应填4.15.【答案】应填1.16.【提示】凑微分后用积分公式.17.【答案】应填2In 2.【解析】本题考查的知识点是定积分的换元积分法.换元时,积分的上、下限一定要一起换.18.19.【答案】20.【答案】应填0.【解析】本题考查的知识点是二元函数的二阶混合偏导数的求法.三、解答题21.【解析】型不定式极限的一般求法是提取分子与分母中的最高次因子,也可用洛必达法则求解.解法1解法2洛必达法则.22.本题考查的知识点是函数乘积的导数计算.23.本题考查的知识点是凑微分积分法.24.本题考查的知识点是定积分的凑微分法和分部积分法.【解析】本题的关键是用凑微分法将ƒ(x)dx写成udυ的形式,然后再分部积分.25.本题考查事件相互独立的概念及加法公式.【解析】若事件A与B相互独立,则P(AB)=P(A)P(B).P(A+B)=P(A)+P(B)-p(AB)=P(A)+P(B)-p(A)P(日)=0.6+0.7-0.6×0.7=0.88.26.本题考查的知识点是利用导数的图像来判定函数的单调区间和极值点,并以此确定函数的表达式.编者希望通过本题达到培养考生数形结合的能力.【解析】(1)(2)因为由上面三式解得α=2,b=-9,c=12.27.本题考查的知识点是二元隐函数全微分的求法.利用公式法求导的关键是需构造辅助函数然后将等式两边分别对x(或y或z)求导.读者一定要注意:对x求导时,y,z均视为常数,而对y或z求导时,另外两个变量同样也视为常数.也即用公式法时,辅助函数F(x,y,z)中的三个变量均视为自变量.求全微分的第三种解法是直接对等式两边求微分,最后解出出,这种方法也十分简捷有效,建议考生能熟练掌握.解法1等式两边对x求导得解法2解法328.本题考查的知识点有平面图形面积的计算及旋转体体积的计算.【解析】本题的难点是根据所给的已知曲线画出封闭的平面图形,然后再求其面积S.求面积的关键是确定对x积分还是对Y积分.确定平面图形的最简单方法是:题中给的曲线是三条,则该平面图形的边界也必须是三条,多一条或少一条都不是题中所要求的.确定对x积分还是对y积分的一般原则是:尽可能用一个定积分而不是几个定积分之和来表示.本题如改为对y积分,则有计算量显然比对x积分的计算量要大,所以选择积分变量的次序是能否快而准地求出积分的关键.在求旋转体的体积时,一定要注意题目中的旋转轴是戈轴还是y轴.由于本题在x轴下面的图形绕x轴旋转成的体积与x轴上面的图形绕x轴旋转的旋转体的体积重合了,所以只要计算x轴上面的图形绕戈轴旋转的旋转体体积即可.如果将旋转体的体积写成上面的这种错误是考生比较容易出现的,所以审题时一定要注意.解由已知曲线画出平面图形为如图2—1—2所示的阴影区域.2018年成人高等学校专升本招生全国统一考试高等数学(二)。
成人高考2018年《数学》真题
c a2 b2 7 ,则焦距 2c 2 7
12.【答案】B
【解析】抛物线 y2 6x 的焦距为 F 3 ,0 ,则直线 AF 的斜率
2
k
0 1
3 0
2 3
2
13.【答案】C
【解析】该女生不在两端的不同排法有 C21C33 12 种 14.【答案】C
【解析】 a mb 1,t m1,2 1 m,t 2m,又因 a mb 平行于向量 (-2,1),则1 1 m 2 t 2m,化简得 2t 3m 1 0
D. y x2 1
7.函数 y log2x 2的图像向上平移一个单位后,所得图像对应的函
数为( )
A. y log2 x 1 B. y log2 x 21 C. y log2 x 21 D. y log2 x 3 8.在等差数列an中,a1 1,公差 d 0 ,a2 ,a3 ,a6 成等比数列,则 d
C.{2,4,8}
D.{2,4,6,8}
2.不等式 x2 2x < 0 的解集为( )
A.x 0 < x < 2 B.x 2 < x < 0 C.x x < 0或x > 2 D.x x < -2或x > 0
3.曲线
y
2 1
x
的对称中心是(
)
A.(-1,0) B.(1,0)
C.(2,0)
D.(0,1)
3
3 27
在 x 1时取得极小值 f 1 4 < 0, f 2 1 > 0 ,根据(1)关于 f x 单调
性的结论,可知 f x 有 3 个零点
25.【答案】
(1)由已知可得 C 的长半轴的长 a 2 ,半焦距 c 3 ,故 C 的短半轴