单链表的查找程序

合集下载

实验一 线性表的基本操作实现及其应用

实验一 线性表的基本操作实现及其应用

实验一线性表的基本操作实现及其应用一、实验目的1、熟练掌握线性表的基本操作在两种存储结构上的实现。

2、会用线性链表解决简单的实际问题。

二、实验内容题目一、该程序的功能是实现单链表的定义和操作。

该程序包括单链表结构类型以及对单链表操作的具体的函数定义和主函数。

其中,程序中的单链表(带头结点)结点为结构类型,结点值为整型。

单链表操作的选择以菜单形式出现,如下所示:please input the operation:1.初始化2.清空3.求链表长度4.检查链表是否为空5.检查链表是否为满6.遍历链表(设为输出元素)7.从链表中查找元素8.从链表中查找与给定元素值相同的元素在表中的位置9.向链表中插入元素 10. 从链表中删除元素其他键退出。

其中黑体部分必做题目二、约瑟夫环问题:设编号为1,2,3,……,n的n(n>0)个人按顺时针方向围坐一圈,每个人持有一个正整数密码。

开始时任选一个正整数做为报数上限m,从第一个人开始顺时针方向自1起顺序报数,报到m时停止报数,报m的人出列,将他的密码作为新的m值,从他的下一个人开始重新从1报数。

如此下去,直到所有人全部出列为止。

令n最大值取30。

要求设计一个程序模拟此过程,求出出列编号序列。

struct node(一)1.进入选择界面后,先选择7,进行插入:2.选择4,进行遍历,结果为:3.选择2,得出当前链表长度.4.选择3,得出当前链表为.5.选择分别选择5、6进行测试.6.选择8,分别按位置和元素值删除.7.选择9,或非1-8的字符,程序结束.(二) 实验总结通过这次实验,我对线性链表有了更深的理解,深入明白了线性存储结构与链式存储结构在内存存储的不同特点,同时我还学会了用这些知识实际解决一些问题,能够更加熟练地将算法转化为实际程序。

同时,在写程序和调试程序的过程中,学会了一些书写技巧和调试技巧,这对于自己能在短时间高效的写出正确地程序有很大作用。

四、主要算法流程图及程序清单 1. 主要算法流程图:(1) 从单链表表中查找与给定元素值相同的元素在链表中的位置p=p->nextp&&!(p->data==xtrue调用函数,传入参数L ,xp=L->next2.程序清单:#include<iostream> using namespace std; #include<>#include<>/* 预处理命令 */#define OK 1;#define ERROR 0;#define OVERFLOW -1;/* 单链表的结点类型 */typedef struct LNode{int data;struct LNode *next;}LNode,*LinkedList;/*初始化单链表*/LinkedList LinkedListInit(){空"<<endl;cout<<"\t\t\t"<<"2.求链表长度"<<endl;cout<<"\t\t\t"<<"3.检查链表是否为空"<<endl;cout<<"\t\t\t"<<"4.遍历链表"<<endl;cout<<"\t\t\t"<<"5.从链表中查找元素 "<<endl;cout<<"\t\t\t"<<"6.从链表中查找与给定元素值相同的元素在表中的位置"<<endl;cout<<"\t\t\t"<<"7.向链表中插入元素"<<endl;cout<<"\t\t\t"<<"8.从链表中删除元素"<<endl;cout<<"\t\t\t"<<"9.退出"<<endl;}/*主函数*/int main(){链表长度case 2:{cout<<"\t\t\t链表长度为:"<<LinkedListLength(L)<<endl;getch();}break;查链表是否为空case 3:{if (!LinkedListEmpty(L)){cout<<"\t\t\t链表不为空!"<<endl;}else{cout<<"\t\t\t链表为空!"<<endl;}getch();}break;历链表case 4:{LinkedListTraverse(L);getch();}break;链表中查找元素case 5:{cout<<"\t\t\t请输入要查询的位置i:";int j;cin>>j;if (LinkedListGet(L,j)){cout<<"\t\t\t位置i的元素值为:"<<LinkedListGet(L,j)->data<<endl;}else{cout<<"\t\t\ti大于链表长度!"<<endl;}getch();}break;链表中查找与给定元素值相同的元素在表中的位置case 6:{cout<<"\t\t\t请输入要查找的元素值:";int b;cin>>b;if (LinkedListGet1(L,b)){cout<<"\t\t\t要查找的元素值位置为:"<<LinkedListGet1(L,b)<<endl;cout<<"\t\t\t要查找的元素值内存地址为:"<<LinkedListLocate(L,b)<<endl;}else{cout<<"\t\t\t该值不存在!"<<endl;}getch();}break;链表中插入元素case 7:{cout<<"\t\t\t请输入要插入的值:";int x; cin>>x;cout<<"\t\t\t请输入要插入的位置:";int k; cin>>k;if(LinkedListInsert(L,k,x)){cout<<"\t\t\t插入成功!"<<endl;}else{cout<<"\t\t\t插入失败!"<<endl;}getch();}break;链表中删除元素case 8:{cout<<"\t\t\t1.按位置删除"<<endl;cout<<"\t\t\t2.按元素删除"<<endl;int d;cout<<"\t\t请选择:";cin>>d;switch(d){case 1:{cout<<"\t\t\t请输入删除位置:";cin>>d;int y;if (LinkedListDel(L,d,y)){cout<<"\t\t\t"<<y<<"被删除!"<<endl;}else{cout<<"\t\t\t删除失败!"<<endl;}}break;case 2:{cout<<"\t\t\t请输入删除元素:";int y;cin>>y;if (LinkedListDel(L,y)){cout<<"\t\t\t"<<y<<"被删除!"<<endl;}else{cout<<"\t\t\t删除失败!"<<endl;}}}getch();}break;}}return 1;}题二约瑟夫环问题算法、思想为了解决这一问题,可以先定义一个长度为30(人数)的数组作为线性存储结构,并把该数组看成是一个首尾相接的环形结构,那么每次报m的人,就要在该数组的相应位置做一个删除标记,该单元以后就不再作为计数单元。

实验01 线性表的基本操作

实验01 线性表的基本操作

实验01 线性表的基本操作一、实验目的1. 了解线性表的结构特点及有关概念;2. 理解线性表的存储结构;3. 掌握顺序表及单链表的基本操作算法。

二、实验内容1、编写程序实现顺序表的各种基本运算:初始化、插入、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。

在此基础上设计一个主程序完成如下功能:(1)初始化顺序表L;(2)依次在表尾插入a,b,c,d,e五个元素;(3)输出顺序表L;(4)输出顺序表L的长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插入元素f,之后输出顺序表L;(9)删除L的第2个元素,之后输出顺序表L;(10)销毁顺序表L。

2、编写程序实现单链表的各种基本运算:初始化、插入、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。

在此基础上设计一个主程序完成如下功能:(1)初始化单链表L;(2)依次在表尾插入a,b,c,d,e五个元素;(3)输出单链表L;(4)输出单链表L的长度;(5)判断单链表L是否为空;(6)输出单链表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插入元素f,之后输出单链表L;(9)删除L的第2个元素,之后输出单链表L;(10)销毁单链表L。

三、实验要点及说明一.顺序表1.顺序表初始化:(1)为顺序表L动态分配一个预定大小的数组空间,使elem 指向这段空间的基地址。

(2)将表的当前长度设为0.2.顺序表的取值:(1)判断指定的位置序号i值是否合理(1<=i<=L.length),若不合理则返回ERROR.(2)若i值合理,则将i个数据元素L.elem[i]赋给参数e,通过e返回第i个数据元素的传值。

3.顺序表的查找:(1)从第一个元素起,依次和e相比较,若找到与e相等的元素L.elem[i],则查找成功,返回该元素的序号i+1.(2)若查遍整个顺序表都没要找到,则查找失败,返回0.4.顺序表的插入:(1)判断插入位置i是否合法(i值的合法范围是1<=i<=n+1),若不合法则返回值ERROR.(2)判断顺序表的存储空间是否已满,若满则返回值ERROR(3)将第n个至第i个位置的元素依次向后移动一个位置,空出第i个位置(i=n+1时无需移动)。

单链表的基本操作实验报告

单链表的基本操作实验报告

湖南第一师范学院信息科学与工程系实验报告课程名称:数据结构与算法成绩评定:实验项目名称:单链表的基本操作指导教师:学生姓名:沈丽桃学号: 10403080118 专业班级: 10教育技术实验项目类型:验证实验地点:科B305 实验时间: 2011 年 10 月20 日一、实验目的与要求:实验目的:实现线性链表的创建、查找、插入、删除与输出。

基本原理:单链表的基本操作二、实验环境:(硬件环境、软件环境)1.硬件环境:奔ⅣPC。

2.软件环境:Windows XP 操作系统,TC2.0或VC++。

三、实验内容:(原理、操作步骤、程序代码等)#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct celltype{int element;struct celltype*next;};typedef int position;void main(){struct celltype*head,*p;int x,choice;void INSERT(int x,struct celltype*p);void LOCATE(int x,struct celltype*p);void DELETE(int x,struct celltype*p);p=(struct celltype*)malloc(sizeof(struct celltype));head=p;p->element=0;p->next=NULL;printf(“Please option:1:Insert 2:Locate 3:Delete\n”);printf(“Please choose:”);scanf(“%d”,&choice);switch(choice)case 1:printf(“Please input a node:”);scanf(“%d”,&x);p=head;INSERT(x,p);for(p=head;p!=NULL;p=p->next)printf(“%d”,p->element);printf(“\n”);break;case 2:printf(“Please input the data you want to locate:”); scanf(“%d”,&x);p=head;LOCATE(x,p);break;case 3:printf(“Please input the data you want to delete:”); scanf(“%d”,&x);DELETE(x,p);for(p=head;p!=NULL;p=p->next)printf(“%d”,p->next);printf(“\n”);break;}void INSERT(int x,struct celltype*p){struct celltype*t,*q;q=(struct celltype*)malloc(sizeof(struct celltype)); q->next=x;while((x>p->element)&&(p!=NULL)){t=p;p=p->next;}if((x>p->element)&&(p->next!=NULL)){p->next=q;q->next=NULL;}else{q->next=p;t->next=q;}}void LOCATE(int x,struct celltype*p){while(p->next!=NULL)if(p->next->element==x)printf(“the number %d is in %d\n”,x,p);else printf(“the number not exist!\n”);}void DELETE(int x,struct celltype*p){while((p->element!=x)&&(p->next!=NULL)){t=p;p=p->next;}if(p->element==x)t->next=p->next}error C2018:unknown character ’Oxal’error C2065:’Please’:undeclared identifiererror C4024:’printf’:different types for formal and actual parameter 1error C4047:’function’:’const*differs in levers of indirection from ’int’error C2146:syntaxerror:missing’)’before identifier’option’error C2017:illegal escape sequenceerror C2059:syntax error:’)’error C2143:syntax error:missing’)’before’%’出现了很多错误,主要是因为printf里的一对双引号不是英文状态下的。

数据结构 练习题

数据结构 练习题
A)10 B)110 C)1110 D)1111
6. 已知一棵二叉树的先序遍历序列为EFHIGJK,中序遍历序列为HFIEJGK,则该二叉树根的右子树的根是
A)E B)F C)G D)J
7. 设结点A有左孩子结点B,右孩子结点C,则在先序遍历、中序遍历、后序遍历这三种基本遍历序列中B一定是C的
图6-2 例6.3附图
6 自测习题
1. 简答题
1. *根据权值(1,2,3,4,5,6),构造哈夫曼树,并计算二叉树的带权路径长度。
2. 请
将下图6-1所示的森林转换成二叉树。
图6-1 简答题2的附图森林
3. *已知一棵二叉树的中序遍历序列为DHBEAIFCGJK,该二叉树的后序遍历序列是HDEBIFJKGCA,现请画出这棵二叉树。
第1章 概述
一、简答题
1.简述以下术语的含义并说明它们之间的关系。
数据类型、数据结构、逻辑结构、存储结构
2.简述算法时间效率和空间效率的概念。
3.简述数据结构课程的目的和意义。
二、选择题
1.以下数据结构中,逻辑结构属于线性结构的是
A)有向图 B)链式栈 C)二叉树 D)二叉排序树
四、算法及分析
1.写出交换两个整型变量值的算法,并分析算法的时间复杂度。
2.写出求n的阶乘 的算法,并分析算法的时间复杂度。
第2章 线性表
一、简答题
1.在处理某个问题时,需要存储的数据总量不能确定,并经常需要进行数据的添加和删除操作,此时应选用哪种存储结构?为什么?
3.设有结点定义
struct node
{ int data;
struct node *next;

数据结构课程设计-单链表

数据结构课程设计-单链表

目录1 选题背景 (1)2 方案与论证 (1)2。

1 链表的概念和作用 (1)2。

3 算法的设计思想 (2)2。

4 相关图例 (3)2.4.1 单链表的结点结构 (3)2.4。

2 算法流程图 (3)3 实验结果 (4)3.1 链表的建立 (4)3.2 单链表的插入 (4)3.3 单链表的输出 (5)3.4 查找元素 (5)3。

5 单链表的删除 (5)3。

6 显示链表中的元素个数(计数) (5)4 结果分析 (6)4。

1 单链表的结构 (6)4。

2 单链表的操作特点 (6)4。

2。

1 顺链操作技术 (6)4.2。

2 指针保留技术 (6)4。

3 链表处理中的相关技术 (6)5 设计体会及今后的改进意见 (6)参考文献 (8)附录代码: (8)1 选题背景陈火旺院士把计算机60多年的发展成就概括为五个“一”:开辟一个新时代-—--信息时代,形成一个新产业-—-—信息产业,产生一个新科学—---计算机科学与技术,开创一种新的科研方法-—--计算方法,开辟一种新文化---—计算机文化,这一概括深刻影响了计算机对社会发展所产生的广泛而深远的影响。

数据结构和算法是计算机求解问题过程的两大基石。

著名的计算机科学家P.Wegner指出,“在工业革命中其核心作用的是能量,而在计算机革命中其核心作用的是信息”.计算机科学就是“一种关于信息结构转换的科学”.信息结构(数据结构)是计算机科学研究的基本课题,数据结构又是算法研究的基础。

2 方案与论证2。

1 链表的概念和作用链表是一种链式存储结构,链表属于线性表,采用链式存储结构,也是常用的动态存储方法。

链表中的数据是以结点来表示的,每个结点的构成:元素(数据元素的映象) + 指针(指示后继元素存储位置),元素就是存储数据的存储单元,指针就是连接每个结点的地址数据。

以“结点的序列”表示线性表称作线性链表(单链表)单链表是链式存取的结构,为找第 i 个数据元素,必须先找到第 i-1 个数据元素。

实现单链表的各种基本运算

实现单链表的各种基本运算

实现单链表的各种基本运算一、实验目的了解单链表表的结构特点及有关概念,掌握单链表的各种基本操作算法思想及其实现。

二、实验内容编写一个程序,实现顺序表的各种基本运算:1、初始化单链表;2、单链表的插入;3、单链表的输出;4、求单链表的长度5、判断单链表是否为空;6、输出单链表的第i位置的元素;7、在单链表中查找一个给定元素在表中的位置;8、单链表的删除; 9、释放单链表三、算法思想与算法描述简图四、实验步骤与算法实现#include<stdio.h>#include<malloc.h>typedef char ElemType;typedef struct LNode//定义单链表{ ElemType data;struct LNode *next;}LinkList;void InitList(LinkList*&L){ L=(LinkList*)malloc(sizeof(LinkList));//创建头结点L->next=NULL;//头结点赋值为空}void DestroyList(LinkList*&L)//销毁单链表(释放单链表L占用的内存空间即逐一释放全部结点的空间){ LinkList*p=L,*q=p->next;while(q!=NULL){free(p);p=q;q=p->next;}free(p);}int ListEmpty(LinkList*L)//判线性表是否为空表ListEmpty(L){ return(L->next==NULL);}//若单链表L没有数据结点,则返回真,否则返回假。

int ListLength(LinkList*L)//求线性表的长度ListLength(L){ LinkList*p=L;int i=0;while(p->next!=NULL){i++;p=p->next;}return(i);//返回单链表L中数据结点的个数}void DispList(LinkList*L)//输出线性表DispList(L){LinkList*p=L->next;while (p!=NULL)//逐一扫描单链表L的每个数据结点,并显示各结点的data域值。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构中的单链表概念、原理和操作方法,通过实际编程实现单链表的创建、插入、删除、查找等基本操作,提高对数据结构的实际应用能力和编程技能。

二、实验环境本次实验使用的编程语言为C++,编程工具为Visual Studio 2019。

三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。

指针域用于指向下一个节点,从而形成链表的链式结构。

单链表的优点是可以动态地分配内存,灵活地插入和删除节点,但其缺点是访问特定位置的节点需要从头开始遍历,时间复杂度较高。

四、实验内容(一)单链表的创建创建单链表的基本思路是依次创建节点,并将节点通过指针链接起来。

以下是创建单链表的代码实现:```cppinclude <iostream>using namespace std;//定义链表节点结构体struct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};//创建单链表ListNode createList(){int num, value;cout <<"请输入节点个数: ";cin >> num;ListNode head = NULL;ListNode tail = NULL;for (int i = 0; i < num; i++){cout <<"请输入第"<< i + 1 <<"个节点的值: ";cin >> value;if (head == NULL) {head = newNode;tail = newNode;} else {tail>next = newNode;tail = newNode;}}return head;}```(二)单链表的插入操作单链表的插入操作可以分为在表头插入、在表尾插入和在指定位置插入。

数据结构实验报告实现单链表各种基本运算的算法

数据结构实验报告实现单链表各种基本运算的算法

实验截图(1)void InitList(LinkNode *&L)//初始化线性表{L=(LinkNode *)malloc(sizeof(LinkNode)); //创建头结点L->next=NULL;//单链表置为空表}void DestroyList(LinkNode *&L)//销毁线性表{LinkNode *pre=L,*p=pre->next;实验截图(2)bool GetElem(LinkNode *L,int i,ElemType &e) //求线性表中第i个元素值{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L;//p指向头结点,j置为0(即头结点的序号为0) while (j<i && p!=NULL)//找第i个结点p{ j++;p=p->next;}if (p==NULL)//存在值为e的结点,返回其逻辑序号ireturn(i);}实验截图(3)bool ListInsert(LinkNode *&L,int i,ElemType e) //插入第i个元素{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L,*s;//p指向头结点,j置为0(即头结点的序号为0) while (j<i-1 && p!=NULL)//查找第i-1个结点p{ j++;p=p->next;}}实验截图(4)编写exp2-2.cpp程序包含有关代码//文件名:exp2-2.cpp#include "linklist.cpp"int main(){LinkNode *h;ElemType e;printf("单链表的基本运算如下:\n");printf(" (1)初始化单链表h\n");InitList(h);printf(" (2)依次采用尾插法插入a,b,c,d,e元素\n");return 1;}实验截图(5)运行得到结果实验截图(6)。

单链表的基本操作实验问题与对策

单链表的基本操作实验问题与对策

单链表的基本操作实验问题与对策单链表是一种非常基础且常见的数据结构,被广泛应用于计算机科学和相关领域中。

它通过使用一系列节点来存储元素,每个节点都包含一个值和一个指向下一个节点的指针。

这些节点以线性方式连接,形成了一个单向链表。

在进行单链表的基本操作实验时,可能会遇到一些常见的问题和挑战。

例如,在进行插入操作时,可能会出现指针错误或内存分配失败的问题。

在删除操作中,可能会遇到无法找到指定元素或无法正确更新节点指针的问题。

在进行查找操作时,可能会遇到查找效率低下或无法找到特定元素的问题。

而在遍历操作中,可能会遇到指针断裂或无限循环的问题。

为了解决这些问题,我们可以采取一些对策。

例如,在进行插入操作时,我们可以使用更高效的数据结构或算法来避免指针错误和内存分配失败的问题。

在删除操作中,我们可以使用更精确的查找算法来找到指定元素并正确更新节点指针。

在进行查找操作时,我们可以使用更优化的查找算法或数据结构来提高查找效率并找到特定元素。

而在遍历操作中,我们可以使用更安全的遍历算法来避免指针断裂和无限循环的问题。

总之,单链表是一种非常有用的数据结构,在进行基本操作实验时可能会遇到一些问题和挑战。

但只要我们采取适当的对策,就可以有效地解决这些问题并更好地应用单链表这种数据结构。

问题1:插入节点时如何确保正确的位置?对策:在插入节点之前,需要遍历链表以找到正确的位置。

可以使用循环来遍历链表,确保插入的位置是正确的。

另外,可以考虑维护一个指向前一个节点的指针,以便在插入时更容易操作。

问题2:如何删除节点?对策:删除节点时,需要找到待删除节点的前一个节点,并将其指针指向待删除节点的下一个节点,然后释放待删除节点的内存。

确保在删除节点之前释放内存,以避免内存泄漏。

问题3:如何遍历链表?对策:遍历链表通常需要使用循环,从链表的头节点开始,沿着指针依次访问每个节点,直到达到链表的末尾。

可以使用循环结构来实现遍历,或者使用递归方法。

单链表的查找程序

单链表的查找程序

单链表的查找,程序如下:#include〈stdio。

h〉#include〈conio。

h〉#include〈malloc。

h>typedef struct node{int data;struct node *next;}LinkList;LinkList *CreateList(int length){LinkList *head,*p,*q;head=(LinkList*)malloc(sizeof(node));head—>next =NULL;q=head;printf("******请输入链表中的%d个元素:\n”,length);for(int i=1;i<=length;i++){p=(LinkList*)malloc (sizeof(node));q—>next=p;p->next=NULL;q=q—〉next ;scanf(”%d”,&p—>data);}return head;}void select_insert(LinkList *head){int min=0;int tmp=0;LinkList *p,*q,*M;p=q=M=head;while(p—〉next!=NULL){M=q=p—>next;min=q—>data;while(q!=NULL){if(q—〉data<min){M=q;min=q-〉data;}q=q—>next;}if(p—>next!=M){tmp=p->next—〉data;p-〉next->data=M—>data;M-〉data=tmp;}p=p->next;}}locate(LinkList *head,int key){int k=1;LinkList *p;p=head—>next;while((p!=NULL)&&(p—〉data!=key)){p=p—>next;k++;}if(p==NULL) return NULL;else return k;}void DisplayList(LinkList *L){LinkList *p;p=L—>next;while(p){printf(”%d ",p—〉data );p=p->next;}printf(”\n”);}void main(){int len,num,n;LinkList *L;printf(”******请输入你要创建链表的长度:");scanf("%d”,&len);L=CreateList(len);printf(”******要查找的数为:”);scanf("%d",&num);n=locate(L,num);printf("*******要查找的数的在链表的第%d个位置.”,n);printf(”\n*******排序后结果为:\n”);select_insert(L);DisplayList(L);}执行结果如下:。

实验二 单链表基本操作

实验二 单链表基本操作

实验二单链表基本操作一实验目的1.学会定义单链表的结点类型,实现对单链表的一些基本操作和具体的函数定义,了解并掌握单链表的类定义以及成员函数的定义与调用。

2.掌握单链表基本操作及两个有序表归并、单链表逆置等操作的实现。

二实验要求1.预习C语言中结构体的定义与基本操作方法。

2.对单链表的每个基本操作用单独的函数实现。

3.编写完整程序完成下面的实验内容并上机运行。

4.整理并上交实验报告。

三实验内容1.编写程序完成单链表的下列基本操作:(1)初始化单链表La。

(2)在La中第i个元素之前插入一个新结点。

(3)删除La中的第i个元素结点。

(4)在La中查找某结点并返回其位置。

(5)打印输出La中的结点元素值。

2 .构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、Lb合并成一个有序单链表Lc。

合并思想是:程序需要3个指针:pa、pb、pc,其中pa,pb分别指向La表与Lb表中当前待比较插入的结点,pc 指向Lc表中当前最后一个结点。

依次扫描La和Lb中的元素,比较当前元素的值,将较小者链接到*pc 之后,如此重复直到La或Lb结束为止,再将另一个链表余下的内容链接到pc所指的结点之后。

3.构造一个单链表L,其头结点指针为head,编写程序实现将L逆置。

(即最后一个结点变成第一个结点,原来倒数第二个结点变成第二个结点,如此等等。

)四思考与提高1.如果上面实验内容2中合并的表内不允许有重复的数据该如何操作?2.如何将一个带头结点的单链表La分解成两个同样结构的单链表Lb,Lc,使得Lb中只含La表中奇数结点,Lc中含有La表的偶数结点?1.编写程序完成单链表的下列基本操作:(1)初始化单链表La。

(2)在La中第i个元素之前插入一个新结点。

(3)删除La中的第i个元素结点。

(4)在La中查找某结点并返回其位置。

(5)打印输出La中的结点元素值。

#include<stdio.h>#include<stdlib.h>#include <malloc.h>#define OK 1#define ERROR 0typedef int Status;typedef int ElemType;//定义存储结构typedef struct Lnode{int data; /*每个元素数据信息*/struct Lnode *next; /*存放后继元素的地址*/} LNode,*LinkList;int main(){void Create_L(LinkList &L,int n);void Print_L(LinkList L);Status ListInsert_L(LinkList &L,int i,ElemType e);Status ListDelete_L(LinkList &L,int i,ElemType &e);Status Find_L(LinkList L,int e);LinkList La;//创建单链表Laint n;printf("请输入链表La中的元素个数:\n");scanf("%d",&n);Create_L(La,n);//初始化单链表printf("现在La中的元素为:\n");Print_L(La);printf("-------------------------------------\n\n");printf("现在准备插入元素,请输入插入位置及所插入元素的值\n");int i,e;scanf("%d %d",&i,&e);ListInsert_L(La,i,e);printf("插入后La中的元素为:\n");Print_L(La);printf("-------------------------------------\n\n");printf("现在准备删除元素,请输入删除位置\n");scanf("%d",&i);ListDelete_L(La,i,e);printf("删除后La中的元素为:\n");Print_L(La);printf("-------------------------------------\n\n");printf("请输入所要查找元素的值:\n");scanf("%d",&e);Find_L(La,e);printf("所要查找元素的位置为:%d\n",Find_L(La,e)); }void Create_L(LinkList &L,int n){int j=1;L=(LinkList)malloc(sizeof(Lnode));L->next =NULL;//先建立一个带头结点的单链线性表L for(int i=n;i>0;--i){LinkList p=(LinkList)malloc(sizeof(Lnode));printf("请输入链表La中的第%d个元素:\n",j++);scanf("%d",&p->data);p->next=L->next;L->next =p;}//(逆序实现)/*LinkList q=L;for(int i=1;i<=n;i++){LinkList p=(LinkList)malloc (sizeof(Lnode));q->next=p;p->next=NULL;q=q->next ;printf("请输入链表La中的第%d个元素:\n",i);scanf("%d",&p->data);}//(正序实现)*/}//初始化单链表//输出单链表void Print_L(LinkList L){LinkList p;p=L->next;while(p){printf("%d ",p->data );p=p->next;}printf("\n");}//在单链表L的第i个位置前插入元素eStatus ListInsert_L(LinkList &L,int i,ElemType e) {LinkList p=L;int j=0;while(p&&j<i-1){p=p->next; ++j;}if(!p||j>i-1) return ERROR;LinkList s=(LinkList)malloc(sizeof(LNode));s->data=e; s->next=p->next;p->next=s;return OK;} //ListInsert_L//删除单链表L中第i个位置上的元素Status ListDelete_L(LinkList &L,int i,ElemType &e) {LinkList p=L;int j=0;while( p->next && j<i-1){p=p->next; ++j;}if(!p->next||j>i-1) return ERROR;LinkList q=p->next; p->next=q->next;e=q->data;free(q);return OK;}//LinkDelete_L/*查找元素并返回位置*/Status Find_L(LinkList L,int e){LinkList p=L->next;int j=1;while(p->data!=e&&p->next){p=p->next;j++;}if(p->data==e) return j;else{printf("无当前元素\n");return ERROR;}if(!p){printf("无当前元素\n");return ERROR;}}//定位2 .构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、Lb合并成一个有序单链表Lc。

数据结构单链表实验报告记录

数据结构单链表实验报告记录

数据结构单链表实验报告记录————————————————————————————————作者:————————————————————————————————日期:一、设计人员相关信息1.设计者姓名、学号和班号:12地信李晓婧120122429832.设计日期:2014.3.上机环境:VC++6.0二、程序设计相关信息1.实验题目:编写一个程序,实现单链表的各种基本运算(假设单链表的元素类型为char),并在此基础上设计一个程序,完成如下功能:(1)初始化单链表;(2)采用尾插法依次插入元素a,b,c,d,e;(3)输出单链表(4)输出单链表长度(5)判断单链表是否为空(6)输出单链表第3个元素(7)输出元素a的位置(8)在第4个元素位置上插入元素f(9)输出单链表(10)删除第三个元素(11)输出单链表(12)释放单链表2.实验项目组成:(1)插入和删除节点操作(2)建立单链表尾插法建表(3)线性表基本运算在单链表中的实现初始化线性表销毁线性表判断线性表是否为空表求线性表的长度3.实验项目的程序结构(程序中的函数调用关系图):MainLinkListInitListCreateListRDispListListLengthListEmptyGetElemLocateElemListInsertListDeleteDestroyList4.实验项目包含的各个文件中的函数的功能描述:●尾插法建表CreateListR:将新节点插到当前链表的表尾上,为此必须增加一个尾指针r,使其始终指向当前链表的尾节点。

●初始化线性表InitList:该运算建立一个空的单链表,即创建一个头节点;●销毁线性表DestroyList:释放单链表占用的内存空间,即逐一释放全部节点的空间;●判断线性表是否为空表ListEmpty:若单链表没有数据节点,则返回真,否则返回假;●求线性表的长度ListLength:返回单链表中数据节点的个数;●输出线性表DispList:逐一扫描单链表的每个数据节点,并显示各节点的data域值;●求线性表中某个数据元素值GetElem:在单链表中从头开始找到第i个节点,若存在第i个数据节点,则将其data域值赋给变量e;●按元素值查找LocateElem:在单链表中从头开始找第一个值域与e相等的节点,若存在这样的节点,则返回逻辑序号,否则返回0;●插入数据元素ListInsert:先在单链表中找到第i-1个节点*p,若存在这样的节点,将值为e的节点*s插入到*p节点的后面;●删除数据元素ListDelete:先在单链表中找到第i-1个节点*p,若存在这样的节点,且也存在后继节点*q;删除*q节点,返回TRUE;否则返回FALSE表示参数i错误。

数据结构c++顺序表、单链表的基本操作,查找、排序代码

数据结构c++顺序表、单链表的基本操作,查找、排序代码

} return 0; }
实验三 查找
实验名称: 实验3 查找 实验目的:掌握顺序表和有序表的查找方法及算法实现;掌握二叉排序 树和哈希表的构造和查找方法。通过上机操作,理解如何科学地组织信 息存储,并选择高效的查找算法。 实验内容:(2选1)内容1: 基本查找算法;内容2: 哈希表设计。 实验要求:1)在C++系统中编程实现;2)选择合适的数据结构实现查 找算法;3)写出算法设计的基本原理或画出流程图;4)算法实现代码 简洁明了;关键语句要有注释;5)给出调试和测试结果;6)完成实验 报告。 实验步骤: (1)算法设计 a.构造哈希函数的方法很多,常用的有(1)直接定址法(2)数字分析法;(3) 平方取中法;(4)折叠法;( 5)除留余数法;(6)随机数法;本实验采用的是除 留余数法:取关键字被某个不大于哈希表表长m的数p除后所得余数为哈 希地址 (2)算法实现 hash hashlist[n]; void listname(){ char *f; int s0,r,i; NameList[0].py="baojie"; NameList[1].py="chengቤተ መጻሕፍቲ ባይዱoyang"; ……………………………… NameList[29].py="wurenke"; for(i=0;i<q;i++){s0=0;f=NameList[i].py; for(r=0;*(f+r)!='\0';r++) s0+=*(f+r);NameList[i].k=s0; }} void creathash(){int i;
v[k-1]=v[k]; nn=nn-1; return ; } int main() {sq_LList<double>s1(100); cout<<"第一次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.ins_sq_LList(0,1.5); s1.ins_sq_LList(1,2.5); s1.ins_sq_LList(4,3.5); cout<<"第二次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.del_sq_LList(0); s1.del_sq_LList(2); cout<<"第三次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); return 0; } 运行及结果:

中南大学数据结构实验报告

中南大学数据结构实验报告

[键入文档副标题][键入文档标题]实验题目:(1)单链表的实现(2)栈和队列(3)二叉树的遍历(4)查找与排序学生姓名:代巍学生学号:0909121615指导老师:余腊生所在学院:信息科学与工程学院专业班级:信息安全1201班指导教师评定:签名:实验一单链表的实现一、实验目的了解线性表的逻辑结构和各种存储表示方法,以及定义在逻辑结构上的各种基本运算及其在某种存储结构上如何实现这些基本运算。

在熟悉上述内容的基础上,能够针对具体应用问题的要求和性质,选择合适的存储结构设计出相应的有效算法,解决与线性表相关的实际问题二、实验内容用C/C++语言编写程序,完成以下功能:(1)运行时输入数据,创建一个单链表(2)可在单链表的任意位置插入新结点(3)可删除单链表的任意一个结点(4)在单链表中查找结点(5)输出单链表三、程序设计的基本思想,原理和算法描述:(包括程序的结构,数据结构,输入/输出设计,符号名说明等)用一组地址任意的存储单元存放线性表中的数据元素。

以元素(数据元素的映象) + 指针(指示后继元素存储位置) = 结点(表示数据元素或数据元素的映象)以“结点的序列”表示线性表称作线性链表(单链表)单链表是指数据接点是单向排列的。

一个单链表结点,其结构类型分为两部分:(1)、数据域:用来存储本身数据。

(2)、链域或称为指针域:用来存储下一个结点地址或者说指向其直接后继的指针。

1、单链表的查找对单链表进行查找的思路为:对单链表的结点依次扫描,检测其数据域是否是我们所要查好的值,若是返回该结点的指针,否则返回NULL。

2、单链表的插入因为在单链表的链域中包含了后继结点的存储地址,所以当我们实现的时候,只要知道该单链表的头指针,即可依次对每个结点的数据域进行检测。

假设在一个单链表中存在2个连续结点p、q(其中p为q的直接前驱),若我们需要在p、q之间插入一个新结点s,那么我们必须先为s分配空间并赋值,然后使p的链域存储s的地址,s的链域存储q的地址即可。

数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验⼀顺序表、单链表基本操作的实现实验⼀顺序表、单链表基本操作的实现l 实验⽬的1、顺序表(1)掌握线性表的基本运算。

(2)掌握顺序存储的概念,学会对顺序存储数据结构进⾏操作。

(3)加深对顺序存储数据结构的理解,逐步培养解决实际问题的编程能⼒。

l 实验内容1、顺序表1、编写线性表基本操作函数:(1)InitList(LIST *L,int ms)初始化线性表;(2)InsertList(LIST *L,int item,int rc)向线性表的指定位置插⼊元素;(3)DeleteList1(LIST *L,int item)删除指定元素值的线性表记录;(4)DeleteList2(LIST *L,int rc)删除指定位置的线性表记录;(5)FindList(LIST *L,int item)查找线性表的元素;(6)OutputList(LIST *L)输出线性表元素;2、调⽤上述函数实现下列操作:(1)初始化线性表;(2)调⽤插⼊函数建⽴⼀个线性表;(3)在线性表中寻找指定的元素;(4)在线性表中删除指定值的元素;(5)在线性表中删除指定位置的元素;(6)遍历并输出线性表;l 实验结果1、顺序表(1)流程图(2)程序运⾏主要结果截图(3)程序源代码#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct LinearList/*定义线性表结构*/{int *list; /*存线性表元素*/int size; /*存线性表长度*/int Maxsize; /*存list数组元素的个数*/};typedef struct LinearList LIST;void InitList(LIST *L,int ms)/*初始化线性表*/{if((L->list=(int*)malloc(ms*sizeof(int)))==NULL){printf("内存申请错误");exit(1);}L->size=0;L->Maxsize=ms;}int InsertList(LIST *L,int item,int rc)/*item记录值;rc插⼊位置*/ {int i;if(L->size==L->Maxsize)/*线性表已满*/return -1;if(rc<0)rc=0;if(rc>L->size)rc=L->size;for(i=L->size-1;i>=rc;i--)/*将线性表元素后移*/L->list[i+=1]=L->list[i];L->list[rc]=item;L->size++;return0;}void OutputList(LIST *L)/*输出线性表元素*/{int i;printf("%d",L->list[i]);printf("\n");}int FindList(LIST *L,int item)/*查找线性元素,返回值>=0为元素的位置,返回-1为没找到*/ {int i;for(i=0;i<L->size;i++)if(item==L->list[i])return i;return -1;}int DeleteList1(LIST *L,int item)/*删除指定元素值得线性表记录,返回值为>=0为删除成功*/ {int i,n;for(i=0;i<L->size;i++)if(item==L->list[i])break;if(i<L->size){for(n=i;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return i;}return -1;}int DeleteList2(LIST *L,int rc)/*删除指定位置的线性表记录*/{int i,n;if(rc<0||rc>=L->size)return -1;for(n=rc;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return0;}int main(){LIST LL;int i,r;printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.size,LL.Maxsize);printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.list,LL.Maxsize);while(1){printf("请输⼊元素值,输⼊0结束插⼊操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d",&i);if(i==0)break;printf("请输⼊插⼊位置:");scanf("%d",&r);InsertList(&LL,i,r-1);printf("线性表为:");OutputList(&LL);}while(1){printf("请输⼊查找元素值,输⼊0结束查找操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d ",&i);if(i==0)break;r=FindList(&LL,i);if(r<0)printf("没有找到\n");elseprintf("有符合条件的元素,位置为:%d\n",r+1);}while(1){printf("请输⼊删除元素值,输⼊0结束查找操作:");fflush(stdin);/*清楚标准缓存区*/scanf("%d",&i);if(i==0)break;r=DeleteList1(&LL,i);if(i<0)printf("没有找到\n");else{printf("有符合条件的元素,位置为:%d\n线性表为:",r+1);OutputList(&LL);}while(1){printf("请输⼊删除元素位置,输⼊0结束查找操作:");fflush(stdin);/*清楚标准输⼊缓冲区*/scanf("%d",&r);if(r==0)break;i=DeleteList2(&LL,r-1);if(i<0)printf("位置越界\n");else{printf("线性表为:");OutputList(&LL);}}}链表基本操作l 实验⽬的2、链表(1)掌握链表的概念,学会对链表进⾏操作。

c语言单链表程序代码

c语言单链表程序代码

c语言单链表程序代码单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

单链表的优点在于插入和删除操作的效率高,但是访问任意节点的效率较低。

下面是一个简单的单链表程序代码:```c#include <stdio.h>#include <stdlib.h>struct Node {int data;struct Node* next;};void insert(struct Node** head, int data) {struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->next = *head;*head = newNode;}void printList(struct Node* head) {while (head != NULL) {printf("%d ", head->data);head = head->next;}printf("\n");}int main() {struct Node* head = NULL;insert(&head, 1);insert(&head, 2);insert(&head, 3);printList(head);return 0;}```这个程序定义了一个结构体`Node`,包含一个整型数据`data`和一个指向下一个节点的指针`next`。

`insert`函数用于在链表头部插入一个新节点,`printList`函数用于打印整个链表。

在`main`函数中,我们创建了一个空链表`head`,然后插入了三个节点,最后打印整个链表。

这个程序虽然简单,但是涉及到了单链表的基本操作。

单链表-实验报告

单链表-实验报告

单链表实验报告一、实验目的与要求1、实现单链表的建立;2、掌握单链表的插入、删除和查找运算;3、熟练进行C语言源程序的编辑调试。

二、实验内容(1)建立带表头结点的单链表;首先输入结束标志,然后建立循环逐个输入数据,直到输入结束标志。

数据输入的函数为:LNode *createtail(){LNode *s,*r;int x,tag;printf("input the sign of ending:"); /*输入结束标志*/scanf("%d",&tag);h=(LNode * )malloc(sizeof(LNode)); /*建立表头结点*/h->data=tag;r=h;printf("input the data:");scanf("%d",&x);while(x!=tag) /*建立循环逐个输入数据*/{s=(LNode * )malloc(sizeof(LNode));s->data=x;r->link=s;r=s;scanf("%d",&x);}r->link=NULL;return h;}(2)输出单链表中所有结点的数据域值;首先获得表头结点位置,然后建立循环逐个输出数据,直到位置为空。

数据输出的函数为:void output(LNode *h){LNode *r;int i;r=h;for(i=1;r->link!=NULL;i++){printf("%d.%d\n",i,r->link->data);r=r->link;}}(3)输入x,y在第一个数据域值为x的结点之后插入结点y,若无结点x,则在表尾插入结点y;建立两个结构体指针,一个指向当前结点,另一个指向当前结点的上一结点,建立循环扫描链表。

数据结构 实验二:单链表的基本操作

数据结构 实验二:单链表的基本操作

数据结构实验二:单链表的基本操作数据结构实验二:单链表的基本操作实验二:单链表的基本操作一、【实验目的】1、理解和掌握单链表的类型定义方法和结点生成方法。

2、掌握建立单链表和显示单链表元素的算法。

3、掌握单链表的查找、插入和删除算法二、【实验内容】1、建立一个整形数的单链表,手动输入10个数,并从屏幕显示单链表元素列表。

2、从键盘输入一个数,查找在以上创建的单链表中是否存在该数;如果存在,显示它的位置;如果不存在,给出相应提示。

3、删除上述单链表中指定位置的元素。

以下就是程序部分代码,恳请调试并补足并使之恰当运转:1.linlist.htypedefstructnode{datatypedata;structnode*next;}slnode;voidlistinitiate(slnode**head)/*初始化*/{/*如果有内存空间,申请头结点空间并使头指针head指向头结点*/if((*head=(slnode*)malloc(sizeof(slnode)))==null)exit(1);(*head)->next=null;/*置链尾标记null*/}intlistlength(slnode*head){slnode*p=head;/*p指向首元结点*/intsize=0;/*size初始为0*/while(p->next!=null)/*循环计数*/{p=p->next;size++;}returnsize;}intlistinsert(slnode*head,inti,datatypex)/*在带头结点的单链表head的数据元素ai(0≤i≤size)结点前*//*填入一个存放数据元素x的结点*/{slnode*p,*q;intj;p=head;/*p指向首元结点*/j=-1;/*j起始为-1*/while(p->next!=null&&j<i-1)/*最终让指针p指向数据元素ai-1结点*/{p=p->next;j++;}if(j!=i-1){printf(\填入边线参数弄错!\return0;}/*生成新结点由指针q指示*/if((q=(slnode*)malloc(sizeof(slnode)))==null)exit(1);q->data=x;q->next=p->next;/*给指针q->next赋值*/p->next=q;/*给指针p->next重新赋值*/return1;}intlistdelete(slnode*head,inti,datatype*x)/*删除带头结点的单链表head的数据元素ai(0≤i≤size-1)结点*//*删除结点的数据元素域值由x带回。

数据结构重点知识点

数据结构重点知识点

数据结构重点知识点第一章概论1. 数据是信息的载体。

2. 数据元素是数据的基本单位。

3. 一个数据元素可以由若干个数据项组成。

4. 数据结构指的是数据之间的相互关系,即数据的组织形式。

5. 数据结构一般包括以下三方面内容:数据的逻辑结构、数据的存储结构、数据的运算①数据元素之间的逻辑关系,也称数据的逻辑结构,数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。

②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构。

数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。

③数据的运算,即对数据施加的操作。

最常用的检索、插入、删除、更新、排序等。

6. 数据的逻辑结构分类: 线性结构和非线性结构①线性结构:若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。

线性表是一个典型的线性结构。

栈、队列、串等都是线性结构。

②非线性结构:一个结点可能有多个直接前趋和直接后继。

数组、广义表、树和图等数据结构都是非线性结构。

7.数据的四种基本存储方法: 顺序存储方法、链接存储方法、索引存储方法、散列存储方法(1)顺序存储方法:该方法把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。

通常借助程序语言的数组描述。

(2)链接存储方法:该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系由附加的指针字段表示。

通常借助于程序语言的指针类型描述。

(3)索引存储方法:该方法通常在储存结点信息的同时,还建立附加的索引表。

索引表由若干索引项组成。

若每个结点在索引表中都有一个索引项,则该索引表称之为稠密索引,稠密索引中索引项的地址指示结点所在的存储位置。

若一组结点在索引表中只对应一个索引项,则该索引表称为稀疏索引稀疏索引中索引项的地址指示一组结点的起始存储位置。

索引项的一般形式是:(关键字、地址)关键字是能唯一标识一个结点的那些数据项。

单链表的 基本操作

单链表的 基本操作

单向链表单向链表的基本操作,创建一个由6个节点组成的单向链表,显示链表中每个节点的数据,并且做增加、删除、查找节点以及计算单链表的长度等处理。

➢需求分析:1.功能(1)用尾插法创建一带头结点的由6个节点组成的单向链表:从键盘读入一组整数,作为单链表中的元素,输入完第6个结点后结束;将创建好的单链表元素依次输出到屏幕上。

(2)显示链表中每个节点的数据(3)从键盘输入一个数,查找在以上创建的单链表中是否存在该数;如果存在,显示它的位置,即第几个元素;如果不存在,给出相应提示如“No found node!”。

(4)在上述的单链表中的指定位置插入指定数据,并输出单链表中所有数据.(5)删除上述单链表中指定位置的结点,并输出单链表中所有数据.(6)求单链表的长度并输出。

2.输入要求先输入单链表中结点个数n,再输入单链表中所有数据,在单链表中需查找的数据,需插入的数据元素的位置、值,要删除的数据元素的位置。

3。

测试数据单链表中所有数据:12,23,56,21,8,10在单链表中需查找的数据:56;24插入的数据元素的位置、值:1,28;7,28;0,28要删除的数据元素的位置:6➢概要设计:1.算法思想:由于在操作过程中要进行插入、删除等操作,为运算方便,选用带头结点的单链表作数据元素的存储结构。

对每个数据元素,由一个数据域和一个指针域组成,数据域放输入的数据值,指针域指向下一个结点。

2.数据结构:单链表结点类型:typedef struct Liistnode {int data;struct Listnode *next;} NODE;3.模块划分:a)用尾插法建立带头结点的单链表*CreateList函数;b)显示链表中每个结点的数据PrintList函数;c)从键盘输入一个数,查找单链表中是否存在该数FoundList函数;d)在单链表中指定位置插入指定数据并输出单链表中所有数据InsertList函数;e)删除单链表中指定位置的结点并输出单链表中所有数据DeleteList函数;f)计算单链表的长度并在屏幕上输出LengthList函数;g)主函数main(),功能是给出测试数据值,建立测试数据值的带头结点的单链表,调用PrintList函数、FoundList函数、InsertList函数、DeleteList函数、LengthList函数实现问题要求.四、实验要求1.用C完成算法设计和程序设计并上机调试通过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单链表的查找,程序如下:
#include<stdio.h>
#include<conio.h>
#include<malloc.h>
typedef struct node
{
int data;
struct node *next;
}LinkList;
LinkList *CreateList(int length)
{
LinkList *head,*p,*q;
head=(LinkList*)malloc(sizeof(node));
head->next =NULL;
q=head;
printf("******请输入链表中的%d个元素:\n",length);
for(int i=1;i<=length;i++)
{
p=(LinkList*)malloc (sizeof(node));
q->next=p;
p->next=NULL;
q=q->next ;
scanf("%d",&p->data);
}
return head;
}
void select_insert(LinkList *head)
{
int min=0;
int tmp=0;
LinkList *p,*q,*M;
p=q=M=head;
while(p->next!=NULL)
{
M=q=p->next;
min=q->data;
while(q!=NULL)
{
if(q->data<min)
{
M=q;
min=q->data;
}
q=q->next;
}
if(p->next!=M)
{
tmp=p->next->data;
p->next->data=M->data;
M->data=tmp;
}
p=p->next;
}
}
locate(LinkList *head,int key)
{
int k=1;
LinkList *p;
p=head->next;
while((p!=NULL) && (p->data!=key))
{
p=p->next;
k++;
}
if(p==NULL) return NULL;
else return k;
}
void DisplayList(LinkList *L)
{
LinkList *p;
p=L->next;
while(p)
{
printf("%d ",p->data );
p=p->next;
}
printf("\n");
}
void main()
{
int len,num,n;
LinkList *L;
printf("******请输入你要创建链表的长度:");
scanf("%d",&len);
L=CreateList(len);
printf("******要查找的数为:");
scanf("%d",&num);
n=locate(L,num);
printf("*******要查找的数的在链表的第%d个位置.",n);
printf("\n*******排序后结果为:\n");
select_insert(L);
DisplayList(L);
}
执行结果如下:。

相关文档
最新文档