成人高考数学模拟试题及答案

合集下载

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。

2. 等差数列1, 3, 5, 7, 的前10项和是______。

3. 不等式3x 4 < 2x + 5的解集是______。

4. 圆柱的体积公式是______。

5. 积分∫(x^3 + 1)dx的值是______。

三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。

3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。

4. 求圆柱的表面积。

5. 计算积分∫(x^4 + 1)dx。

四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。

2024年成人高考数学模拟试题

2024年成人高考数学模拟试题

2024年成人高考数学模拟试题2024年成人高考数学模拟试题一、选择题1、以下哪个数是素数?() A. 10 B. 3 C. 4 D. 5 答案:D. 52、已知一个正方形的边长为2,那么它的面积为() A. 4 B. 6 C.8 D. 16 答案:A. 43、在下列年份中,哪一个是闰年?() A. 2020年 B. 2021年 C. 2022年 D. 2023年答案:A. 2020年4、若x,y为实数,且|x-1|+|y+3|=0,则x-y的值为() A. -4 B. -2 C. 2 D. 4 答案:C. 25、等差数列{an}的前n项和为Sn,已知a3=10,S6=72,则公差d为() A. 1 B. 2 C. 3 D. 4 答案:B. 2二、填空题6、已知圆心为点C的圆:x²+y²-8x-64=0,则该圆的半径r为____。

答案:1061、在三角形ABC中,若sin(A+B)=2sinAcos(A+B),则该三角形是____三角形。

答案:直角611、若函数f(x)在定义域内满足f(x+1)=f(x-1),且f(0)=2,则f(x)的表达式为____。

答案:f(x)=2cos(2x)6111、若log₂(x-1)有意义,则x的取值范围是____。

答案:(1, +∞)61111、若向量a=(1,2),b=(3,4),则a*b=____。

答案:11三、解答题11、求函数y=√x²+4x+3 的值域。

答案:∵x²+4x+3=(x+2)²-1≥-1,∴函数y的值域为[0, +∞)。

111、求sin75°的值。

答案:∵sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=(1/2)(√2/2)+(√3/2)(√2/2)=(√2+√6)/4,∴sin75°的值为(√2+√6)/4。

2024年成人高考成考(高起专)数学(文科)试题及答案指导

2024年成人高考成考(高起专)数学(文科)试题及答案指导

2024年成人高考成考数学(文科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、已知函数f(x)=2x2−3x+1,则该函数的导数f′(x)为:A.4x−3B.2x−3C.4x+1D.2x+12、在下列各数中,绝对值最小的是()A、-3/2B、-1/2C、3/2D、1/23、若一个正方形的边长增加其原长的25%,则新正方形的面积比原来增加了多少百分比?A、50%B、56.25%C、75%D、100%4、在下列各数中,不是有理数的是:A、-5.25B、√16C、πD、0.35、已知直线(l)的方程为(2x−3y+6=0),则直线(l)的斜率是多少?)A、(23)B、(32)C、(−23)D、(−326、下列函数中,定义域为全体实数的是()A、f(x) = √(x+1)B、f(x) = √(x^2 - 4)C、f(x) = 1 / (x-2)D、f(x) = 1 / (x^2 + 1)7、设函数f(x)=2x2−3x+1,则该函数的最小值为()。

A.−18B.18C.−1D.1),则下列说法正确的是:8、若函数(f(x)=3x2−2x+1)的图像的对称轴为(x=13A.(f (0)=f (1))B.(f (0)=f (−13))C.(f (13)=f (−13))D.(f (0)+f (1)=2f (13))9、若直线(l )的方向向量为((3,−4)),则直线(l )的斜率为:A.(34)B.(−34)C.(43)D.(−43)10、在下列各数中,有理数是( )A.√2B.πC.13D.ln211、一个等差数列的前三项分别是2、5、8,那么该数列的公差是多少?A 、3B 、4C 、5D 、612、已知函数f (x )=2x−1x 2−2x+1,下列说法正确的是:A. 函数的定义域为(−∞,1)∪(1,+∞)B. 函数的值域为(−∞,0)∪(0,+∞)C. 函数的增减性在x=1处发生改变D. 函数的图像关于直线x=1对称二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=12x2−3x+4在x=1处取得极值,则该极值为_______ 。

2024年成人高考高起专、高起本数学(文)-考前模拟题

2024年成人高考高起专、高起本数学(文)-考前模拟题

全国各类成人高等学校招生考试高起点数学(文史财经类)考前密押(一)一、选择题(本大题共12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,为偶函数的是A.y=log2xB.y=x2C.y=π2D.y=x2+x2.已知f(x)是偶函数且满足f(x+3)=f(x),f(1)=-1,则f(5)+f(11)等于A.-2B.2C.-1D.13.如果二次函数y=ax2+bx+1的图像的对称轴是x=1,并且通过点A(-1,7),则a,b的值分别是A.2,4B.2,-4C.-2.4D.-2,-44.设M={x|x≤√10,a=√2+√3那么A.a⊂MB.a⊂MC.{a}⊂MD.{a}⊂M5.函数f(x)=3+2x-12x2的最大值是A.4B.5C.2D.36.已知直线l与直线2x-3y+5=0平行,则l的斜率为A. 327.等差数列{a n }中,a 1+a 2=15,a =-5,则前8项的和等于A.-60B.-140C.-175D.-1258.若sin (π-α)=log 814,且αϵ(-π2,0)则cot (2π-α)的值为 A.-√52B.√52C.±√52D.-√5 9.设F 1、F 2为椭圆注图B193@@的焦点,P 为椭圆上的一点,则ΔPF 1F 2的周长等于A.10+2√34B.18C.14D.1210.已知向量a =(3,1),b =(-2,5),则3a-2b =A.(2,7)B.(13,-7)C.(2,-7)D.(13,13)11.已知双曲线上一点到两焦点(-5,0),(5,0)距离之差的绝对值等于6,则双曲线方程为A.x 29−y 216=1 B.y 29−x 216=1C.x 225−y 216=1D.y 225−x 216=112.某同学每次投篮投中的概率为注图B206@@.该同学投篮2次,只投中1次的概率为D.35二、填空题(本大题共3小题,每小题7分,共21分)13.若平面向量a =(x ,1),b =(1,-2),且a⊂b ,则x =______.14.已知α、β为锐角,cos (α+β)=1213,cos (2α+β)=35,则cosα=______.15.从5位男生和4位女生中选出2人作代表,恰好一男生和一女生的概率是______.三、解答题(本大题共3小题,共45分.解答应写出推理、演算步骤)16.问数列:lg100,lg (100sin45°),lg (100sin 245°),···,lg (100sin n-145°)前几项和最大?并求最大值.(1g2=0.3010)17.已知f (x )=4x 2-mx +5(x⊂R )在(-∞,-2]上是减函数,在[-2,+∞)上是增函数,求f (1)的值,并比较f (-4)与log 128的大小. 18.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),斜率为1的直线l 与C 相交,其中一个交点的坐标为(2,√2),且C 的右焦点到l 的距离为1.(⊂)求a ,b ;(⊂)求C 的离心率.全国各类成人高等学校招生考试高起点数学(文史财经类)考前模拟(一)参考答案及解析一、选择题1.【答案】B【考情点拨】本题主要考查的知识点为偶函数的性质.【应试指导】A项,log2x≠log2(-x),故A项不是偶函数;C项,4x ≠4−x,故C项不是偶函数;D项,x2+x≠(-x)2-x,故D项也不是偶函数;而B项中x2=(-x)2,故B项是偶函数.2.【答案】A【考情点拨】本题主要考查的知识点为偶函数与周期函数的性质.【应试指导】⊂f(x)是偶函数,⊂f(-x)=f(x),又⊂f(x+3)=f(x),⊂函数f(x)的周期T=3,⊂f(1)=-1,⊂f(-1)=f(1)=-1,⊂f(5)+f(11)=f(2+3)+f(2+3×3)=f(2)+f(2)=2f(2)=2f(-1+3)=2f(-1)=2x(-1)=-2.3.【答案】B【考情点拨】本题主要考查的知识点为二次函数的对称性.【应试指导】由于二次函数y=ax2+bx+1的图像的对称轴是x=1,且过点A(-1,7),4.【答案】D【考情点拨】本题主要考查的知识点为元素与集合的关系.5.【答案】B【考情点拨】本题主要考查的知识点为函数的最值.6.【答案】C【考情点拨】本题主要考查的知识点为直线的斜率.【应试指导】已知直线l与直线2x-3y+5=0平行,故k l=23 7.【答案】B【考情点拨】本题主要考查的知识点为等差数列.【应试指导】由已知条件及等差数列的定义得8.【答案】B【考情点拨】本题主要考查的知识点为三角函数的性质及诱导公式.9.【答案】B【考情点拨】本题主要考查的知识点为椭圆的定义.【应试指导】由方程x 225+y29得a=5,b=3,⊂c=4,由椭圆的定义得ΔPF1F2的周长=2a+2c=2×5+2×4=18.[注]此题主要是考查椭圆的定义及a 、b 、c 三者之间的关系,可用图形来帮助理解.|PF 1|+|PF 2|=2a ,|F 1F 2|=2c.10.【答案】B【考情点拨】本题主要考查的知识点为向量的坐标运算.【应试指导】由a =(3,1),b =(-2,5),则3a-2b =3·(3,1)-2·(-2,5)=(13,-7).11.【答案】A【考情点拨】本题主要考查的知识点为双曲线的定义.【应试指导】由已知条件知双曲线焦点在x 轴上属于第一类标准式,又知c =5,2a =6,⊂a =3,⊂b2=c2-a2=25-9=16,所求双曲线的方程为x 29−y 216=112.【答案】A【考情点拨】本题主要考查的知识点为随机事件的概率.【应试指导】只投中1次的概率为:C 21×25×35=1225 二、填空题13.【答案】-12 【考情点拨】本题主要考查的知识点为平行向量的性质.【应试指导】由于a⊂b ,故x 1=1−2,即x =-1214.【答案】5665【考情点拨】本题主要考查的知识点为两角和公式.15.【答案】59【考情点拨】本题主要考查的知识点为随机事件的概率.【应试指导】从5位男生和4位女生中任选2人的选法共有注图B239@@种,恰好一男生和一女生的选法共有C 51∙C 41种,所以恰好选出一男生和一女生的概率是C 51∙C 41C 92 =59 三、解答题17.18.全国各类成人高等学校招生考试高起点数学(文史财经类)全真模拟(二)一、选择题(本大题共12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,若a 1=2,a 3=6,则a 7=A.10B.12C.14D.82.不等式|2x-3|≤1的解集为A.{x|1≤x≤2}B .{x |x≤-1或x≥2}C.{x|1≤x≤3}D.{x|2≤x≤3}3.函数y =3x 与(13)x 的图像之间的关系是 A.关于原点对称B.关于x 轴对称C .关于直线y =1对称D.关于y 轴对称4.已知函数f (x )=x2+2x +2(x <-1),则f-1(2)的值为A.-2B.10C.0D.25.若直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是A.−13B.-3C.13D.36.点P (2,5)到直线x +y-9=0的距离是A.2√2929C.√2D.−√227.已知A (-1,0),B (2,2),C (0,y ),若AB⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,则y = A.3B.5C.-3D.-58.把6个苹果平均分给3个小孩,不同的分配方法有A .90种B .30种C .60种D ).15种9.已知直线y =3x +1与直线x +my +1=0互相垂直,则m 的值是A.13B.−13C.-3D.310.设等比数列{a n }的公比q =2,且a 2·a 4=8,a 1·a 7=A.8B.16C.32D.6411.已知数列前n 项和S n =12(3n 2−n ),则第5项的值是A.7B.10C.32D.1612.函数注图的最小正周期和最大值分别是A.2π,12B.2π,2D.π2,-12二、填空题(本大题共3小题,每小题7分,共21分)13.设0<α<π2,则√1−sinαsin α2−cos α2=______.14.在ΔABC 中,AB =3,BC =5,AC =7,则cosB =______.15.从某班的一次数学测试卷中任意抽出10份,其得分情况如下:81,98,43,75,60,55,78,84,90,70,则这次测验成绩的样本方差是______.三、解答题(本大题共3小题,共45分.解答应写出推理、演算步骤)16.设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =√32,已知点P (0,32)到椭圆上的点的最远距离是√7,求椭圆的方程.17.在ΔABC 中,AB =2,BC =3,B =60°.求AC 及ΔABC 的面积.18.已知等差数列{a n }前n 项和S n =-2n 2-n .(⊂)求通项a n 的表达式;(⊂)求a 1+a 3+a 5+···+a 25的值.全国各类成人高等学校招生考试高起点数学(文史财经类)考前模拟(二)参考答案及解析一、选择题1.【答案】C【考情点拨】本题主要考查的知识点为等差数列的性质.【应试指导】因为{a n}是等差数列,设公差为d,则a3=a1+2d⇒2+2d=6⇒d=2,所以a7=a1+6d=2+6×2=14. 2.【答案】A【考情点拨】本题主要考查的知识点为不等式的解集.【应试指导】|2x-3|≤1⇒-1≤2x-3≤1⇒2≤2x≤4⇒1≤x≤2,故原不等式的解集为{x|1≤x≤2}.3.【答案】D【考情点拨】本题主要考查的知识点为曲线的对称性.4.【答案】A【考情点拨】本题主要考查的知识点为反函数的性质.5.【答案】A【考情点拨】本题主要考查的知识点为直线的平移.【应试指导】由已知条件知直线经过两次平移后又回到原来的位置,因为直线是满足条件的点集,所以取直线上某一点来考查,若设点P(x,y)为l上的任一点,则经过平移后的对应点也应在这条直线上,这样,可由直线上的两点确定该直线的斜率.方法一:设点P(x,y)为直线l上的任一点,当直线按已知条件平移后,点P随之平移,平移后的对应点为P'(x-3,y+1),点P'仍在直线上,所以直线的斜率k=y+1−yx−3−x =−13方法二:设直线l的方程为y=kx+b,直线向左平移3个单位,方程变为y=k(x+3)+b,再向上平移一个单位,方程变为y=k(x+3)+b+1,即y=kx+3k+b+1,此方程应与原方程相同,对应项系数相等,比较常数项可得,3k+b+1=b,∴k=−136.【答案】C【考情点拨】本题主要考查的知识点为点到直线的距离公式.7.【答案】B【考情点拨】本题主要考查的知识点为垂直向量的性质.【应试指导】此题是已知向量的两端点的向量垂直问题,要根据两向量垂直的条件列出等式,来求出未知数y的值.8.【答案】A【考情点拨】本题主要考查的知识点为分步计数原理.【应试指导】因为把6个苹果平均分给3个小孩与顺序无关属于组合,第一步从6个苹果中任取2个分配给3个小孩中的任一个,分配的方法有注图C62种,第二步在剩余的4个中任取2个分给剩下2个小孩中的任一个有C42种分法,第三步把剩下的2个分给最后一个小孩有C22种分法,由分步计数原理得不同的分配方法有C62∙C42∙C22=6×52×1×4×32×1×1=15×6×1=90(种).9.【答案】D【考情点拨】本题主要考查的知识点为两直线垂直的性质.【应试指导】易知直线y=3x+1的斜率为3,由x+my+1=0中m≠0得y=−1m x−1m,其斜率为−1m,⊂两直线互相垂直,⊂−1m·3=-1,⊂m=310.【答案】C【考情点拨】本题主要考查的知识点为等比数列的性质.【应试指导】⊂{an}是公比为q=2的等比数列且a2·a4=8,由通项公式a n=a1q n-1得a1q·a1q3=8,(a1q2)2=8,⊂a1·a7=a1·a1q6=(a1q2)2·q2=8x4=32.11.【答案】C【考情点拨】本题主要考查的知识点为数列的前n 项和.【应试指导】a n =S n -S n -1=12(3n 2−n )−12[3(n −1)2−(n −1)]=3n-2,当n =5时,a5=3×5-2=13. 12.【答案】C【考情点拨】本题主要考查的知识点为三角函数的最小正周期及最值.二、填空题13.【答案】-1【考情点拨】本题主要考查的知识点为三角函数的变换。

成人高考成考(高起专)数学(理科)试卷及解答参考

成人高考成考(高起专)数学(理科)试卷及解答参考

成人高考成考数学(理科)(高起专)模拟试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数(f(x)=x3−3x2+4)的导数(f′(x))等于0,则(f(x))的极值点为:A、(x=0)B、(x=1)C、(x=2)D、(x=−1)2、已知函数f(x)=x 2−4x−2,则函数的定义域为()A.x≠2B.x≠0C.x≠2且x≠0D.x≠0且x≠−23、若函数(f(x)=1x−2+√x+1)在区间([−1,2))上有定义,则函数(f(x))的定义域为:A.([−1,2))B.([−1,2])C.((−1,2))D.((−1,2])4、在下列各数中,正实数 a、b、c 的大小关系是:a = 2^(3/2),b = 3^(2/3),c = 5^(1/4)。

A、a < b < cB、b < a < cC、c < b < aD、a = b = c5、已知函数f(x)=2x3−9x2+12x+1,若函数的图像在(−∞,+∞)上恒过点(a,b),则a和b的值分别为:A.a=2,b=9B.a=3,b=10C.a=1,b=2D.a=0,b=1+2x)在(x=1)处有极值,则此极值点处的导数值为:6、若函数(f(x)=3xA. 1B. -1C. 0D. 3在点x=1处的导数等于多少?7、若函数f(x)=2x−3x+1A、2B、−1C、1D、08、已知函数f(x)=x 3−3x2+4xx2−2x+1,则f(x)的奇偶性为:A. 奇函数B. 偶函数C. 非奇非偶函数D. 无法确定9、在下列数列中,属于等差数列的是()A、1, 2, 3, 4, 5B、1, 3, 6, 10, 15C、2, 4, 8, 16, 32D、1, 3, 6, 9, 1210、已知函数(f(x)=1x+x2)在区间((−∞,+∞))上的定义域为(D),且函数的值域为(R),则(D)和(R)分别是:A.(D=(−∞,0)∪(0,+∞),R=(−∞,0)∪(0,+∞))B.(D=(−∞,0)∪(0,+∞),R=[0,+∞))C.(D=(−∞,+∞),R=(−∞,+∞))D.(D=(−∞,+∞),R=[0,+∞))11、若函数f(x)=x3−3x2+4x,则函数的对称中心为:A.(1,2)B.(1,1)C.(0,0)D.(−1,−1)12、若函数(f(x)=√x2−4)的定义域为(D f),则(D f)为:A.(x≥2)B.(x≤−2)或(x≥2)C.(x≤−2)或(x≥2)D.(x≥2)或(x≤−2)二、填空题(本大题有3小题,每小题7分,共21分)1、在△ABC中,若sinA=√55,cosB=−√1010,则sinC=____.2、已知直线(l)的方程为(3x−4y+10=0),求直线(l)在 y 轴上的截距。

2024年成人高考专升本《数学》试卷真题附答案

2024年成人高考专升本《数学》试卷真题附答案

2024年成人高考专升本《数学》试卷真题附答案一、选择题(每小题5分,共30分)1. 设集合A={x|x^24x+3<0},B={x|x^24x+3≥0},则A∪B=______。

A. RB. (∞, 3]C. (3, +∞)D. 空集2. 函数f(x)=x^33x+2的导数f'(x)的零点个数是______。

A. 1B. 2C. 3D. 43. 若等差数列{an}的通项公式为an=2n1,则数列{an^2}的前5项和是______。

A. 55B. 60C. 65D. 704. 设函数f(x)=ln(x+1),则f(x)在区间(0, +∞)上是______。

A. 单调递增B. 单调递减C. 先增后减D. 先减后增5. 已知三角形ABC的边长分别为a、b、c,且满足a^2+b^2=c^2,则三角形ABC是______。

A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形6. 若直线y=2x+3与圆x^2+y^2=9相切,则圆的半径是______。

A. 3B. 2C. 1D. √2二、填空题(每小题5分,共20分)7. 已知函数f(x)=x^24x+3,则f(x)的极小值为______。

8. 已知等比数列{an}的公比为q,且a1+a2+a3=14,a1a2a3=8,则q=______。

9. 已知抛物线y=x^24x+3的顶点坐标为______。

10. 已知直线y=2x+3与圆x^2+y^2=9相切,则切点坐标为______。

三、解答题(每小题10分,共30分)11. 解不等式组:x2y≤4,2x+y≥6。

12. 已知等差数列{an}的前n项和为Sn=n^2+3n,求an。

13. 已知函数f(x)=x^33x+2,求f(x)的单调区间和极值。

四、证明题(10分)14. 已知等差数列{an}的公差为d,证明:an+1an1=2d。

五、应用题(10分)15. 已知一个长方体的长、宽、高分别为a、b、c,且满足a^2+b^2+c^2=36,求长方体的最大体积。

全国成考数学试题及答案

全国成考数学试题及答案

全国成考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 3B. 5C. 7D. 2答案:D2. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. -1B. 1C. 5D. -5答案:A3. 计算下列表达式的值:(3x - 2)(x + 1)。

A. 3x^2 + x - 2B. 3x^2 - x - 2C. 3x^2 + x + 2D. 3x^2 - x + 2答案:A4. 求下列不等式组的解集:\(\begin{cases} x - 2 < 0 \\ 3x + 1 \geq 4 \end{cases}\)。

A. \(x < 2\)B. \(x \geq 1\)C. \(1 \leq x < 2\)D. \(x > 1\)答案:C5. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。

A. (2, 3)B. (-2, -3)C. (3, 2)D. (-3, -2)答案:A6. 计算下列极限:\(\lim_{x \to 0} \frac{\sin x}{x}\)。

A. 0B. 1C. -1D. 2答案:B7. 已知向量\(\vec{a} = (1, 2)\)和\(\vec{b} = (3, -1)\),求\(\vec{a} \cdot \vec{b}\)的值。

A. 1B. -1C. 5D. -5答案:C8. 计算下列定积分:\(\int_{0}^{1} x^2 dx\)。

A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A9. 已知矩阵A = \(\begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix}\),求|A|的值。

A. 2B. -2C. 0D. 5答案:D10. 求下列方程的解:\(\log_2 x = 3\)。

成考数学试题及答案大全

成考数学试题及答案大全

成考数学试题及答案大全一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. \( \sqrt{4} = 2 \)B. \( \sqrt{4} = -2 \)C. \( \sqrt{4} = 4 \)D. \( \sqrt{4} = \pm 2 \)答案:A2. 已知函数 \( f(x) = x^2 - 4x + 3 \),求 \( f(2) \) 的值。

A. 1B. -1C. 3D. 5答案:A3. 计算 \( \frac{1}{2} \times \frac{3}{4} \) 的结果。

A. \( \frac{3}{8} \)B. \( \frac{1}{8} \)C. \( \frac{3}{2} \)D. \( \frac{1}{2} \)答案:A4. 求下列哪个数的平方根是正数?A. -9B. 0C. 16D. -16答案:C5. 已知 \( \sin(30^\circ) = \frac{1}{2} \),求\( \cos(30^\circ) \) 的值。

A. \( \frac{\sqrt{3}}{2} \)B. \( \frac{1}{2} \)C. \( \frac{\sqrt{2}}{2} \)D. \( \frac{\sqrt{6}}{3} \)答案:A6. 计算 \( (x+2)(x-2) \) 的展开式。

A. \( x^2 - 4 \)B. \( x^2 + 4 \)C. \( x^2 + 2x - 2 \)D. \( x^2 - 2x + 4 \)答案:A7. 已知 \( \log_{10}(100) = 2 \),求 \( \log_{10}(0.01) \) 的值。

A. -2B. 2C. -1D. 1答案:A8. 求下列哪个数的立方根是正数?A. -8B. 0C. 8D. -0.125答案:C9. 计算 \( \frac{2}{3} \div \frac{4}{9} \) 的结果。

成人高考数学试题及答案

成人高考数学试题及答案

成人高考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值是多少?A. 0B. 1C. 2D. -1答案:B3. 已知 \(\int_{0}^{1} f(x)dx = 2\),那么 \(\int_{0}^{1}2f(x)dx\) 的值是多少?A. 4B. 1C. 2D. 0.5答案:A4. 以下哪个不等式是正确的?A. \( 3x^2 - 6x + 2 > 0 \)B. \( x^2 - 4x + 4 \geq 0 \)C. \( x^2 - 6x + 9 < 0 \)D. \( 2x^2 - 5x + 2 \leq 0 \)答案:B5. 函数 \( y = \ln(x) \) 的导数是什么?A. \( \frac{1}{x} \)B. \( -\frac{1}{x} \)C. \( x \)D. \( -x \)答案:A6. 计算定积分 \(\int_{1}^{e} e^x dx\) 的值。

A. \( e - 1 \)B. \( e^2 - 1 \)C. \( e^2 - e \)D. \( e - e^2 \)答案:C7. 以下哪个矩阵是可逆的?A. \(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\)B. \(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\)C. \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)D. \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\) 答案:C8. 已知 \(\sin(\theta) = \frac{1}{2}\),\(\theta\) 的值是多少?A. \(\frac{\pi}{6}\)B. \(\frac{\pi}{3}\)C. \(\frac{\pi}{2}\)D. \(\frac{2\pi}{3}\)答案:A9. 计算二项式 \((1 + x)^n\) 的展开式中 \(x^2\) 的系数,当 \(n = 3\) 时。

成人高考数学试题及答案

成人高考数学试题及答案

成人高考数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()。

A. y = x^2B. y = x^3C. y = |x|D. y = x + 1答案:B2. 函数y = 2x + 3的反函数是()。

A. y = (x - 3) / 2B. y = (x + 3) / 2C. y = 2x - 3D. y = 2x + 3答案:A3. 已知数列{an}的前n项和为Sn,若a1 = 1,a2 = 2,且an = Sn - Sn-1(n≥2),则a5的值为()。

A. 4B. 5C. 8D. 13答案:C4. 若直线x - 2y + 3 = 0与直线2x + 3y - 6 = 0平行,则它们的斜率之比为()。

A. 2B. 3C. 1D. 0答案:C5. 圆心在(1, 2),半径为3的圆的标准方程为()。

A. (x - 1)^2 + (y - 2)^2 = 9B. (x + 1)^2 + (y + 2)^2 = 9C. (x - 1)^2 + (y - 2)^2 = 16D. (x + 1)^2 + (y + 2)^2 = 16答案:A6. 已知函数f(x) = x^2 - 4x + 3,若f(a) = f(b),则a + b的值为()。

A. 2B. 4C. 0D. -4答案:B7. 已知向量a = (1, 2),b = (3, -1),则向量a与向量b的数量积为()。

A. -5B. -1C. 5D. 1答案:B8. 函数y = ln(x + √(x^2 + 1))的导数为()。

A. 1 / (x + √(x^2 + 1))B. 1 / √(x^2 + 1)C. x / (x^2 + 1)D. x / (x + √(x^2 + 1))答案:A9. 已知三角形ABC的三边长分别为a、b、c,若a^2 + b^2 = c^2,则三角形ABC为()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B10. 已知等比数列{an}的公比为q,前n项和为Sn,若a1 = 2,q = 2,Sn = 2^(n+1) - 2,则n的值为()。

成人高考高起点《数学》模拟试题和答案二

成人高考高起点《数学》模拟试题和答案二

成人高考高起点《数学》模拟试题和答案(二)第Ⅰ卷(选择题,共85分)一、选择题:本大题共17小题;每小题5分,共85分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={a,b,c,d,e} B={a,b,e},则AUB= ( )A. {a,b,e }B. {c,d}C. {a,b,c,d,e}D. 空集2. 函数y=1-│x+3│ 的定义域是 ( )A .R B.[0,+∞] C.[-4,-2] D.(-4,-2)3.设2,{|20},U R M x x x ==->,则U M ð=( )A .[0,2]B .()0,2C .()(),02,-∞⋃+∞D .(][),02,-∞⋃+∞4. 设甲:x=2; 乙: x2+x-6=0,则 ()A.甲是乙的必要非充分条件B.甲是乙的充分非必要条件C.甲是乙的充要条件D.甲不是乙的充分条件也不是乙的必要条件5.函数0)y x =≥的反函数为( )A .2()4x y x R =∈ B .2(0)4xy x =≥C .24y x =()x R ∈D .24(0)y x x =≥6. 两条平行直线z 1=3x+4y-5=0与z 2=6x+8y+5=0之间的距离是 () A .2 B.3 C. 12 D. 327.设tan α=1,且cos α<0,则sin α=( )A. 2-B. 12- C. 12 D. 28. 已知ABC ∆中,AB=AC=3,1cos 2A =,则BC 长为( )A. 3B. 4C. 5D. 69.已知向量a =(4,x),向量b=(5,-2),且a ⊥b,则x 的值为( )A.10B.-10C. 85D. 85-10. 到两定点A (-1,1)和B (3,5)距离相等的点的轨迹方程为 ( )A. x+y-4=0 B .x+y-5=0 C .x+y+5=0 D. x-y+2=011.以椭圆x 216 +y 29=1上的任意一点(长轴两端除外)和两个焦点为顶点的三角形的周长等于( ) A .12 B .8+27 C .13 D. 1812.抛物线y 2=-4x 上一点P 到焦点的距离为3,则它的横坐标是 ( )A. -4B. -3C. -2D. -113.过(1,-1)与直线3x+y-6=0平行的直线方程是( )A. 3x-y+5=0B. 3x+y-2=0C. x+3y+5=0D. 3x+y-1=014.函数31y ax bx =++(a ,b 为常数),f (2)=3,则f (-2)的值为( )A.-3B.-1C.3D.115.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=( )A .8B .7C .6D .516.掷两枚硬币,两枚的币值面都朝上的概率是 ( )A. 12B. 14C. 13D. 1817.若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,则选派方案共有( )A.180种B.360种C.15种D.30种第Ⅱ卷(非选择题,共65分)二、填空题:本大题共4小题;每小题4分,共16分。

成考数学(文科)成人高考(高起专)试卷与参考答案(2024年)

成考数学(文科)成人高考(高起专)试卷与参考答案(2024年)

2024年成人高考成考数学(文科)(高起专)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列数中,有理数是()A、√2B、πC、−3.14D、2√32、在下列各数中,哪个数是负数?A、-5B、3C、0D、-2.53、若函数(f(x)=2x3−3x2+4),则(f(1))的值是多少?A. 3B. 5C. 7D. 94、若函数f(x)=x3−3x2+4x−1在x=1处取得极值,则该极值是:A、极大值B、极小值C、拐点D、非极值5、在下列各数中,属于实数集的有:A、√−1B、1C、πD、0.1010010001...6、已知函数f(x) = (x-1)^2 + 2,其图像的对称轴为:A. x = 1B. y = 1C. x = 0D. y = 0+√x+1)的定义域为((−∞,−1]∪(2,+∞)),则函数(f(x))7、已知函数(f(x)=1x−2的值域为:A.((−∞,−2]∪[1,+∞))B.((−∞,−2]∪[2,+∞))C.((−∞,−2]∪[0,+∞))D.((−∞,−2]∪[0,2])8、若函数(f(x)=3x2−4x+5)的图像开口向上,则其对称轴为:)A.(x=23B.(x=−23)C.(x=43)D.(x=−43)9、在下列函数中,f(x) = x^2 - 4x + 4 的图像是一个:A. 圆B. 抛物线C. 直线D. 双曲线10、若函数(f(x)=x3−3x2+4x)的图像在(x)轴上有一个交点,则(f(x))的对称中心为:A.((1,0))B.((2,0))C.((1,2))D.((2,2))11、已知函数(f(x)=2x2−3x+1),则该函数的对称轴为:A.(x=−b2a =−−32×2=34)B.(x=−b2a =−−32×2=34)C.(x=−b2a =−−32×2=34)D.(x=−b2a =−−32×2=34)12、在下列函数中,当x=2时,函数y=3x^2-5x+2的值是()A. 1B. 4C. 7D. 9二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=2x3−3x2+4x−5的图像与直线y=3相切,则该切点的横坐标是________ 。

成人高考高升专数学模拟试卷

成人高考高升专数学模拟试卷

成人高考高升专数学模拟试卷一、选择题(本大题共17小题,每小题5分,共85分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合A = {xx^2 - 3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. A⊃neqq BD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域是()A. (-∞,1]B. [1,+∞)C. (-∞, 0]D. [0,+∞)3. 若a < b,则下列不等式一定成立的是()A. a^2 < b^2B. (1)/(a)>(1)/(b)C. a - 3 < b - 3D. -2a<-2b4. 一次函数y = kx + b(k≠0)的图象过点(1,3)和(-1, - 1),则k,b的值分别为()A. k = 2,b = 1B. k=1,b = 2C. k=-2,b = 1D. k = - 1,b = 25. 二次函数y=x^2+2x - 3的对称轴方程是()A. x = - 1B. x = 1C. x = 2D. x=-26. 已知对数函数y = log_ax(a>0,a≠1)的图象过点(4,2),则a的值为()A. √(2)B. 2C. (1)/(2)D. 47. 计算sin(π)/(3)+cos(π)/(3)的值为()A. (√(3)+ 1)/(2)B. (√(3)-1)/(2)C. √(3)+1D. √(3)-18. 在等差数列{a_n}中,a_1=1,d = 2,则a_5的值为()A. 9B. 11C. 13D. 159. 等比数列{a_n}中,a_1=2,q = 3,则a_3的值为()A. 18B. 12C. 6D. 210. 函数y = 3sin(2x+(π)/(3))的最小正周期是()A. πB. 2πC. (π)/(2)D. (2π)/(3)11. 已知向量→a=(1,2),→b=(3, - 1),则→a·→b的值为()A. 1B. 5C. -1D. -512. 过点(1,2)且与直线y = 3x+1平行的直线方程为()A. y = 3x - 1B. y=3x+2C. y=-3x+1D. y = - 3x - 113. 圆x^2+y^2=4的圆心坐标和半径分别是()A. (0,0),2B. (0,0),4C. (2,0),2D. (-2,0),214. 从5名男生和3名女生中选3人参加某项活动,其中至少有1名女生的选法有()种。

成人高考数学(文)模拟试卷及答案

成人高考数学(文)模拟试卷及答案

2
C. y log 0 .5 x
8.函数 y
2
2x
4 x 3 的一个单调区间是
A. [ 0, )
B. [1, )
C. ( , 2 ]
D. x-1
D. y
2
x
2
D. 3x y 4 0
C. 3 x y 2 0
D. 3 x y 2 0
二、填空题( 将答案填在答题卡相应题号的横线上。
C. { 1,2,3,4}
D.
ABC 是等边三角形,则甲是乙的 B.必要条件但不是充分条件 D.既不充分也不必要条件
10.在等差数列 { a n } 中,若 a 2 1, a 8 11, 则 a14
A.19
B. 20
C. 21
11.若向量 a=(3,-2),b=(-1,2), 则 (2a+ b)·(a- b)=
2. [ A ] [ B ] [ C ] [ D ] 6. [ A ] [ B ] [ C ] [ D ] 10. [ A ] [ B ] [ C ] [ D ] 14. [ A ] [ B ] [ C ] [ D ]
3. [ A ] [ B ] [ C ] [ D ] 7. [ A ] [ B ] [ C ] [ D ] 11. [ A ] [ B ] [ C ] [ D ] 15. [ A ] [ B ] [ C ] [ D ]
A.28
B. 20
C. 24
12.通过点 (3,1) 且与直线 x+y=1 垂直的直线方程是
A. x-y+2=0
B.3x-y-8=0
C. x-3y+2=0
13.中心在原点 ,一个焦点为 (0,4) 且过点 (3,0)的椭圆方程为

成考数学试题及答案

成考数学试题及答案

成考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的符号表示?A. NB. ZC. QD. R答案:D2. 函数y=f(x)的值域是指:A. 函数的定义域B. 函数的对应法则C. 函数的值D. 函数的所有可能的输出值答案:D3. 圆的面积公式是:A. πr²B. 2πrC. πdD. d²答案:A4. 直线的斜率公式是:A. y - y1 = m(x - x1)B. m = (y - y1) / (x - x1)C. m = (x - x1) / (y - y1)D. m = (x1 - x) / (y - y1)答案:B5. 以下哪个是等差数列?A. 1, 3, 5, 7, ...B. 1, 3, 6, 10, ...C. 1, 2, 4, 8, ...D. 1, 1, 1, 1, ...答案:A6. 以下哪个是等比数列?A. 1, 3, 5, 7, ...B. 1, 3, 6, 10, ...C. 1, 2, 4, 8, ...D. 1, 1, 1, 1, ...答案:C7. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A8. 以下哪个是复数?A. 3B. 3 + 2iC. 3/4D. √2答案:B9. 以下哪个是二项式定理的展开式?A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)³ = a³ + 3a² b + 3ab² + b³D. (a-b)³ = a³ - 3a² b + 3ab² - b³答案:C10. 以下哪个是三角函数的周期性?A. sin(x) = sin(x + 2π)B. cos(x) = cos(x + 2π)C. tan(x) = tan(x + π)D. cot(x) = cot(x + π)答案:A二、填空题(每题3分,共15分)1. 圆的周长公式是 ________。

2024年成人高考成考(高起本)数学(文科)试题与参考答案

2024年成人高考成考(高起本)数学(文科)试题与参考答案

2024年成人高考成考数学(文科)(高起本)自测试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列函数中,哪个是一次函数?A、y = x^2 + 3B、y = 2x + 1C、y = sin(x)D、y = e^x2、若函数(y=x 2−4x+2)的定义域为(D),则(D)等于:A.(R,)即所有实数B.((−2,+∞))C.((−∞,−2]∪[−2,+∞))D.((−∞,−2)∪(−2,+∞))3、已知函数f(x)=x2−4x+4,则该函数的对称轴为:A.x=1B.x=2C.y=1D.y=44、下列数中,不是有理数的是()B、-1/2C、πD、0.1010010001…5、函数(y=log2(4−x))的定义域是()。

A、((−∞,4])B、((4,+∞))C、((−∞,4))D、([4,+∞))6、函数f(x)=x2−4x+3的图像与x轴的交点坐标为:A. (1, 0) 和 (3, 0)B. (0, 3) 和 (4, 0)C. (1, 3) 和 (3, 1)D. (2, 0) 和 (2, 0)7、设函数(f(x)=x2−4x+3),则该函数的最小值为:A. -1B. 0C. 1D. 28、已知函数f(x)=x3−3x2+2,下列哪个选项是该函数的极值点?A.x=0B.x=1D.x=39、如果等差数列{a_n}的首项a_1=3,公差d=2,则a_5等于()。

A、11B、13C、15D、1710、已知函数f(x) = x^2 - 4x + 4,若函数f(x)的图像开口向上,且顶点坐标为(a,b),则下列说法正确的是:A、a=2,b=-4B、a=4,b=2C、a=2,b=0D、a=1,b=211、若函数f(x)=2x3−3x2+4的图像在区间[1,2]上是连续的,则f(x)在该区间上的极值点个数为()A. 1B. 2C. 3D. 012、设函数(f(x)=x2−4x+3),则该函数图像与(x)轴的交点个数为:A. 无交点B. 1个交点C. 2个交点D. 无法确定二、填空题(本大题有3小题,每小题7分,共21分)1、已知函数f(x)=x2−4x+4,若f(x)的对称轴为y=1,则a=______ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年成人高考数学模拟试题3第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72. 已知角α的终边经过点(4,3)-,则cos α=( )A .45B .35C .35-D .45- 3. 不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x > 4. 已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16B .6 C .13D .35. 函数1)(1)y x =>-的反函数是( )A .3(1)(1)x y e x =->- B .3(1)(1)xy e x =->- C .3(1)()x y e x R =-∈ D .3(1)()xy e x R =-∈6. 已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8. 设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( )A .31B .32C .63D .649. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 10. 正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( )A .814π B .16π C .9π D .274π 11. 双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,,则C 的焦距等于( )A .2 B. C .4 D.12. 奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .-2B .-1C .0D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 6(2)x -的展开式中3x 的系数为 .(用数字作答) 14. 函数cos 22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分)数列{}n a 满足12212,2,22n n n a a a a a ++===-+.(1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式. 18. (本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知13cos 2cos ,tan 3a C c A A ==,求B.19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 1A AB C --的大小. 20.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是,,,,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于,求k 的最小值.21. (本小题满分12分)函数32()33(0)f x ax x x a =++≠.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间(1,2)是增函数,求a 的取值范围. 22. (本小题满分12分)已知抛物线C:22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N四点在同一个圆上,求直线l 的方程.2014年成人高考数学模拟试题答案3一、选择题二、填空题13. -16014.3215. 5 16.43三、解答题:解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分10分)解:(1)由2122n n n a a a ++=-+得2112n n n n a a a a +++-=-+,即12n n b b +=+,又1211b a a =-=.所以{}n b 是首项为1,公差为2的等差数列;(2)由(1)得12(1)n b n =+-,即121n n a a n +-=-,于是111()(21)nnk k k k aa k +==-=-∑∑于是211n a a n +-=,即211n a n a +=+,又11a =,所以{}n a 的通项公式为222n a n n =-+18.(本小题满分10分)解:由题设和正弦定理得,3sin cos 2sin cos A C C A =所以3tan cos 2sin A C C = 因为1tan 3A =,所以cos 2sin C C =. 1tan 2C =所以tan tan[180()]B A C =-+tan()A C =-+=tan tan 1tan tan A CA C+--=-1,即135B =19.(本小题满分12分)解法一:(1)因为1A D ⊥平面ABC ,1A D ⊂平面11AAC C ,故平面11AAC C ⊥平面ABC ,又BC AC ⊥,所以BC ⊥平面11AAC C ,连结1A C ,因为侧面11AAC C 是棱形,所以11AC AC ⊥, 由三垂线定理的11AC A B ⊥.(2)BC ⊥平面11AAC C ,BC ⊂平面11BCC B ,故平面11AAC C ⊥平面11BCC B ,作11A E C C ⊥,E 为垂足,则1A E ⊥平面11BCC B , 又直线1//AA 平面11BCC B ,因而1A E 为直线1AA 与平面11BCC B 间的距离,13A E =, 因为1A C 为1ACC ∠的平分线,故113A D A E ==作DF AB ⊥,F 为垂足,连结1A F ,由三垂线定理得1A F AB ⊥, 故1A FD ∠为二面角1A AB C --的平面角, 由22111AD AA A D =-=,得D 为AC 的中点,1525AC BC DF AB ⨯=⨯=,11tan 15A D A FD DF∠==, 所以二面角1A AB C --的大小为arctan 15.解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C xyz -,由题设知1A D 与z 轴平行,z 轴在平面11AAC C 内.(1)设1(,0,)A a c ,由题设有2a ≤,(2,0,0),(0,1,0)A B ,则AF =(-2,1,0),1(2,0,0),(2,0,)AC AA a c =-=-,111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-,由12AA =22(2)2a c -+=,即2240a a c -+=, 于是11AC BA ⋅=2240a a c -+= ① 所以11AC BA ⊥.(2)设平面11BCC B 的法向量(,,)m x y z =,则m CB ⊥,1,m CB m BB ⊥⊥,即10,0m CB m BB ⋅=⋅=, 因为11(0,1,0),(2,0,)CB BB AA a c ==-, 故0y =,且(2)0a x cz --=,令x c =,则2z a =-,(,0,2)m c a =-,点A 到平面11BCC B 的距离为cos ,CA m CA m CA c mc ⋅⋅<>===,又依题设,点A 到平面11BCC B, 所以 c =代入①得3a =(舍去)或1a =. 于是1(AA =-,设平面1ABA 的法向量(,,)n p q r =,则1,n AA n AB ⊥⊥,即10,0n AA n AB ⋅=⋅=.0p-=且20p q -+=, 令p =,则q =,1r =,(3,2n =, 又(0,0,1)p =为平面ABC 的法向量, 故1cos ,4n p n p n p⋅<>==, 所以二面角1A AB C --的大小为1arccos 420.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是,,,,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于,求k 的最小值.解:记i A 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k.(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅22()0.6,()0.4,()0.5,0,1,2ii P B P C P A C i ===⨯=.所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅122()()()P A B C P A B P A B C =⋅⋅+⋅+⋅⋅122()()()()()()()()P A P B P C P A P B P A P B P C =⋅⋅+⋅+⋅⋅ 0.31=(2)由(1)知,若3k =,则()0.310.1P F =>又2E B C A =⋅⋅,22()()()()()0.06P E P B C A P B P C P A =⋅⋅=⋅⋅=若4k =,则()0.060.1P F =<. 所以k 的最小值为3.21. (本小题满分12分)解:(Ⅰ)2()363f x ax x '=++,2()3630f x ax x '=++=的判别式△=36(1-a ).(ⅰ)若a ≥1,则()0f x '≥,且()0f x '=当且仅当1,1a x ==-,故此时()f x 在R 上是增函数.(ⅱ)由于0a ≠,故当1a <时,()0f x '=有两个根:12x x ==, 若01a <<,则当2(,)x x ∈-∞或1(,)x x ∈+∞时,()0f x '>,故()f x 在21(,),(,)x x -∞+∞上是增函数;当21(,)x x x ∈时,()0f x '<,故()f x 在21(,)x x 上是减函数;(Ⅱ)当0,0a x >>时, ()0f x '>,所以当0a >时,()f x 在区间(1,2)是增函数.若0a <时,()f x 在区间(1,2)是增函数,当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<. 综上,a 的取值范围是5[,0)(0,)4-+∞. 22. (本小题满分12分)解:(Ⅰ)设0(,4)Q x ,代入由22(0)y px p =>中得08x p=, 所以088,22p p PQ QF x p p ==+=+,由题设得85824p p p+=⨯,解得2p =-(舍去)或2p =所以C 的方程为24y x =.(Ⅱ)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为1,(0)x my m =+≠,代入24y x =中得2440y my --=,设1122(,),(,)A x y B x y ,则12124,4y y m y y +==-,故AB 的中点为2(21,2)D m m +,224(1)AB y m =-=+,有直线l '的斜率为m -,所以直线l '的方程为2123x y m m=-++, 将上式代入24y x =中,并整理得2244(23)0y y m m +-+=. 设3344(,),(,)M x y N x y ,则234344,4(23)y y y y m m+=-=-+.故MN 的中点为E 2222(23,)m m m++-,23424(m MN y m+=-= 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于12AE BE MN ==,从而2221144AB DE MN +=, 即222222224224(1)(21)4(1)(2)(2)m m m m m m m +++++++=,化简得210m -=,解得1m =或1m =-,所以所求直线l 的方程为10x y --=或10x y +-=。

相关文档
最新文档