高二下学期数学期中考试试卷
2024年苏州市高二下学期期中考试数学试题
高二期中调研试卷数学2024.04注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共6页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回,2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.9(1)x −展开式中3x 的系数为( )A .504B .84C .84−D .504− 2.已知1x =是函数()()210x ax bx f x b e+=+≠的极值点,则实数a 的值为( ) A .1− B .0 C .1 D .无数多个3.一只蚂蚁从点A 出发沿着水平面的网格线爬行到点B ,再由点B 沿着长方体的棱爬行至顶点C 处,则它可以爬行的不同最短路径条数有( )A .40B .60C .80D .1204.若随机变量X 满足()1P X c ==,其中c 为常数,则()D X =( )A .0B .14C .12D .15.如图,圆C 与直角三角形AOB 的两直角边相切,射线OP 绕点O 由OA 逆时针匀速旋转到OB 的过程中,所扫过的圆内阴影部分而积S 关于时间t 的函数的大致图象为( )A .B .C .D .6.小明和小华进行乒乓球比赛,比赛规则是:若其中一人连续赢两局,则比赛结束,已知每局比赛结果相互独立,且每局小明赢的概率为0.6(没有平局),则在已知比赛是第三局结束条件下,小明获胜的概率为( )A .0.6B .0.4C .0.36D .0.1447.记()()()()()()()()()01021321sin ,,,,,x n n f x e x f x f x f x f x f x f x f x f x +′′′′===== ,n N ∈,则()20240f =( )A .5082B .5072−C .0D .50728.将1,2,3…,9这九个正整数,填在如图所示的九宫格里,九宫格的中间填5,四个角填偶数,其余位置填奇数,则每一横行、每一坚列以及两条对角线上3个数字的和都等于15的概率为( )A .13 B .16 C .172 D .1144二、选择题:本题共3小题,每小题6分,共18分。
广东省广州市广东实验中学越秀学校2023-2024学年高二下学期期中考试数学试题(含简单答案)
广东实验中学越秀学校2023-2024学年高二下学期期中考试数学本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上.2.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷收回.第一部分选择题(共58分)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目的要求.)1. 在等差数列中,,则值是()A. 12B. 18C. 24D. 302. 已知函数 的导函数 的图象如图所示,那么对于函数 ,下列说法正确的是( )A. 在 上单调递增B. 在 上单调递减C. 在 处取得最大值D. 在 处取得极大值3. 已知离散型随机变量X 的分布列,则( )A. 1B.C.D.4. 已知等比数列的各项互不相等,且,,成等差数列,则( )的{}n a 3712a a +=72S S -()y f x =()f x '()y f x =(),1∞--()1,∞+1x =2x =(1,2,3,4,5)5k P X ak k ⎛⎫=== ⎪⎝⎭13105P X ⎛⎫<<= ⎪⎝⎭231513{}n a 14a 312a 23a 2021202320202022a a a a -=-A. 1B. 2C. 3D. 45. 老师有6本不同的课外书要分给甲、乙、丙三人,其中甲分得2本,乙、丙每人至少分得一本,则不同的分法有( )A. 248种B. 168种C. 360种D. 210种6. 的展开式中常数项为( )A. 120B. C. 180D. 7. 若函数恰有2个零点,则实数a 的取值范围是( )A. B. C. D. 8. 已知数列的前n 项和为且,若对任意恒成立,则实数a 的取值范围是( )A. B. C. D. 二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 甲,乙,丙,丁,戊五人并排站成一排,下列说法正确的是( )A. 如果甲,乙必须相邻且乙在甲右边,那么不同的排法有24种B. 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C. 甲乙不相邻的排法种数为82种D. 甲乙丙按从左到右的顺序排列的排法有20种10. 定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫做等方差数列,这个常数叫做该数列的方公差.设数列是由正数组成的等方差数列,且方公差为2,,则( )A. 数列的前60项和B. 数列的前60项和的()62132x x x ⎛⎫-- ⎪⎝⎭120-180-()e x f x a x =-10,e ⎛⎫ ⎪⎝⎭(0,1)1,e ⎛⎫-∞ ⎪⎝⎭(,0)-∞{}n a n S 2n nn a =(1)nn n S a a +>-*N n ∈(,1)(2,)-∞-⋃+∞(1,2)-3(1,)2-3(,1)(,)2-∞-+∞ {}n a 135a =11n n a a +⎧⎫⎨⎬+⎩⎭60S =11n n a a +⎧⎫⎨⎬+⎩⎭605S =C. 数列的通项公式是D. 数列的通项公式是11. 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1000件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为万元,且当该公司在这一品牌服装的生产中所获得的年利润最大时,则有( )A. 年产量为9000件B. 年产量为10000件C. 年利润最大值38万元D. 年利润最大值为38.6万元第二部分 非选择题(共92分)三、填空题:(本题共3小题,每小题5分,共15分.)12 已知数列满足,且对任意,有,则______.13. 设抛掷一枚骰子的点数为随机变量X______.14. 已知定义在上的函数满足,且,则的解集是______.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数在点处的切线与直线垂直.(1)求的值;(2)求的单调区间和极值.16. (1)若,求的值;(2)在的展开式中,二项式系数最大的项只有第五项,①求的值;②若第项是有理项,求的取值集合;③求系数最大的项.为.{}2n a221n a n =-{}2n a 221n a n =+()R x ()22110.8,010,301081000,103x x R x x xx ⎧-<≤⎪⎪=⎨⎪->⎪⎩{}n a 11a =*n ∈N ()11nn n a a n +=+-⋅22a ==()0,∞+()f x ()()0xf x f x '-<()22f =()e e0xxf ->()21ex x af x -+=()()1,1f 420240x y ++=a ()f x 423401234(2x a a x a x a x a x -=++++1234a a a a +++22nx ⎫-⎪⎭n k k17. 已知数列的前项和为,满足.(1)求的通项公式;(2)删去数列的第项(其中),将剩余的项按从小到大的顺序排成新数列,设的前项和为,请写出的前6项,并求出和.18. 为建设“书香校园”,学校图书馆对所有学生开放图书借阅,可借阅的图书分为“期刊杂志”与“文献书籍”两类.已知该校小明同学的图书借阅规律如下:第一次随机选择一类图书借阅,若前一次选择借阅“期刊杂志”,则下次也选择借阅“期刊杂志”的概率为,若前一次选择借阅“文献书籍”,则下次选择借阅“期刊杂志”的概率为.(1)设小明同学在两次借阅过程中借阅“期刊杂志”的次数为X ,求X 的分布列与数学期望;(2)若小明同学第二次借阅“文献书籍”,试分析他第一次借哪类图书的可能性更大,并说明理由.19. 已知函数在处取得极值.(1)求的值;(2)设(其中),讨论函数的单调性;(3)若对,都有,求n 取值范围.的{}n a n n S 22n n S a =-{}n a {}n a 3i 1,2,3,i =⋅⋅⋅{}n b {}n b n nT{}n b 6T 2n T 1335()ln ()af x x x a x=+∈R 1x =(e)f ()322111()2()2x P x m x x f x x x+=--+m ∈R ()P x [1,3]x ∀∈2164()ln 11nx x f x x n x x +--+-≤-+广东实验中学越秀学校2023-2024学年高二下学期期中考试数学简要答案一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目的要求.)【1题答案】【答案】D【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】C二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】ABD【10题答案】【答案】BC【11题答案】【答案】AD第二部分非选择题(共92分)三、填空题:(本题共3小题,每小题5分,共15分.)【12题答案】【答案】【13题答案】【14题答案】【答案】四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)(2)单调递减区间为和,单调递增区间为,的极大值为,极小值为.【16题答案】【答案】(1);(2)①;②;③.【17题答案】【答案】(1)(2)前6项为2,,,,,;;【18题答案】【答案】(1)分布列略,(2)小明第一次选择借阅“期刊杂志”的可能性更大,理由略【19题答案】【答案】(1) (2)答案略(3)10-(),ln 2-∞3a =-(),1-∞-()3,+∞()1,3-()f x ()263ef =()212e f -=-88-8n ={}1,3,5,7,91171792T x -=2n n a =22425272826438T =()26817nn T =-2930()1e e ef =+5,2⎡⎫+∞⎪⎢⎣⎭。
重庆市西南大学附属中学校2023-2024学年高二下学期期中考试数学试题
重庆市西南大学附属中学校2023-2024学年高二下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若随机变量ξ服从正态分布()22,3N ,()()3521P a P a ξξ<-=>+,则实数a 等于( )A .1-B .0C .1D .22.已知函数()1e xf x x m=--的定义域内R ,则实数m 的取值范围是( )A .()1,-+∞B .(),1-∞-C .()1,+∞D .(),1-∞3.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其经验回归方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,4b =$,该班某学生的脚长为24,据此估计其身高为( ) A .162B .166C .170D .1744.将甲、乙、丙等7名志愿者分到,,A B C 三个地区,每个地区至少分配2人,则甲、乙、丙分到同一个地区的概率为() A .148B .124C .170D .1355.已知函数()()f x x R ∈满足(1)1f =,且()f x 的导函数1()2f x '<,则1()22x f x <+的解集为A .{}|11x x -<<B .{}|1x x <-C .{}|11x x x -或D .{}|1x x >6.若某射击手每次射击击中目标的概率为p (01p <<),每次射击的结果相互独立.在他连续8次射击中,“恰有3次击中目标”的概率是“恰有5次击中目标”的概率的125,则p 的值为( ) A .16B .15C .45D .567.定义;各位数字之和为9的四位数叫“好运数”,比如1008,2205,则所有“好运数”的个数为( )A .165B .162C .156D .1448.已知函数()f x 及其导函数()g x 的定义域均为R ,()1f x +与()g x 均为偶函数,且()01f =,则()20240k f k ==∑( )A .2025B .2024C .1D .0二、多选题9.下列说法中,正确的是( )A .一组数据10,11,11,12,13,14,16,18,20,22的第40百分位数为12B .某人解答5个问题,答对题数为X ,若()~5,0.6X B ,则() 1.2D X =C .在103x⎛ ⎝的展开式中,各项系数和与所有项二项式系数和相等D .已知一系列样本点(),i i x y (1i =,2,3…)的经验回归方程为$$3y x a=+,若样本点(),3m 与()2,n 的残差相等,则310m n +=10.已知函数()3232f x x x =+-,则( )A .()f x 有两个极值点()2,2-,()0,2-B .()f x 有三个零点C .点()1,0-是()f x 的对称中心D .()f x 在区间(),4a a +上有最大值,则a 的取值范围为(]6,3--11.现有红、黄、绿三个不透明盒子,其中红色盒子内装有两个红球、一个黄球和一个绿球;黄色盒子内装有两个红球,两个绿球;绿色盒子内装有两个红球,两个黄球.小明第一次先从红色盒子内随机抽取一个球,将取出的球放入与球同色的盒子中;第二次从该放入球的盒子中随机抽取一个球.记抽到红球获得1块月饼、黄球获得2块月饼、绿球获得3块月饼,小明所获得月饼为两次抽球所获得月饼的总和,则下列说法正确的是( )A .在第一次抽到绿球的条件下,第二次抽到绿球的概率是15B .第二次抽到红球的概率是25C .如果第二次抽到红球,那么它来自黄色盒子的概率为29D .小明获得4块月饼的概率是1140三、填空题12.从5名男生和6名女生中,选出3名代表,要求3名代表中既有男生又有女生的选法有 种.13.()()423x y x y +-的展开式中23x y 项的系数为 .14.已知关于x 的不等式e ln 10kx kx x x -+--≤在()0,∞+上有解.则实数k 的取值范围为 .四、解答题15.已知等差数列{}n a 的前n 项和为n S ,且525S =,251031a a a ++=. (1)求数列{}n a 的通项公式以及前n 项和n S ; (2)若3n n n b a =⋅,求数列{}n b 的前n 项和n T .16.某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学学科提供4种不同层次的课程,分别称为数学1、数学2、数学3、数学4,每个学生只能从4种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:用分层抽样的方法从这1800名学生中插取10人进行分析.(1)选出的10名学生中,选择数学1、数学2、数学3、数学4的各有几人?从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X ,选择数学1的人数为Y ,设随机变量X Y ξ=-,求随机变量ξ的分布列和数学期望()E ξ.17.已知椭圆E :22221x y a b +=(0a b >>),经过点(,离心率为2,圆O 以椭圆的短轴为直径.(1)求椭圆E 的标准方程和圆O 的方程;(2)设P 为椭圆的左顶点,过点P 作两条相互垂直的直线1l ,2l ,设直线1l 与椭圆E 的另一个交点为Q ,直线2l 交圆O 于A ,B 两点,求ABQ V 面积的最大值. 18.已知函数()214ln 22x a x f x x =---.(1)若1a =,求函数()y f x =在()()1,1f 处的切线方程; (2)若函数()y f x =在()0,∞+上单调递减,求a 的取值范围;(3)若函数()y f x =有两个极值点1x ,2x ,求证:()()12 6.52ln f x f x a +<-. 19.阅读知识卡片,结合所学知识完成以下问题: 知识卡片1:一般地,如果两数()f x 在区间[],a b 上的图象连续不断,用分点011i i n a x x x x x b -=<<<<<<=L L 将区间[],a b 等分成n 个小区间,在每个小区间[]1,i i x x -上任取一点i ξ(1i =,2,…,n ),作和式()1Δn i i f x ξ=∑()1ni i b af nξ=-=∑(其中x ∆为小区间长度),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[],a b 上的定积分,记作()b af x dx ⎰,即()()1lim bni ni ab af x dx f n∞ξ→=-=∑⎰.这里,a 与b 分别叫做积分下限与积分上限,区间[],a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()d f x x 叫做被积式.从几何上看,如果在区间[],a b 上函数()f x 的图象连续不断且恒有()0f x ≥,那么定积分()ba f x dx ⎰表示由直线x a =,xb =,0y =和曲线()y f x =所围成的区域(称为曲边梯形)的面积. 知识卡片2:一般地,如果()f x 在区间[],a b 上的图象连续不断,并且()()F x f x '=,那么()()()()d a ba bf x x F x F b F a ⎰==-.这个结论叫做微积分基本定理,又叫做牛顿——莱布尼茨公式.例如,如图所示,对于函数()1f x x =(0x >),从几何上看,定积分1b a dx x⎰的值为由直线x a =,x b =,0y =和曲线1y x=所围成的区域即曲边梯形ABQP 的面积,根据微积分基本定理可得1ln ln ln aba b dx x b a x⎰==-.(1)求下列定积分: ①ππ2sin d x x =⎰ ;②12d x x =⎰ ;③x =⎰ ; ④e1ln xdx x=⎰ . (2)已知()7234567012345671x a a x a x a x a x a x a x a x +=+++++++,计算: ①11234567234567S a a a a a a a =++++++;②20123456711111112345678S a a a a a a a a =+++++++(3)当x ∈R ,1x <时,有如下表达式:2111n x x x x+++++=-L L .计算:231111111112223212n T n +⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭L L。
河北省唐山市十县一中联盟2023-2024学年高二下学期期中考试数学试题(含简单答案)
唐山市十县一中联盟2023-2024学年高二下学期期中考试数学本试卷共4页,19小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 某公园有4个门,从一个门进,另一个门出,则不同的走法种数为( )A. 4B. 6C. 12D. 162. 下列运算正确的是( )A. B. C. D. 3. 4幅不同的国画和2幅不同的油画排成一列,2幅油画不相邻,则不同的排法种数为( )A. 240B. 360C. 480D. 7204. 若曲线在点处的切线与直线平行,则( )A B. C. 0 D. 15. 在的展开式中只有第5项的二项式系数最大,则正整数( )A. 7B. 8C. 9D. 106. 从4名医生,3名护士中选出3人组成一个医疗队,要求医生和护士都有,则不同的选法种数为( )A. 12B. 18C. 30D. 607. 已知函数,则( )A. B. C. D. 8. 如图,已知正方形,边长为2,点,分别在线段,上,,将沿折起,使得点到达点的位置,且平面平面,则五棱锥体积的最大值为( ).ππ(sin )cos 33'=(2)2ln 2x x '=1[ln()]x x '-=-(cos )sin x x'=()sin ln(1)f x a x x =++(0,0)21y x =-=a 2-1-()1n x +n =22()e (2)1x f x f x -'=++(3)f '=e 2-e 2+e 5+e 10+ABCD E F AB BC //EF AC BEF △EF B P PEF ⊥ADCFE P ADCFE -A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知为函数导数,的图象如图所示,则( )A. 是的极大值点B. 当时,取得最小值C. 在区间上单调递减D. 在区间上单调递增10. 已知,是正整数,且,则下列等式正确的是( )A. B. C D. 11. 已知函数有两个极值点,,且,则( )A. B. C. D. 三、填空题:本题共3小题,每小题5分,共15分.12. 已知为函数的导数,则______.13. 从黄瓜、白菜、豆角、韭菜、青椒5种蔬菜种子中选出3种分别种在,,三块不同土地上,每块土地只种1种,其中黄瓜不种在土地上,则不同的种法共有__________种.14. 展开式中的的系数为__________.的.的()f x '()f x ()y f x ='0x =()f x 1x =()f x ()f x ()0,1()f x ()1,∞+m n m n ≤461010A A =3441C C C n n n ++=()111A A m m n n n +++=123C C C C 2n n n n n n ++++= ()32f x x kx =-+a b a b <0k ≥0a b +=()2f a >()2f b <()f x '21()f x x x=+()1f '=A B C A ()52x y y -+25x y四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15. 某学习小组共6人,其中男生3名,女生3名.(1)将6人排成一排,3名男生从左到右的顺序一定(不一定相邻),不同排法有多少种?(2)从6人中选出4人,女生甲和女生乙至少1人在内的不同选法共有多少种?16. 已知曲线上一点.(1)当时,求曲线在点处的切线方程;(2)若在点处的切线与两坐标轴围成的三角形面积为9,求实数的值.17. 已知函数.(1)求极值;(2)若方程有两个不相等的实数根,求的值.18. 已知,求下列各式的值.(1);(2);(3).19. 已知,为的导数.(1)证明:当时,;(2)讨论在上的零点个数,并证明的()31f x x mx =--()()1,1P f 2m =()y f x =P ()f x P m ()2e xf x x =()f x ()()f x a a =∈R a ()()523456012345621x x a a x a x a x a x a x a x +-=++++++5a 0246a a a a +++12345623456a a a a a a +++++()2cos e x f x x x =+-()f x '()f x 0x ≥()1f x '≤()f x R ()f x <唐山市十县一中联盟2023-2024学年高二下学期期中考试数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BC【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】1【13题答案】【答案】48【14题答案】【答案】四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)120(2)14【16题答案】【答案】(1);(2)或.【17题答案】【答案】(1)极大值为,极小值为0 (2)【18题答案】【答案】(1)3(2)16 (3)0【19题答案】【答案】(1)证明略(2)有2个零点,证明略30-3y x =-527224e 24e a =。
福建省福州市2023-2024学年高二下学期期中联考试题 数学含答案
2023-2024学年第二学期期中质量检测高二数学试卷(答案在最后)(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62B.102C.152D.5402.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.5124.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A. B.C. D.5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π46.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.2157.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.8828.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.610.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412a b下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y gx =过点(1,0)的切线方程.16.已知n⎛⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.2023-2024学年第二学期期中质量检测高二数学试卷(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62 B.102C.152D.540【答案】A 【解析】【分析】利用组合和排列数公式计算【详解】5275762254622C A =+´+创=故选:A2.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=【答案】B 【解析】【分析】利用常见函数的导数可以判断B 、C 的真假,利用积的导数的运算法则判断D 的真假,利用商的导数的运算法则判断A 的真假.【详解】∵()22cos cos cos sin cos x x x x x x x x x x x ''⋅-⋅--⎛⎫== ⎪⎝'⎭,故A 错误;∵()21log ln 2x x '=,故B 正确;∵()22ln 2x x '=,故C 错误;∵()()()33323e e e 3e e x x x x x x x x x x ⋅'''=⋅+=+,故D 错误.故选:B.3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.512【答案】C 【解析】【分析】根据题意,分别令1x =与0x =代入计算,即可得到结果.【详解】当1x =时,20911a a a a ++++=L ;当0x =时,0512a =所以,1211511a a a +++=-L 故选:C4.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A.B.C.D.【答案】C 【解析】【分析】求导后得到斜率为2,再由极值点是导数为零的点小于零,综合直线的特征可得正确答案.【详解】因为()2f x x b '=+,所以函数()f x '的图象是直线,斜率20k =>;又因为函数()f x 的顶点在第二象限,所以极值点小于零,所以()f x '的零点小于零,结合直线的特征可得C 符合.故选:C5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π4【答案】A 【解析】【分析】利用导数的几何意义求得切线斜率,即可求得切线的倾斜角.【详解】()()2e 22,0xf x x f =--∴'-'= ,设切线的倾斜角为[),0,πθθ∈,则tan θ=,即2π3θ=,故选:A .6.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.215【答案】B 【解析】【分析】根据条件概率的定义,结合全概率公式,可得答案.【详解】记事件A 表示“球取自甲箱”,事件A 表示“球取自乙箱”,事件B 表示“取得黑球”,则()()()()1212,,2635P A P A P B A P B A =====,由全概率公式得()()()()111211232530P A P B A P A P B A +=⨯+⨯=.故选:B .7.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.882【答案】C 【解析】【分析】根据题意,按使用颜色的数目分两种情况讨论,由加法原理计算可得答案.【详解】根据题意,分两种情况讨论:若用两种颜色涂色,有27C 242⨯=种涂色方法;若用三种颜色涂色,有()37C 3221630⨯⨯⨯+=种涂色方法;所以有42630672+=种不同的涂色方法.故选:C.8.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e【答案】B 【解析】【分析】将问题转化为002e x x k ≤在0x ∈R 上能成立,利用导数求2()exxg x =的最大值,求k 的范围,即知参数的最大值.【详解】由题设,0x ∃∈R 使02e x x k ≤成立,令2()exxg x =,则()21e x g x x ⋅-'=,∴当1x <时()0g x '>,则()g x 递增;当1x >时()0g x '<,则()g x 递减;∴2()(1)e g x g ≤=,故2e k ≤即可,所以k 的最大值为2e.故选:B.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.6【答案】AD 【解析】【分析】根据二项式展开式得到321C n r r r nT x-+=,再令302n r-=,则得到123C C n n n =,解出即可.【详解】展开式的通项为131221C ()()C n r r n rr rr nnT x x x---+==,若要其表示常数项,须有302n r-=,即13r n =,又由题设知123C C n n =,123n \=或123n n -=,6n ∴=或3n =.故选:A D .10.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412ab下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的【答案】AC 【解析】【分析】结合统计结果对选项逐一分析即可得.【详解】对A :由3924482a b +++=⨯,则33a b +=,故A 正确;对B :由选择化学的有39人,选择物理的有36人,故至少有三人选择化学并选择了历史,故选考科目组合为“历史+地理+政治”的学生最多有9人,故B 错误;对C :确定选择化学后,还需在物理、历史中二选一,在生物、地理、政治中三选一,故共有236⨯=种不同的选考科目组合,故C 正确;对D :由于地理与政治选考该科人数不确定,故该说法不正确,故D 错误.故选:AC.11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2【答案】BCD 【解析】【分析】构造函数()ex xf x =,将e ln 0x ax a -<恒成立问题转化为()()ln f x f a <恒成立问题,求导,研究()e xxf x =单调性,画出其图象,根据图象逐一验证选项即可.【详解】由e ln 0x ax a -<得ln ln ln e ex a x a aa <=,设()e x x f x =,则()1ex xf x ='-,当1x <时,()0f x '>,()f x 单调递增,当1x >时,()0f x '<,()f x 单调递减,又()00f =,()11e f =,当0x >时,()0ex xf x =>恒成立,所以()ex xf x =的图象如下:,ln ln e ex a x a<,即()()ln f x f a <,2x ≥,对于A :当3e a =时,ln ln 31>2a =+,根据图象可得()()ln f x f a <不恒成立,A 错误;对于B :当2e a =时,()ln ln 211,2a =+∈,根据图象可得()()ln f x f a <恒成立,B 正确;对于C :当e a =时,ln 1a =,根据图象可得()()ln f x f a <恒成立,C 正确;对于D :当2a =时,ln ln 2a =,又()()ln 22ln 212ln 2ln 2,2e 2ef f ===,因为221263ln 23ln 2e e ⨯-⨯=,且2e,e 6>>,即26ln 1,1e ><,所以221263ln 23ln 02e e⨯-⨯=->,即()()ln 22f f >,根据图象可得()()ln f x f a <恒成立,D 正确;故选:BCD.【点睛】关键点点睛:本题的关键将条件变形为ln ln e e x ax a <,通过整体结构相同从而构造函数()e x x f x =来解决问题.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.【答案】38【解析】【分析】利用条件概率的概率公式()()()P AB P B A P A =即可求解.【详解】由题意可得:()415P A =,()215P B =,()110P AB =,由条件概率公式可得()()()13104815P AB P B A P A ===,故答案为:38.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.【答案】200【解析】【分析】根据X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,求得(130)p X ≥即可.【详解】因为X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,所以()()113012901300.22P X P X ⎡⎤≥=-≤≤=⎣⎦,又该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为10000.2200⨯=人.故答案为:200.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)【答案】36【解析】【分析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有211421226C C C A =种分组方法,再将分好的3组对应3个场馆,有336A =种方法,则共有6636⨯=种分配方案.故答案为:36四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y g x =过点(1,0)的切线方程.【答案】(1)1(2)22y x =-【解析】【分析】(1)利用导数求解参数即可.(2)先设切点,利用导数表示斜率,建立方程求出参数,再写切线方程即可.【小问1详解】定义域为,()0x ∈+∞,21()3f x ax x'=+,而(1)13f a '=+,而已知(1)4f '=,可得134a +=,解得1a =,故a 的值为1,【小问2详解】3()()ln g x f x x x x x =--=-,设切点为0003(,)x x x -,设切线斜率为k ,而2()31g x x '=-,故切线方程为300200()(31)()y x x x x x --=--,将(1,0)代入方程中,可得3200000()(31)(1)x x x x --=--,解得01x =(负根舍去),故切线方程为22y x =-,16.已知n ⎛ ⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.【答案】(1)10n =;(2)454;(3)2454x ,638-,245256x.【解析】【分析】(1)求出n⎛ ⎝的展开式的通项为1r T +,当=5r 时,指数为零,可得n ;(2)将10n =代入通项公式,令指数为2,可得含2x 的项的系数;(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,求出r 的值,代入通项公式并化简,可得展开式中所有的有理项.【详解】(1)n ⎛ ⎝的展开式的通项为233311122r rn r r n r r r r n n T C x x C x ----+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,因为第6项为常数项,所以=5r 时,有203n r -=,解得10n =.(2)令223n r -=,得()()116106222r n =-=⨯-=,所以含2x 的项的系数为221014524C ⎛⎫-= ⎪⎝⎭.(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,令()1023r k k Z -=∈,则1023r k -=,即352r k =-.r Z ∈,∴k 应为偶数.又010r ≤≤,∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为2221012C x ⎛⎫- ⎪⎝⎭,551012C ⎛⎫- ⎪⎝⎭,8821012C x -⎛⎫- ⎪⎝⎭,即2454x ,638-,245256x .【点睛】关键点点睛:本题考查二项式展开式的应用,考查二项式展开式的通项公式以及某些特定的项,解决本题的关键点是求解展开式的有理项时,令()1023r k k Z -=∈,由r Z ∈以及010r ≤≤,求出k 的值,进而得出r 的值,代入通项公式化简可得有理项,考查了学生计算能力,属于中档题.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.【答案】(1)712(2)可判断该黑球来自3号箱的概率最大.【解析】【分析】(1)因先从三个箱子中任取一箱,再从取出的箱中任意摸出一球为黑球,其中有三种可能,即黑球取自于1号,2号或者3号箱,故事件B 属于全概率事件,分别计算出()i P A 和(|),1,2,3i P B A i =,代入全概率公式即得;(2)由“小明取出的球是黑球,判断该黑球来自几号箱”是求条件概率(|),1,2,3i P A B i =,根据条件概率公式分别计算再比较即得.【小问1详解】由已知得:1231()()()3P A P A P A ===,12311(|),(|),(|)1,42P B A P B A P B A ===而111111()(|)(),4312P BA P B A P A =⋅=⨯=222111()(|)(),236P BA P B A P A =⋅=⨯=33311()(|)()1.33P BA P B A P A =⋅=⨯=由全概率公式可得:1231117()()()().126312P B P BA P BA P BA =++=++=【小问2详解】因“小明取出的球是黑球,该黑球来自1号箱”可表示为:1A B ,其概率为111()112(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自2号箱”可表示为:2A B ,其概率为221()26(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自3号箱”可表示为:3A B ,其概率为331()43(|)7()712P A B P A B P B ===.综上,3(|)P A B 最大,即若小明取出的球是黑球,可判断该黑球来自3号箱的概率最大.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.【答案】(1)0.648(2)分布列见解析,期望为95,甲比乙闯关成功的概率要大.【解析】【分析】(1)根据题意,直接列出式子,代入计算即可得到结果;(2)根据题意,由条件可得X 的可能取值为0,1,2,3,然后分别计算其对应概率,即可得到分布列,然后计算甲闯关成功的概率比较大小即可.【小问1详解】记事件A 为“乙闯关成功”,乙正确完成每个程序的概率为0.6,则()()2233C 0.610.6(0.6)0.648;P A =⨯⨯-+=【小问2详解】甲编写程序正确的个数X 的可能取值为0,1,2,3,()()()()211233464664333310101010C C C C C C 13110,1,2,3C 30C 10C 2C 6P X P X P X P X ============,故X 的分布列为:X0123P 1303101216故()1311901233010265E X =⨯+⨯+⨯+⨯=,甲闯关成功的概率1120.648263P =+=>,故甲比乙闯关成功的概率要大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.【答案】(1)答案见解析(2)()()0,99,18U 【解析】【分析】(1)求出函数的导函数,分0a >、a<0两种情况讨论,分别求出函数的单调递增区间;(2)利用导数的几何意义求出切线方程,再令0x =、0y =求出在坐标轴上的截距,再由面积公式得到不等式,解得即可.【小问1详解】∵()313f x x ax =-定义域为R ,且()2f x x a '=-,①当a<0时,()20f x x a '=->恒成立,∴()f x 在R 上单调递增;②当0a >时,令()20f x x a '=->,解得x <x >,∴()f x 在(,∞-,)∞+上单调递增,综上:当a<0时,()f x 的单调递增区间为(),-∞+∞;当0a >时,()f x 的单调递增区间为(,∞-,)∞+.【小问2详解】由(1)得()2339f a a =-=-',又∵()393f a =-,∴切线方程为()()()9393y a a x --=--,依题意90a -≠,令0x =,得18y =-;令0y =,得189x a=-,切线与坐标轴所围成的三角形的面积11816218299S a a =⨯⨯=--,依题意162189a >-,即919a>-,解得09a <<或918<<a ,即实数a 的取值范围为()()0,99,18⋃.。
山东名校考试联盟 2023-2024 学年高二年级下学期期中检测数学试题解析版
青岛九中高二下期中考试数学试题山东名校考试联盟2023-2024 学年高二年级下学期期中检测数学试题参考答案2024.05一、选择题: 本题共 8 小题, 每小题 5 分, 共 40 分。
在每小题给出的四个选项中, 只有一个选项是符合题目要求的。
题号12345678答案D A C B D D C A1. 设函数 f (x ) 在 x =x 0 处的导数为 2,则 lim Δx→0f (x 0+2Δx )−f (x 0)Δx=( )A. 12 B. 1 C. 2 D. 4【解析】 limΔx→0f (x 0+2Δx )−f (x 0)Δx=2limΔx→0f (x 0+2Δx )−f (x 0)2Δx=2lim2Δx→0f (x 0+2Δx )−f (x 0)2Δx=2f ′(x 0)=4 ,故选 D2. 个位数大于十位数的两位数共有( )个A. 36 B. 40 C. 42 D. 56【解析】个位数大于十位数的两位数个位数显然不能为 0 , 故只需在 1-9 九个数字中选两个,大的在个位,小的在十位即可,故共有 C 29=36 种可能,故选 A 3. 已知函数 f (x ) 的导函数 f ′(x ) 的图象如图所示,则 f (x ) 的图象可能为( )【解析】由导函数图像可知原函数应是先增后减再增的,故在 B 、C 中选择,随着 x 的增大, 导函数越来越大, 故原函数增长越来越快, 应选 C 4. 已知函数 f (x )=12x 2−f ′(1)x +ln x ,则 f ′(1)=( )A. −32 B. 1 C. 32 D. 2【解析】 f ′(x )=x−f ′(1)+1x ,将 x =1 带入可得 f ′(1)=1−f ′(1)+11 ,解得 f ′(1)=1 ,故选 B5.(y +x 2y)(x +y )6 的展开式中 x 3y 4 的系数为( )A. 6B. 20C. 21D. 26【解析】 (y+x2y)(x +y )6=y (x +y )6+x 2y (x+y )6 其中含 x 3y 4 的项为 yC 36x 3y 3+x 2y C 56xy 5,x 3y4 的系数为 C 36+C 56=26 故选 D6. 书架上已有四本书, 小明又带来了两本不同的长篇小说和一本人物传记要放到书架上, 若两本小说不能放到一起, 则不同的放法有 ( ) 种A. 30 B. 90 C. 120 D. 150【解析】人物传记有 5 种放法, 这样五本书之间有 6 个空, 两本不同的长篇小说选两个空插入即可不相邻,共有 5 A 26=150 种方法,故选 D7. 已知 a =A 2020,b =1020,c =C 2040 ,则( )A. a <b <cB. c <b <aC. c <a <bD. b <c <a【解析】 a =20×19×18×⋯×2×1,b =10×10×10×⋯×10×10 ,均由 20 个数相乘组成,其中前两项和最后一项比较 20×19×1<10×10×10 ,其他项 18×2<10×10,17×3<10×10 直到 11×9<10×10 ,故 a <b ,c =40×39×38×⋯×22×2120×19×18×⋯×2×1<2×310×43×52×6×8×11×21 ,其中 a =20×19×18×⋯×2×1 里面前四项大于 2×310×43×52×6×8×11×21 中的后五项,即 20×19×18×17>5×6×8×11×21 ,其他项均要对应大于或等于剩余 2×310×43×5 中的每一项, 故 c <a ,故选 C8. 已知曲线 y =x ln x 过点 (0,−1) 的切线与函数 y =ax 2+(a +2)x 的图象只有一个公共点, 则 a 的值为( )A. 0 或 1 B. 0 或 12 C. 12 D. 1【解析】设切线与曲线y=x ln x的切点为(x0,x0ln x0) ,函数y=x ln x的导函数为y′=ln x+1 , 故y′=ln x0+1=x0ln x0+1x0,解得x0=1 ,故切线方程为y=x−1 ,当a=0时, y=ax2+(a+2)x=2x ,显然成立,当a≠0时, y=ax2+(a+2)x与y=x−1联立, ax2+(a+1)x+1=0 ,其中Δ= (a+1)2−4a=0 , 解得a=1 ,故选A二、选择题: 本题共 3 小题, 每小题 6 分, 共 18 分。
山东省实验中学2023-2024学年高二下学期期中考试数学试题(含简单答案)
山东省实验中学2023-2024学年高二下学期期中考试数学试题(考试时间:120分钟 试卷满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.展开式中 的系数为( )A. B. C. 30D. 902. 若是区间上的单调函数,则实数的取值范围是( )A. B. C. 或 D.3. 2020年是脱贫攻坚年,为顺利完成“两不愁,三保障”,即农村贫困人口不愁吃、不愁穿,农村贫困人口义务教育、基本医疗、住房安全有保障,某市拟派出6人组成三个帮扶队,每队两人,对脱贫任务较重的甲、乙、丙三县进行帮扶,则不同的派出方法种数共有A. 15 B. 60 C. 90 D. 5404. 若,则( )A. B. C. D. 5. 在5个大小相同的球中有2个红球和3个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率是( )A.B.C.D.6. 随机变量ξ的分布列如下:其中,则等于( )A.B.()()6231x x --3x 90-30-()32112132f x x x x =-+++()1,4m m -+m 5m ≤-3m ≥5m ≤-3m ≥53m -≤≤2022220220122022(32)x a a x a x a x -=++++ 2022a a =2022220221()220222(320223()2110142512ξ1-01Pabc2b a c =+(1)P ξ=1314C.D.7. 蜂房绝大部分是一个正六棱柱的侧面,但它的底部却是由三个菱形构成的三面角. 18世纪初,法国学者马拉尔奇曾经专门测量过大量蜂巢的尺寸. 令人惊讶的是,这些蜂巢组成底盘的菱形的所有钝角都是,所有的锐角都是. 后来经过法国数学家克尼格和苏格兰数学家马克洛林从理论上的计算,如果要消耗最少的材料,制成最大的菱形容器正是这个角度. 从这个意义上说,蜜蜂称得上是“天才的数学家兼设计师”. 如图所示是一个蜂巢和部分蜂巢截面. 图中竖直线段和斜线都表示通道,并且在交点处相遇.现在有一只蜜蜂从入口向下(只能向下,不能向上)运动,蜜蜂在每个交点处向左到达下一层或者向右到达下一层的可能性是相同的.蜜蜂到达第层(有条竖直线段)第通道(从左向右计)的不同路径数为. 例如:,. 则不等式的解集为()A. B. C. D. 8. 已知函数,若恰有四个不同的零点,则a 取值范围为()A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知A ,B ,C 为随机事件,则下列表述中不正确的是( )A B. C. D. 10. 对于函数,下列说法中正确是( )A. 存在有极大值也有最大值.的122310928'︒7032'︒n n m (),A n m ()3,11A =()4,23A =()10,81A m ≤{}1,2,3,7,8,9{}1,2,3,8,9,10{}1,2,3,9,10,11{}4,5,6,7,8()xf x x e =()()()21g x fx af x =-+()2,∞+1,e e⎛⎫++∞ ⎪⎝⎭12,e e ⎛⎫+⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()()()P AB P A P B =()()()P B C A P B A P C A ⋃=+()1P A A =()()P A B P AB ≥()222272exx x f x +-=()f xB. 有三个零点C. 当时,恒成立D. 当时,有3个不相等的实数根11. 在信道内传输信号,信号的传输相互独立,发送某一信号时,收到的信号字母不变的概率为,收到其他两个信号的概率均为.若输入四个相同的信号的概率分别为,且.记事件分别表示“输入”“输入”“输入”,事件表示“依次输出”,则( )A. 若输入信号,则输出信号只有两个的概率为B.C.D. 三、填空题:本题共3小题,每小题5分,共15分.12. 若,则实数a 取值范围为________13. 编号为A 、B 、C 、D 、E 的5种蔬菜种在如图所示的五块实验田里,每块只能种一种蔬菜,要求A 品种不能种在1,2试验田里,B 品种必须与A 种在相邻的两块田里,则不同的种植方法种数为________14. 设为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,;当两条棱异面时,;当两条棱平行时,的值为两条棱之间的距离,则数学期望=________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.的的()f x x ⎫∈+∞⎪⎪⎭()0f x >450,2e a ⎛⎫∈ ⎪⎝⎭()f x a =,,M N P ()01αα<<12α-,,MMMM NNNN PPPP 123,,p p p 1231p p p ++=111,,M N P MMMM NNNN PPPP D MNPM MMMM M ()221αα-()22112P D M αα-⎛⎫= ⎪⎝⎭()3112P D P αα-⎛⎫= ⎪⎝⎭()()1112311p P M D p ααα=-+-e ln()x ax x ax -≥-+ξ0ξ=1ξ=ξE ξ15. 在二项式的展开式中,已知第2项与第8项的二项式系数相等.(1)求展开式中各项系数之和;(2)求展开式中二项式系数最大的项;(3)求展开式中的有理项.16. 学生甲想加入校篮球队,篮球教练对其进行投篮测试.测试规则如下:①投篮分为两轮,每轮均有两次机会,第一轮在罚球线处,第二轮在三分线处;②若他在罚球线处投进第一球,则直接进入下一轮,若第一次没投进可以进行第二次投篮,投进则进入下一轮,否则不预录取;③若他在三分线处投进第一球,则直接录取,若第一次没投进可以进行第二次投篮,投进则录取,否则不予录取.已知学生甲在罚球线处投篮命中率为,在三分线处投篮命中率为.假设学生甲每次投进与否互不影响.(1)求学生甲被录取的概率;(2)在这次测试中,记学生甲投篮的次数为,求的分布列.17. 已知函数在点处切线与直线垂直.(1)求的值;(2)求的单调区间和极值.18. 人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.19. 已知函数,.的1n⎫⎪⎭3423X X ()21ex x af x -+=()()1,1f 420240x y ++=a ()f x 12()23ln f x a x ⎛⎫=+⎪⎝⎭R a ∈(1)若的定义域为,值域为,求的值;(2)若,且对任意的,当,时,总满足,求的取值范围.(附加题)20. 帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m ,n ,函数在处的阶帕德近似定义为:,且满足:,,,…,.(注:,,,,…;为的导数)已知在处的阶帕德近似为.(1)求实数a ,b 的值;(2)比较与的大小;(3)若在上存在极值,求的取值范围.()f x {|0,R}x x x ≠∈R a 0a >1,13c ⎡⎤∈⎢⎥⎣⎦1x 2x ∈()()12ln2f x f x -≤a ()f x 0x =[,]m n 011()1mm nn a a x a x R x b x b x+++=+++ (0)(0)f R =(0)(0)f R ''=(0)(0)f R ''''=()()(0)(0)m n m n f R ++=[]()()f x f x '='''[]()()f x f x ''''''=[](4)()()f x f x ''''=(5)(4)()()f x f x '⎡⎤=⎣⎦()()n f x (1)()n f x -()ln(1)f x x =+0x =[]1,1()1ax R x bx=+()f x ()R x ()1()()()2f x h x m f x R x ⎛⎫=-- ⎪⎝⎭(0,)+∞m山东省实验中学2023-2024学年高二下学期期中考试数学试题简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AB【10题答案】【答案】CD【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】30【14题答案】四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)0(2)(3)有理项为,,【16题答案】【答案】(1)(2)分布列略【17题答案】【答案】(1)(2)单调递减区间为和,单调递增区间为,的极大值为,极小值为.【18题答案】【答案】(1) (2)①;②方案二中取到红球的概率更大.【19题答案】【答案】(1) (2)(附加题)【20题答案】【答案】(1),; (]0,e 4370x -228x -156x --1563a =-(),1-∞-()3,+∞()1,3-()f x ()263e f =()212e f -=-1120190a =45,7∞⎡⎫+⎪⎢⎣⎭1a =12b =(2)答案略;(3).10,2⎛⎫ ⎪⎝⎭。
河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)
石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷(时间:120分钟,分值150分)一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列函数的求导正确的是()A. B.C. D.2. 设曲线和曲线在它们的公共点处有相同的切线,则的值为()A. 0B.C. 2D. 33. 已知随机变量的分布列如下,随机变量满足,则随机变量的期望E(Y)等于()012A. B. C. D.4. 函数的大致图像是()A. B.C. D.5. 为了培养同学们的团队合作意识,在集体活动中收获成功、收获友情、收获自信、磨砺心志,2023年4月17日,石家庄二中实验学校成功举办了首届“踔厉奋发新征程,勇毅前行赢未来”25公里远足活动. 某班()22x x'-=-()2e2ex x'=()cos cos sinx x x x x'=-()()122xx x-'=⋅()e xf x a b=+()πcos2xg x c=+()02P,+ab cπX Y21Y X=-YXP1613a43835373()(1)ln1f x x x=+-现有5名志愿者分配到3个不同的小组里协助班主任摄影,记录同学们的青春光影,要求每个人只能去一个小组,每个小组至少有一名志愿者,则不同的分配方案的总数为( )A 120B. 150C. 240D. 3006. 的展开式中的系数为( )A B. 17C. D. 137. 设,,,则( )A. B. C. D. 8. 若方程有三个不同的解,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,则下列结论正确的是( )A. B. C. D. 展开式中最大的系数为10. 已知函数,下列说法正确的有( )A. 若,,则函数F (x )有最小值B. 若,,则过原点可以作2条直线与曲线相切C. 若,且对任意,恒成立,则D. 若对任意,任意,恒成立,则的最小值是11 已知函数,若且,则有( )...()632x x ⎛- ⎝6x 17-13-35ln 23a =253e 5b =1c =c b a >>a b c >>a c b >>c a b>>()()23ln 12ln x a x ax x x--=a 224e 104e 4e ⎛⎫+ ⎪-⎝⎭,224e 114e 4e ⎛⎫+ ⎪-⎝⎭,()224e 10114e 4e ⎛⎫+⋃ ⎪-⎝⎭,,()224e 1014e 4e ⎧⎫+⋃⎨⎬-⎩⎭,()62601262a a x a x a x =+++⋯+3360a =-()()2202461351a a a a a a a +++-++=(6612622a a a ++⋯+=--2a ()()()2e 114ax F x m x m =++++0m =1a =-1m =-0a ≠()y F x =0a =m ∈R ()0F x >11x -<<R m ∈0x >()0F x ≥a 2e()()y f x x =∈R ()0f x >()()0f x xf x '+>A. 可能是奇函数或偶函数B. C. 当时, D. 三、填空题:本题共3小题,每小题5分,共15分.12. 为弘扬我国古代“六艺文化”,某夏令营主办方计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”,“数”六门体验课程,每周一门,连续开设六周,则课程“御”“书”“数”排在不相邻的三周,共有______种排法.13. 某校辩论赛小组共有5名成员,其中女生比男生多,现要从中随机抽取2名成员去参加外校交流活动,若抽到一男一女的概率为,则抽到2名男生的概率为_____________.14. 若,使得成立(其中为自然对数的底数),则实数的取值范围是_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知二项式的展开式中,所有项的二项式系数之和为,各项的系数之和为,(1)求的值;(2)求其展开式中所有的有理项.16. 某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.17. 已知函数.(1)求函数的极值;(2)若对任意恒成立,求的最大整数值.18. 张强同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前的()f x ()()11f f -<ππ42x <<()()cos22sin e cos x f x f x >()()01f >35[]0,2x ∃∈()1eln e e 1ln xa a x x a --+≥-+e 2.71828= a nx ⎛- ⎝a b 32a b +=n 5343222()ln f x x x x =+()f x ()()1k x f x -<1x >k 1312两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,如果前两次投篮均未命中,则第三次投篮命中的概率为.(1)求张强同学三次投篮至少命中一次的概率;(2)记张强同学三次投篮命中的次数为随机变量,求的概率分布.19. 设定义在R 上的函数.(1)若存在,使得成立,求实数a 的取值范围;(2)定义:如果实数s ,t ,r 满足,那么称s 比t 更接近r .对于(1)中的a 及,问:和哪个更接近?并说明理由.石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷 简要答案一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C 【2题答案】【答案】C 【3题答案】【答案】C 【4题答案】【答案】B 【5题答案】【答案】B 【6题答案】2315ξξ()()e xf x ax a =-∈R [)01,x ∈+∞()0e f x a <-s r t r -≤-1x ≥ex1e x a -+ln x【答案】C 【7题答案】【答案】A 【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】ACD 【11题答案】【答案】BC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)4 (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值,无极大值为1441100.121e,e ⎡⎤⎢⎥⎣⎦42135,54,81T x T x T x-===377122e --(2)3【18题答案】【答案】(1);(2)答案略.【19题答案】【答案】(1) (2)比更接近,理由略1115e a >ex1e x a -+ln x。
高二下学期期中考试数学试卷-附带参考答案和解析
高二下学期期中考试数学试卷-附带参考答案和解析本试卷共5页 22小题 满分150分.考试用时120分钟.考生注意事项:1.试卷分第Ⅰ卷和第Ⅰ卷 第Ⅰ卷用2B 铅笔涂在答题卡上 第Ⅰ卷用黑色钢笔 签字笔在答题卡上作答2.质量监测时间120分钟 全卷满分150分.一、选择题:本大题共8小题 每小题5分 共40分 每小题只有一项是符合题目要求的.1.已知集合(){}2log 20A x x =∈-≤N {A x y =∈N ,则A B ⋃=( )A .{}0,1,2B .{}1,2C .{}0,1D .{}1【答案】C【分析】根据对数的单调性 一元二次不等式的解法 结合并集的定义进行求解即可. 【详解】由(){}2log 20021121x x x A -≤⇒<-≤⇒≤<⇒=由{}210110,1x x B -≥⇒-≤≤⇒=所以A B ⋃={}0,1 故选:C2.复数z 满足()1i i z += i 为虚数单位,则下列说法正确的是( ) A .1z = B .z 在复平面内对应的点位于第二象限 C .z 的实部为12D .z 的虚部为1i 2【答案】C【分析】根据复数的除法运算求出复数z 即可求得其模以及实部和虚部 以及对应的点所在象限 一一判断各选项 即得答案.【详解】因为()1i i z += 故i i (1i)11i 1i (1i)(1i)22z ⋅-===+++-则z ==A 错误 z 在复平面内对应的点为11(,)22位于第一象限 B 错误z 的实部为12C 正确z 的虚部为12D 错误故选:C .3.在ABC 中 点D 是线段AB 上靠近B 的四等分点 点E 是线段CD 上靠近D 的三等分点,则AE =( )A .2133CA CB -+ B .1526CA CB -C .1233CA CB -+D 5162CA CB -+.【答案】D【分析】方法一:利用平面向量基本定理得到答案方法二:设ABC 是等腰直角三角形 且4CA CB == 建立空间直角坐标系 写出点的坐标 设m A CA nCB E =+ 从而得到方程组 求出答案.【详解】方法一:如图 由题意得23CE CD = 34AD AB =故()22123333AE AC CE AC CD AC AD AC AC AD =+=+=+-=+()111151323262AC AB CA CB CA CA CB =+=-+-=-+方法二:不妨设ABC 是等腰直角三角形 且4CA CB == 以C 为坐标原点建立平面直角坐标系 如图所示 则()()()()20,0,0,4,4,0,3,1,2,3C A B D E ⎛⎫ ⎪⎝⎭则()()0,4,4,0CA CB == 设m A CA nCB E =+故()()102,0,44,03m n ⎛⎫-=+ ⎪⎝⎭所以1042,43n m ==- 解得51,62m n =-=故5162CA C A B E -=+.故选:D .4.函数()()()2sin 0,ππf x x ωϕωϕ=+>-<<的部分图像如图所示,则ω ϕ的值分别是( )A .2 π6- B .2 π3-C .2π3D .4 5π6-【答案】B【分析】根据三角函数图像与性质求ω ϕ的值即可. 【详解】设()f x 的周期为T则由图像知35π9π3πππ4123124T T ⎛⎫=--==⇒= ⎪⎝⎭所以2π2Tω==,则()()2sin 2f x x ϕ=+ 因为()f x 在5π12x =处取得最大值 所以5π2π2π,Z 122k k ϕ⨯+=+∈ 得π2π,Z 3k k ϕ=-+∈因为ππϕ-<< 所以π0,3k ϕ==-.故选:B5.在数列{}n a 中的相邻两项n a 与()*1n a n +∈N 之间插入一个首项为1n a n- 公差为1n -的等差数列的前n 项记构成的新数列为{}n b 若21n a n =+,则{}n b 前65项的和为( ) A .252-B .-13C .272-D .-14【答案】A【分析】根据题意 得到数列{}n b 中n a 及其后面n 项的和为n S ()()1112n n n n S n a n+=+-⨯求解. 【详解】解:数列{}n b 为:1122233331121,1,,,1,,,,1,,,233n n a a a a a a a a a a a n-------1231,,,,1,,n n n n n n a a a a a n nn+-----设n a 及其后面n 项的和为n S ,则()()()1111123222n n n n n S n a n n ++=+-⨯=-=- 所以数列{}n S 是以1为首项 公差为12-的等差数列.所以{}n b 前65项的和为1210710125222S S S ⎛⎫- ⎪⎝⎭+++==-故选:A.6.冬季是流感高发期 其中甲型流感病毒传染性非常强.基本再生数0R 与世代间隔T 是流行病学基本参考数据.某市疾控中心数据库统计分析 可以用函数模型()2rtW t =来描述累计感染甲型流感病毒的人数()W t 随时间t Z t ∈(单位:天)的变化规律 其中指数增长率r 与基本再生数0R 和世代间隔T 之间的关系近似满足01R rT =+ 根据已有数据估计出04R =时 12T =.据此回答 累计感染甲型流感病毒的人数增加至()0W 的3倍至少需要(参考数据:lg 20.301≈ lg30.477≈)( )A .6天B .7天C .8天D .9天【答案】B【分析】先求得r 然后根据“()0W 的3倍”列方程 化简求得需要的时间. 【详解】依题意 01R rT =+ 且04R =时 12T =即14112,4r r =+⨯= 所以()142tW t = ()10W =令()1423tW t == 两边取以10为底的对数得14lg 340.477lg 2lg 3, 6.34lg 20.301t t ⨯==≈≈ 所以至少需要7天. 故选:B7.如图 在长方形ABCD 中 2AB = 1BC = E 为DC 的中点 F 为线段EC (端点除外)上的动点.现将AFD △沿AF 折起 使平面ABD ⊥平面ABC 在平面ABD 内过点D 作DK AB ⊥ K 为垂足.设AK t ,则t 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .51,4⎛⎫ ⎪⎝⎭【答案】C【分析】设DF x = 求得x 关于t 的表达式 根据x 的取值范围求得t 的取值范围. 【详解】如图 在平面ADF 内过点D 作DH AF ⊥垂足为H 连接HK .过点F 作//FP BC 交AB 于点P .设FAB θ∠= AE AC == 所以cos θ∈⎝⎭.设DF x =,则12x <<.因为平面ABD ⊥平面ABC 平面ABD ⋂平面ABC AB =DK AB ⊥ DK ⊂平面ABD 所以DK ⊥平面ABC又AF ⊂平面ABC 所以DK AF ⊥. 又因为DHAF ⊥DKDH D = DK DH ⊂平面DKH 所以AF ⊥平面DKH 所以AF HK ⊥ 即AH HK ⊥.在Rt ADF 中 AF DH因为ADF △和APF 都是直角三角形 PF AD = 所以Rt Rt ADF FPA ≌△△ AP DF x ==.因为AHD ADF ∽△△,1AH DH AH AH AD DF ===所以cos AH AP AK AF θ=== 得1x t=. 因为12x << 所以112t<< 所以112t <<.故选:C【点睛】方法点睛:线面垂直 面面垂直转化的过程中 要从线面垂直得到面面垂直 需要“经过一个平面的垂线” 要从面面垂直得到线面垂直,则需要“在一个平面内 垂直于交线” 在答题过程中 要注意使用正确的符号语言.8.在直角坐标系xOy 内 圆22:(2)(2)1C x y -+-= 若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣ B.44⎡--⎣C.22⎡--⎣D.2⎡-⎣【答案】A【分析】由题意首先得出旋转后的直线为1:0l x y m 然后由直线与圆的位置关系列出不等式即可求解. 【详解】连接OP 设POx θ∠=(即以x 轴正方向为始边 OP 为终边的角)由题意对于直线:0l x y m ++=上任意一点(),P x y存在R a θ=∈ 使得()cos ,sin P a a θθ 则直线:0l x y m ++=绕原点O 顺时针旋转90后 点()cos ,sin P a a θθ对应点为1ππcos ,sin 22P a a θθ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 即()1sin ,cos Pa a θθ- 因为()cos ,sin P a a θθ在直线:0l x y m ++=上 所以满足cos sin 0a a m θθ++= 设11sin ,cos x a y a θθ==- 所以110y x m -++= 即()1sin ,cos P a a θθ-所在直线方程为1:0l xy m而圆22:(2)(2)1C x y -+-=的圆心 半径分别为()2,2,1r = 若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点所以圆心()2,2C 到直线1:0l x y m 的距离1d r =≤= 解得m ≤故选:A.【点睛】关键点睛:关键是求出旋转后的直线 从而即可顺利得解.二 多选题9.某校举行演讲比赛 6位评委对甲 乙两位选手的评分如下: 甲:7.5 7.5 7.8 7.8 8.0 8.0 乙:7.5 7.8 7.8 7.8 8.0 8.0 则下列说法正确的是( )A .评委对甲评分的平均数低于对乙评分的平均数B .评委对甲评分的方差小于对乙评分的方差C .评委对甲评分的40%分位数为7.8D .评委对乙评分的众数为7.8 【答案】ACD【分析】由平均数 方差 百分位数 众数的概念及求法分别求解判断即可. 【详解】选项A 评委对甲评分的平均数7.57.57.87.88.08.017.87.8630x +++++==-<甲评委对乙评分的平均数7.57.87.87.88.08.017.87.8660x +++++==+>乙所以x x <甲乙 故A 正确选项B 由A 知 两组数据平均数均约为7.8且纵向看 甲组数据与乙组数据仅一组数据7.5,7.8不同 其余数据相同 又甲组数据7.5与平均数的差明显大于乙组数据7.8与平均数的差 且差距较大 故与平均数比较 甲组数据波动程度明显大些即评委对甲评分的方差大于对乙评分的方差 故B 错误 选项C 由640% 2.4⨯=不是整数则评委对甲评分的40%分位数为从小到大第3个数据 即:7.8 故C 正确 选项D 评委对乙评分中最多的数据 即众数为7.8 故D 正确.故选:ACD.10.下列说法正确的是( )A .“α为第一象限角”是“2α为第一象限角或第三象限角”的充分不必要条件 B .“π2π6k α=+ Z k ∈”是“1sin 2α=”的充要条件C .设ππ,Z 4M k k αα⎧⎫==±∈⎨⎬⎩⎭ π,Z 4k N k αα⎧⎫==∈⎨⎬⎩⎭,则“M θ∈”是“N θ∈”的充分不必要条件D .“sin 0θ>”是“θtan 02>”的必要不充分条件 【答案】AC【分析】对于A 利用象限角 求得角α的范围 可判定充分性 取π3α= 验证必要性即可 对于B 考查1sin 2α=时 α的取值范围 可判定必要性不成立 对于C 根据集合M N 的关系即可判定 对于D 根据条件求得α的取值范围即可判断. 【详解】对于A,因为α为第一象限角 所以π2π2π,Z 2k k k α<<+∈ 则πππ,Z 4k k k α<<+∈, 当k 为偶数时 α为第一象限角 当k 为奇数时 α为第三象限角 所以充分性成立 当π3α=时 α为第一象限角,则2π23α= 为第二象限角 即必要性不成立 故A 正确 对于B 当π2π6k α=+ Z k ∈时 1sin 2α=成立,则充分性成立当1sin 2α=时 π2π6k α=+或5π2π6k α=+ Z k ∈, 故必要性不成立,则B 错误对于C ()41πππ,Z ,Z 44k M k k k αααα⎧⎫⎧⎫⎪⎪==±∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭而π,Z 4k N k αα⎧⎫==∈⎨⎬⎩⎭则MN 故则“M θ∈”是“N θ∈”的充分不必要条件 故C 正确对于D,当sin 0θ>时 2π2ππ,Z k k k θ<<+∈, 则πππ,Z 22k k k θ<<+∈ 则θtan 02> 故充分性成立 当θtan02>时 πππ,Z 22k k k θ<<+∈则2π2ππ,Z k k k θ<<+∈ 则sin 0θ>成立 所以“sin 0θ>”是“θtan 02>”的充要条件 故D 错误 故选:AC.11.椭圆C 的标准方程为22121,,82x y F F +=为椭圆的左 右焦点 点()2,1P .12PF F △的内切圆圆心为(),I I I x y 与1212,,PF PF F F 分别相切于点,,D E H ,则( )A .126PF F S =△ B .13x C .1233y = D .226PD PE ==【答案】BCD【分析】根据椭圆中焦点三角形的性质求解12PF F S再结合三角形内切圆的几何性质逐项判断即可得结论.【详解】椭圆C :22182x y +=,则22,2,826a b c ===-= 所以()()126,0,6,0F F又()2,1P 所以点P 再椭圆上 连接12,,,,,ID IE IH IP IF IF则121211122PF F p SF F y =⋅=⨯ 故A 不正确由椭圆的定义可得122PF PF a +==又12PF F △的内切圆圆心为(),I I I x y 所以内切圆半径I r y = 由于121212PF F IF F IF PIF PSSSS=++()(121212121111122222I I I I I F F y PF y PF y y F F PF PF y =⨯⨯+⨯⨯+⨯⨯=⋅++=⋅故3I r y === 故C 正确又1122,,PD PE DF F H EF HF ===所以12121212PF PF PD DF PE EF PD F H PE HF PD PE F F +=+++=+++=++=则2PD = 所以PD PE == 故D 正确又2PF == 所以222HF EF PF PE ==-又H I x x = I x = 即1x 故B 正确. 故选:BCD.12.已知函数()()e xf x a x =+ ()()lng x x a x =+,则下列说法正确的是( )A .若函数()y f x =存在两个极值,则实数a 的取值范围为21,e ⎛⎫-∞ ⎪⎝⎭B .当1a =时 函数()y g x =在(0,)+∞上单调递增C .当1a =时 若存在1x ≥ 使不等式()()2()ln f mx fxx x ≥+成立,则实数m 的最小值为0D .当1a =时 若()()12(0)f x g x t t ==>,则()121ln x x t +⋅的最小值为1e【答案】BC【分析】对A 选项:由极值点的性质结合导数讨论单调性即可得 对B 选项:结合导数讨论单调性即可得 对C 选项:结合()f x 单调性 可转化为当1x ≥时 有()1ln m x x ≥+成立 求出()1ln x x +最小值即可得 对D 选项:采用同构法可确定12e xx = 再将多变量化为单变量后结合导数讨论单调性即可得.【详解】对A 选项:()()()e e 1e x x xf x x a x a +=+'=++若函数()y f x =存在两个极值,则函数()f x '必有两个变号零点令()()1e 0x f x x a =++=',则()1e xa x =-+令()()1e xh x x =-+,则()()2e xh x x +'=-则当2x >-时 ()0h x '< 当<2x -时 ()0h x '> 故()h x 在(),2∞--上单调递增 在()2,∞-+上单调递减故()()()221221e e h x h -≤-=--+=又当1x >-时 ()()1e 0xh x x =-+<恒成立当x →-∞时 ()0h x →故当210,e a ⎛⎫∈ ⎪⎝⎭函数()f x '有两个变号零点即若函数()y f x =存在两个极值,则实数a 的取值范围为210,e⎛⎫ ⎪⎝⎭故A 错误对B 选项:当1a =时 ()(1)ln g x x x =+ ()11ln ln 1x g x x x x x='+=+++ 令()()x g x μ=',则()22111x x x x xμ'-=-= 则当()0,1x ∈时 ()0x μ'< 当()1,x ∞∈+时 ()0x μ'> 故()x μ在()0,1上单调递减 在()1,∞+上单调递增故()()120g x g '='≥> 故函数()y g x =在(0,)+∞上单调递增 故B 正确对C 选项:当1a =时 ()()e 1xf x x =+()()()e e 11e 1x x x f x x x =++=++'令()()m x f x =',则()()2e xm x x +'=则当<2x -时 ()0m x '< 当2x >-时 ()0m x '> 故()m x 在(),2∞--上单调递减 在()2,∞-+上单调递增故()()2212e 110e f x f -≥-=-+=-'>' 故()f x 在R 上单调递增则存在1x ≥ 使不等式()()2()ln f mx fxx x ≥+成立等价于存在1x ≥ 使不等式()2ln mx x x x ≥+成立则当1x ≥时 有()1ln m x x ≥+成立由当1a =时 ()(1)ln g x x x =+ 且()y g x =在(0,)+∞上单调递增 故()11ln10m ≥+= 即实数m 的最小值为0 故C 正确对D 选项:当1a =时 由B C 可知 ()f x ()g x 均为定义域上的增函数 由()00f = ()10g = 故有1>0x 21x >由()()12f x g x =,则()()1122e 11ln xx x x +=+即()()()111122e 1e 1ln e 1ln x x x x x x +=+=+ 故12e xx =又()()111e 10xf x t x ==+> 故()121ln ln x x t t t +⋅=令()ln n x x x =,则()1ln n x x x ='+ 令()()1ln p x n x x x==+'则()22111x p x x x x='-=- 则当()0,1x ∈时 ()0p x '< 当()1,x ∞∈+时 ()0p x '> 故()p x 在()0,1上单调递减 在()1,∞+上单调递增 即()()10n x n ''≥= 故()n x 在()0,∞+上单调递增 故()n x 无最小值 即()121ln x x t +⋅无最小值 故D 错误. 故选:BC.【点睛】思路点睛:本题考查导数在研究函数中的综合应用问题 其中D 选项中涉及到多变量问题的求解 求解此类问题的基本思路是根据已知中的等量关系 将多变量转化为单变量的问题 从而将其转化为函数最值问题的求解. 三 填空题13.()622x x y y ⎛⎫+- ⎪⎝⎭的展开式中42x y 的系数为 .(用数字作答)【答案】40-【分析】由二项式定理得到()62x y -的通项公式 结合2xy+得到34,T T 得到42x y 的系数. 【详解】()62x y -的通项公式为()()66166C 2C 2rrr r r r r r T x y x y --+=-=-令2r =得 ()22424236C 260T x y x y =-= 此时4242602120x y x y ⋅=令3r =得 ()33333346C 2160T x y x y =-=- 此时3342160160xx y x y y-⋅=- 故42x y 的系数为12016040-=- 故答案为:40-14.设数列{}n a 满足12a = 26a = 且2122n n n a a a ++-+= 若[]x 表示不超过x 的最大整数,则122021202120212021a a a ⎡⎤+++=⎢⎥⎣⎦. 【答案】2020【分析】根据题意 得到()()2112n n n n a a a a +++---= 得到{}1n n a a +-为等差数列 求得其通项公式 结合累加法 得到(1)n a n n =+ 求得2021112021()1n a n n =-+ 再利用裂项求和 求得12202120212021202120212021(2020,2021)2022a a a +++=⨯∈ 即可求解. 【详解】因为2122n n n a a a ++-+= 可得()()2112n n n n a a a a +++---= 又因为12a = 26a = 可得214a a -=所以数列{}1n n a a +-是首项为4 公差为2的等差数列 所以14(1)222n n n a n a +-=+-⨯=+ 当2n ≥时 112211()()()n n n n n a a a a a a a a ---=-+-++-+(1)22(1)2222(1)2n n n n n n +=+-++⨯+=⨯=+ 且当1n =时 12a =也成立 所以()1n a n n =+ 所以202111120212021()(1)1n a n n n n =⨯=-++ 所以122021202120212021111112021[(1)()()]22320212022a a a +++=-+-++- 120212021(1)2021(2020,2021)20222022=-=⨯∈所以1220212021202120212020a a a ⎡⎤+++=⎢⎥⎣⎦. 故答案为:2020.15.已知椭圆 22221(0)x y C a b a b+=>>:的左右焦点为12,F F .直线y kx =与椭圆C 相交于,P Q 两点 若112PF QF = 且12π3PFQ ∠= ,则椭圆C 的离心率为. 【分析】由椭圆的对称性可得四边形12PFQF 为平行四边形 再根据椭圆的定义求出12,PF PF 再在12PF F △中 利用余弦定理求出,a c 的关系即可得解.【详解】由椭圆的对称性可得四边形12PFQF 为平行四边形,则21PF QF =由12π3PFQ ∠= 得12π3F PF ∠= 因为112PF QF = 所以122PF PF = 又122PF PF a += 所以1242,33a aPF PF == 在12PF F △中 由余弦定理得222121212122cos F F PF PF PF PF F PF =+-∠ 即2222164421442993323a a a a ac =+-⨯⨯⨯=所以c a =即椭圆的离心率c e a ==16.已知A M N 是棱长为1的正方体表面上不同的三点,则·AM AN 的取值范围是 . 【答案】1,32⎡⎤-⎢⎥⎣⎦【分析】根据正方体的性质可得·3cos ,a AM AN AM AN =≤结合夹角的定义可得3a ≤ 可得其最大值 根据数量积的运算可知24≥-MN a 可得其最小值.【详解】正方体表面上任意两点间距不超过体对角线长度d 则,AM AN d ≤ 故·3cos ,a AM AN AM AN =≤ 而[]cos ,1,1AM AN ∈- 故3a ≤如图建立空间直角坐标系 取()0,0,0A ,M N 重合为()1,1,1时 则()()1,1,11,1,13a =⋅= 取得最大值3由对称性 设A 在下底面 (),,AM x y z = (),,AN a b c =由A 在下底面知0,0,0z c zc ≥≥≥ 当且仅当,M N 也在下底面时取等 此时,,A M N 共面时 设MN 中点为E ,则EM EN =-()()()()()2222··4MN a AM AN AE EM AE EN AE EN EN==++=-≥-=-当且仅当,A E 重合时取等又因为2MN ≤ 可得2142-≥-≥a MN 例如11,,022A ⎛⎫ ⎪⎝⎭ ()()1,0,0,0,1,0M N ,则11111·,,0,,022222a AM AN ⎛⎫⎛⎫==--=- ⎪⎪⎝⎭⎝⎭所以·AM AN 的取值范围是1,32⎡⎤-⎢⎥⎣⎦. 故答案为:1,32⎡⎤-⎢⎥⎣⎦.四 解答题(共70分)17.(本题10分)如图 在ABC 中 6AB AC == 点D 是边BC 上一点且,cos AD AB CAD ∠⊥=2AE EB =(1)求BCE 的面积 (2)求线段AD 的长. 【答案】(1)(2)=AD【分析】(1)根据13BCE ABC S S =△△求解即可(2)解法1:在ABC 中根据余弦定理求出BC 结合等腰三角形的性质求cos B 在ABD △中勾股定理求AD 即可 解法2:由A BCABDACDSSS=+求得AD .【详解】(1)12,3BCEABCAE EB SS =∴=而11πsin 66sin 222ABCSAB AC BAC CAD ⎛⎫=⋅⋅∠=⨯⨯⨯∠+ ⎪⎝⎭ 18cos 18CAD =∠== 1423BCEABCSS ∴==(2)解法1:()1cos 0,π,sin 3CAD CAD CAD ∠=∠∈∴∠= π1cos cos sin 23CAB CAD CAD ⎛⎫∴∠=∠+=-∠=- ⎪⎝⎭在ABC 中 22212cos 3636266963BC AB AC AB AC CAB ⎛⎫=+-⋅⋅∠=+-⨯⨯⨯-= ⎪⎝⎭BC ∴=∴在等腰ABC 中12cos BCB BA ==∴Rt ABD △中6cos ,BA BBD BD BD===∴=AD ∴==解法2:()1cos 0,π,sin 3CAD CAD CAD ∠=∠∈∴∠== 由A BCABDACDSSS=+得1166sin 22AD AD CAD =⨯⨯+⨯⨯⋅∠,即()11166223AD AD =⨯⋅+⋅⋅⋅解得=AD18.(本题12分)已知数列{}n a 的前n 项和为n S 11a = 且满足()()11112n n n S nS n n ++=-+.(1)求数列{}n a 的通项公式(2)设()23cos πn a n n b a n =+⋅ 求数列{}n b 的前n 项和n T .【答案】(1)n a n =(2)()()()()11133,,24133,.24n n n n n n T n n n ++⎧++--⎪⎪=⎨++-⎪--⎪⎩为偶数为奇数【分析】(1)利用构造法和等差数列的定义与通项公式可得()12n n n S +=结合1n n n a S S -=-即可求解(2)由(1)知()()213nnn b n =-+- 利用分组求和法计算即可求解. 【详解】(1)根据题意 ()()11112n n n S nS n n ++=-+ 所以1112n n S S n n +-=+由于1111S a ==,则n S n ⎧⎫⎨⎬⎩⎭是以首项为1 公差为12的等差数列所以()111122n S n n n +=+-⨯= 所以()12n n n S += 当2n ≥时 1(1)(1)22n n n n n n na S S n -+-=-=-=. 验证1n =时11a =满足通项公式 故数列{}n a 的通项公式为n a n =.(2)由(1)知()()()223cos π13n n na n nb a n n =+⋅=-+-.设()21nn -的前n 项和为n A ,则当n 为偶数时 ()22222212341n A n n =-+-+-⋅⋅⋅--+()()()()()()2121434311n n n n ⎡⎤⎡⎤=-++-++⋅⋅⋅+--+-⎣⎦⎣⎦ ()()1123412n n n n +=++++⋅⋅⋅+-+=. 当n 为奇数时 ()()2211122n n n n n n A A n n --+=-=-=-设()3n-的前n 项和为n B ,则()()()131333134nn nB +⎡⎤-⋅-----⎣⎦==+. 因为=+n n n T A B 所以()()()()11133,,24133,.24n n n n n n T n n n ++⎧++--⎪⎪=⎨++-⎪--⎪⎩为偶数为奇数 19.(本题12分)如图 在四棱锥P ABCD -中 PAD 为等边三角形 AD CD ⊥ //AD BC 且22AD BC ==CD =PB = E 为AD 中点.(1)求证:平面PAD ⊥平面ABCD(2)若线段PC 上存在点Q 使得二面角Q BE C --的大小为60︒ 求CQCP的值. 【答案】(1)证明见解析 (2)12【分析】(1)首先连接PE 根据线面垂直的判定定理证明PE ⊥平面ABCD 再利用面面垂直的判定定理证明平面PAD ⊥平面ABCD . (2)设()01CQ CP λλ=≤≤,再利用向量法求二面角Q BE C --的平面角 再列方程得到12λ= 即得CQCP 的值.【详解】(1)证明:连接PEPAD 是边长为2的等边三角形 E 是AD 的中点PE AD ⊥∴PE =//DE BC DE BC = AD CD ⊥ ∴四边形BCDE 是矩形BE CD ∴==222PE BE PB ∴+= PE BE ∴⊥又AD BE E = AD BE ⊂平面ABCDPE ∴⊥平面ABCD又PE ⊂平面PAD∴平面PAD ⊥平面ABCD .(2)以E 为原点 以EA EB EP 为坐标轴建立空间直角坐标系 如图所示:则(00P()C -()0B ()0,0,0E ()0EB ∴=, ()100BC =-,,(1CP = 设()01CQCPλλ=≤≤则()1BQ BC CQ BC CP λλ=+=+=- 设平面QBE 的法向量为(),,m x y z =则00m EB m BQ ⎧⋅=⎪⎨⋅=⎪⎩即()010x y z λ⎧=⎪⎨-=⎪⎩,,令1z = 得()301m λλ=-,,又PE ⊥平面ABCD()001n ∴=,,为平面BEC 的一个法向量cos 3m n m n m nλ⋅∴==,二面角Q BE C --的大小为60︒12= 解得12λ=. 12CQ CP ∴=. 20.(本题12分)2023年秋末冬初 呼和浩特市发生了流感疾病. 为了彻底击败病毒 人们更加讲究卫生讲究环保. 某学校开展组织学生参加线上环保知识竞赛活动 现从中抽取200名学生 记录他们的首轮竞赛成绩并作出如图所示的频率直方图 根据图形 请回答下列问题:(1)若从成绩低于60分的同学中按分层抽样方法抽取5人成绩 求5人中成绩低于50分的人数 (2)以样本估计总体 利用组中值估计该校学生首轮竞赛成绩的平均数(3)首轮竞赛成绩位列前10%的学生入围第二轮的复赛 请根据图中信息 估计入围复赛的成绩(记为K ). 【答案】(1)2人 (2)71 (3)88K ≥【分析】(1)利用分层抽样的定义求解即可 (2)利用平均数公式求解即可(3)根据题意设入围复赛的成绩的临界值为[)80,90K ∈,则()900.0250.050.1K -⨯+= 求出K 的值即可. 【详解】(1)成绩在[)40,50的人数为0.011020020⨯⨯=(人) 成绩在[)50,60的人数为0.0151020030⨯⨯=(人) 则按分层抽样方法从成绩低于60分的同学中抽取5人成绩低于50分的人数为20522030⨯=+(人). 故5人中成绩低于50分的人数为2人(2)由()0.010.0150.0150.0250.005101a +++++⨯= 得0.030a = 则平均数450.1550.15650.15750.3850.25950.0571x =⨯+⨯+⨯+⨯+⨯+⨯=故该校学生首轮竞赛成绩的平均数约为71分(3)根据频率分布直方图可知:[]90,100的频率为0.005100.05⨯= [)80,90的频率为0.025100.25⨯=所以入围复赛的成绩一定在[)80,90可知入围复赛的成绩的临界值为[)80,90K ∈则()900.0250.050.1K -⨯+= 解得88K =故估计入围复赛的成绩为88K ≥分.21.(本题12分)已知椭圆2222:1(0)x y C a b a b +=>> 斜率为2的直线l 与x 轴交于点M l 与C 交于A B 两点 D 是A 关于y 轴的对称点.当M 与原点O 重合时 ABD △面积为169. (1)求C 的方程(2)当M 异于O 点时 记直线BD 与y 轴交于点N 求OMN 周长的最小值.【答案】(1)22142x y += (2)2【分析】(1)设出各点坐标 表示出面积后 结合面积与离心率计算即可得(2)要求OMN 的周长,则需把各边长一一算出 即需把M x N y 算出 设出直线方程与椭圆方程联立得与横坐标有关韦达定理 借助韦达定理表示出M x N y 可得OMN 各边边长 结合基本不等式即可求得最值.【详解】(1)当M 与原点O 重合时 可设()00,A x y ,则有()00,B x y -- ()00,D x y -且002y x = 即有AD BD ⊥, 则()()00001116229ABD S AD BD x x y y =⋅=++=即201649x = 又00x > 故023x =,则043y = 即有22416199a b +=即c a =则22222a c b c ==+ 故222a b = 即有224161189b b += 解得22b = 故24a = 即C 的方程为22142x y +=(2)设直线l 方程为2y x t =+ 令0y = 有2t x =- 即2M t x =- 设点()11,A x y ()22,B x y ,则()11,D x y - 联立直线与椭圆方程:222142y x t x y =+⎧⎪⎨+=⎪⎩ 消去y 有2298240x tx t ++-= ()222Δ64362414480t t t =--=->即t -<有1289t x x -+= 212249t x x -= BD l 为()122212y y y x x y x x -=-+-- 令0x = 故21222122122221122121212N x y x y x y x y x y x y x y x y y y x x x x x x -+-+++=+==--++ 由2y x t =+ 故()()2112211212121212224x x t x x t x y x y x x t x x x x x x ++++==++++ 其中2121224198429t x x t t x x t -==-+-+ 即12442N t y t t t ⎛⎫=-++= ⎪⎝⎭则22OMN N M t C y x t =+=+2≥=当且仅当2t =±时等号成立故OMN周长的最小值为2+【点睛】本题考查了椭圆的方程 在求解直线与椭圆的位置关系问题时 常用方法是设而不求 借助韦达定理等手段 将多变量问题转变为单变量问题 再用基本不等式或函数方式求取范围或最值.22.(本题12分)已知函数21()ln 2f x x x ax =+-. (1)当12a =时 求在曲线()y f x =上的点(1,(1))f 处的切线方程 (2)讨论函数()f x 的单调性(3)若()f x 有两个极值点1x 2x 证明:()()121222f x f x a x x -<--. 【答案】(1)3230x y --=(2)详见解析(3)详见解析.【分析】(1)根据导数的几何意义求出(2)求出导函数()1(0)f x x a x x '=+-> 在定义域()0,∞+内分类讨论解含参不等式即可求出 (3)由题意得2a > 12x x a += 121=x x 而()()1212f x f x x x --1212ln ln 12x x a x x -=-- 只需证明1212ln ln 2x x x x -<- 即证:11111ln ln 2x x x x ⎛⎫+<- ⎪⎝⎭ 即证:1111ln x x x <-对任意的1(1,)x ∈+∞恒成立即可. 【详解】(1)由题可知 当12a =时 211()ln 22f x x x x =+- ()112f x x x ∴=+-' ∴(1)0f = 3(1)2f '= ∴切点为(1,0) 切线的斜率为32 ∴切线方程为:30(1)2y x -=- 即3230x y --=(2)对函数()f x 求导可得 ()1(0)f x x a x x '=+->. 当2a ≤时 ()120f x x a a x=+-≥-≥'.则()f x 在(0,)+∞上单调递增. 当2a >时 ()2110x ax f x x a x x -+=+-=='.则1x =2x = 令()0f x '>,则10x x << 或2x x >.()0f x '<,则12x x x <<综上:当2a ≤时 ()f x 在(0,)+∞上单调递增当2a >时 ()f x在⎛ ⎝⎭和∞⎫+⎪⎪⎝⎭上单调递增 ()f x在⎝⎭上单调递减. (3)()f x 有两个极值1x 2x1x ∴ 2x 是方程210x ax -+=的两个不等实根则2a > 12x x a += 121=x x()()2211122212121211ln ln 22x x ax x x ax f x f x x x x x ⎛⎫+--+- ⎪-⎝⎭=-- ()()()121212*********ln ln ln ln 122x x x x x x a x x x x a a x x x x -+-+---==+--- 1212ln ln 12x x a x x -=--. 要证:()()121222f x f x a x x -<--.即证:1212ln ln 2x x x x -<-. 不妨设1210x x >>> 即证:11111ln ln 2x x x x ⎛⎫+<- ⎪⎝⎭. 即证:1111ln x x x <-对任意的1(1,)x ∈+∞恒成立. 令1()ln f x x x x =-+ (1)x >.则()22211110x x f x x x x -+=--=-<'. 从而()f x 在(1,)+∞上单调递减 故()(1)0f x f <=.所以()()121222f x f x a x x -<--.【点睛】本题考查了切线方程问题考查函数的单调性问题考查导数的应用以及分类讨论思想训练了构造函数法证明不等式的成立属难题.。
山东省潍坊市2023-2024学年高二下学期期中考试数学试题
山东省潍坊市2023-2024学年高二下学期期中考试数学试题一、单选题1.记n S 为等比数列{}n a 的前n 项和,若23a =,292S =,则公比q =( ) A .12B .13C .3D .22.已知随机变量ξ服从正态分布()22,N σ,且()020.4P ξ<<=,则()0P ξ>=( )A .0.9B .0.8C .0.4D .0.13.函数()f x 的图象如图所示,且()f x '是()f x 的导函数,记()()43a f f =-,()3b f =',()4c f =',则( )A .a b c <<B .b a c <<C .b<c<aD .c<a<b4.若银行的储蓄卡密码由六位数字组成,小王在银行自助取款机上取钱时,忘记了密码的最后一位数字,但记得密码的最后一位是奇数,则不超过2次就按对密码的概率是( )A .15B .25C .110D .3105.记数列{}n a 的前n 项和为n S ,若()()121nn a n =--,则101S =( ) A .301B .101C .101-D .301-6.函数()()322,f x x ax bx a a b =+++∈R 在0x =处取得极大值9,则a b +=( )A .3B .3-C .3-或3D .07.设函数()f x 是定义在R 上的奇函数,()f x '为其导函数.当0x >时,()()0xf x f x '->,()10f =,则不等式()0f x >的解集为( )A .()(),11,-∞-⋃+∞B .()(),10,1-∞-⋃C .()()1,00,1-UD .()()1,01,-⋃+∞8.某高校为研究学生每周平均体育运动时间进行了一次抽样调查,已知被抽取的男、女生人数相同.调查显示:抽取的男生中每周平均体育运动时间超过4小时的人数占比为45,抽取的女生中每周平均体育运动时间超过4小时的人数占比为35,若在犯错误的概率不超过1%的前提下,可以认为该校学生每周平均体育运动时间与性别有关,则被抽取的男生人数至少为( ) 附:()()()()()22n ad bc a b c d a c b d χ-=++++A .60B .65C .70D .75二、多选题9.下列函数的导数运算正确的是( ) A .()e e e x x x x x '=+B .'=C .2sin 1cos cos x x x '⎛⎫=- ⎪⎝⎭D .()1lg 2ln10x x '=⎡⎤⎣⎦10.有6个相同的小球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.用x 表示第一次取到的小球的标号,用y 表示第二次取到的小球的标号,记事件A :x y +为偶数,B :xy 为偶数,C :2x >,则( )A .()34P B =B .A 与B 相互独立C .A 与C 相互独立D .B 与C 相互独立11.黎曼函数(Riemann function )在高等数学中有着广泛应用,其一种定义为:[]0,1x ∈时,()()*1,,,0,0,10,1p p x p q q q q R x x ⎧⎛⎫=∈⎪ ⎪=⎨⎝⎭⎪=⎩N 为既约真分数和内的无理数,若数列2221n n n a R ⎛⎫-= ⎪-⎝⎭,*n ∈N ,则( )A .121n n a =- B .12n n a a ++>C .()111112321nii i n i a a ++==--∑ D .1211ni i a n =≤-+∑三、填空题12.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是.13.记公差不为0的等差数列{}n a 的前n 项和为n S ,若()15485k S a a a =++,则k =. 14.已知函数()ln x f x x=,设()()()2g x f x af x =-,若()g x 只有一个零点,则实数a 的取值范围是;若不等式()0g x >的解集中有且只有三个整数,则实数a 的取值范围是.四、解答题15.已知函数()2ln f x x x x =+-.(1)求()f x 的单调区间和极值;(2)求()f x 在区间1,1e ⎡⎤⎢⎥⎣⎦上的最值.16.某高中学校组织乒乓球比赛,经过一段时间的角逐,甲、乙两名同学进入决赛.决赛采取7局4胜制,假设每局比赛中甲获胜的概率均为23,且各局比赛的结果相互独立. (1)求比赛结束时恰好打了5局的概率;(2)若前三局比赛甲赢了两局,记还需比赛的局数为X ,求X 的分布列及数学期望. 17.已知数列{}n a 满足123111n n a a a a a n -⋅⋅⋅=+. (1)求数列{}n a 的通项公式; (2)令21n n b a =,设数列{}n b 的前n 项和为n S ,若不等式2122n n n S n λ⋅-≥+对*n ∀∈N 恒成立,求实数λ的取值范围.18.近年来,中国新能源汽车产业,不仅技术水平持续提升,市场规模也持续扩大,取得了令人瞩目的成就.以小米SU7、问界M9等为代表的国产新能源汽车,正逐步引领全球新能源汽车的发展潮流,某新能源汽车制造企业对某地区新能源汽车的销售情况进行了调研,数据如下:(1)已知y 与x 线性相关,求出y 关于x 的线性回归方程,并估计该地区新能源汽车在2024年5月份的销量;(2)该企业为宣传推广新能源汽车,计划在宣传部门开展人工智能工具使用的培训.该次培训分为四期,每期培训的结果是否“优秀”相互独立,且每期培训中员工达到“优秀”标准的概率均为()01p p <<.该企业规定:员工至少两期培训达到“优秀”标准.才能使用人工智能工具,(i )记某员工经过培训后,恰好两期达到“优秀”标准的概率为()f p .求()f p 的最大值点0p ; (ii )该企业宣传部现有员工100人,引进人工智能工具后,需将宣传部的部分员工调整至其他部门,剩余员工进行该次培训已知开展培训前,员工每人每年平均为企业创造利润12万元,开展培训后,能使用人工智能工具的员工预计每人每年平均为企业创造利润16万元,本次培训费每人1万元.现要求培训后宣传部员工创造的年利润不低于调整前的年利润,以(i )中确定的0p 作为p 的值.预计最多可以调多少人到其他部门?参考公式:()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑,ˆˆay bx =-. 19.已知函数()()220m f x mx m m x-=+->. (1)当1m =时,求函数()f x 在()()1,1f 处的切线方程;(2)若()2ln 2f x x ≥-在[)1,+∞上恒成立,求实数m 的取值范围; (3)证明:()()*11ln 122nk n n n kn =>++∈+∑N .。
吉林省四平市2023-2024学年高二下学期期中质量监测数学试题含答案
四平市2023-2024学年度第二学期期中质量监测高二数学试题(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第二册第五章,选择性必修第三册第六章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()23cos f x x x=+的导函数是()A.()6sin f x x x '=+B.()6sin f x x x '=-C.()3sin f x x x'=- D.()3sin f x x x'=+【答案】B 【解析】【分析】利用导数的运算法则即可求解.【详解】()()()23cos 6sin f x x x x x '''=+=-.故选:B.2.5(2)x -的展开式中3x 的系数为()A.40-B.20- C.20D.40【答案】D 【解析】【分析】写出展开式的通项,即可计算可得.【详解】因为5(2)x -展开式的通项为()515C 2rr rr T x -+=-(05r ≤≤且N r ∈),所以5(2)x -的展开式中3x 的系数为225C (2)40⨯-=.故选:D3.某学校广播站有6个节目准备分2天播出,每天播出3个,其中学习经验介绍和新闻报道两个节目必须在第一天播出,谈话节目必须在第二天播出,则不同的播出方案共有()A.108种B.90种C.72种D.36种【答案】A 【解析】【分析】先确定第一天和第二天播放的节目,然后再确定节目的播放顺序,利用分步乘法计数原理可得结果.【详解】第一步,从无限制条件的3个节目中选取1个,同学习经验介绍和新闻报道两个节目在第一天播出,共有1333C A 18=种;第二步,某谈话节目和其他剩余的2个节目在第二天播出,有33A 6=种播出方案,综上所述,由分步乘法计数原理可知,共有186108⨯=种不同的播出方案.故选:A4.已知*0,x n ≠∈N ,则“8n =”是“312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】计算二项展开式中存在常数项的等价条件,根据充分条件和必要条件的定义分别进行判断即可.【详解】若8n =,则8312x x ⎛⎫+ ⎪⎝⎭的常数项为()626381C 2112x x ⎛⎫⋅= ⎪⎝⎭;若312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项,设二项式的通项为()33411=C22C rn rrn r r n r r nn T x x x ---+⎛⎫⋅=⋅⋅ ⎪⎝⎭,且存在常数项,则340n r -=,34nr =,r 为整数,所以n 能被4整除.所以“8n =”是“312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的充分不必要条件.故选:A.5.已知曲线2ln y x x =-在点A 处的切线与直线20x y +-=垂直,则点A 的横坐标为()A.2-B.1-C.2D.1【答案】D 【解析】【分析】设点()00,A x y ,根据题意可得()01f x '=,从而求得0x .【详解】设()2ln f x x x =-,点()00,A x y ,则()12f x x x='-,由在点A 处的切线与直线20x y +-=垂直可得()01f x '=,即00121x x -=,又00x >,01x ∴=.故选:D6.已知函数()()22e xf x x ax a =++,若()f x 在2x =-处取得极小值,则a 的取值范围是()A.()4,+∞ B.[)4,+∞ C.[)2,+∞ D.()2,+∞【答案】A 【解析】【分析】利用求导得到导函数的零点2a-和2-,就参数a 分类讨论,判断函数()f x 的单调性,即可分析判断,确定参数a 的范围.【详解】由题意得,()()()()()()222e 4e 242e 22e x x x xf x x ax a x a x a x a x a x ⎡⎤=++++=+++=++⎣⎦',由()0f x '=可得,2ax =-或2x =-,①若22a -=-,即4a =时,()()222e 0x f x x =+≥',显然不合题意;②若22a -<-,即4a >时,当2ax <-或2x >-时,()0f x '>,即()f x 在(,2a -∞-和(2,)-+∞上单调递增;当22a x -<<-,()0f x '<,()f x 在(,2)2a--上单调递减,故()f x 在2x =-处取得极小值,符合题意;③若22a ->-,即4a <时,当<2x -或2x a >-时,()0f x '>,即()f x 在(,2)-∞-和(,)2a -+∞上单调递增;当22a x -<<-,()0f x '<,()f x 在(2,)2a--上单调递减,故()f x 在2x =-处取得极大值,不符题意.综上所述,当4a >时,()f x 在2x =-处取得极小值,故a 的取值范围是()4,∞+.故选:A.7.若()()()()23416321241811N x x x x =+-+-+-+-,则N =()A.()41x - B.()41+x C.()43x - D.()43x +【答案】B 【解析】【分析】利用二项式定理可得答案.【详解】()()()()23416321241811N x x x x =+-+-+-+-413222334444(1)C (1)2C (1)2C (1)22x x x x =-+-⋅+-⋅+-⋅+4(12)x =-+4(1)x =+.故选:B8.若函数()21ln 32f x x ax =++在区间()1,4内存在单调减区间,则实数a 的取值范围是()A.1,16⎛⎫-∞- ⎪⎝⎭B.()1,1,16⎛⎫-∞-+∞ ⎪⎝⎭C.(),1-∞- D.()0,1【答案】A 【解析】【分析】对()f x 求导,分0a ≥和a<0两种情况,结合()f x 在区间()1,4内存在单调减区间,求出a 的取值范围即可.【详解】()21ln 32f x x ax =++,()211ax f x ax x x+'=+=,当0a ≥时,()0f x ¢>,不符合题意;当0a <时,令()0f x '<,解得x >()f x 在区间()1,4内存在单调减区间,∴4<,解得116a <-.∴实数a 的取值范围是1,16⎛⎫-∞-⎪⎝⎭.故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.A ,B ,C ,D ,E 五个人并排站在一起,下列说法正确的是()A.若A ,B 不相邻,有72种排法B.若A ,B 不相邻,有48种排法C.若A ,B 相邻,有48种排法D.若A ,B 相邻,有24种排法【答案】AC 【解析】【分析】求得A ,B 不相邻时的排法总数判断选项AB ;求得A ,B 相邻时的排法总数判断选项CD.【详解】A ,B ,C ,D ,E 五个人并排站在一起,若A ,B 不相邻,则先让C ,D ,E 自由排列,再让A ,B 去插空即可,则方法总数为3234A A 72=(种).则选项A 判断正确;选项B 判断错误;A ,B ,C ,D ,E 五个人并排站在一起,若A ,B 相邻,则将A ,B “捆绑”在一起,视为一个整体,与C ,D ,E 自由排列即可,则方法总数为2424A A 48=(种).则选项C 判断正确;选项D 判断错误.故选:AC10.在62x⎛⎝的展开式中,下列命题正确的是()A.偶数项的二项式系数之和为32B.第3项的二项式系数最大C.常数项为60D.有理项的个数为3【答案】AC 【解析】【分析】根据题意,由二项式展开式的通项公式以及二项式系数的性质,代入计算,对选项逐一判断,即【详解】偶数项的二项式系数之和为152232n -==,故A 正确;根据二项式,当3r =时36C 的值最大,即第4项的二项式系数最大,故B 错误()()36662166C 21C 2r r rr rr r r T x x---+⎛==-⋅⋅⋅ ⎝,令3602r -=,4r =,∴4256C 260T =⋅=,故C 正确;362r -为整数时,0,2,4,6r =,故有理项的个数为4,故D 错误.故选:AC .11.已知函数()ln xxf x e =,则下列说法正确的是()A.()f x 有且仅有一个极值点B.()f x 有且仅有两个极值点C.当01x <<时,()f x 的图象位于x 轴下方D.存在0x ,使得()01f x e=【答案】AC 【解析】【分析】利用导数与极值、最值的关系求解即可.【详解】由题意知,()1ln xxx f x e -'=,令()1ln h x x x =-,()211h x x x '=--,易得()h x 在()0,∞+上单调递减,又()110h =>,()12ln 202h =-<,所以()01,2x ∃∈,使得()00h x =,所以当00x x <<时,()0f x '>,当0x x >时,()0f x '<,故()f x 在()00,x 上单调递增,在()0,x ∞+上单调递减,所以()f x 有且仅有一个极值点.故A 正确,B 错误;当01x <<时,ln 0x <,e 0x >,所以()0f x <,故C 正确;所以()()0000max 0ln 11ex x x f x f x e x e ===<,故D 错误.三、填空题:本题共3小题,每小题5分,共15分.12.三名学生分别从计算机、英语两学科中选修一门课程,不同的选法有___________种.【答案】8【解析】【分析】利用分步加法计数原理计算即得.【详解】依题意,可由三名学生依次选修课程,故分三步完成,由分步乘法计数原理知,不同的选法有322228⨯⨯==(种).故答案为:8.13.函数()ln f x x x =-的单调减区间为___________.【答案】(]0,1【解析】【分析】首先求出函数的定义域为()0,∞+,再求出()f x ',令()0f x '≤,解不等式即可求解.【详解】函数()ln f x x x =-的定义域为()0,∞+,且()111x f x x x-'=-=,令()0f x '≤,即10x x-≤,解不等式可得01x <≤,所以函数的单调递减区间为(]0,1.故答案为:(]0,1【点睛】本题考查了利用导数研究函数的单调性,解题的关键是求出导函数,属于基础题.14.已知函数()f x 的导函数()f x '满足()()f x f x '>在R 上恒成立,则不等式()()23e 21e 10x f x f x --->的解集是______.【答案】2,3⎛⎫+∞ ⎪⎝⎭【解析】【分析】根据已知关系式可构造函数()()xf xg x =e,可知()g x 在R 上单调递增,将所求不等式转化为()()211g x g x ->-,利用单调性可解不等式求得结果.【详解】令()()x f x g x =e ,则()()()0ex f x f x g x '-'=>,所以()g x 在R 上单调递增,由()()23e 21e 10xf x f x --->,得()()211>1e21ex xf x f x ----,即()()211g x g x ->-,又()g x 在R 上单调递增,所以211x x ->-,解得23x >.所以不等式()()23e 21e 10xf x f x --->的解集是2,3⎛⎫+∞⎪⎝⎭.故答案为:2,3⎛⎫+∞⎪⎝⎭.【点睛】关键点点睛:此类问题要结合代数式的特点,选择适当的函数,通过导函数研究出函数的单调性,从而解不等式即可.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(1)求值:2222310C C C +++ ;(2)解方程:32213A 2A 6A x x x +=+.【答案】(1)165;(2)5x =【解析】【分析】(1)利用组合数性质计算可得原式等于311C 165=;(2)由排列数计算公式可得(32)(5)0x x --=,可得5x =.【详解】(1)因为11C C C m m m n nn -+=+,所以11C C C m m m n n n -+-=,原式()()()()333333333345410911103C C C C C C C C C ++++-+=--- 31111109C 165123⨯⨯===⨯⨯;(2)因为32213A 2A 6A x x x +=+,所以!(1)!!326(3)!(1)!(2)!x x x x x x +⨯=⨯+⨯---,化简可得(32)(5)0x x --=,同时3x ≥,解得5x =.16.已知二项式nx⎛- ⎝的展开式中,所有项的二项式系数之和为a ,各项的系数之和为b ,32a b +=(1)求n 的值;(2)求其展开式中所有的有理项.【答案】(1)4(2)42135,54,81T x T x T x-===【解析】【分析】(1)先利用题给条件列出关于n 的方程,解之即可求得n 的值;(2)利用二项展开式的通项公式即可求得其展开式中所有的有理项.【小问1详解】因为2,(2)n n a b ==-,所以2(2)32n n +-=,当n 为奇数时,此方程无解,当n 为偶数时,方程可化为2232n ⨯=,解得4n =;【小问2详解】由通项公式3442144C (3)C rrr r r r r T x x--+=⋅=-⋅,当342r -为整数时,1r T +是有理项,则0,2,4r =,所以有理项为0442214422143454(3)C ,(3)C 54,(3)C 81T x x T x x T xx --=-==-==-=.17.为庆祝3.8妇女节,某中学准备举行教职工排球比赛,赛制要求每个年级派出十名老师分为两支队伍,每支队伍五人,并要求每支队伍至少有两名女老师,现高二年级共有4名男老师,6名女老师报名参加比赛.(1)高二年级一共有多少不同的分组方案?(2)若甲,乙两位男老师和丙,丁,戊三位女老师组成的队伍顺利夺得冠军,在领奖合影时从左到右站成一排,丙不宜站最右端,丁和戊要站在相邻的位置,则一共有多少种排列方式?【答案】(1)120种;(2)36种.【解析】【分析】(1)利用分类加法计数原理,结合平均分组问题列式计算.(2)按相邻问题及有位置限制问题,利用分步乘法计数原理列式计算即得.【小问1详解】两组都是3女2男的情况有326422C C 60 A ⋅=(种):一组是1男4女,另一组是3男2女的情况有1446C C 60⋅=(种),所以总情况数为6060120+=(种),故一共有120种不同的分组方案.【小问2详解】视丁和戊为一个整体,与甲、乙任取1个站最右端,有13C 种,再排余下两个及丙,有33A 种,而丁和戊的排列有22A 种,所以不同排列方式的种数是132332C A A 36=.18.已知函数()()2212ln 2f x a x x ax a =-++∈R .(1)当1a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)讨论函数()f x 的单调性;【答案】(1)32y =(2)答案见解析【解析】【分析】(1)代入1a =,求出'(1),(1)f f 即可求得切线方程;(2)函数求导'(2)()()x a x a f x x+-=,对a 分类讨论,进而求得单调性.【小问1详解】当1a =时,()212ln 2f x x x x =-++,'2()1f x x x =-++,所以'3(1)2110,(1)2f f =-++==,曲线()y f x =在()()1,1f 处的切线方程为32y =.【小问2详解】22'2(2)()()x ax a x a x a f x x x+-+-==,①当0a =时,'()0f x x =>,所以函数在(0,)+∞上单调递增;②当0a >时,令'()0f x =,则12x a =-(舍)或2x a =,'()0,0f x x a <<<,当(0,)x a ∈时,函数()f x 单调递减;'()0,f x x a >>,当(,)x a ∈+∞时,函数()f x 单调递增.③当0a <时,令'()0f x =,则12x a =-或2x a =(舍),'()0,02f x x a <<<-,当(0,2)x a ∈-时,函数()f x 单调递减;'()0,2f x x a >>-,当(2,)x a ∈-+∞时,函数()f x 单调递增.综上所述:当0a =时,函数在(0,+∞)上单调递增;当0a >时,当(0,)x a ∈时,函数()f x 单调递减当(,)x a ∈+∞时,函数()f x 单调递增;当0a <时,当(0,2)x a ∈-时,函数()f x 单调递减;当(2,)x a ∈-+∞时,函数()f x 单调递增19.已知函数()ln 32a f x ax x =--,其中0a ≠.(1)求函数()f x 的单调区间;(2)若()10xf x +≥恒成立,求实数a 的取值范围.【答案】(1)答案见解析(2)[)2,+∞.【解析】【分析】(1)利用导数,讨论a 的符号判断函数单调性;(2)问题转化为1ln 3102ax x x x ⎛⎫--+≥ ⎪⎝⎭恒成立,取1x =,有310a -+≥,可得2a ≥,构造函数利用导数求最小值证明1ln 02x x ->,则12ln 30x x x --+≥恒成立,通过构造函数利用导数求最小值证明.【小问1详解】函数()f x 的定义域为()0,∞+,()()2122a x a f x a x x -'=-=,①当0a >时,()0f x '<解得102x <<,()0f x ¢>解得12x >,此时函数()f x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭,②当0a <时,()0f x ¢>解得102x <<,()0f x '<解得12x >,此时函数()f x 的增区间为10,2⎛⎫ ⎪⎝⎭,减区间为1,2⎛⎫+∞⎪⎝⎭;【小问2详解】不等式()10xf x +≥可化为2ln 3102a ax x x x --+≥,由2ln 3102a ax x x x --+≥恒成立,取1x =,有310a -+≥,可得2a ≥,又由2ln 3102a ax x x x --+≥可化为1ln 3102ax x x x ⎛⎫--+≥ ⎪⎝⎭,令()1ln 2g x x x =-,有()121122x g x x x -'=-=,令()0g x '<解得102x <<,()0g x '>解得12x >此时函数()g x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭,有()111111ln ln 20222222g x g ⎛⎫≥=-=+> ⎪⎝⎭,可得1ln 02x x ->,可得211ln 2ln 2ln 22ax x x x x x x x x ⎛⎫⎛⎫-≥-=- ⎪ ⎪⎝⎭⎝⎭,下面证明22ln 310x x x x --+≥,即证明12ln 30x x x --+≥,令()12ln 3h x x x x =--+,有()()()222221111212x x x x h x x x x x+---'=--==,令()0h x '<解得01x <<,()0h x '>解得1x >,可得函数()h x 的减区间为()0,1,增区间为()1,+∞,有()()120310h x h ≥=--+=,可得不等式22ln 310x x x x --+≥成立,所以若()10xf x +≥恒成立,则实数a 的取值范围为[)2,+∞.。
辽宁省葫芦岛市东北师范大学连山实验高中2023-2024学年高二下学期期中考试数学试题(含简单答案)
东北师范大学连山实验高中2023-2024学年高二下学期期中考试数学试卷注意事项:1.本试卷分第I 卷(进择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号、班叙填写在答题卡上.2.回答第I 卷时,进出每小题答案后,用2B 铅笔把答题卡上对应题目的答聚标号涂黑.如需改动,用粮皮擦干净后,再进涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无放.第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只蒋一项是符合题目要求的.1. 在数列中,若,,则( )A B. C. 1D. 42. 已知函数的导函数为,若,则( )A. B. C. 1D. 23. 随机变量,函数没有零点的概率是,则μ的值为( )A. 1B. 2C. 3D. 44. 设是数列的前项和,,,,,则( )A. B. C. D.5. 点A 是曲线上任意一点,则点A 到直线的最小距离为( )A.B.C.D.6. 中国古代许多著名的数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智,如南宋数学家杨辉在《详解九章算法•商功》一书中记载的三角垛、方垛等的求和都与高阶等差数列有关.如图是一个三角垛,最顶层有个小球,第二层有个,第三层有个,第四层有个,则第层小球的个数为( ).{}n a 11a =142n na a +=-12a =2-43-()fx ()f x '()2(1)ln f x xf x '=+(1)f '=2-1-2~(,)N ξμσ()²4f x x x ξ=-+12n S {}n a n 0n a >18a =212log log 1n n a a +-=-312k S =k =567823ln 2y x x =-21y x =-1361025A. B. C. D. 7. 已知函数所有极小值点从小到大排列成数列,则()A.B.C. D. 8. 已知,,,则,,的大小关系为( )A B. C. D. 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图所示是的导数的图象,下列结论中正确的有( )A. 在区间上是增函数B. 在区间上是减函数,在区间上是增函数C. 是的极大值点D. 是的极小值点10. 公差为的等差数列的前项和为,若,则( )A. B. C. 中最大D. 11. 已知函数,则下列结论错误的是( )A. 函数存在两个不同的零点.324325326395()()2sin 0f x x x x =+>{}n a ()9sin a =1212-4ln 4a =1e b -=5ln 5c =a b c a b c>>c a b >>b c a >>b a c>>()y f x =()y f x '=()f x (3,1)-()f x (2,4)(1,2)-2x =()f x =1x -()f x d {}n a n n S 11120,0S S ><0d >70a >{}n S 6S 49a a <()21e xx x f x +-=()f xB. 函数只有极大值没有极小值C. 当时,方程有且只有两个实根D. 若时,,则t 的最小值为2第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12. 若函数在区间上单调递增,则实数的取值范围为______.13. 已知变量y 关于x 的回归方程为,若对两边取自然对数,可以发现与x 线性相关,现有一组数据如下表所示:x 12345y则当时,预测y 的值为____________.14. 已知,对于数列,有,若存在常数使得对于任意的,都有,则a 的取值范围是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知公差不为0的等差数列首项,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.16. 已知函数.(1)求曲线过点处切线;(2)若曲线在点处切线与曲线在处的切线平行,求的值.17. 为提高居家养老服务质量,某机构组织调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区抽取了500位老年人,统计结果如下:性别需要志愿者不需要志愿者男40160的的()f x e 0k -<<()f x k =[),x t ∈+∞()2max 5ef x =()21e 2xf x ax a =++()0,∞+a 0.6e bx y -=0.6e bx y -=ln y e3e 4e 6e 7e 6x =()e ,0xf x a a =>{}n a ()110,n n a a f a +==0M >N n *∈n a M ≤{}n a 11a =125a a a ,,{}n a 2nn n b a =⋅{}n b n n S ()()3211,ex f x x x g x -+=-++=()y f x =()1,1()y f x =()1,1()y g x =()R x t t =∈t女30270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)中的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的比例?说明理由.附:,0.0500.0100.0013.8416.63510.82818. 已知函数.(1)讨论函数的单调性;(2)设,若存在零点,求实数的取值范围.19. 雪花是一种美丽的结晶体,放大任意一片雪花的局部,会发现雪花的局部和整体的形状竟是相似的,如图是瑞典科学家科赫在1904年构造的能够描述雪花形状的图案,其作法如下:将图①中正三角形每条边三等分,并以中间的那一条线段为一边向形外作正三角形,再去掉底边,得到图②;将图②的每条边三等分,重复上述的作图方法,得到图③;……按上述方法,所得到的曲线称为科赫雪花曲线(Koch snowflake ).的99%22()()()()()n ad bc a b c d a c b d χ-=++++αx α()()e 2,ln 1,xf xg x ax x a =-=+-∈R ()g x ()()()hx f x g x =-()h x a现将图①、图②、图③、…中的图形依次记为、、…、、….小明为了研究图形的面积,把图形的面积记为,假设a 1=1,并作了如下探究:P1P 2P 3P 4…Pn边数31248192…从P 2起,每一个比前一个图形多出的三角形的个数31248…从P 2起,每一个比前一个图形多出的每一个三角形的面积…根据小明的假设与思路,解答下列问题.(1)填写表格最后一列,并写出与的关系式;(2)根据(1)得到的递推公式,求的通项公式;(3)从第几个图形开始,雪花曲线所围成的面积大于.参考数据(,)1P 2P n P n P n P n a 19219319n a ()*1,2n a n n -∈≥N {}n a 797500lg 30.477≈lg 20.301≈东北师范大学连山实验高中2023-2024学年高二下学期期中考试数学试卷简要答案第I卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只蒋一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】D二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD【10题答案】【答案】CD【11题答案】【答案】BD第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)【16题答案】【答案】(1)或 (2)【17题答案】【答案】(1)14% (2)有关(3)答案略【18题答案】【答案】(1)答案略 (2)【19题答案】【答案】(1)填表略;(2)(3)第7个[)1,-+∞9e 1(0,e21n a n =-()12326n n S n +=-⋅+230x y +-=430x y -+=12t =[)e 1,∞-+()1*134,249n n n a a n n --⎛⎫=+⨯∈≥ ⎪⎝⎭N ()1*834559n n a n -⎛⎫=-⨯∈ ⎪⎝⎭N。
北京市中国人民大学附属中学2023-2024学年高二下学期期中考试数学试题(含简单答案)
中国人民大学附属中学2023-2024学年高二下学期期中考试数学说明:本试卷共六道大题,26道小题,共6页,满分150分,考试时间120分钟.第Ⅰ卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1. 已知数列的通项公式是,则是该数列的()A. 第9项B. 第10项C. 第11项D. 第12项2. 若函数,则( )A. B. C. D. 3. 等差数列中,若,,则其公差等于( )A. 2B. 3C. 6D. 184. 如图是函数的导数的图象,则下面判断正确的是( )A. 是区间上的增函数B. 是区间上的减函数C. 1是的极大值点D. 4是的极小值点5. 若是等差数列的前项和,,则()A. B. C. D. 6. 若函数有极值,则实数的取值范围是( )A. B. C.D. {}n a 21n a n =+1222()f x x =0(1)(1)lim x f x f x∆→+∆-=∆1234{}n a 1233a a a ++=45621a a a ++=()y f x =()f x '()f x []3,1-()f x []1,2()f x ()f x n S {}n a n ()*88,N n S S n n >≠∈890,0a a ≥<890,0a a ><890,0=<a a 890,0a a >=()3213f x x x ax =-+a (],1-∞(),1-∞()1,+∞[)1,+∞7. 已知等差数列的公差为2,若成等比数列,则( )A. B. C. 4D. 8. 已知在处可导,在附近x 的函数值,可以用“以直代曲”的方法求其近似代替值:.对于函数的近似代替值( )A. 大于m B. 小于mC. 等于mD. 与m 的大小关系无法确定9. 设为无穷等比数列前n 项和,则“有最大值”是“有最大值”的( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件10. 设函数定义域为D ,若函数满足:对任意,存在,使得成立,则称函数满足性质.下列函数不满足性质的是( )A. B. C. D. 二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)11. 函数,则_____.12. 用数学归纳法证明命题“,时,假设时成立,证明时也成立,可在左边乘以一个代数式______.13. 已知函数,若在区间上是增函数,则实数a 的取值范围是 ________.14. 小杰想测量一个卷纸展开后的总长度,卷纸中的纸是单层的,且卷纸整体呈一个空心圆柱形,即大圆柱在其正中间挖去了一个小圆柱,测得小圆柱底面的直径为5厘米,大圆柱底而的直径为11厘米.由于单层纸的厚度不易测量,小杰利用游标卡尺测得10层纸的总厚度为0.3厘米.试估算这个卷纸的总长度(单位:米)为______.(结果精确到个位,取)15. 与曲线在某点处的切线垂直,且过该点的直线称为曲线在某点处的法线.关于曲线的法线有下列四种说法:①存在一类曲线,其法线恒过定点;的.{}n a 124,,a a a 2a =10-6-4-()f x 0x x =0x ()f x ()()()()000f x f x f x x x '≈+-()f x =()4.001m f =n S {}n a {}n a {}n S ()f x ()f x c D ∈,a b D ∈()()()f a f b f c a b-'=-()f x ΓΓ2()f x x =3()f x x =()xf x e =()ln f x x=()sin 2f x x =()f x '=*n ∀∈N ()()()()1221321nn n n n n ++⋅⋅⋅+=⨯⨯⨯⋅⋅⋅⨯-n k =1n k =+21()2ln 2f x x ax x =+-()f x 1,12⎡⎤⎢⎥⎣⎦π 3.14=②若曲线的法线的纵截距存在,则其最小值为;③存在两条直线既是曲线的法线,也是曲线的法线;④曲线的任意法线与该曲线的公共点个数均为1.其中所有说法正确的序号是______.三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16. 已知函数,在处取得极值.(1)求在区间上的平均变化率;(2)求曲线在点处的切线方程;(3)求曲线过点的切线方程.17. 设等差数列的前项和为,,.(1)求的通项公式;(2)设数列的前项和为,求.18. 已知函数,其中.(1)当时,求的极值;(2)讨论当时函数的单调性;(3)若函数有两个不同的零点、,求实数a 的取值范围.第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19. 已知函数满足:对任意,由递推关系得到的数列是单调递增的,则该函数的图象可以是( )A. B.4y x =34e x y =ln y x =sin y x =()2f x x ax =-()f x 0x =()f x []2023,2024()y f x =()()22f ,()y f x =()2,0{}n a n n S 53a =535S ={}n a {}n a n n T 10T ()()22ln f x ax a x x =-++R a ∈1a =-()f x 0a >()y f x =2()()g x f x ax =-1x 2x ()y f x =()10,1a ∈()1n n a f a +={}n aC. D.20. 设数列的前n 项和,若,则( )A. 数列满足B. 数列为递增数列C.的最小值为D. ,,不成等差数列21. 已知正项数列满足为前项和,则“是等差数列”是”的( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件22. 已知无穷数列,.性质,,,性质,,,,给出下列四个结论:①若,则具有性质;②若,则具有性质;③若具有性质,则;④若等比数列既满足性质又满足性质,则其公比的取值范围为.则所有正确结论的个数为( )A. 1B. 2C. 3D. 4二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)23. 写出一个满足的函数______.24. 已知函数,设曲线在点处切线的斜率为,若,,均不相等,且,则___.25. 若曲线上两个不同点处的切线重合,则称这条切线为曲线的“自公切线”,则下列曲的.{}n a n S 23n S n n =++{}n a ()1122n n n a a a n -+=+≥{}n a nn S a n+17242S S -64S S -86S S -{}n a 213,n a a S ={}n a n {}n a {}n a 11a =:s m ∀*n ∈N m n m n a a a +>+:t m ∀*n ∈N 2m n ≤<11m n m n a a a a -++>+32n a n =-{}n a s 2n a n ={}n a t {}n a s n a n ≥{}n a s t ()2,+∞()221f x x '=+()f x =()()()()()1230f x a x x x x x x a =--->()y f x =()(),i i x f x ()1,2,3i k i =1x 2x 3x 22k =-1311k k +=()y f x =()y f x =线中,所有存在“自公切线”的序号为______.①;②;③;④.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)26. 已知无穷数列满足:①;②.设为所能取到的最大值,并记数列.(1)若数列为等差数列且,直接写出其公差的值;(2)若,求值;(3)若,,求数列的前100项和.的()y f x =22y x x =-3sin 4cos y x x =+13y x x=+y ={}n a ()*1,2,i a i ∈=⋅⋅⋅N ()11,2,,1,2,,3i j i j i j a a a a a i j i j ++≤≤++=⋅⋅⋅=⋅⋅⋅+≥*i a ()1,2,i a i =⋅⋅⋅{}*n a {}n a 11a =d 121a a ==*4a 11a =22a ={}*n a中国人民大学附属中学2023-2024学年高二下学期期中考试数学 简要答案第Ⅰ卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)【1题答案】【答案】C 【2题答案】【答案】B 【3题答案】【答案】A 【4题答案】【答案】D 【5题答案】【答案】B 【6题答案】【答案】B 【7题答案】【答案】C 【8题答案】【答案】A 【9题答案】【答案】D 【10题答案】【答案】B二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)【11题答案】【答案】【12题答案】【答案】2cos 2x 42k【答案】【14题答案】【答案】【15题答案】【答案】①②④三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)【16题答案】【答案】(1)4047 (2) (3)或【17题答案】【答案】(1) (2)【18题答案】【答案】(1)的极大值为,无极小值. (2)答案略(3).第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)【19题答案】【答案】C 【20题答案】【答案】C 【21题答案】【答案】C3,4⎡⎫+∞⎪⎢⎣⎭2544y x =-0y =816y x =-132n a n =-52()f x 3ln24--12,2e⎛⎫-- ⎪⎝⎭【答案】C二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)【23题答案】【答案】(答案不唯一)【24题答案】【答案】##【25题答案】【答案】①②④三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)【26题答案】【答案】(1)或 (2) (3)()ln 21x +120.51237500。
上海市格致中学2023-2024学年高二下学期期中考试数学试题(含简单答案)
上海市格致中学2023-2024学年高二下学期期中考试数学试卷(测试90分钟内完成,总分100分,试后交答题卷)友情提示:昨天,你既然经历了难苦的学习,今天,你必将赢得可喜的收获!祝你:城实守信,沉着冷静,细致踏实,自信自强,去迎接胜利!一、填空题:(本题共有12个小题,1-6每小题3分,7-12每小题4分,满分42分)1. 若直线与互相垂直,则的值为_________.2. 已知为可导函数,且,则____________.3. 已知抛物线的焦点为,是抛物线上一点,若,则点的横坐标为________.4. 已知数列为等比数列,其前项和为,且,公比为,则______.5. 若,则值为__________.6. 直线与平面所成角为, 则直线与平面内的任意一条直线所成角的取值范围是______.7. 方程表示一个圆,则实数的取值范围是______.8. 如图,在正三棱柱中,,为的中点,为线段上的点.则的最小值为__________9. 已知a >b >0,椭圆C 1的方程为=1,双曲线C 2的方程为=1,C 1与C 2的离心率之积C 2的渐近线方程为________.的1:210l ax y ++=2:(1)10l x a y +++=a ()y f x =(2)4'=f 0(22)(2)lim h f h f h →+-=24y x =F P ||3PF =P {}n a n n S 13a =4q =5S =109C C n n =21C n PA ABC π3PA ABC 22420x y kx y k ++++=k 111ABC A B C -122AB AA ==N 11A C M 1AA MN MB +2222x y a b +2222x y a b -10. 上海国际电影节影片展映期间,某影院准备在周日某放映厅安排放映4部电影,两部纪录片和两部悬疑片,当天白天有5个时段可供放映(5个连续的场次),则两部悬疑片不相邻(中间隔空场也叫不相邻),且当天最先放映的一定是悬疑片的排片方法有______种(结果用数字表示).11. 如图,已知是椭圆的左焦点,为椭圆的下顶点,点是椭圆上任意一点,以为直径作圆,射线与圆交于点,则的取值范围为______.12. 已知曲线与曲线,且曲线和恰有两个不同的交点,则实数m 的取值范围为____________.二、选择题:(本题共有4个小题,每小题4分,满分16分)13. 已知为两个随机事件,则“为互斥事件”是“为对立事件”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件14. 函数的导函数,满足关系式,则的值为( )A. B. C. D. 15. 已知三条直线,,将平面分为六个部分,则满足条件的的值共有( )A 个 B. 2个 C. 个 D. 无数个16. 已知长方体中,,,为矩形内一动点,设二面角为,直线与平面所成的角为,若,则三棱锥体积的最小值是( )的.F 22143x y +=A P PF N ON N Q AQ 2211:x C y m +=2:22C y x =+1C 2C A B 、A B 、A B 、()f x ()f x '()()222ln f x x xf x '=+-()2f '72-7212-121:220l x y -+=2:20l x -=3:0+=l x ky k 131111ABCD A B C D -2AB =BC =13AA =P 1111D C B A P AD C --αPB ABCD βαβ=11P A BC -A. B. C. D. 三、解答题:(本题共有4大题,满分42分.解题时要有必要的解题步骤)17. 已知圆C 经过、两点,且圆心在直线上.(1)求圆C 的方程;(2)若直线经过点且与圆C 相切,求直线的方程.18. 已知等比数列为增数列,满足,前3项和.(1)求数列的通项公式;(2)令,求数列的前n 项和.19. 如图,在四棱锥中,平面平面ABCD ,,,M 为棱PC 中点.(1)证明:平面PAD ;(2)若,(i )求二面角的余弦值;(ii )在线段PA 上是否存在点Q ,使得点Q 到平面BDM?若存在,求出PQ 的值;若不存在,说明理由.20. 已知双曲线与圆交于点第一象限,曲线为、上取满足的部分.(1)若,求b 值;(2)当,与x 轴交点记作点、,P是曲线上一点,且在第一象限,且,求;的的1-(3,2)A (1,6)B 2y x =l (1,3)P -l {}n a 23a =313S ={}n a 32331log log n n n b a a ++=⋅{}n b n T P ABCD -PDC ⊥,AD DC AB DC ⊥∥112AB CD AD ===//BM 1PC PD ==P DM B --2212:14x y bΓ-=2222:4(0)x y b b Γ+=+>(),(A A A x y )Γ1Γ2ΓA x x >A x =b =2Γ1F 2F Γ18PF =12F PF ∠(3)过点斜率为的直线l 与曲线只有两个交点,记为M 、N ,用b 表示,并求的取值范围.上海市格致中学2023-2024学年高二下学期期中考试数学试卷 简要答案一、填空题:(本题共有12个小题,1-6每小题3分,7-12每小题4分,满分42分)【1题答案】【答案】【2题答案】【答案】8【3题答案】【答案】2【4题答案】【答案】【5题答案】【答案】210【6题答案】【答案】【7题答案】【答案】【8题答案】【9题答案】20,22b D ⎛⎫+ ⎪⎝⎭2b -ΓOM ON ⋅ OM ON ⋅23-1023ππ,32⎡⎤⎢⎥⎣⎦()(),44,-∞⋃+∞【答案】xy =0【10题答案】【答案】【11题答案】【答案】【12题答案】【答案】二、选择题:(本题共有4个小题,每小题4分,满分16分)【13题答案】【答案】B【14题答案】【答案】A【15题答案】【答案】C【16题答案】【答案】C三、解答题:(本题共有4大题,满分42分.解题时要有必要的解题步骤)【17题答案】【答案】(1) ;(2)【18题答案】【答案】(1)(2)【19题答案】【答案】(1)证明略(2)(i );(ii )存在,【20题答案】4422⎡⎣()13,14,4⎛⎤⎧⎫-∞-⋃⋃+∞⎨⎬ ⎥⎝⎦⎩⎭22(2)(4)5x y -+-=250250x y x y -+=+-=或13n n a -=()22n n +PQ =【答案】(1);(2);(3),.2b =1211arccos 16PF F ∠=24OM ON b ⋅=+ (6)++∞。
高二下学期期中考试数学试卷含答案
高二下学期期中考试数学试卷含答案下学期期中考试数学试题一、选择题1.已知i是虚数单位,z是z的共轭复数,若z(1+i)=3+2i,则z的虚部为()。
A。
-1B。
iC。
-iD。
12.把4个不同的小球全部放入3个不同的盒子中,使每个盒子都不空的放法总数为()。
A。
2B。
3C。
4D。
53.曲线y=xex+1在点(0,1)处的切线方程是()。
A。
2x-y+1=0B。
x-y+1=0C。
x-y-1=0D。
x-2y+2=04.函数f(x)=xlnx的单调递减区间是()。
A。
(0,1/e)B。
(1/e,0)C。
(e,+∞)D。
(-∞,0)5.二项式1+x+x2(1-x)展开式中x4的系数为()。
A。
120B。
135C。
140D。
1006.设随机变量的分布列为P(X=k)=C(6,k)/2^6,则P(X≥3)的值为()。
A。
1B。
7/8C。
5/8D。
3/87.将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()种。
A。
10B。
12C。
9D。
88.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图像可能是()。
A.B.C.D.9.若z∈C且z+2-2i=1,则z-1-2i的最小值是()。
A。
3B。
2C。
4D。
510.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品任取3件,取出的3件产品中一等品件数多于二等品件数的概率是()。
A。
37/120B。
3/10C。
4/9D。
1/211.已知(1-x)^10=a+a1x+a2x^2+。
+a10x^10,则a8的值为()。
A。
-180B。
45C。
180D。
-4812.定义在R上的函数f(x)满足f(x)+f'(x)>1,f(0)=4,则不等式exf(x)>ex+3的解集为()。
A。
(0,+∞)B。
辽宁省大连市滨城高中联盟2023-2024学年高二下学期期中考试数学试卷(解析版)
故选: C .
2.
函数
f
x
x ex
1
的单调增区间是(
)
A. 0, 2
B. , 2
C. 1,
D. 2,
【答案】B
【解析】
【分析】通过求导,令导函数大于 0 ,即可求解.
【详解】函数的定义域为 R ,
f
x
x
1
ex
ex
x
2
1
ex
ex x 1 ex
ex 2
2 x , ex
令
f
¢(
x)
>
nSn1
,得
(n 1)n(a1 2
an )
n(n
1)(a1 2
an 1 )
,即
an
an1 ,
因此等差数列{an}为递增数列,公差大于 0,A 错误;
又 a S 2023 2022 a S 2023 2021 ,即 a2023 (S2022 S2021) 0 ,整理得 a a 2023 2022 0 ,
A. 50 【答案】B 【解析】
B. 70
C. 90
D. 110
【分析】利用等比数列的片段和性质列式计算即可.
【详解】由等比数列的片段和性质得 S10 , S20 S10 , S30 S20 成等比数列
所以 S20 S10 2 S10 S30 S20 所以 30 102 10 S30 30 ,
B. 1600
C. 1400
D. 600
【答案】C
【解析】
【分析】根据题意利用正态分布的对称性求零件合格的概率,进而估算出结果.
【详解】因为 X 服从正态分布 N 85, 2 ,且 P( X 83.8) 0.15 ,
山东省枣庄市2023-2024学年高二下学期期中质量检测数学试题(含简单答案)
枣庄市2023-2024学年高二下学期期中质量检测数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知函数,则( )A. 2B. C. 4D. 2. 下列函数求导正确的是( )A B. C D. 3. 从4名男生与3名女生中选两人去参加一场数学竞赛,则男女各一人的不同的选派方法数为( )A. 7B. 12C. 18D. 244. 已知,,则( )A.B.C.D.5. 的展开式中,项的系数为( )A. 10B. C. 60D. 6. 随机变量的概率分布为1240.40.3则等于( )的..()2f x x=-()()22limh f h f h →+-=2-4-211x x'⎛⎫= ⎪⎝⎭()sin cos x x'=-()1ln22x x'=()()e 1e x xx x '=+()13P B A =()25P A =()P AB =5691021513()522x x y +-52x y 30-60-X XPa()54E X +A. 5B. 15C. 45D. 与有关7. 已知函数,是的唯一极小值点,则实数的取值范围为()A. B. C. D. 8. 已知实数分别满足,,且,则( )A B. C. D. 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数在定义域上为增函数的有( )A. B. C. D. 10. 下列排列组合数中,正确的是( )A. B. C. D. 11. 已知直线分别与函数和的图象交于点,则下列结论正确的是( )A. B. C. D. 三、填空题:本题共3小题,每小题5分,共15分.12. 某班联欢会原定3个节目已排成节目单,开演前又增加了2个节目,现将这2个新节目插入节目单中,要求新节目不相邻,那么不同的插法种数为_____________.13. 若能被64整除,则正整数的最小值为_____________.14 已知实数满足,则_____________...a ()()221()4442xf x e xx k x x =--++2x =-()f x k )2,e ⎡-+∞⎣)3,e ⎡-+∞⎣)2,e ⎡+∞⎣)3,e ⎡+∞⎣,a b e 1.02a =()ln 10.02b +=151c =a b c<<b a c <<b<c<ac<a<b()e xf x x=+()exf x x =()sin f x x x=-()2ln f x x x=-12344444A A A A 84+++=3333434520232024C C C C C ++++= 11A A A mm m n nn m -++=11C C mm n n m n --=2y x =-+e x y =ln y x =()()1122,,,A x y B x y 122x x +=12e e 2e x x +>1221ln ln 0x x x x +>12x x >()2024*381011a a -⨯+∈N a 12x x ,()136122e e ln 3e xx x x =-=,12x x =四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在三个地区爆发了流感,这三个地区分别有的人患了流感,假设这三个地区的人口数的比为3:5:2,现从这三个地区中任意选取一个人(1)求这个人患流感的概率;(2)如果此人患流感,求此人选自A 地区的概率.16. 一台笔记本电脑共有10台,其中A 品牌3台,B 品牌7台,如果从中随机挑选2台,其中A 品牌台数.(1)求的分布列;(2)求和.17. 已知展开式中,第三项的系数与第四项的系数比为.(1)求的值;(2)求展开式中有理项的系数之和.(用数字作答)18. 已知函数.(1)求曲线在点处的切线方程;(2)求的极值.19. 已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围.,,A B C 6%5%4%,,X X ()E X ()X σ2(n x +65n ()23ln f x x x x =+-()y f x =()()1,1f ()f x ()()()2e12e R xx f x a ax a =+--∈()f x ()f x a枣庄市2023-2024学年高二下学期期中质量检测数学简要答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】D二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BCD【11题答案】【答案】AB三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】12【13题答案】【答案】55【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)【16题答案】【答案】(1)分布列略 (2)【17题答案】【答案】(1)7; (2)702.【18题答案】【答案】(1) (2)极小值为,无极大值【19题答案】【答案】(1)当时,在上单调递增;当时,在上单调递减,在上单调递增. (2)6e 0.051617352y =20a ≤()f x R 0a >()f x (,ln )a -∞(ln ,)a +∞(1,)+∞。
四川省成都市蓉城名校2023-2024学年高二下学期期中考试数学试题
四川省成都市蓉城名校2023-2024学年高二下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在各项均为正数的等比数列{}n a 中,388a a =,则2427log log a a +=( ) A .2 B .3C .12D .132.已知()()000lim 32x f x x f x x ∆→+∆-=∆,则函数()f x 在0x x =处的导数为( )A .3-B .3C .6-D .63.在数列{}n a 中,111n n a a -=-(2n ≥),若12a =,则2024a =( ) A .2B .12C .12-D .1-4.下列求导运算正确的是( ) A.'=B .1[ln(31)]31x x '+=+ C .211()1x x x '-=-D .2e e e ()22x x xx x x -'=5.函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,记()y f x =的导函数为()(),y f x y f x '=='的图象如图所示,则()y f x =的单调增区间为( )A .31,23⎛⎫-- ⎪⎝⎭,()1,2B .11,2⎛⎫- ⎪⎝⎭,48,33⎛⎫ ⎪⎝⎭C .11,3⎛⎫-- ⎪⎝⎭,4,23⎛⎫ ⎪⎝⎭D .3,12⎛⎫-- ⎪⎝⎭,14,23⎛⎫ ⎪⎝⎭,8,33⎛⎫ ⎪⎝⎭6.已知数列{}n a 满足:()633,7,7n n a n n a a n -⎧--<=⎨≥⎩,(*n ∈N ,0a >),数列{}n a 是递增数列,则实数a 的可能取值为( ) A .2B .157C .167D .47.已知()e xf x x =,()()21g x x a =-++,若1x ∃,2x ∈R ,使得()()21f x g x ≤成立,则实数a 的取值范围是( ) A .[)e,+∞ B .(],e -∞C .1,e ⎡-+∞⎫⎪⎢⎣⎭D .1,e ⎛⎤-∞- ⎥⎝⎦8.如图的形状出现在南宋数学家杨辉所著的《详解九章算术》中,后人称为“三角垛”,“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,…….,设从上往下各层的球数构成数列{}n a ,则12320251111a a a a +++⋅⋅⋅+=( )A .20252026B .20251013C .40462025D .20231012二、多选题9.公差为d 的等差数列{}n a ,其前n 项和为n S ,130S >,140S <,下列说法正确的是( ) A .0d <B .70a >C .{}n S 中8S 最大D .510a a >10.已知函数()33f x x mx n =-+,则( )A .当0m ≥时,()f x 有两个极值点B .当1m =,1n =时,()f x 有三个零点C .当1m =,1n =时,直线3y x =-是曲线()f x 的切线D .当1m =时,若()f x 在区间[]1,c -上的最大值为2n +,则12c -<≤11.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”.已知数列{}n b ,11b =,22b =,21n n n b b b ++=+(*n ∈N ),记n S 为数列{}n b 的前n 项和,则下列结论正确的是( )A .68b =B .202520271S b =-C .1352023202520261b b b b b b +++⋅⋅⋅++=-D .2222122023202420232024a a a a b b ++⋅⋅⋅++=三、填空题12.曲线sin cos y x x =+在点()5π,1-处的切线方程为 (用一般式作答). 13.数列{}n a 满足13a =,121n n n a a +-=-(*n ∈N ),则6a = (用数字作答). 14.已知函数()f x 是定义在()(),00,∞∞-⋃+上的偶函数,且()0f x >,其导函数为()f x ',且0x <时,()()20f x xf x '+<恒成立,()4a f =-,()5b f =,()6c f =-,a ,b ,c 的大小关系为 .四、解答题15.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是正方形,点M 为PC 边上一点,DM PC ⊥,2PA AD ==.(1)证明:平面MBD ⊥平面PCD ; (2)求二面角M BD C --的余弦值.16.已知椭圆C :22221x y a b+=(0a b >>),131,2P ⎛⎫- ⎪⎝⎭,231,2P ⎛⎫ ⎪⎝⎭,(30,P ,()41,1P 四点中恰有三点在椭圆C 上. (1)求椭圆C 的标准方程;(2)过右焦点F 且斜率为1的直线l 交椭圆C 于M ,N 两点,点P 为直线4x =上任意一点,求证:直线PM ,PF ,PN 的斜率成等差数列. 17.已知函数()ln f x x mx =-()0m >.(1)若曲线()y f x =在点()()1,1f 处的切线斜率为1-,求m 的取值和曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()y f x =在区间[]2,3上的最小值. 18.已知数列{}n a 满足:2112315555n n n a a a a -++++⋅⋅⋅+=(*n ∈N ). (1)求数列{}n a 的通项公式; (2)设()()111511n n n n b a a ++=--(*n ∈N ),数列{}n b 前n 项和为n S ,试比较n S 与23288的大小并证明.19.数列{}n a 满足112a =,112n na a +=-(*n ∈N ).(1)计算2a ,3a ,猜想数列{}n a 的通项公式并证明;(2)求数列(){}13nn a n +的前n 项和;(3)设2n n b a =(*n ∈N ),数列{}n b 前n 项和为n S ,证明:222ln 2n n S n +⎛⎫<- ⎪⎝⎭.。
四川省成都市树德中学2023-2024学年高二下学期期中考试数学试题(含简单答案)
成都市树德中学2023-2024学年高二下学期期中考试数学试题(考试时间:120分钟 试卷满分:150分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 4名同学分别报名参加足球队、篮球队、乒乓球队,每人限报一个运动队,不同的报名方法有( )A. 81种B. 64种C. 24种D. 12种2. 下列结论正确的是( )A. B. C. 若,则 D. 若,则3. 已知数列满足,,则数列前2025项的积为( )A. 2B. 3C.D. 64. 如图,射线和圆,当从开始在平面上绕端点按逆时针方向匀速转动(转动角度不超过)时,它扫过的圆内阴影部分的面积是时间的函数,这个函数的图象大致是( )AB. C. D.5. 已知等比数列的前3项和为168,,则( )A. 14B. 12C. 6D. 36. 已知数列满足,,则等于( ).[]1ln(21)21x x '-=-0(1)(1)lim(1)x f x f f x∆→-∆-'=∆πcos4y =πsin 4y '=-2()(1)f x f x x '=-(1)1f '={}n a 12a =111nn na a a ++=-{}n a 12-{}n a 2542a a -=6a ={}n a 11a =()11N+*+-=∈n n n n a a na a n naAB.C.D.7. 已知函数,则不等式的解集为( )A. B. C. D. 8. 已知函数的定义域为为的导函数.若,且在上恒成立,则不等式的解集为( )A. B. C. D. 二、多选题(本大题共3小题,每小题6分,选对部分得部分分,多选、错选或不选得0分,共18分)9. 等差数列的前n 项和为,若,则下列结论正确的是( )AB. C. D.10. 设是三次函数的导数,是的导数,若方程有实数解,则称点为三次函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图象的对称中心.设函数,则以下说法正确的是( )A. 拐点为 B. 有极值点,则C. 过的拐点有三条切线D. 若,,则11. 已知,.若存在,,使得成立,则下列结论中正确的是( )A. 当时, B. 当时,C. 不存在,使得成立D. 恒成立,则第Ⅱ卷三、填空题(本大题共3小题,每小题5分,共15分)..的22n n -222n n -+22n n-222n n -+2()sin cos f x x x x x =++1(ln )ln2(1)f x f f x ⎛⎫+< ⎪⎝⎭(,)e +∞(0,)e 10,(1,)e e ⎛⎫⋃ ⎪⎝⎭1e e⎛⎫ ⎪⎝⎭,()f x (),f x 'R ()f x ()1e f =()()e xf x f x +<'R ()()2e xf x x <-(),2-∞()2,+∞(),1-∞()1,+∞{}n a n S 9100,0a a <>109S S >170S <1819S S >190S >()f x '()y f x =()f x ''()f x '()0f x ''=0x 00(,())x f x ()y f x =32()f x x bx cx =++()f x ,33bb f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭()f x 230b c ->()f x 3b =-1c =(2)()2f x f x -+=-()e xf x x =()lng x x x =1x ∈R ()20,x ∈+∞()()12f x g x t ==0t >12x x t=0t >12eln t x x ≤t ()()12f x g x =''()()f x g x mx >+2m ≤12. 已知等比数列前项和为,若,,则________.13. 将5个人排成一排,若甲和乙须排在一起,则有__________种不同的排法.(用数字作答)14. 已知对任意,且当时,都有:,则的取值范围是__________.四、解答题(本大题共5题,15题13分,16-17题每题15分,18-19题每题17分共77分)15. 在数列中,,点在直线上.(1)求数列的通项公式;(2)若,求数列的前n 项和.16. 已知函数.(1)当时,求的单调区间,并求的极值;(2)若函数在区间上的最大值为,求的值.17. 某企业为一个高科技项目注入了启动资金1000万元,已知每年可获利25%,但由于竞争激烈,每年年底需从利润中抽取200万元资金进行科研、技术改造与广告投入,方能保持原有的利润增长率,设经过年后,该项目的资金为万元.(1)求数列的通项公式.(2)求至少需经过多少年,该项目的资金才可以达到或超过翻两番(即为原来的4倍)的目标(取);(3)若,,求数列的前项和.18. 已知函数.(1)若时,求曲线在点处的切线方程;(2)若时,(i )方程在上有唯一的实根,求的取值范围;(ii )函数.若,是方程的两个实根,求证:.的{}n b n n T 31T =67T =9T =()12,0,x x ∈+∞12x x <()212112ln ln 11a x x x x x x -<+-a {}n a 616a =()()1,n n a a n *+∈N 30x y -+={}n a 2nn n b a ={}n b n T ()ln f x ax x =+1a =-()f x ()f x ()f x (0,e)3-a n n a {}n a lg 20.3=1(1049)n b n a =-21n n n c b b +={}n c n n S ()e 1x f x ax =+-2a =()y f x =(0,0)1a =-()f x m =[1,2]-m ()()1)e 2(x f x b x F x +-+=1x 2x ()1F x =12123e e 2e x x x x +-+>19. 意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是悬链线.1691年,莱布尼茨等得出悬链线可为双曲余弦函数的图象,类似的可定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.(1)类比正弦函数的二倍角公式,请写出(不证明)双曲正弦函数的一个正确的结论:________;(2)当时,比较与的大小,并说明理由;(3)证明:e e ch()2x xx -+=e e sh()2x xx --=sh(2)x =0x >sh()x x *22sh sh sh(2)sh(1)432(N )111tan121tan tan tan23n nn n n n⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭++++>∈+成都市树德中学2023-2024学年高二下学期期中考试数学试题简要答案一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】D二、多选题(本大题共3小题,每小题6分,选对部分得部分分,多选、错选或不选得0分,共18分)【9题答案】【答案】ABD【10题答案】【答案】ABD【11题答案】【答案】AB第Ⅱ卷三、填空题(本大题共3小题,每小题5分,共15分)【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】四、解答题(本大题共5题,15题13分,16-17题每题15分,18-19题每题17分共77分)【15题答案】【答案】(1); (2).【16题答案】【答案】(1)单调递增区间为,单调递减区间为;极大值为,无极小值; (2).【17题答案】【答案】(1)(2)12年 (3)【18题答案】【答案】(1) (2)(i )或;(ii )证明略【19题答案】【答案】(1) (2),理由略 (3)证明略4348(],2-∞32n a n =-1(35)210n n T n +=-⋅+(0,1)(1,)+∞(1)1f =-2e a =-158002504n n a -⎛⎫=+⨯ ⎪⎝⎭31142224n S n n =--++3y x =0m =21e 3em <≤-sh(2)2sh()ch()x x x =⋅sh()x x >。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二下学期数学期中考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2017高二下·衡水期末) 已知集合A={x∈R||x|≥2},B={x∈R|x2﹣x﹣2<0},则下列结论正确的是()
A . A∪B=R
B . A∩B≠∅
C . A∪B=∅
D . A∩B=∅
2. (2分) (2018高一上·湘东月考) 设是两条不同的直线,是两个不同的平面,则下列说法正确的是()
A . 若,,则
B . 若,,则
C . 若,,则
D . 若,,则
3. (2分) (2016高二上·忻州期中) 直线kx﹣y+k=0与圆x2+y2﹣2x=0有公共点,则实数k的取值范围是()
A .
B .
C .
D .
4. (2分) (2016高一下·揭阳开学考) 设变量x,y满足约束条件目标函数z=x﹣2y的最大值是()
A . ﹣4
B . 2
C .
D .
5. (2分)下列函数中,既是奇函数,又是最小正周期为π的函数是()、
A . y=sinxcosx
B . y=cos2x
C . y=|tanx|
D .
6. (2分)公比为q的等比数列{an}的前n项和为Sn ,若a1<0且{Sn}单调递减,则()
A . ﹣1<q<0
B . q<﹣1
C . q>1
D . q>0
7. (2分)下列函数中,既是偶函数又在区间(0,+)上单调递减的是()
A . y=-ln|x|
B . y=x3
C . y=2|x|
D . y=cosx
8. (2分)已知点F1(﹣, 0),F2(,0),动点P满足|PF2|﹣|PF1|=2,当点P的纵坐标是时,点P的横坐标是()
A .
B . -
C . 或-
D .
9. (2分) (2015高一上·洛阳期末) 在四棱锥P﹣ABCD中,各侧面是全等的等腰三角形,腰长为4且顶角为30°,底面是正方形(如图),在棱PB,PC上各有一点M,N,且四边形AMND的周长最小,点S从A出发依次沿四边形AM,MN,ND运动至点D,记点S行进的路程为x,棱锥S﹣ABCD的体积为V(x),则函数V(x)的图象是()
A .
B .
C .
D .
10. (2分)(2019·湖州模拟) 已知三棱锥中,为正三角形,,且在底面内的射影在的内部(不包括边界),二面角,二面角,二面角的大小分别为,,,则()
A .
B .
C .
D .
二、填空题 (共7题;共8分)
11. (1分)(2020·沈阳模拟) 已知椭圆方程为,则其焦距为________.
12. (1分) (2016高二下·洛阳期末) 已知{an},{bn}均为等差数列,它们的前n项和分别为Sn , Tn ,若对任意n∈N*有 = ,则使为整数的正整数n的集合为________.
13. (1分) (2017高一下·东丰期末) 已知四棱锥的三视图如图所示,正视图是斜边长为4的等腰直角三角形,侧视图是直角边长为2的等腰直角三角形,则四棱锥四个侧面中,面积最大的值是________
14. (2分) (2018高二下·台州期中) 已知单位向量满足,向量使得,则的最小值为________,的最大值为________.
15. (1分) (2017高二上·西华期中) 如图半圆O的半径为1,P为直径MN延长线上一点,且OP=2,R为半
圆上任意一点,以PR为一边作等边三角形PQR,则四边形OPQR面积最大值为________.
16. (1分) (2019高二下·蕉岭月考) 已知函数满足:①对任意的,都有;②对任意的都有 .则 ________.
17. (1分)设x,y∈R,a>1,b>1,若,a+b=2,的最大值为________
三、解答题 (共5题;共55分)
18. (15分)设x∈R,函数f(x)=cos2(ωx+φ)﹣,(ω>0,0<φ<).已知f(x)的最小正周期为π,且f()= .
(1)求ω和φ的值;
(2)求f(x)的单调递增区间;
(3)求函数f(x)在区间[ , ]上的最小值和最大值.
19. (10分)(2017·霞浦模拟) 如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点.
(1)求证:AE∥平面PCD;
(2)记平面PAB与平面PCD的交线为l,求二面角C﹣l﹣B的余弦值.
20. (10分)(2020·海南模拟) 已知函数(,为自然对数的底数).
(1)若函数存在极值点,求的取值范围;
(2)设,若不等式在上恒成立,求的最大整数值.
21. (10分)(2020·肥城模拟) 在平面直角坐标系中,已知椭圆:的焦距为2,且过点 .
(1)求椭圆的方程;
(2)设椭圆的上顶点为,右焦点为,直线与椭圆交于,两点,问是否存在直线,使得为的垂心,若存在,求出直线的方程:若不存在,说明理由.
22. (10分) (2019高二上·兰州期中) 已知等比数列的首项为1,公比,为其前项和,
分别为某等差数列的第一、第二、第四项.
(1)求和;
(2)设,数列的前项和为,求证: .
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共7题;共8分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
三、解答题 (共5题;共55分) 18-1、
18-2、
18-3、
19-1、
19-2、
20-1、20-2、
21-1、21-2、22-1、
22-2、。