数字信号处理 6-Z变换

合集下载

数字信号处理第2章 Z变换综述

数字信号处理第2章 Z变换综述

例4:求序列 x(n) a u (n)的Z变换及收敛域。
n
解: X ( z )
n
n n n n 1 n a u ( n ) z a z ( az ) n 0 n 0



1 az 1 (az 1 ) 2 (az 1 ) n
1 — 64
Z -
-2
-3 1 —— Z 256
1 -3 —— Z 256
...
极点分为:实极点、复极点 若为复极点必然是共轭极点,必然是成对出现
例:
z 1 z z X ( z) 2 1 2 1 z z z z 1 ( z 1 )2 ( 3 j)2 2 2
因为D(z)的系数是实数,所以复极点必然成对出现
§2.3
z变换性质1
一、线性: Z[a x (n)+a x (n)]=a Z[x (n)]+a Z[x (n)]
1 1 2 2 1 1 2 2
二、时移: Z[x(n)]=X(z)
Z[x(n-m)]=z-m· X(z)
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
x(n) h(n) y(n)
|a|<|z|<1/|a|
双边序列的收敛域是左边序列和右边序列z变换的 公共收敛区间。
课本P27表2.1
z nu(n) ~ ( z 1) 2
作业2.1(2)(6)
z 2 sin z sin(0 ) sin(n0 )u (n) ~ z 2 2 z cos0 1 sin z 1 sin(0 ) 1 2 z 1 cos0 z 2
z z 1 z z X ( z) 2 z 4 z 3 ( z 1)(z 3) 2 z 1 z 3

数字信号处理z变换公式表

数字信号处理z变换公式表

数字信号处理z变换公式表序号变换名称公式。

1双边Z变换定义X(z)=∑_n = -∞^∞x(n)z^-n,收敛域为R_x -<| z|2单边Z变换定义(因果序列)X(z)=∑_n = 0^∞x(n)z^-n,收敛域为| z| > R_x -3Z变换的线性性质若x_1(n)↔ X_1(z),R_1 -<| z|,x_2(n)↔ X_2(z),R_2 -<| z|,则ax_1(n)+bx_2(n)↔ aX_1(z)+bX_2(z),收敛域为R_ -<| z|,其中R_ -=max(R_1 -,R_2 -),R_ +=min(R_1 +,R_2 +)4序列的移位(双边Z变换)若x(n)↔ X(z),R_x -<| z|,则x(n - m)↔ z^-mX(z),收敛域为R_x -<| z|(m为整数)5序列的移位(单边Z变换)若x(n)↔ X(z),则x(n - m)u(n)↔ z^-mX(z)+∑_k =0^m - 1x(k - m)z^-k(m>0),收敛域为| z| > R_x -6Z域尺度变换(乘以指数序列)若x(n)↔ X(z),R_x -<| z|,则a^nx(n)↔X((z)/(a)),收敛域为| a| R_x -<| z|<| a| R_x +(a≠0)7序列的线性加权(Z域求导)若x(n)↔ X(z),R_x -<| z|,则nx(n)↔ -z(dX(z))/(dz),收敛域为R_x -<| z|8序列的反褶若x(n)↔ X(z),R_x -<| z|,则x(-n)↔ X((1)/(z)),收敛域为(1)/(R_x +)<| z|<(1)/(R_x -)9卷积定理(双边Z变换)若x_1(n)↔ X_1(z),R_1 -<| z|,x_2(n)↔ X_2(z),R_2 -<| z|,则x_1(n)*x_2(n)↔ X_1(z)X_2(z),收敛域为R_ -<| z|,其中R_ -=max(R_1 -,R_2 -),R_ +=min(R_1 +,R_2 +)10卷积定理(单边Z变换)设x_1(n)和x_2(n)为因果序列,x_1(n)↔ X_1(z),x_2(n)↔ X_2(z),则x_1(n)*x_2(n)↔ X_1(z)X_2(z),收敛域为| z| >max(R_1 -,R_2 -)11初值定理(因果序列)若x(n)是因果序列,x(n)↔ X(z),则x(0)=lim_z→∞X(z)12终值定理(因果序列,X(z)的极点在单位圆内,最多在z = 1处有一阶极点)若x(n)是因果序列,x(n)↔ X(z),则lim_n→∞x(n)=lim_z→1(z - 1)X(z)。

数字信号处理基础-Z变换

数字信号处理基础-Z变换

(3) ZT[δ (n +1)] = ∑δ (n +1)z−n + ∑δ (n +1)z−n
n=−∞ n=0
> 0 z ≠ 0 > 0 z = 0, ) < 0 < 0, z z≠ ≠ )∞ −1 0

= z1 + 0 = z (0 ≤ z < ∞)
光机电一体化技术研究所
ZT [u ( n )] = ∑ u ( n ) z
k k k →∞ −1
< 1或 z < 2
z < lim 2 = 2
k k k →∞
第二项仅含有Z的负幂的无穷级数 1 −k lim k ( z ) < 1或 z > lim k k →∞ k →∞ 3
k
∴ F ( z )的绝对收敛域为 2 > z >
光机电一体化技术研究所
1 3
光机电一体化技术研究所
×
1 Rx1 = 3
1
Re[z ]
3
1 (2) x(n) = − u (−n − 1) 3
1 −1 X ( z) = − ∑ z n = −∞ 3
−1 n n=− m ∞ −m
n
左边序列
1 −1 = − ∑ z m =1 3 ∞ 1 z m j Im[z ] = 1 − ∑ (3 z ) = 1 − = −1 1 1 − 3z m=0 z− Rx2 3 Re[z ] lim n (3 z ) n < 1 • ×
1
2
3
4
n
光机电一体化技术研究所
Z变换定义,典型序列的Z变换 变换定义,典型序列的 变换 变换定义

数字信号处理,第二章 Z变换讲解

数字信号处理,第二章 Z变换讲解

二、右边序列
例3:求序列 x(n) u(n)的Z变换及收敛域。
Z[x(n)] u(n)zn zn
n
n0
1 1 1 z z2
1 1 z 1
z z 1
Z[u(n)]的极点为1,零点为0 收敛域为|z|>1
零极相消
例:
Z[u(n) u(n 1)]
Z[u(n)] Z[u(n 1)]
s1in2zz1
1 sin(0 cos0
z 2
)
§2.3 z变换性质1
一、线性:
Z[a1x1(n)+a2x2(n)]=a1Z[x1(n)]+a2Z[x2(n)]
二、时移:
Z[x(n)]=X(z) Z[x(n-m)]=z-m·X(z)
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
即: x(n)z n M n
一、有限长序列
例1:求序列 x(n) RN (n) 的Z变换及收敛域。
Z[RN (n)]
RN (n)zn
n
N 1
z n
n0
1 zN 1 z1
收敛域为: 0 z ,
例2:求序列 x(n) (n)的Z变换及收敛域。
解:
Z[ (n)] (n)zn z0 1
z z1 z z 1 1
z 1
z 1 z 1
零、极点均为z=1,称为零极点相消。收敛域为整个z平面。
另:
u(n) u(n 1) (n), Z[ (n)] 1
例4:求序列 x(n) anu(n)的Z变换及收敛域。
解: X (z) anu(n)z n a n z n (az 1 )n
例2-4-2:
X
(
z)

z变换公式

z变换公式

z变换公式在信号处理领域中,z变换是一种将离散时间序列转换为复频域的工具。

它在数字信号处理、控制系统分析和通信工程等领域中广泛应用。

本文将详细介绍z变换的概念、特性以及常见的z变换公式。

一、z变换的概念z变换是对离散时间信号进行频域分析的一种方法。

它类似于傅里叶变换,但傅里叶变换只适用于连续时间信号,而z变换适用于离散时间信号。

通过将离散时间序列表示为z的幂级数形式,可以将离散时间信号在复频域中进行表示和分析。

z变换的定义如下:X(z) = Z{x(n)} = ∑[ x(n) * z^(-n)] (1)其中,x(n)是离散时间序列,X(z)是x(n)的z变换。

二、z变换的特性与傅里叶变换类似,z变换也具有线性性、时移性、共轭性和卷积性质。

下面对每个特性进行详细讨论。

1. 线性性z变换具有线性性质,即对于任意常数a和b以及离散时间序列x1(n)和x2(n),有以下公式成立:Z{a * x1(n) + b * x2(n)} = a * X1(z) + b * X2(z) (2)其中,X1(z)和X2(z)分别是x1(n)和x2(n)的z变换。

2. 时移性z变换具有时移性质,即对于离散时间序列x(n - k),其z变换为Z{x(n - k)} = z^(-k) * X(z)。

3. 共轭性z变换具有共轭性质,即如果x(n)的z变换为X(z),则x*(-n)的z 变换为X*(1/z*),其中,*表示共轭。

4. 卷积性质z变换具有卷积性质,即对于离散时间序列x1(n)和x2(n)的卷积序列y(n) = x1(n) * x2(n),其z变换为Y(z) = X1(z) * X2(z),其中,*表示乘法运算。

三、常见的z变换公式根据z变换的定义和特性,可以得到一些常见的z变换公式,下面将逐个进行介绍。

1. 常数序列对于常数序列x(n) = C,其z变换为X(z) = C * (1 - z^(-1)) / (1 - z^(-1))。

z变换在数字信号处理中的应用

z变换在数字信号处理中的应用

z变换在数字信号处理中的应用z变换是一种重要的数学工具,广泛应用于数字信号处理领域。

它为信号的分析、滤波、系统建模和控制提供了强大的数学工具和方法。

本文将介绍z变换在数字信号处理中的应用,并从时域分析、频域分析、系统建模和控制四个方面进行讨论。

一、时域分析:1.系统响应:z变换能够用于描述系统对输入信号的响应。

通过将输入信号和系统的冲激响应进行z变换,可以得到系统的传递函数,从而分析系统的频率响应和稳定性。

2.信号处理:通过对输入信号进行z变换,可以将时域信号转换为z域信号,从而实现对信号的处理。

例如,通过z变换可以实现数字滤波器的设计和实现,对信号进行降噪、去除干扰等。

3.离散系统:在离散系统的分析中,z变换可以用来建立系统的差分方程,从而分析系统的动态响应和稳定性。

二、频域分析:1.频谱分析:通过z变换,可以将时域信号转换为频域信号,从而实现对信号频谱的分析。

对于周期信号,可以通过z变换的周期性特性进行频谱分析,对信号的频率成分进行提取和变换。

2.频率响应:通过z变换,可以将系统的传递函数表示为复频率的函数,可以分析系统对不同频率成分的响应。

例如,可以使用z变换来设计数字滤波器,分析其在不同频段上的滤波特性。

3.频域滤波:通过z变换,可以将时域上的卷积运算转换为z域上的乘法运算,从而实现频域滤波。

通过将输入信号和滤波器的频率响应进行z变换,可以得到输出信号的z域表达式,从而实现对信号的滤波。

三、系统建模:1.系统识别:z变换可以用来对信号和系统进行建模和识别。

通过观察输入输出信号对及其z变换的关系,可以得到系统的传递函数和差分方程,从而实现对系统的建模和识别。

2.参数估计:通过z变换,可以将自相关函数和互相关函数转换为z域上的自相关函数和互相关函数,从而实现对信号的参数估计。

例如,可以使用z变换来对信号的自相关函数进行拟合,从而得到信号的自相关函数的模型参数。

四、控制系统:1.离散控制系统:在离散控制系统中,z变换被广泛应用于系统的建模和控制。

第三章--Z变换(数字信号处理)

第三章--Z变换(数字信号处理)
R
综合以上二步可得 x(n) anu(n)
例 3.7已知 换x(n)。
第三章 序列的Z变换
X (z)
1 a2 (1 az)(1 az1) ,
a
1,
求其反变
解: 该例题没有给定收敛域, 为求出唯一旳原序 列x(n), 必须先拟定收敛域。 分析X(z), 得到其极点 分布如图3.5所示。 图中有二个极点z=a和z=a-1, 这么 收敛域有三种选法, 它们是
n n1
设x(n)为有界序列, 因为是有限项求和, 除0与∞
两点是否收敛与n1、 n2取值情况有关外, 整个z平面均 收敛。 假如n1<0, 则收敛域不涉及∞点; 如n2>0, 则 收敛域不涉及z=0点; 假如是因果序列, 收敛域涉及
z=∞点。 详细有限长序列旳收敛域表达如下:
第三章 序列的Z变换
第三章 序列的Z变换
n 0, x(n) Re s[F (z), a] Re s[F (z), a1]
a(
(1 a2 z a)(
)zn z
a
1
)
(
z
a
)
za
(1 a2 )zn a(z a)(z a1) (z
a1)
z a 1
an (an ) an an
最终将x(n)表达成
nn1
nn1
n0
第一项为有限长序列, 设n1≤-1, 其收敛域为0≤|z|< ∞。 第二项为因果序列, 其收敛域为Rx-<|z|≤∞, Rx是第二项最小旳收敛半径。 将两收敛域相与, 其收 敛域为Rx- <|z|<∞。 假如x(n)是因果序列, 收敛域定为Rx- <|z|≤∞。 推论:如序列x(n)旳Z变换旳收敛域包括∞点,则x(n) 是因果序列

《数字信号处理》第六章 Z变换

《数字信号处理》第六章  Z变换

第一节 Z变换的定义
例1:求 x(n)=(1/2)nu(n) 的z变换
解:
X (z)

x(n)zn

(1)nu(n)zn


z
n


n
n 2
n0 2
例2:求 x(n)=-(1/2)nu(-n-1)的z变换
解:
X (z)

x(n)zn
A( z )

1 za

1 a
1 1 1
z
a
按等比级数有
A(z)


1 a
(1
1 a
z

1 a2
z2
)
at
{
1 a
,
1 a2
,
1 a3
,, ,
1 a n 1
,)
第四节 Z反变换
当 a 1时,
A( z )

z
1 a

11 z 1 az 1
按等比级数有
A(z) 1 (1 az1 a2 z2 ) z
解:
Z [u(n)] 1 , z 1
1 z
Z [u(n 3)] z3
1

z3 ,
z 1
1 z 1 z
Z [x(n)] 1 z3 z2 z 1, z 1 1 z 1 z
例4 已知序列x(n)的z变换为X(Z),求
7X(z)+3zX(z)+8z2X(z) +z3X(z) +6z5X(z)所对应的信号
k


zk
k 0
1 1 z
这是一个等比级数,当|z|<1时,该级数收敛。

信号与系统第六章Z变换

信号与系统第六章Z变换

差分方程的稳定性分析
01
稳定性定义
02
稳定性判据
如果一个离散时间系统在输入信号的 作用下,其输出信号不会无限增长, 则称该系统是稳定的。
对于差分方程,可以通过判断其极点 位置和类型来分析系统的稳定性。如 果所有极点都位于复平面的左半部分 ,则系统是稳定的;否则,系统是不 稳定的。
03
稳定性分析的意义
反转性质在通信和控制系统设计中非常有用,因为它允 许我们通过改变信号的方向来改变系统的性能。
卷积性质
卷积性质描述了z变换的卷积特性。如 果两个信号在时间上相乘,那么它们 的z变换就是它们的卷积。
卷积性质在信号处理中非常重要,因 为它允许我们通过将两个信号相乘来 得到一个新的信号。
复共轭性质
复共轭性质描述了z变换的复共轭特性。如果一个信号是实数,那么其z变换就是其复共轭的离散化表 示。
信号与系统第六章z 变换
目录
CONTENTS
• 引言 • z变换的收敛域 • z变换的性质和应用 • z变换与离散时间系统 • z变换与差分方程 • z变换与信号处理
01
引言
背景介绍
ห้องสมุดไป่ตู้
信号与系统是通信、电子、控制等领 域的重要基础课程,其中第六章z变换 是信号与系统中的重要章节之一。
z变换是离散时间信号处理中的一种数 学工具,用于分析离散时间信号和系 统的性质和行为。
离散信号的z变换
离散信号的z变换是将离散时间序列通过z变 换转换为复数序列,用于分析离散时间系统 的特性。
系统的频率响应和极点零点分析
01
系统的频率响应
02
系统的极点和零点
03
系统稳定性分析
通过z变换分析系统的频率响应, 了解系统在不同频率下的性能表 现。

数字信号处理z变换

数字信号处理z变换

X (s) X ( j) x(t)e jdt
s j
拉普拉斯变换演变为傅里叶变换
– 0 ,s平面的左半面,对应 r eT 1,单位圆内
– 0 , s平面的右半面,对应 r eT 1,单位圆外
z变换与拉氏变换的映射关系
映射
1)s平面上的虚轴 z平面上的单位圆r=1
映射
2)s平面上的左半平面 z平面上的单位圆内r<1
X (z) x(n)zn n
与z变换的定义一致
拉普拉斯复变量 s j , 2 f 对应连续系统及连续 信号的角频率,单位是弧度/秒
z esTs e( j)Ts eTs e jTs
令 r eTs Ts
则 z re j
对应离散系统和离散信号的圆周频率,单位是弧度
X (z) x(n)(re j )n x(n)rn e jn
例1 已知f (t) eatu(t),(a 0) 和F( j) 1
,求f (t )拉普拉
j a
斯变换
F(s) F( j) 1 js s a
收敛域如图a),包括虚轴
例2 求t的指数函数 f (t) eatu(t) ,(a为任意常数)的拉普拉
斯变换
F (s) eatestdt e(sa)tdt
X (z) x(n)zn n0
显然,仅当 x(n) 0, n 0 时,双边和单边z变换才相等。
X (z) 2z 11.5z1 z2 0.5z3
由拉普拉斯变换到z变换
x(nTs ) 是由连续信号x(t)经抽样得到的
x(nTs ) xa (t) (t nTs ) xa (nTs ) (t nTs )
又z esTs ,
其中Ts为序列时间间隔
2
s

信号与系统z变换

信号与系统z变换

信号与系统z变换信号与系统是电子工程领域中的重要基础学科,主要研究信号的传输、变换和处理方法。

在实际应用中,我们常常需要对信号进行分析和处理,以提取有用的信息或改善信号的质量。

信号可以是各种形式的信息载体,比如声音、图像、视频等。

通过采集和传输设备,我们可以将这些信号转换为电信号,然后利用信号与系统理论进行处理和分析。

信号与系统的核心概念是时域和频域。

时域描述了信号随时间的变化情况,频域则描述了信号在频率上的特性。

这两个视角可以相互转换,帮助我们更好地理解信号的本质和行为。

在信号与系统中,Z变换是非常重要的工具。

它可以将离散时间信号转换为复变量的函数,从而使得我们可以在频域中对信号进行分析和处理。

Z变换广泛应用于数字信号处理、控制系统等领域。

Z变换的定义如下:给定一个离散时间信号x(n),其Z变换X(z)定义为:X(z) = ∑[x(n) * z^(-n)], -∞ < n < ∞其中,z为复变量,n为离散时间。

Z变换可以看作是傅里叶变换在离散时间下的推广,它将时域信号转变为频域的表达形式。

Z变换的性质有很多,其中一些常见的性质包括线性性、时移性、频移性、时域尺度反转和频域微分等。

这些性质可以帮助我们简化信号处理的过程,提高计算效率。

在实际应用中,我们可以利用Z变换对信号进行滤波、频谱分析和系统建模。

使用Z变换,我们可以将复杂的离散时间系统转化为简单的代数表达式,从而更加方便地进行分析和设计。

总的来说,信号与系统中的Z变换是一种重要的工具,它为我们分析和处理离散时间信号提供了便利。

通过深入理解Z变换的概念和性质,我们可以更好地掌握信号与系统的基本原理,进而应用于实际工程中,为各类系统设计和信号处理问题提供解决方案。

数字信号处理WD6Z变换性质解差分方程频域特征PPT课件

数字信号处理WD6Z变换性质解差分方程频域特征PPT课件

k0
k0
1、稳态解(无初始条件下的解,直接利用z变换) 2、暂态解(已知N个初始条件y(-1),y(-2)…y(-N))
2.5.5 复序列的共轭
设 X(z)Z[T x(n),] RxzRx,则 Z[T x*(n)]X*(z*) , RxzRx
证明:
ZT[x*(n)] x*(n)zn (x(n)(z*)n)*
n
n
*
x(n)(z*)n
n
X*(z*) , Rx z Rx
2.5.6 翻转序列
设 X (z)Z[x T (n),] R xzR x ,则
2.5.4 序列的线性加权
设 则 证明
X(z)ZT[x(n)] RxzRx
ZT[nx(n)]zdX(z) dz
RxzRx
dX (z) d [
x(n)zn]
x(n) d [zn]
dz
dz n
n
dz
nx(n)zn1 z1 nx(n)zn
n
n
z1ZT [nx(n)]
ZT[nx(n)] z dX (z) dz
Z[x T ( n) ]X (z 1) , R x 1zR x 1
2.5.7 初值定理 设x(n)是因果序列,X(z)=ZT[x(n)]
x(0)limX(z) z
证Байду номын сангаас
X(z) x(n)zn x(0)x(1)z1x(2)z2
n0
因此
limX(z)x(0)
z
2.5.8 终值定理
若x(n)是因果序列,其Z变换的极点,除可 以有一个一阶极点在z=1上,其它极点均在单 位圆内,则
z
z
maRxx,R (yvmiRnx,(Ry)

信号中z变换

信号中z变换

信号中z变换信号中的z变换引言:在信号处理领域中,信号的变换是一种重要的数学工具,用来改变信号的表示方式,以便更好地理解和分析信号的特性。

其中,z变换是一种常用的信号变换方法,被广泛应用于数字信号处理领域。

本文将详细介绍信号中的z变换,从基本概念到应用实例,一步一步地解释其原理和应用。

第一部分:基本概念1.1 信号和系统信号是指传递信息的物理量或抽象量,可以是连续的或离散的。

系统是对信号进行处理或变换的过程或装置。

1.2 连续时间信号和离散时间信号连续时间信号是定义在连续时间域上的信号,例如模拟音频信号。

离散时间信号是定义在离散时间域上的信号,例如数字音频信号。

1.3 z变换的定义z变换是一种将离散时间信号转换为z域上的复数函数的方法。

z域是一个复平面上的坐标系,用于对离散时间信号进行频域分析。

1.4 z域和频域z域是由z变量表示的复平面,其中实轴表示信号的实部,虚轴表示信号的虚部。

频域是信号在频率上的表示,用于分析信号的频率特性。

第二部分:z变换的性质和定理2.1 线性性质z变换具有线性性质,即对于任意常数a和b,有z变换(a*x[n] +b*y[n]) = a*X(z) + b*Y(z),其中x[n]和y[n]分别为离散时间信号,X(z)和Y(z)为其z变换。

2.2 时移性质z变换具有时移性质,即对于离散时间信号x[n - k],其z变换为z^(-k)*X(z),其中k为常数。

2.3 频移性质z变换具有频移性质,即对于离散时间信号x[n]*cos(ω0*n),其z变换为X(z*e^(jω0)),其中ω0为常数。

2.4 基本定理z变换的基本定理是指对于一个离散时间信号x[n],其z变换X(z)存在并唯一当且仅当其绝对收敛。

第三部分:z变换的应用3.1 系统分析z变换用于对线性时不变系统进行分析。

通过对系统输入信号和输出信号进行z变换,可以得到系统的传递函数,进而分析系统的频率响应和稳定性。

3.2 信号滤波z变换用于实现数字滤波器,通过对输入信号进行z变换并乘以滤波器的传递函数,在z域上进行滤波操作,最后通过z逆变换将滤波结果转换回时域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总结:双边序列Z变换的收敛域为由极点限定的圆环
• 例 4.8 x(n)=b|n|, a为实数, 求x(n)的Z变换及其收敛域。
解:
X z
X 1 z
n

1

xn z n
n n
n

1
b n z n

n0

b n z n
z 1 b
X 2 z
z a
X(z)存在要求|a-1 z|<1, 即收敛域为|z|<|a|
4. 双边序列
一个双边序列可以看作一个左序列和一个右序列之和, 其Z变换表示为

X z
X 1 z
n
1
xn z n X 1 ( z ) X 2 ( z )
n

xn z n
0 z Rx
Rx z
X 2 z xn z n
n 0
X(z)的收敛域是X1(z)和X2(z)收敛域的公共收敛区域。 如果Rx+>Rx其收敛域为Rx- <|z|< Rx+ , 这是一个环状域, 如果Rx+ < Rx- , 两 个收敛域没有公共区域, X(z)没有收敛域, 因此X(z)不存在。
例 4.5求x(n)=RN(n)的Z变换及其收敛域

X ( z)
n

RN (n) z n z n
1 zN 1 z 1
这是一个因果的有限长序列, 因此收敛域为0<z≤∞。 但由结果 的分母可以看出似乎z=1是X(z)的极点, 但同时分子多项式在z=1 时也有一个零点, 极零点对消, X(z)在单位圆上仍存在,求RN(n) 的FT, 可将z=ejω代入X(z)得到, 其结果和例题4.2中的结果相同。
n n1
中每一项皆小于(4-48)式级数中的对应项,故有n1 ≥0时右序列的 收敛域为Rx- <|z|≤∞。 (2) n1<0,Z变换写为 X z
nn1
nn1


xnz n
nn1

1
xnz n

n 0

xnz n
第一项为有限长序列, 因n1<0,其收敛域为0≤|z|<∞。 第二项 为因果序列, 其收敛域为Rx-<|z|≤∞, Rx-是第二项最小的收敛半 径。 将两收敛域相与, 其收敛域为Rx- <|z|<∞。
2. 右序列
右序列是在n≥n1时,序列值不全为零,而其它n<n1序列值全为0。
X z
nn1


xn z n
n1可正可负,分两种情况考虑其收敛域。 (1) n1 ≥0,这时的右边序列就是因果序列。假设X(z)在 z z1 处绝 n 对收敛,即 x n z1 因n1 ≥0,则 z z1 时, xnz n
xa (t )


频谱( f )
0

0
s平面
复频谱( s ) 推广 傅立叶变换 拉氏变换 特例
X a ( s ) s j 2f X a ( f )
对于离散时间信号 x(n) ,其频谱为
X (e )=ℱ [x(n)
j
]
n
x(n)e jn

若级数不收敛,则 x(n) 的频谱不存在。 仿照连 续时间信号复频谱分析,同样借助衰减因子r n 。 例如,分析阶跃序列 u (n) 的频谱 ℱ

e t

定义


[ xa (t )e
t
]e
j 2ft
dt xa (t )e


( j 2f ) t
st dt xa (t )e dt

xa (t )
的拉氏变换

j 2f
ℒ[
st xa (t ) ] X a (s) xa (t )e dt
x(n )
频谱()
0
Re[ z ]
z
复频谱( z )
z平面
X z
n


x n z n ZT [ x(n)]
z变换存在的条件是上式的等号右边级数收敛
n
| x n z n |

满足上式的z变量的取值域就称为收敛域。
单边Z变换
X z x n z n
c
m 1
1 dz 0
m0 m0
因此(4-50)式等号右边的围线积分只有当-n+k=0,即n=k时为1,对其 余n均为0。所以等号右边等于x(k),将等号左右两边k用n表示,即 得逆Z变换公式
1 xn 2j

c
X z z n1dz
c ( Rx , Rx )
b z 1 b
如果|a|≥1, 则无公共收敛域, 因此X(z)不存在。
4.2.3 逆Z变换及其求法 逆Z变换为Z 变换的逆过程,给定 X(z) 及其收 敛域,求 x(n) 。 正变换: ZT [x(n)]= X(z) 反变换: ZT [X(z) ]= x(n) 1.Z反变换公式
-1


X ( z)
直接计算围线积分比较麻烦的,所以常用以下三种方法求逆z变换的:
幂级数展开法(长除法)
部分分式展开法 留数定理法
1. 幂级数法(长除法)
按照Z变换定义式,可以用长除法将X(z)写成幂级数形式,级数的 系数就是序列x(n)。 要说明的是, 如果x(n)是右序列, 级数应是 降幂排列,展成负幂级数;如x(n)是左序列,级数则是升幂排列, 展开成正幂级数。所以在展开幂级数之前应考察 X(z) 的收敛域, 以判断对应的是左边序列还是右边序列,进而根据序列是右边序 列(或左边序列),确定应展开为z的负幂级数(或正幂级数)。 例 4-9已知 解:由收敛域判定这是一个右序列, 用长除法将其展成负幂级数
总结:左序列收敛域位于由极点限定的圆内,0点单独 考虑。
例 4-7求x(n)=-anu(-n-1)的Z变换及其收敛域。
X ( z)
n



a u( n 1) z
n n n
n

n

1
a n z n
a z
n 1
a 1 z 1 X ( z) , 1 1 1 a z 1 az
1 1 k 1 X z z dz xn z nk 1dz 2j c 2j c n




1 1 X z z k 1dz xn z nk 1dz (4-50) 2j c 2j c n




1 根据复变函数理论中的柯西积分定理有 2j
z
总结:右序列收敛域位于极点限定的圆外,∞单独考虑。 若为因果序列,则包含∞,若不是因果的,则不包含∞
例 4.6求x(n)=anu(n)的Z变换及其收敛域 解:
X ( z)
n


a u(n ) z
n
n
a z
n 0

n n
1 1 az n
在收敛域中必须满足|az-1|<1, 因此收敛域为|z|>|a|。
n
x ( n) z n
-1

R2 z R1
1 X ( x ) z n 1dz x(n) = ZT [X(z) ] 2j c
c ( R2 , R1 )
公式推导过程
将Z变换公式 X z
n


x n z n ZT [ x(n)] 两边同时乘以zk-1,得
n 0
u (n) ] 1 e jn [
n 0
n 0

1
u(n )
1 r n e jn ( r 1e j )n

0
r n
n

r 1e j 1 ,则级数收敛,∴要求 r 1 。
再如,ℱ
a n u (n) ] a n e jn [
n
n0
b

z
1 bz b z 1 1 1 bz 1 bz n0
n n

b n z n
1 1 bz
1
zb
如果|b|<1, 两部分的公共收敛域为|b|<|z|<|b|-1, 其Z变换如下式:
bz 1 X z 1 bz 1 bz1
z平面
单位圆上的Z变换就是序列的傅立叶变换。若某序列ZT收 敛域包含单位圆,则可由二者关系式很方便的由ZT求得FT
4.2.2 Z 变换的收敛域
(1)收敛域的定义 使级数 x(n) z n 收敛的 Z平面上所有z 值的集
n
合,称为 Z变换的收敛域。 若级数不收敛,Z变换无意义; 若给定 X (z ) ,必须同时给定收敛域才能唯一 地确定x(n)。 j Im[ z ] n 例 x1 (n) a u(n) z 平面
X 1 ( z ) a n z n
n 0
1 1 az 1
0
z za
a
z a
Re[ z ]
az
1
1
za
• 序列特性对收敛域的影响
序列的特性决定其Z变换收敛域,了解序列特性与收敛的 一些一般关系, 对使用Z变换是很有帮助的。
• 1. 有限长序列
如序列x(n)满足下式: 其Z变换为
3. 左序列 左序列是在n≤n2时, 序列值不全为零, 而在n>n1,序列值全为 n 零的序列。 左序列的Z变换表示为 n
X ( z)
n
相关文档
最新文档