三相异步电动机正、反转和星形、三角形降压启动PLC的控制

合集下载

电动机星三角降压启动的PLC控制讲解

电动机星三角降压启动的PLC控制讲解
上一页 下一页 返回
工作任务3 电动机Y/△降压启动的PLC 控制
• 一、Y/△降压启动控制要求 • ① 按下启动按钮SB2,KM1和KM3吸合,电动机星 型启动,8 s后, KM3断开,KM2吸合,电动机△运行,启动完成; • ② 按下停止按钮SB1,接触器全部断开,电动机停止运行; • ③ 如果电动机超负荷运行,热继电器FR断开,电动机停止运行。 • 控制电路分析如下: • 1)合上开关QS引入三相电源;2)按下启动按钮SB2,交流接触器 KM3线圈回路通电吸合,KM3的辅助常开触点闭合,KM1通电并通过自己 的辅助触点自锁,其主触点闭合接通电动机三相电源,时间继电器KT线 圈也通电吸合并开始计时,交流接触器KM3线圈通过时间继电器的延时 断开接点通电吸合,KM3的主触点闭合将电动机的尾端连接,电动机定 子组成Y连接,这是电动机在Y形接法下的降压启动。
上一页 下一页 返回
工作任务3 电动机Y/△降压启动的PLC 控制
• ① 输入端(IN)接通时,接通延时定时器开始计时,当定时器当 前值等于或大于设定值(PT)时,该定时器位被置为1,定时器累计值 达到设定时间后,继续计时,一直计到最大值32 767。 • ② 输入端(IN)断开时,定时器复位,即当前值为0,定时器位为
最后
谢谢: 各位领导、未来的同事!
请多提宝贵意见!
返回
上一页 下一页 返回
工作任务3 电动机Y/△降压启动的PLC 控制
上一页 下一页 返回
工作任务3 电动机Y/△降压启动的PLC 控制
上一页 下一页 返回
工作任务3 电动机Y/△降压启动的PLC 控制
上一页 下一页 返回
工作任务3 电动机Y/△降压启动的PLC 控制
上一页 下一页 返回

任务三 三相异步电动机正反转循环运行的PLC控制

任务三  三相异步电动机正反转循环运行的PLC控制

(二)设备与器材
表1-22 设备与器材
序号
名称
符号
型号规格
数量 备注
1
常用电工工具
十字起、一字起、尖嘴钳、剥线钳 等
1
2
计算机(安装GX Works3编程 软件)
3
三菱FX5U可编程控制器
PLC
FX5U-32MR/ES
4
三相异步电动机正反转循环运 行控制面板
5
三相异步电动机
6
以太网通信电缆
M
WDJ26,PN=40W,UN=380V, IN=0.2A,nN=1430r/min,f=50Hz
2)学会用三菱FX5U PLC的顺控程序指令编辑三相异步电动机正反转循 环运行控制的程序。
3)会绘制三相异步电动机正反转循环运行控制的I/O接线图。 4)掌握FX5U PLC I/O接线方法。 5)熟练掌握使用三菱GX Works3编程软件编辑梯形图程序,并写入 PLC进行调试运行。
11
项目一 任务三 三相异步电动机正反转运行运行的PLC控制
MPS
栈存储器的第一层, 之前存储的数据依次
下移一层
读取堆栈第一层的 MRD 数据且保存,堆栈内
的数据不移动
读取堆栈存储器第
MPP
一层的数据,同时该 数据消失,栈内的数
据依次上移一层
梯形图表示
FBD/LD表示
ST表示
目标元件
ENO:=MPS(EN);
ENO:=MRD(EN);

ENO:=MPP(EN);
对于FX5U PLC默认情况下,16位计数器的个数为256个,对应编号为C0 ~C255;32位超长计数器个数为64个,对应编号为LC0~LC63。

PLC实验二报告-三相异步电动机的星三角换接启动控制

PLC实验二报告-三相异步电动机的星三角换接启动控制

实验二三相异步电动机的星/三角换接启动控制一、实验梯形图:
二、实验程序及注释
三、实验结果:
当按下X000即SS时,机器启动,Y001即KM1闭合,间隔1s后Y003即KM3闭合,此时为星形联结启动;按照设定的时间(本组为第九组,按照要求设定从启动到切换为三角形联结启动的时间为9秒),9秒后常闭触点T0断开,KM3断开,再间隔0.5秒后KM2闭合,此时为三角形联结启动。

当按下X001即ST时,机器停车,KM1~KM3的指示灯全部熄灭,电动机停止运作。

当按下X002即FR时,模拟过载情况,断电,情况如按下ST时。

实验结果与仿真结果一致,如图所示。




四、经验总结
①实验注意事项:
在实验过程中,必须连接好线路并确保接线以及程序正确后方可打开电源启动电动机模
块,以防出现触电的情况;如遇到程序错误的问题(此时PLC最下面的红灯会亮起来),先看程序有没有语句缺漏然后再检查语句是否有错误,注意器件名跟软元件名要一一对应。

②关于三相异步电动机的星/三角换接启动:
Y-△降压启动也称为星形-三角形降压启动,简称星三角降压启动。

这一线路的设计思想仍是按时间原则控制启动过程。

所不同的是,在启动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了启动电流对电网的影响。

而在其启动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。

凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可以采用这种线路。

实物教PLC控制接线,细节展示星形三角形降压启动实物图

实物教PLC控制接线,细节展示星形三角形降压启动实物图

昨天发了关于PLC控制电路的多种原理接线图,私信听到一些建议,说希望展示一下实物接线图。

今天特意应大伙的建议做一轮关于星形-三角形降压启动的PLC控制接线图细节的操作过程,由于现场没有三线电,所以是没有通电的场景哦!三相异步电动机星形-三角形原理图:三相异步电动机星形-三角形IO表:采用星三角降压启动的优点是所需设备简单、成本低。

我们所需的物件有:三个交流接触器、中间继电器、空气开关、按钮、开关电源、发电机、导线以及PLC我们分为俩大部分来做接线的细节操作展示一、先接主电路第一步先将三根火线接入主交流接触器主触点,并且由主触点另外一端接入三相异步电动机其中一组线第二步将三根火线从主交流接触器接到三角形接触器,分别对应T1接到L1,T2接到L2,T3接到L3第三步电机接入到三角形接触器,再从三角形接触器接入到Y形接触器。

T1接到T1,T2接到T3,T3接到T2第四步Y形接触器的短接部分以上就是主电路的完整接线步骤二、接控制电路第一步分别给PLC和开关电源接入220伏交流电,开关电源接入空气开关第二步将24伏的直流电正极分别接入PLC的S/S和中间继电器的14号脚第三步将24伏的直流电负极分别接入PLC所需Y点的com端以及俩个按钮的常开触点第四步根据之前的IO表,三个中间继电器的13号脚分别接入Y0,Y1,Y2;接入启动按钮X0,停止按钮X1第五步将火线分别接入中间继电器其中一组常开触点,然后由常开触点另外一端分别接入交流接触器的线圈第六步线圈的另外一端接回零线。

以上,关于星形-三角形降压启动的PLC 控制接线操作就完成了。

附上一部分简短的程序图:。

星形三角形降压启动的PLC控制

星形三角形降压启动的PLC控制

程序设计
1、X0星形启动KM1(Y0),KM2(Y1)得电 2、延时10秒后,KM2停电,KM3(Y2)得电 3、KM2、KM3互锁 4、任何时候可以停机(X1)。 5、FR常开触点热继电器保护(X2)
总结
星形三角形降压启动,主要问题: 1、主电路: (1)如何实现星形连接和三角形连接 (2)两种连接方式的相电压 2、控制电路: 星形接触器、三角形接触器互锁,包含硬 件互锁和软件互锁。
拓展思考
程序改进:KM2停电后,再延时0.3秒,然 后启动KM3,防止电弧短路。
负载的星形连接和三角形连接
(1) 星形
(2) 三角形
思考:1、两种接法,每相负载上的电压是多少伏? 思考:2、对称负载的星形接法,零线电流是多少?
三相绕组的星形连接和三角形连接
星形
三角形
相电压220V 相电压380V
星形--三角形控制主电路
星形启动:KM1,KM2得电
三角形运行:KM1,KM3得电 若KM2,KM3同时得电,将会 有三相电源短路 解决办法:互锁
星形三角形降压启动的PLC控制
主讲:李月虹
2017年11月21日
想一想:电动机为什么要降压启动?
想一想:电动机为什么要降压启动?
三相异步电动机(10KW以上)启动电流很 大,可以达到正常工作电流的4~7倍。 为保护电动机不烧坏,就要采用降压启动, 减小启动电流。 星形——三角形变换是降压启动的一种方 式。
电源接触器
三角形接法 接触器
星形接法 接触器

小结:星形——三角形降压启动的含义
指电动机起动时,把定子绕组接成星形, 以降低起动电压,减小起动电流;待电动 机起动后,再把定子绕组改接成三角形, 使电动机全压运行。

基于PLC和触摸屏控制的三相异步电动机星——三角降压启动控制系统的设计

基于PLC和触摸屏控制的三相异步电动机星——三角降压启动控制系统的设计

193中国设备工程Engineer ing hina C P l ant中国设备工程 2018.07 (下)三相异步电动机应用广泛,其结构简单、维修方便、性能稳定。

三相异步电动机常见的启动方式有全压启动和降压启动两种。

由于全压启动的电路系统接线简单、经济快捷、维护方便,但全压启动对电动机的功率有一定的限制,适用于小功率电动机。

大功率电动机采用全压启动会产生过大的电流,引起电网电压显著下降,影响电网内其它负载电气设备的正常使用。

另外,电动机频繁启动产生的过大的电流会造成电机线圈温度聚生,影响线圈的绝缘效果,缩短电动机的使用寿命。

设备启动时,需要高于工作载荷的扭矩,为了减小设备的起动电流,应采用适当的措施控制电动机在启动时的电流。

降压启动是通过专门的启动设备或线路,降低启动电动机时电动机绕组两端的电压来降低启动电流。

当电动机转速接近额定转速时,电动机电压恢复正常。

由电动机转矩与定子绕组电压的关系可知,降压启动会影响电动机的启动转矩,比较适合设备空载启动或轻载启动。

“星——三角形”降压启动是应用最广泛的降压启动方法,传统的电动机“星——三角形”控制系统是基于继电器——接触器控制,这种控制系统采用大量的低压电器,线路复杂、连线繁琐、可靠性差。

本文提出采用编程控制器PLC 和触摸屏控制方案,不仅能解决线路复杂和频繁启动的问题,而且抗干扰能力强、编程简单易学、操作直观、自动化程度高。

1 电动机星——三角启动1.1 星——三角启动的原理在三向异步电机启动时将电机定子绕组接成星形接线,当电机启动成功后将电机定子绕组改接成三角形接线,根据电机启动电流与电源电压的关系,电机启动时电网提供的电流只有全电压启动电流的1/3,因此,采用星——三角启动可降低启动电流,减轻电机启动时对电网的冲击。

传统的星——三角启动的电气控制线路中,定子绕组的界限形式通过主电路的3个接触器KM1、KMY、KM △及继电器来实现:当KM1和KMY 吸合时,定子绕组成星形接线;当KMY 断开,KM1和KM △吸合时,电动机定子绕组接成三角形接线,从而实现了星——三角启动控制。

实验三三相异步电动机的星三角换接启动控制

实验三三相异步电动机的星三角换接启动控制

实验三三相异步电动机的星三角换接启动控制实验三三相异步电动机的星/三角换接启动控制在三相异步电动机的星/三角换接启动控制实验区完成本实验注意:(本实验只能在实验台上完成),由于电机正反转换接时,有可能因为电动机容量较大或操作不当等原因,使接触器主触头产生较为严重的起弧现象,如果电弧还未完全熄灭时,反转的接触器就闭合,则会造成电源相间短路。

用PLC来控制电机则可避免这一问题。

实验目的1、掌握电机星/三角换接启动主回路的接线。

2、学会用可编程控制器实现电机星/三角换接降压启动过程的编程方法。

实验要求合上启动按钮后,电机先作星形连接启动,经延时6秒后自动换接到三角形连接运转。

三相异步电动机星/三角换接启动控制的实验面板图:图6-3-1所示三相异步电动机的星/三角换接启动控制面板上图下框中的SS、ST、FR分别接主机的输入点I0.0、I0.1、I0.2;将KM1、KM2、KM3分别接主机的输出点Q0.1、Q0.2、Q0.3;COM端与主机的1L端相连;本实验区的+24V端与主机的L+端相连。

KM1、KM2、KM3的动作用发光二极管来模拟。

实验装置已将三个CJ0-10接触器的触点引出至面板上。

学生可按图示的粗线,用专用实验连接导线连接。

380V电压已引至三相开关SQ的U、V、W端。

A、B、C、X、Y、Z与三相异步电动机(400W)的相应六个接线柱相连。

将三相闸刀开关拨向“开”位置,三相380V///电即引至U、V、W三端。

to prevent the accumulation of air, both ends of the tube are required the Center to bake. 6.2.5 sets should be at the bottom 200mm lashing cable head is fixed rung, with a similar cable color of plastic lashings. Cable head using "equal-width stacked" layout, or according to the size and space within the enclosure cable volume adjust, but you must ensure uniform, neat and elegant. 6.2.6 disc cabinet within cable shield layer requirements注意:接通电源之前,将三相异步电动机的星/三角换接启动实验模块的开关置于“关”位置(开关往下扳)。

三相异步电动机星三角降压启动PLC控制

三相异步电动机星三角降压启动PLC控制

学习目标
1、知识目标: (1)掌握(ORB、ANB、MPS、MPD、MPP、T、C) 基本指令。 (2)掌握PLC的编程技巧。 (3)学会使用三菱PLC的定时器,计数器。 (4)掌握PLC常用的编程方法。 (5)掌握整机的安装与调试。
学习目标
2、能力目标: (1)会根据项目分析系统控制要求写出I/O分配 点并正确设计出外部接线图。 (2)会根据控制要求选择PLC的编程方法。 (3)学会使用三菱PLC的定时器的指令。 (4)能正确识读三相异步电动机Y/△起动控制 系统的梯形图和线路图。 (5)能根据控制要求正确编制、输入和传输PLC 程序。 (6)能独立完成整机安装与调试。 (7)会根据系统调试出现的情况,修改相关设计
什么时候用MPS,MRD,MPP?
X1 X2
Y0
MPS ANB
X1
X2 Y0 X4
MPP
Y1
0 1 2 3 4 5
LD MPS AND OUT MPP OUT
X1
X2 Y0 Y1
0 1 2 3 4
LD LD OR ANB OUT
X1 X2 X4 Y0
(一)用法示例
P
简单1层栈
(一)用法示例
复杂1层栈
(二)使用注意事项
多重输出电路的 交叉路口用MPS
第一分支不 用写MRD
X1
M100
Y1
M101
Y2
M102
除第一和最后 以外的分支, 均使用MRD 最后分支用MPP
Y3
0 1 2 3 4 5 6 7 8 9
LDI MPS AND OUT MRD AND OUT MPP AND OUT
X1 M100 Y1 M101 Y2 M102 Y3

实验四PLC三相异步电动机的星三角换接起动

实验四PLC三相异步电动机的星三角换接起动

实验四三相异步电动机的星/三角换接启动控制在三相异步电动机的星/三角换接启动控制实验区完成本实验注意:(本实验只能在实验台上完成),由于电机正反转换接时,有可能因为电动机容量较大或操作不当等原因,使接触器主触头产生较为严重的起弧现象,如果电弧还未完全熄灭时,反转的接触器就闭合,则会造成电源相间短路。

用PLC来控制电机则可避免这一问题。

一、实验目的1、掌握电机星/三角换接启动主回路的接线。

2、学会用可编程控制器实现电机星/三角换接降压启动过程的编程方法。

二、实验要求合上启动按钮后,电机先作星形连接启动,经延时6秒后自动换接到三角形连接运转。

三、三相异步电动机的星/三角换接启动控制的实验面板图6-3-1上图下框下的SS、ST、FR分别接主机的输入点I0.0、I0.1、I0.2;将KM1、KM2、KM3分别接主机的输出点Q0.1、Q0.2、Q0.3;M端与主机的1L端相连;本实验区的+24V端与主机的L+相连,主机的1M与主机的M相连。

KM1、KM2、KM3的动作用发光二极管来模拟。

实验装置已将三个CJ0-10接触器的触点引出至面板。

学生可按图示的粗线,用专用实验连接导线连接。

380V电压已引至三相开关SQ的U、V、W端。

A、B、C、X、Y、Z与三相异步电动机(400W)的相应六个接线柱相连。

将三相闸刀开关拨向“开”位置,三相380V电即引至U、V、W三端。

注意:接通电源之前,将三相异步电动机的星/三角换接启动实验模块的开关置于“关”位置(开关往下扳)。

因为一旦接通三相电,只要开关置于“开”位置(开关往上扳),这一实验模块中的U、V、W端就已得电。

所以,请在连好的实验接线后,才将这一开关接通,请千万注意人身安全。

四、编制梯形图并写出程序实验参考程序梯形图如下图所示:五、动作过程分析启动:按启动按钮SS,I0.0的动合触点闭合,M10.0线圈得电,M10.0的动合触点闭合,Q0.1线圈得电,即接触器KM1的线圈得电,1秒后Q0.3线圈得电,即接触器KM3的线圈得电,电动机作星形连接启动;同时定时器线圈T37得电,当启动时间累计达6秒时,T37的动断触点断开,Q0.3失电,接触器KM3断电,触头释放,与此同时T37的动合触点闭合,T38得电,经0.5秒后,T38动合触点闭合,Q0.2线圈得电,电动机接成三角形,启动完毕。

实验一三相异步电动机的正反转控制

实验一三相异步电动机的正反转控制

学生实验守则实验时应保证人身安全,设备安全,爱护国家财产,培养科学作风。

为此,应遵守下列守则:1.学生实验前必须认真预习,明确实验目的、方法、步骤,以提高实验效率。

根据“学生实验安排表”确定实验日期、时间,准时进入实验室,不得迟到、早退。

2.进入实验室内不准吸烟、吃零食及饮料,不准大声喧哗,不准随地吐痰、乱扔纸屑。

实验台上严禁放书包,衣物。

3.学生需在指定的实验室及指定的实验台上按实验规程进行操作,不得擅入其他实验室及动用非指定用的仪器、设备。

4.实验过程中,如果仪器、设备发生故障,应及时报告指导教师并保持现场,不得擅自处理。

应在教师的指导下填写“仪器、设备使用情况登记表”。

非本次实验用的设备器材,未经教师许可不得动用。

若自己增加实验内容,须事先征得教师同意。

4.课间休息时,学生不得擅入其他实验室及教室,不准在室内大声喧哗,影响邻室学生的实验及上课。

5.上机实验严禁自带软盘,严禁玩游戏程序,一经发现,除没收盘片外,还需写检查及酌情罚款。

学生必须自觉遵守上述守则,违反者将给予严肃处理乃至取消实验资格。

实验二 FPWIN-GR系统及TV T-90A2学习机的使用一、实验目的通过本次实验使学生掌握FPWIN-GR系统及TVT—90A2学习机的使用,为今后程序编辑及调试工作打下良好基础。

1. 实验器材个人计算机及TVT —90A2学习机。

2. 预习内容FPWIN-GR 编程软件的应用。

3. 实验内容1) 启动FPWIN-GR 软件在Windows 环境下从“程序”中找到“NAiS Control ” →“FPWIN GR ”点击即可打开FPWIN GR 软件。

创建一个新文件。

2) 程序输入练习⑴ 调整光标位置输入如图2-1所示梯形图。

⑵ 将梯形图进行程序转换后存入“我的文档”图1-1的文件名为“练习1”。

⑶ 关闭所有窗口。

⑷ 打开原有文件“练习1”并将其修理改成图2-2,存入“我的文档”文件名为“练习2”。

PLC控制三相异步电机正反转

PLC控制三相异步电机正反转

目录一、可行性报告 (2)1、项目目的 (2)2、项目背景及发展概况 (2)3、可行性 (3)二、设计说明 (3)1、器材 (3)2、整体思路 (4)3、系统流程图 (4)4、实验步骤 (5)三、三相异步电机的正反转PLC控制 (5)3.1 PLC定时器控制电动机正反转电路的主接线图 (7)3. 2 PLC定时器控制三相异步电动机正反转的梯形图 (8)3.3定时器控制电动机正反转的指令表程序 (9)3.4 PLC的I/O分配 (10)3.5 实体框形图 (11)结论 (12)电机控制一、可行性报告1、项目目的1)、了解机床电气中三相电机的正反转控制和星三角启动控制。

2)、掌握电动机的常规控制电路设计。

3)、了解电动机电路的实际接线。

4)、掌握GE FANUC 3I 系统的电动机启动程序编写。

2、项目背景及发展概况三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它,要合理的控制它。

这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。

长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化设备提供了非常可靠的控制应用,它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业,企业对自动化的需要。

用PLC控制三相异步电动机正反转

用PLC控制三相异步电动机正反转

用PLC控制三相异步电动机正、反转用PLC控制三相异步电动机正、反转:三相交流异步电动机是生产设备常用的动力元件,PLC控制电动机的转动,是生产设备自动控制的最常用,也是基本的控制。

PLC控制电动机,用PLC控制负载,编程是主要的任务,接线驱动负载是次要的任务,不要本末倒置,将接线当成首要任务,编程当成次要任务。

用PLC控制三相异步电动机正、反转设计步骤控制案例:给正转信号,电动机正转运行;给反转信号,电动机反转运行;给停止信号,无论电动机正转还是反转,都要停止运行。

即电动机的控制能实现正反停。

1.电动机正反转的主电路中,交流接触器KM1和KM2的主触点不能同时闭合,并且必须保证,一个接触器的主触点断开以后,另一个接触器的主触点才能闭合。

2.为了做到上面一点,梯形图中输出继电器Y0、Y1的线圈就不能同时带电,这样在梯形图中就要加程序互锁。

即在输出Y0线圈的一路中,加元件Y1的常闭触点;在输出Y1线圈的一路中,加元件Y0的常闭触点。

当Y0的线圈带电时,Y1的线圈因Y¬0的常闭触点断开而不能得电;同样的道理,当Y1的线圈带电时,Y0的线圈因Y¬1的常闭触点断开而不能得电。

3.为了保证电动机能从正转直接切换到反转,梯形图中必须加类似按钮机械互锁的程序互锁。

即在输出Y0线圈的一路中,加反转控制信号X1的常闭触点;在输出Y1线圈的一路中,加正转控制信号X0的常闭触点。

这样能做到电动机正反转的直接切换。

当电动机加正转控制信号时,输入继电器X0的常开触点闭合,常闭触点断开。

常闭触点断开反转输出Y1的线圈,交流接触器KM2的线圈失电,电动机停止反转,同时Y1的常闭触点闭合,正转输出继电器Y0的线圈带电,交流接触器KM1的线圈得电,电动机正转。

当电动机加反转控制信号时,输入继电器X1的常开触点闭合,常闭触点断开。

常闭触点断开正转输出Y0的线圈,交流接触器KM1的线圈失电,电动机停止正转,同时Y 0的常闭触点闭合,反转输出继电器Y1的线圈带电,交流接触器KM2的线圈得电,电动机正转。

星三角降压启动的PLC控制

星三角降压启动的PLC控制

图3-29 功能指令旳梯形图体现形式
➢ 知识拓展
功能指令旳含义
使用功能指令需要注意功能框中各参数所指旳含义。现以加法指令作出阐明。
图3-30所示为加法指令(ADD)旳指令格式和有关参数。
功能号(FNC)。 每条功能指源自都有 一固定旳功能代号。操作数:操作数即为 功能指令所涉及旳参 数(或称数据),分 为源操作数,目旳操 作数及其他操作数。
➢ 任务实施
程序讲解 对于正常运营为三角形接法旳电动机,在开启
时,定子绕组先接成星形,当电动机转速上升到接 近额定转速时,将定子绕组接线方式由星形改接成 三角形,使电动机进入全压正常运营。一般功率在 4KW以上旳三相异步电动机均为三角形接法,所以 均可采用 Y-△降压开启旳措施来限制开启电流。
程序运营中,KM2、KM3不允许同步带电运营。 为确保安全、可靠,梯形图设计时,使用程序互锁, 限制Y2、Y1旳线圈不能同步得电。接线图中, KM2、KM3旳线圈回路中,加上电气互锁。双重互 锁,确保KM2、KM3旳线圈不能同步带电,防止短 路事故旳发生。
延时程序1
➢ 任务实施 用PLC实现对三相异步电动机Y-△降压开启、运营旳控制
控制要求 按电动机旳起动按钮,电动机M先作星形开启,
6秒后,控制回路自动切换到三角形连接, 电动机M作角形运营。
讲解要到达旳目旳 1)熟悉三相异步电动机Y-△降压开启旳原
理。
2)学会定时器旳简朴应用。 3)掌握外部接线图旳设计措施,学会实际 接线。
读出计数器C0旳目前值送到D20中;(b)图所示是将K200传送到D12中, K200即表达T20旳设定值。
(a) 读出计数器目前值
(b) 定时器设定值旳间接传送
图3-37 传送指令功能应用

09-用PLC进行三相异步电动机正、反转控制线路设计

09-用PLC进行三相异步电动机正、反转控制线路设计

实验九用PLC进行三相异步电动机正、反转控制线路设计一、实验目的掌握使用PLC实现三相异步电动机的正反转控制。

二、实验原理图a)主电路b)控制电路c)梯形图图1原理图三、控制要求开关QS作为总电源开关。

按下SB1,KM1吸合,电动机正向转动。

按下SB2,KM2吸合,电动机反向转动。

按下SB3,KM1(或KM2)释放,电动机停止。

开关S1与热继电器FR并接,可以用于模拟FR的动作。

四、梯形图并写出程序,实验梯形图参考图7-15步序指令器件号说明步序指令器件号说明0 LD X0 正转起动7 OR Y11 OR Y0 8 ANI X12 ANI X1 9 ANI X2 停止3 ANI X2 停止10 ANI X3 过载保护4 ANI X3 过载保护11 OUT Y1 反转5 OUT Y0 正转12 END6 LD X1 反转起动1.控制回路接线将PWD-41A挂件上PLC输出端的COM、COM0、COM1相接。

按照输入输出配置将PWD-43挂件三相鼠笼异步电动机控制模块的SB1、SB2、SB3、FR分别接到PWD-41A上PLC的输入端X0、X1、X2、X3;将S1接到FR;COM接到PLC输入端的COM。

KM1、K2接到PLC输出端的Y0、Y1;N接到PLC输出端的COM。

输入输出X0 正转(SB1)Y0 正转X1 反转(SB2)Y1 反转将QS的三个输入端(黄、绿、红)分别接到PWD02电源控制屏上的三相电源U、V、W,将N接到PWD02上的N。

将KM1黄色端与KM2的红色端子相接,KM1、KM2的绿色端子相接,KM1红色端子与KM2黄色端子相接,然后将FR的三个输出端(黄、绿、红)分别接到三相异步电动机(DJ24)接线盒上的A、B、C,将DJ24的X、Y、Z短接。

三、实验操作过程按实验接线接好连线,待老师检查无误后方可往下进行。

将程序输入PLC中并运行,按下PDC01A电源控制屏上的启动按钮将控制屏启动接通三相电源。

三相异步电动机Y-△降压启动控制线路-教学设计

三相异步电动机Y-△降压启动控制线路-教学设计

课程:西门子S7-200PLC定时器、计数器的应用课题:三相异步电动机Y-△降压启动控制线路2、断开延时定时器(TOF)输入端(IN)接通时,定时器位立即为“1”,并把当前值设为0。

输入端(IN)断开时,定时器开始计时,当断开延时定时器(TOF)的计时当前值等于设定时间时,定时器位断开为“0”,并且停止计时。

TOF指令必须用负跳变(由on到off)的输入信号启动计时。

3、有记忆功能的接通延时型定时器(TONR)输入端(IN)接通时,接通有记忆接通延时定时器(TONR),并开始计时,当定时器(TONR)的当前值等于或大于设定值时,该定时器位被置位为“1”。

定时器(TONR)累计值达到设定值后,定时器(TONR)继续计时,一直计到最大值32767。

查阅STEP7-MicroWin软件中有关TOF指令的内容。

查阅STEP7-MicroWin软件中有关TONR指令的内容。

结合STEP7-MicroWin软件的帮助文件,讲解TOF定时器的特点。

结合STEP7-MicroWin软件的帮助文件,讲解TONR定时器的特点。

写出TOF指令的主要特点。

写出TONR指令的主要特点。

输入端(IN)断开时,定时器(TONR)的当前值保持不变,定时器位不变。

输入端(IN)再次接通,定时器当前值从原保持值开始再往上累计时间,继续计时。

可以用定时器(TONR)累计多次输入信号的接通时间。

上电周期或首次扫描时,定时器(TONR)的定时器位为“0”,当前值保持,可利用复位指令(R)清除定时器(TONR)的当前值。

4、应用定时器的注意事项1)不能把一个定时器号同时用作断开延时定时器(TOF)和接通延时定时器(TON)(相当于同一定时器号既用作模拟断电延时型的物理时间继电器功能,又用作模拟通电延时型的物理时间继电器功能)。

2)使用复位(R)指令对定时器复位后,定时器位为“0”,定时器当前值为0。

3)有记忆接通延时定时器(TONR)只能通过复位指仿照教师演示的简单应用程序,自行编程调试,理解三种定时器的工作原理和特点。

电动机星—三角降压启动控制线路(精)

电动机星—三角降压启动控制线路(精)

《电控与PLC控制技术》课程案例
电动机星—三角降压启动控制线路
1.课程案例基本信息
2.课程案例
鼠笼异步电机星形——三角形降压启动控制
对于10kW以上的鼠笼异步电机,其很大的启动电流(额定电流的5~7倍)会对供电系统产生巨大的冲击,所以一般不直接全压启动,通常采用降压方式启动。

因功率在4kW 以上的鼠笼异步电机正常运行时均为三角形接法,故采用星形——三角形降压启动可有效限制启动电流。

星形——三角形降压启动控制电路如图所示。

启动时将电机定子绕组接成星型,这样加到电动机每相绕组上的电压为额定值的,而电流只有额定值的1/3,从而显著减小启动电流。

当电机转速逐渐上升接近额定值时,再将定子绕组切换成三角形接法,转为额定电压下的正常运行
为了实现启动过程的自动切换,在控制电路中使用了一只时间继电器KT。

按下启动按钮SB2后,接触器KM得电并自锁,KMY也得电,电动机以星型接法开始启动运转。

同时时间继电器KT线圈也得电而开始定时,当到达设定时间时其触点动作,KT的延时断开触点断开KMY,而延时闭合触点接通KM△并自锁,使电动机定子绕组切换成三角形接法,转为额定电压下的正常运行。

用PLC控制三相异步电动机正反转

用PLC控制三相异步电动机正反转

用PLC控制三相异步电动机正、反转用PLC控制三相异步电动机正、反转:三相交流异步电动机是生产设备常用的动力元件,PLC控制电动机的转动,是生产设备自动控制的最常用,也是基本的控制。

PLC控制电动机,用PLC控制负载,编程是主要的任务,接线驱动负载是次要的任务,不要本末倒置,将接线当成首要任务,编程当成次要任务。

用PLC控制三相异步电动机正、反转设计步骤控制案例:给正转信号,电动机正转运行;给反转信号,电动机反转运行;给停止信号,无论电动机正转还是反转,都要停止运行。

即电动机的控制能实现正反停。

1.电动机正反转的主电路中,交流接触器KM1和KM2的主触点不能同时闭合,并且必须保证,一个接触器的主触点断开以后,另一个接触器的主触点才能闭合。

2.为了做到上面一点,梯形图中输出继电器Y0、Y1的线圈就不能同时带电,这样在梯形图中就要加程序互锁。

即在输出Y0线圈的一路中,加元件Y1的常闭触点;在输出Y1线圈的一路中,加元件Y0的常闭触点。

当Y0的线圈带电时,Y1的线圈因Y¬0的常闭触点断开而不能得电;同样的道理,当Y1的线圈带电时,Y0的线圈因Y¬1的常闭触点断开而不能得电。

3.为了保证电动机能从正转直接切换到反转,梯形图中必须加类似按钮机械互锁的程序互锁。

即在输出Y0线圈的一路中,加反转控制信号X1的常闭触点;在输出Y1线圈的一路中,加正转控制信号X0的常闭触点。

这样能做到电动机正反转的直接切换。

当电动机加正转控制信号时,输入继电器X0的常开触点闭合,常闭触点断开。

常闭触点断开反转输出Y1的线圈,交流接触器KM2的线圈失电,电动机停止反转,同时Y1的常闭触点闭合,正转输出继电器Y0的线圈带电,交流接触器KM1的线圈得电,电动机正转。

当电动机加反转控制信号时,输入继电器X1的常开触点闭合,常闭触点断开。

常闭触点断开正转输出Y0的线圈,交流接触器KM1的线圈失电,电动机停止正转,同时Y 0的常闭触点闭合,反转输出继电器Y1的线圈带电,交流接触器KM2的线圈得电,电动机正转。

plc三相异步电动机正反转控制

plc三相异步电动机正反转控制

plc三相异步电动机正反转控制
PLC三相异步电动机正反转控制
PLC(可编程逻辑控制器)是一种数字化电子设备,用于控制机器和工艺自动化。

在工业生产中,PLC广泛应用于各种机械设备的控制和自动化。

其中,PLC三相异步电动机正反转控制是一种常见的应用。

PLC三相异步电动机正反转控制的原理是通过PLC控制电动机的三个相线,实现电动机的正反转。

具体实现方法如下:
1. 通过PLC控制电动机的三个相线,使电动机正转或反转。

2. 通过PLC控制电动机的起动电流和运行电流,实现电动机的平稳启动和运行。

3. 通过PLC控制电动机的转速,实现电动机的调速。

4. 通过PLC控制电动机的保护功能,实现电动机的安全运行。

在实际应用中,PLC三相异步电动机正反转控制可以应用于各种机械设备的控制和自动化。

例如,可以应用于机床、输送带、风机、水泵
等设备的控制和自动化。

总之,PLC三相异步电动机正反转控制是一种常见的应用,它可以实现电动机的正反转、平稳启动和运行、调速和保护功能。

在工业生产中,它广泛应用于各种机械设备的控制和自动化,提高了生产效率和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档