等比数列的前n项和第二课时
人教版高中数学选择性必修第二册4.3.2等比数列的前n项和公式(2课时)
![人教版高中数学选择性必修第二册4.3.2等比数列的前n项和公式(2课时)](https://img.taocdn.com/s3/m/2b33c58d64ce0508763231126edb6f1aff0071d4.png)
请做:课时作业(十三)
4.等比数列{an}的前 n 项和为 Sn,已知 S1,2S2,3S3 成等 1
差数列,则{an}的公比为___3_____.
解析 由题意得 2(2S2)=S1+3S3,即 4S2=S1+3S3,很明显公 比 q≠1,则 4·a1(11--qq2)=a1+3·a1(11--qq3),解得 q=13.
列的公比,即SS偶奇=q. (3)若一个非常数列{an}的前 n 项和 Sn=Aqn-A(A≠0,q≠0,
n∈N*),则数列{an}为等比数列,即 Sn=Aqn-A⇔数列{an}为等 比数列.
(4)若数列{an}是公比为 q 的等比数列,则 Sn+m=Sn+qn·Sm.
思考题 1 已知等比数列{an},an>0,S3=6,a7+a8+a9=
A.X+Z=2Y C.Y2=XZ
B.Y(Y-X)=Z(Z-X) D.Y(Y-X)=X(Z-X)
解析 根据等比数列的性质:若{an}是等比数列, 则 Sn,S2n-Sn,S3n-S2n 也成等比数列. 据此 X,Y-X,Z-Y 成等比数列. 故(Y-X)2=X(Z-Y),整理得 Y(Y-X)=X(Z-X).故选 D.
解得ad1==31,,或da1==-8,4. 因此 Sn=12n(3n-1)或 Sn=2n(5-n).
探究 2 在等差数列{an}中,通常把首项 a1 和公差 d 作为基 本量,在等比数列{bn}中,通常把首项 b1 和公比 q 作为基本量, 列关于基本量的方程(组)是解决等差数列和等比数列问题的常用 方法.
探究 3 在弄不清一个等比数列的公比是不是等于 1 时,要 分两种情况讨论.(这种情况经常发生在公比 q 用字母表示时)
q=1 时,不能用公式 Sn=a1(11--qqn)及 Sn=a11--aqnq求和; q≠1 时,也不能用公式 Sn=na1 求和.
2020年年数学人教A版必修五优化课件第二章等比数列的前n项和公式的性质及应用
![2020年年数学人教A版必修五优化课件第二章等比数列的前n项和公式的性质及应用](https://img.taocdn.com/s3/m/bd6f0ba65ef7ba0d4b733b43.png)
对等比数列求和的项数用错致误 [典例] 在等比数列{an}中,公比 q=2,前 87 项和 S87=140,则 a3 +a6+a9+…+a87=________.
[ 解 析 ] 法 一 : a3 + a6 + a9 + … + a87 = a3(1+ q3 + q6 + … + q84) = a1q2·1-1-qq3329=1+qq2+q2·a111--qq87=47×140=80.
在与等比数列的和有关的问题中,合理应用和的性质,可以简化运算, 本题的法四运用了当 q≠-1 时,数列 Sm,S2m-Sm,S3m-S2m,…仍 成等比数列,公比为 qm;法二运用了等比数列的性质:Sm+n=Sn+ qnSm;法三运用了等比数列的性质:当 q≠±1 时,1-Smqm=1-Snqn.
列的性质的由来. 并能应用.
2.理解等比数列的性质并能应用. 难点:掌握等比数列的性质
3.掌握等比数列的性质并能综合应 并能综合应用.
用.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
课时作业
[自主梳理]
1.等比数列的项与序号的关系以及性质
设等比数列{an}的公比为 q. (1)两项关系:an= am·qn-m (m,n∈N*). (2)多项关系:若 m+n=p+q(m,n,p,q∈N*),则 aman= apaq . (3)若 m,n,p(m,n,p∈N*)成等差数列,am,an,ap 成等比数列.
2.等比数列的项的对称性
有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的 积(若有中间项则等于中间项的平方),即 a1·an=a2·an-1 =ak·__a_n_-_k+_1_
=a2 n+1 (n 为正奇数).
2
4.3.2等比数列的前n项和公式(2)课件-高二人教A版数学选择性【05】
![4.3.2等比数列的前n项和公式(2)课件-高二人教A版数学选择性【05】](https://img.taocdn.com/s3/m/11629fee1b37f111f18583d049649b6648d70934.png)
4
把q5 4代入(1)得 a1 10 1q 3
所以S15
a1(1 q15 ) 1 q
a1 1 q
(1
(q5 )3 )
( 10) (21) 3
210
法2:利用性质速解(自主完成)
变式 2.已知各项均为实数的等比数列{an}的前 n 项和为 Sn,若
S10=10,S30=70,则 S40= ( )
数列的前n项和公式解决
实际问题
温故知新:等比数列的前n项和Sn
Sn
a1
na1 (1 q
n
(q )
1 q
1) (q 1)
因为a n
a1q n1 , 所以Sn
a1 anq 1q
注意:
(q 1)
1.当q≠1时,基本量a1,an,q,n,Sn;知三求二
2.使用公式求和时,需注意对q=1和q≠1的情况加以 讨论;
S3n S2n 3na1 2na1 na1
所以Sn,S2n Sn ,S3n S2n 成等比数列,公比为 1.
当q 1时
Sn
a1(1 qn ) 1 q
S2n
Sn
a1 (1 1
q2n ) q
a1(1 qn ) 1 q
a1qn (1 qn ) 1 q
qnSn
S3n
S2n
a1 (1 1
q3n q
2. Sn为等比数列的前n项和,Sn≠0, q≠-1或k不是偶数时, 则Sk, S2k-Sk, S3k-S2k(k∈N*)是等比数列. 性质:Sn+m=Sn+qnSm⇔qn=Sn+Sm-m Sn(q 为公比.
基础巩固练习
1.若等比数列{an}中,Sn=m·3n-5,则实数m=__5___.
等比数列的前n项和(二)
![等比数列的前n项和(二)](https://img.taocdn.com/s3/m/31ce611ca300a6c30c229fa3.png)
课前训练
1 1 1 的前n项和 求等比数列 1, , , ,…的前 项和 n. 的前 项和S 2 4 8
例题1: 例题1: 变式1: 变式1:
n 17 3 5 9 2 +1 的前n项和 项和S 求数列 2 , , 8 , 16,… 2 n 的前 项和 n. 4
若数列{a 的通项a 项和S 若数列 n} 的通项 n =2n+n,求其前 项和 n. ,求其前n项和
变式2 学案与测评》 变式2:《学案与测评》P32 第7题 题
求数列1,1+2,1+2+22,…,1+2+22+…+2n-1 ,…的前 求数列 的前 n项和 n. 项和S 项和
Байду номын сангаас
例题2: 例题2:
若数列{a 的通项a 求其前n项和 项和S 若数列{an} 的通项an =n2n,求其前n项和Sn.
变式1: 变式1
课外练习: 课外练习:
《学案与测评》P32 学案与测评》 “举一反三”第2题, ”能力提高”第8题, 举一反三” 能力提高” 举一反三 题 能力提高 题 ”拓展延伸”第9题 拓展延伸” 拓展延伸 题
课外作业
课本P61 课本P61 第4题
等比数列的前n项和
na1 等比数列{a 中 当公比 当公比q=1时,Sn=_________; 等比数列 n}中,当公比 时 n a1 an q a1(1-q ) ( 当公比q≠1时,Sn=________________=________________; 当公比 时 1-q 1 q
等比数列的前n项和 的公式推导过程中, 等比数列的前 项和Sn的公式推导过程中,用 项和 了什么方法?___________ 了什么方法 错位相减法
最新-2018高中数学 第二章233节第二课时等比数列的前n项和课件 必修5 精品
![最新-2018高中数学 第二章233节第二课时等比数列的前n项和课件 必修5 精品](https://img.taocdn.com/s3/m/b924d906c1c708a1294a4416.png)
【点评】 此问题的本质还是等比数列的判定与 求和问题,只要抓住了本质,问题便可迎刃而 解.
变式训练
2.已知{an}是公比为 q 的等比数列,且 a1、a3、 a2 成等差数列. (1)求 q 的值; (2)设{bn}是以 2 为首项,q 为公差的等差数列, 其前 n 项和为 Sn,当 n≥2 时,比较 Sn 与 bn 的 大小,并说明理由.
由SS62==97, 1,
a11+q=7, 得a111--qq6=91,
∴a11+q1-1-qq1+q2+q4=91, ∴q4+q2-12=0,∴q2=3, ∴S4=a111--qq4=a1(1+q)(1+q2) =7×(1+3)=28.
法二:设数列{an}的公比为 q, ∵S2=7,S6=91,
题型二 有关等比数列前n项和的综合问题
• 对于此类问题,在解答时要注意去伪存真,找到其
实质,从而转化为等比数列的基本问题.
例2 以数列{an}的任意相邻两项为横、纵坐标的 点 Pn(an,an+1)(n∈N*)均在一次函数 y=2x+k 的图象 上,数列 bn=an+1-an(n∈N*,b1≠0). (1)求证:数列{bn}是等比数列; (2)设数列{an},{bn}的前 n 项和分别为 Sn,Tn,若 S6 =T4,S5=-9,求 k 的值.
解:(1)由题知 2a3=a1+a2,即 2a1q2=a1+a1q.
∵a1≠0,∴2q2-q-1=0,∴q=1 或 q=-12.
(2)①若 q=1,则 Sn=2n+nn2-1×1=n2+2 3n.
当
n≥2
时,
Sn-bn=Sn-1=
n-1 2
n+2
>0,
故 Sn>bn.
②若 q=-12,则 Sn=2n+nn2-1·(-12)=-n24+9n.
【高中数学】第4章 4.3.2 等比数列的前n项和公式(第2课时)
![【高中数学】第4章 4.3.2 等比数列的前n项和公式(第2课时)](https://img.taocdn.com/s3/m/bf91ceb8e518964bce847c6c.png)
4.3.2 等比数列的前n 项和公式(第2课时)素养目标学科素养 1.掌握等比数列前n 项和的性质.(重点)2.能够运用所学知识解决等差数列与等比数列的综合应用问题.1.逻辑推理; 2.数学运算情境导学远望巍巍塔七层,红光点点倍加增. 其灯三百八十一,请问尖头几盏灯? 这首古诗给大家呈现一幅美丽夜景的同时,也留给了大家一个数学问题,你能用今天所学的知识求出这首古诗的答案吗?1.等比数列前n 项和的性质(1)若数列{a n }为非常数列的等比数列,且其前n 项和S n =A·q n +B(A ≠0,B ≠0,q ≠0,q ≠1),则必有A +B =0;反之,若某一非常数列的前n 项和S n =A·q n -A(A ≠0,q ≠0,q ≠1),则该数列必为等比数列.(2)如果公比q ≠-1或虽q =-1但n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 构成等比数列. (3)当等比数列{a n }的项数为偶数时,偶数项的和与奇数项的和之比S 偶S 奇=q .2.分组求和某些数列通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和.1.判断(正确的打“√”,错误的打“×”).(1)若等比数列{a n }的前n 项和S n =2×⎝⎛⎭⎫13n +m ,则m =-2.(√)(2)若数列{a n }是公比q ≠1的等比数列,则其前n 项和公式可表示为-A q n +A(A ≠0,q ≠0且q ≠1,n ∈N *).(√)2.若a n =2n -n ,则{a n }的前n 项和为2n +1-2-n (n +1)2.3.数列112,314,518,…,(2n -1)+12n ,…的前n 项和为n 2+1-12n .1.在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则S 6等于( ) A .140 B .120 C .210D .520A 解析:∵S 2=20,S 4-S 2=40,且(S 4-S 2)2=S 2×(S 6-S 4),∴S 6-S 4=80. 又∵S 4=60,∴S 6=140.2.若数列{a n }是等比数列,且其前n 项和S n =3n +1-3k ,则实数k 等于________. 1 解析:∵S n =3n +1-3k =3×3n -3k ,∴3=3k ,即k =1. 3.若等比数列{a n }的前n 项和S n =2n -2+r 2,则r =________.-12 解析:因为S n =2n -2+r 2=14×2n +r 2, ∴r 2=-14,即r =-12. 4.数列{2n -1}的前n 项和为________.2n +1-2-n 解析:S n =(21-1)+(22-1)+(23-1)+…+(2n -1)=(21+22+23+…+2n )-n =2n +1-2-n .【例1】(1)若等比数列{a n }的前n 项和为S n ,S 2=7,S 6=91,则S 4为( )A .28B .32C .21D .28或-21(2)在等比数列{a n }中,公比q =3,S 80=32,则a 2+a 4+a 6+…+a 80=________.(3)等比数列{a n }共2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.(1)A (2)24 (3)2 解析:(1)∵{a n }为等比数列, ∴S 2,S 4-S 2,S 6-S 4也为等比数列, 即7,S 4-7,91-S 4成等比数列,由(S 4-7)2=7×(91-S 4),得S 4=28或S 4=-21.又∵S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2=(a 1+a 2)(1+q 2)=S 2(1+q 2)>S 2, ∴S 4=28.(2)设A =a 2+a 4+a 6+…+a 80, B =a 1+a 3+a 5+…+a 79, 则AB=q =3,即A =3B . 又A +B =S 80=32,∴43A =32,解得A =24.即a 2+a 4+a 6+…+a 80=24.(3)根据题意得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,∴⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160. ∴q =S 偶S 奇=-160-80=2.等比数列前n 项和的常用性质: (1)若共有2n 项,则S 偶∶S 奇=q .(2)“片断和”性质:等比数列{a n }中,公比为q ,前m 项和为S m (S m ≠0),则S m ,S 2m -S m ,S 3m -S 2m ,…,S km -S (k -1)m ,…构成公比为q m 的等比数列.在等比数列{a n }中,若前10项的和S 10=10,前20项的和S 20=30,则前30项的和S 30=________.70 解析:(方法一)设数列{a n}的首项为a 1,公比为q (q ≠1),则⎩⎪⎨⎪⎧a 1(1-q 10)1-q=10,a 1(1-q20)1-q=30.两式相除得1+q 10=3,∴q 10=2. ∴a 11-q=-10. ∴S 30=a 1(1-q 30)1-q=-10×(1-8)=70.(方法二)∵S 10,S 20-S 10,S 30-S 20仍成等比数列,又S 10=10,S 20=30, ∴S 30-30=(30-10)210,即S 30=70.【例2】已知数列{a n }:a 1,a 2,a 3,…,a n ,…构成一个新数列:a 1,a 2-a 1,…,a n -a n -1,…,此数列是首项为1,公比为13的等比数列.求:(1)数列{a n }的通项公式; (2)数列{a n }的前n 项和S n .解:(1)a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -1 =32⎣⎡⎦⎤1-⎝⎛⎭⎫13n . (2)S n =a 1+a 2+a 3+…+a n=32⎝⎛⎭⎫1-13+32⎣⎡⎦⎤1-⎝⎛⎭⎫132+…+32⎣⎡⎦⎤1-⎝⎛⎭⎫13n =32n -34⎣⎡⎦⎤1-⎝⎛⎭⎫13n =3(2n -1)4+14×⎝⎛⎭⎫13n -1.如果一个数列的每一项是由几个独立的项组合而成的,并且各独立项也可组成等差数列或等比数列,则该数列的前n 项和可考虑拆项后利用公式求解.若一数列为“1,1+2,1+2+22,…,1+2+22+…+2n -1,…”,如何求其前n 项和? 解:设该数列的第n 项为a n ,则 a n =1+2+22+…+2n -1=1-2n 1-2=2n -1, 所以该数列的前n 项和S n =(21-1)+(22-1)+(23-1)+…+(2n -1) =(2+22+…+2n )-n =2(1-2n )1-2-n =2n +1-n -2.探究题1 在各项均为正数的等比数列{a n }中,a 1=2,且a 2,a 4+2,a 5成等差数列,S n 是数列{a n }的前n 项和,则S 10-S 4=________. 解析:设数列{a n }的公比为q (q >0). ∵a 2,a 4+2,a 5成等差数列, ∴2a 4+4=a 2+a 5.∴2×2×q 3+4=2×q +2×q 4. ∴q 4-2q 3+q -2=0. ∴(q -2)(q 3+1)=0. ∴q =2或q =-1(舍).∴S 10-S 4=2×(1-210)1-2-2×(1-24)1-2=2 016.探究题2 在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为|a 2|的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d , 依题意得a 3+a 8-(a 2+a 7)=2d =-6, 从而d =-3.所以a 2+a 7=2a 1+7d =-23,解得a 1=-1. 所以数列{a n }的通项公式为a n =-3n +2. (2)由(1)得a 2=-4,所以|a 2|=4.而数列{a n +b n }是首项为1,公比为4的等比数列, 所以a n +b n =4n -1,即-3n +2+b n =4n -1, 所以b n =3n -2+4n -1,于是S n =[1+4+7+…+(3n -2)]+(1+4+42+…+4n -1)=n (3n -1)2+1-4n 1-4=n (3n -1)2+4n -13. 探究题3 等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2), 由于a 1≠0,故2q 2+q =0. 又q ≠0,从而q =-12.(2)由(1)可得a 1-a 1⎝⎛⎭⎫-122=3,故a 1=4. 从而S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=83⎣⎡⎦⎤1-⎝⎛⎭⎫-12n .探究题4 已知正项等比数列{a n }(n ∈N *),首项a 1=3,前n 项和为S n ,且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式; (2)求数列{na n }的前n 项和T n . 解:(1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以有2(S 5+a 5)=(S 3+a 3)+(S 4+a 4),即2(a 1+a 2+a 3+a 4+2a 5)=(a 1+a 2+2a 3)+(a 1+a 2+a 3+2a 4), 化简得4a 5=a 3,从而4q 2=1,解得q =±12.因为a n >0,所以q =12,所以a n =3×⎝⎛⎭⎫12n -1. (2)由(1)知,na n =3n ⎝⎛⎭⎫12n -1.T n =3×1+3×2×12+3×3×⎝⎛⎭⎫122+…+3n ⎝⎛⎭⎫12n -1, 12T n =3×1×12+3×2×⎝⎛⎭⎫122+…+3(n -1)·⎝⎛⎭⎫12n -1+3n ⎝⎛⎭⎫12n ,两式相减得 12T n =3×1+3×12+3×⎝⎛⎭⎫122+…+3×⎝⎛⎭⎫12n -1-3n ⎝⎛⎭⎫12n =3×1-⎝⎛⎭⎫12n1-12-3n ⎝⎛⎭⎫12n =6-6+3n 2n. 所以T n =12-6+3n2n -1.解决等差数列和等比数列的综合问题,一般不能直接套用公式,要先对已知条件转化变形,使之符合等差数列或等比数列的形式,然后利用公式求解.同时,要注意在题设条件下,寻求等差数列之间的内在联系.已知数列{a n }是公差为2的等差数列,它的前n 项和为S n ,且a 1+1,a 3+1,a 7+1成等比数列.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和T n .解:(1)由题意,得a 3+1=a 1+5,a 7+1=a 1+13, 所以由(a 3+1)2=(a 1+1)(a 7+1), 得(a 1+5)2=(a 1+1)(a 1+13),解得a 1=3,所以a n =3+2(n -1),即a n =2n +1. (2)由(1)知a n =2n +1,则S n =n (n +2), 所以1S n =12⎝⎛⎭⎫1n -1n +2,所以T n =12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2=12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-2n +32(n +1)(n +2).1.已知{a n }为等差数列,{b n }为等比数列,其公比q ≠1且b i >0(i =1,2,…,n ),若a 1=b 1,a 11=b 11,则( ) A .a 6>b 6B .a 6=b 6C .a 6<b 6D .a 6<b 6或a 6>b 6A 解析:由题意可得四个正数满足a 1=b 1,a 11=b 11,由等差数列和等比数列的性质可得a 1+a 11=2a 6,b 1b 11=b 26.由基本不等式可得2a 6=a 1+a 11=b 1+b 11≥2b 1b 11=2b 6,当且仅当b 1=b 11时等号成立. 又公比q ≠1,故b 1≠b 11,上式取不到等号,∴2a 6>2b 6,即a 6>b 6.故选A .2.已知等比数列{a n }的公比q >1,且a 1a 4=8,a 2+a 3=6,则数列{a n }的前n 项和为( ) A .2n B .2n -1 C .2n -1D .2n -1-1C 解析:等比数列{a n }中,有a 1a 4=a 2a 3=8, 而a 2+a 3=6,可得a 2=2,a 3=4或a 2=4,a 3=2. 根据公比q >1可知{a n }是递增数列,所以a 2=2,a 3=4,可得q =a 3a 2=2,a 1=a 2q =1,所以{a n }的前n 项和S n =a 1(1-q n )1-q =1×(1-2n )1-2=2n -1.故选C .3.已知等比数列{a n }的前n 项和为S n ,若a 2S 4=a 4S 2,则S 2 019S 1=( )A .1B .-1C .2 019D .-2 019A 解析:由题得a 1q (a 1+a 1q +a 1q 2+a 1q 3)=a 1q 3(a 1+a 1q ), 即q (1+q +q 2+q 3)=q 3(1+q ),所以1+q +q 2+q 3=q 2(1+q ),所以q =-1. 所以S 2 019S 1=a 1[1-(-1)2 019]1+1a 1=1.故选A .4.已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明:⎩⎨⎧⎭⎬⎫a n +12是等比数列;(2)求数列{a n }的前n 项和S n .(1)证明:由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12,所以a n +1+12a n +12=3,所以⎩⎨⎧⎭⎬⎫a n +12是首项为a 1+12=32,公比为3的等比数列,所以a n +12=32·3n -1. (2)解:由(1)知{a n }的通项公式为a n =3n -12(n ∈N *),则S n =⎝⎛⎭⎫312+322+…+3n 2-n 2,所以S n=3n +1-2n -34.1.分类讨论的思想:(1)利用等比数列前n 项和公式时要分公比q =1和q ≠1两种情况讨论. (2)研究等比数列的单调性时应进行讨论:当a 1>0,q >1或a 1<0,0<q <1时为递增数列;当a 1<0,q >1或a 1>0,0<q <1时为递减数列;当q <0时为摆动数列;当q =1时为常数列.2.函数的思想:等比数列的通项a n =a 1q n -1=a 1q ·q n (q >0且q ≠1)常和指数函数相联系.等比数列前n 项和S n =a 1q -1·(q n -1)(q ≠1).设A =a 1q -1,则S n =A(q n -1)也与指数函数相联系.3.整体思想:应用等比数列前n 项和时,常把q n ,a 11-q当成整体求解.课时分层作业(十)等比数列的前n 项和公式(第2课时)(50分钟 100分) 基础对点练基础考点 分组训练知识点1 等比数列前n 项和的性质1.(5分)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a nD 解析:在等比数列{a n }中,S n =a 1-a n q1-q=1-a n ×231-23=3-2a n .2.(5分)在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4等于( )A .35B .53C .-35D .-53D 解析:设等比数列{a n }的公比为q ,则a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=158,a 2a 3=a 21q 3=-98,∴1a 1+1a 2+1a 3+1a 4=1a 1⎝⎛⎭⎫1+1q +1q 2+1q 3=q 3+q 2+q +1a 1q 3=a 1(q 3+q 2+q +1)a 21q 3=158-98=-53. 3.(5分)等比数列{a n }共有2n 项,它的全部项的和是奇数项的和的3倍,则公比q =________.2 解析:设{a n }的公比为q ,由已知可得q ≠1,则奇数项也构成等比数列,其公比为q 2,首项为a 1,S 2n =a 1(1-q 2n )1-q ,S 奇=a 1[1-(q 2)n ]1-q 2.由题意得a 1(1-q 2n )1-q =3a 1(1-q 2n )1-q 2,∴1+q =3,∴q =2.4.(5分)在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项的和S 15=________.11 解析:∵S 3=1,S 6-S 3=-2,∴S 9-S 6=4,S 12-S 9=-8,S 15-S 12=16,∴S 15=S 3+S 6-S 3+S 9-S 6+S 12-S 9+S 15-S 12=1-2+4-8+16=11. 知识点2 分组求和5.(5分)数列12,12+14,12+14+18,…,12+14+…+12n 的前n 项和为( )A .n +12nB .n -1+12nC .n -1+12n +1D .n +12n -1B 解析:∵数列的通项a n =12+14+…+12n =12⎝⎛⎭⎫1-12n 1-12=1-12n ,∴前n 项和S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-14+…+⎝⎛⎭⎫1-12n =n -⎝⎛⎭⎫12+14+…+12n =n -1+12n .6.(5分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则数列{c n }的前10项和为( ) A .978 B .557 C .467D .979A 解析:设等比数列{a n }的公比为q ,等差数列{b n }的公差为d . ∵c n =a n +b n ,∴⎩⎪⎨⎪⎧a 1+b 1=1,a 2+b 2=1,a 3+b 3=2,解得⎩⎪⎨⎪⎧a 1=1,d =-1,q =2.∴c n =2n -1+(1-n ).∴{c n }的前10项和为1-2101-2+10×(0-9)2=978.知识点3 等差数列与等比数列的综合问题7.(5分)已知数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=( ) A .1 033 B .1 034 C .2 057D .2 058A 解析:∵a n =n +1,b n =2n -1, ∴ab 1+ab 2+…+ab 10=a 1+a 2+a 4+…+a 29 =(1+1)+(2+1)+(22+1)+…+(29+1) =10+(1+2+22+…+29)=10+1-2101-2=1 033. 8.(5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A .2 B .-2 C .12D .-12D 解析:∵S 1,S 2,S 4成等比数列,∴S 22=S 1·S 4, ∴(2a 1-1)2=a 1·(4a 1-6),∴a 1=-12.9.(5分)(多选)已知{a n }为等比数列,S n 是其前n 项和.若a 2a 3=8a 1,且a 4与2a 5的等差中项为20,则( ) A .a 1=-1 B .公比q =-2 C .a 4=8D .S 5=31CD 解析:∵a 2a 3=8a 1,∴a 1q 3=8,即a 4=8.∵a 4+2a 5=40,∴a 4(1+2q )=40,∴q =2,a 1=1. ∴S 5=1-251-2=31.能力提升练能力考点 拓展提升10.(5分)等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( )A .-3B .5C .-31D .33D 解析:设{a n }的公比为q , ∵S 3=a 1·(1-q 3)1-q =2,S 6=a 1·(1-q 6)1-q =18,∴1+q 3=9,∴q =2, ∴S 10S 5=1-q 101-q5=1+q 5=33. 11.(5分)设等比数列的前n 项和、前2n 项和、前3n 项和分别为A ,B ,C ,则( ) A .A +B =C B .B 2=ACC .A +B -C =B 2D .A 2+B 2=A(B +C) D 解析:∵S n ,S 2n -S n ,S 3n -S 2n 成等比数列, ∴(S 2n -S n )2=S n (S 3n -S 2n ), 即(B -A)2=A(C -B), ∴A 2+B 2=A(B +C).12.(5分)已知等比数列{a n }的前n 项和S n =2n -1,则数列{log 2a n }的前12项和等于( ) A .66 B .55 C .45D .6A 解析:∵S n =2n -1,∴S n -1=2n -1-1(n ≥2),两式相减得a n =2n -1(n ≥2). 又a 1=S 1=1,∴a n =2n -1. ∴log 2a n =n -1.∴{log 2a n }是等差数列,首项为0,公差为1. ∴前12项和为66.13.(5分)已知{a n }是等比数列,若a 1=1,a 6=8a 3,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,则T 5=( )A .3116B .31C .158D .154A 解析:∵a 1=1,a 6=8a 3,∴q =2.∴⎩⎨⎧⎭⎬⎫1a n 是等比数列,首项为1,公比为12,∴T 5=1×⎝⎛⎭⎫1-1251-12=3116.14.(5分)在等比数列{a n }中,公比q =2,前n 项和为S n ,若S 5=1,则S 10=________.33 解析:∵S 5=a 1(1-25)1-2=1,∴a 1=131.∴S 10=a 1(1-210)1-2=131×1 023=33.15.(5分)若等比数列{a n }的前n 项和S n =2×3n +r ,则r =________.-2 解析:∵S n =2×3n +r ,∴当n ≥2时,a n =S n -S n -1=2×3n -2×3n -1=4×3n -1. 当n =1时,a 1=S 1=6+r .∵{a n }为等比数列,∴6+r =4.∴r =-2.16.(12分)已知等差数列{a n }(n ∈N *)的前n 项和为S n ,且a 3=5,S 3=9.(1)求数列{a n }的通项公式;(2)等比数列{b n }(n ∈N *),若b 2=a 2,b 3=a 5,求数列{a n +b n }的前n 项和T n . 解:(1)由S 3=9,得3a 2=9,所以a 2=3. 又因为a 3=5,所以公差d =2. 从而a n =a 2+(n -2)d =2n -1.(2)由(1)可得b 2=a 2=3,b 3=a 5=9,所以公比q =3. 从而b n =b 2q n -2=3n -1,则a n +b n =(2n -1)+3n -1, 分组求和可得T n =n 2+12(3n -1).17.(13分)已知数列{a n }是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6成等比数列. 证明:∵a 1,a 7,a 4成等差数列,∴2a 7=a 1+a 4,∴2q 6=1+q 3,∴q 3=-12或q 3=1.若q 3=1,则2S 3=6a 1,S 6=6a 1,S 12-S 6=6a 1. ∴2S 3,S 6,S 12-S 6成等比数列. 若q 3=-12,则2S 3=3a 11-q ,S 6=34a 11-q ,S 12-S 6=316a 11-q.∵⎝ ⎛⎭⎪⎪⎫34a 11-q 2=3a 11-q ·316a 11-q ,即S 26=2S 3·(S 12-S 6), ∴2S 3,S 6,S 12-S 6成等比数列.重难强化训练(二)等比数列 (60分钟 120分)练易错易错点1| 对等比数列的定义理解不透彻致误 [防范要诀]等比数列中任一项a n ≠0,且q ≠0. [对点集训]1.(5分)已知等比数列{a n }的前三项为a,2a +2,3a +3,则a =________.-4 解析:由(2a +2)2=a (3a +3)⇒a =-1或a =-4.但当a =-1时,第二、三项均为零,故a =-1舍去,得a =-4.2.(10分)已知数列{a n }中a n ≠0,a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数成等差数列,证明:a 1,a 3,a 5成等比数列. 证明:由已知,有2a 2=a 1+a 3,① a 23=a 2·a 4,②2a 4=1a 3+1a 5.③ 由③得2a 4=a 3+a 5a 3·a 5,∴a 4=2a 3·a 5a 3+a 5.④由①得a 2=a 1+a 32.⑤由④⑤代入②,得a 23=a 1+a 32·2a 3·a 5a 3+a 5. ∴a 3=(a 1+a 3)a 5a 3+a 5,即a 3(a 3+a 5)=a 5(a 1+a 3).化简,得a 23=a 1·a 5. 又a 1,a 3,a 5≠0,∴a 1,a 3,a 5成等比数列. 易错点2| 利用等比中项时忽略判断符号致误 [防范要诀](1)等比数列中所有奇数项的符号都相同,所有偶数项的符号都相同; (2)只有同号两数才有等比中项,且有两个,它们互为相反数. [对点集训]3.(5分)如果1,a ,b ,c,16成等比数列,那么b =________,ac =________.4 16 解析:∵b 2=1×16=16,且b =1×q 2>0, ∴b =4.又∵b 2=ac ,∴ac =16.4.(5分)等比数列{a n }中,a 2=9,a 5=243,则a 6=________.729 解析:∵a 5a 2=q 3=27,∴q =3,∴a 6=a 2q 4=9×81=729.5.(5分)已知-2,a 1,a 2,-8成等差数列,-2,b 1,b 2,b 3,-8成等比数列,则a 2-a 1b 2=________.12解析:∵-2,a 1,a 2,-8成等差数列, ∴⎩⎪⎨⎪⎧ 2a 1=-2+a 2,2a 2=a 1-8,得⎩⎪⎨⎪⎧a 1=-4,a 2=-6.又∵-2,b 1,b 2,b 3,-8成等比数列, ∴b 22=-2×(-8)=16, ∴b 2=4或b 2=-4.由等比数列隔项同号可得b 2=-4, ∴a 2-a 1b 2=-6-(-4)-4=12.易错点3| 忽视对公比q 的讨论 [防范要诀]等比数列的公比q ≠0,数列中各项都不为零;当公比q ≠1时,S n =a 1(1-q n )1-q ;当公比q =1时,S n =na 1. [对点集训]6.(5分)等比数列1,a ,a 2,a 3,…(a ≠0)的前n 项和S n =________.⎩⎪⎨⎪⎧n ,a =1,1-an 1-a,a ≠1 解析:当a =1时,S n =n ;当a ≠1时,S n =1-a n1-a . ∴S n =⎩⎪⎨⎪⎧n ,a =1,1-a n 1-a,a ≠1.7.(10分)在首项为a 1且公比为q 的等比数列{a n }中,其前n 项和为S n ,若S 3=4,S 6=36,求a n . 解:∵S 6≠2S 3,∴q ≠1.由⎩⎪⎨⎪⎧S 3=4,S 6=36得⎩⎪⎨⎪⎧a 1(1-q 3)1-q =4,①a 1(1-q 6)1-q=36.②由②①得1-q 61-q 3=9,即1+q 3=9,∴q =2. 将q =2代入①式得a 1=47.∴a n =a 1q n -1=47×2n -1=2n +17. 练疑难8.(5分)设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q 等于( ) A .1 B .0 C .1或0D .-1A 解析:∵{S n }是等差数列,∴2S 2=S 1+S 3, ∴2(a 1+a 2)=a 1+(a 1+a 2+a 3),∴a 2=a 3, ∴q =a 3a 2=1.9.(5分)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C .12D .18C 解析:∵{a n }为等比数列,∴a 3a 5=a 24,∴a 24=4(a 4-1),解得a 4=2.设等比数列{a n }的公比为q ,则a 1q 3=2,∴q 3=8,∴q =2,∴a 2=a 1q =14×2=12.10.(5分)已知数列{a n }是公比为q 的等比数列,且a 1,a 3,a 2成等差数列,则公比q 的值为( ) A .-12B .-2C .-1或12D .1或-12D 解析:∵a 1,a 3,a 2成等差数列,∴2a 3=a 1+a 2, ∴2q 2-q -1=0.∴q =1或-12.11.(5分)在数列{a n }中,已知S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值为( ) A .13 B .-76 C .46D .76B 解析:∵S 15=(-4)×7+(-1)14(4×15-3)=29,S 22=(-4)×11=-44,S 31=(-4)×15+(-1)30(4×31-3)=61,∴S 15+S 22-S 31=29-44-61=-76.12.(5分)已知等比数列{a n }的各项均为正数,数列{b n }满足b n =ln a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于( ) A .126 B .130 C .132D .134C 解析:∵{a n }是正项等比数列, ∴{b n }是等差数列.又∵b 3=18,b 6=12,∴d =-2,b 1=22,∴S n =22n +n (n -1)2×(-2)=-n 2+23n =-⎝⎛⎭⎫n -2322+2324,∴当n =11或12时,S n 最大, ∴(S n )max =-112+23×11=132.13.(5分)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n (n ∈N *),则数列{a n }的前2 019项的和S 2 019等于( )A .31 010-2B .31 010-3C .32 009-2D .32 009-3A 解析:因为a 1=1,a 2=3,a n +2a n=3,所以S 2 019=(a 1+a 3+…+a 2 019)+(a 2+a 4+…+a 2 018)=1-31 0101-3+3(1-31 009)1-3=31 010-2.14.(5分)数列{a n }的通项公式是a n =n cos nπ2,其前n 项和为S n ,则S 2 020等于( )A .1 010B .2 020C .504D .0A 解析:a 1=cos π2=0,a 2=2cos π=-2,a 3=0,a 4=4,….∴数列{a n }的所有奇数项为0,前2 020项的所有偶数项(共1 010项)依次为-2,4,-6,8,…. 故S 2 020=0+(-2+4)+(-6+8)+…+(-2 018+2 020)=1 010.15.(5分)在等比数列{a n }中,a 3=4,S 3=12,数列{a n }的通项公式a n =________.4或⎝⎛⎭⎫-12n -5 解析:当q =1时,a 3=4, a 1=a 2=a 3=4,S 3=a 1+a 2+a 3=12,∴q =1符合题意.a n =4. 当q ≠1时,⎩⎪⎨⎪⎧a 3=a 1q 2=4,S 3=a 1(1-q 3)1-q =12, 解得q =-12,a n =a 3q n -3=⎝⎛⎭⎫-12n -5, 故a n =4或a n =⎝⎛⎭⎫-12n -5. 16.(10分)设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎫n ,S n n (n ∈N *)均在直线y =x +12上.若b n =3a n +12,求数列{b n }的前n 项和T n .解:依题意得S n n =n +12,即S n =n 2+12n .当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫n 2+12n -⎣⎡⎦⎤(n -1)2+12(n -1)=2n -12;当n =1时,a 1=S 1=32,符合a n =2n -12,所以a n =2n -12(n ∈N *),则b n =3a n +12=32n ,由b n +1b n =32(n +1)32n =32=9,可知{b n }为等比数列,b 1=32×1=9,故T n =9(1-9n )1-9=9n +1-98.17.(12分)已知等比数列{a n }的各项均为正数,且a 2=6,a 3+a 4=72.(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n -n (n ∈N *),求数列{b n }的前n 项和S n . 解:(1)设等比数列{a n }的公比为q , ∵a 2=6,a 3+a 4=72,∴6q +6q 2=72,即q 2+q -12=0, ∴q =3或q =-4.又∵a n >0,∴q >0,∴q =3,a 1=a 2q =2.∴a n =a 1q n -1=2×3n -1(n ∈N *). (2)∵b n =2×3n -1-n , ∴S n=2(1+3+32+…+3n -1)-(1+2+3+…+n )=2×1-3n 1-3-n (1+n )2=3n -1-n 2+n2.18.(13分)数列{a n }的前n 项和为S n ,已知a 1=2,a n +1=2S n +1(n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{na n }的前n 项和T n .解:(1)∵a n +1=2S n +1,∴a n =2S n -1+1(n ≥2,n ∈N *),两式相减得a n +1=3a n (n ≥2,n ∈N *). ∵a 2=2S 1+1=5,∴a n =a 23n -2=5·3n -2(n ≥2,n ∈N *),当n =1,a 1=2不满足上式,∴a n =⎩⎪⎨⎪⎧2,n =1,5·3n -2,n ≥2,n ∈N *.(2)由(1)知na n =⎩⎪⎨⎪⎧2,n =1,5n ·3n -2,n ≥2,n ∈N *. T n =2+5·2·30+5·3·31+5·4·32+5·5·33+…+5·(n -1)·3n -3+5·n ·3n -2,① 3T n =6+5·2·31+5·3·32+5·4·33+…+5·(n -1)3n -2+5·n ·3n -1,② ①-②得-2T n=6+5(3+32+33+…+3n -2)-5n ·3n -1=6+5×3(1-3n -2)1-3-5n ·3n -1,∴T n =34+10n -54·3n -1.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
湘教版高中同步学案数学选择性必修第一册精品课件 第1章 数列 第2课时 等比数列前n项和的性质及应用
![湘教版高中同步学案数学选择性必修第一册精品课件 第1章 数列 第2课时 等比数列前n项和的性质及应用](https://img.taocdn.com/s3/m/31435bb3f9c75fbfc77da26925c52cc58bd690ed.png)
重难探究•能力素养全提升
探究点一 等比数列前n项和的性质的应用
【例1】 (1)在等比数列{an}中,若S2=7,S6=91,则S4=
.
(2)已知等比数列{an}共有2n项,其和为-240,
且(a1+a3+…+a2n-1)-(a2+a4+…+a2n)=80,则公比q=
.
(3)若数列{an}是等比数列,且其前n项和为Sn=3n+1-2k,则实数k等
又S1+60=S2,则S1+60=3S1,解得S1=30,S2=90,
故数列{an}的所有项之和是30+90=120.
探究点二 等比数列的前n项和的实际应用
【例2】 某企业进行技术改造,有两种方案.甲方案:一次性贷款10万元,第
一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款
=(a1+a3+…+a99)+q(a1+a3+…+a99)=(1+q)(a1+a3+a5+…+a99).
∵S100=36,q=2,
∴3S=36,∴a1+a3+a5+…+a99=12.
5.某住宅小区计划植树不少于100棵,若第一天植树2棵,以后每天植树的棵
数是前一天的3倍,则需要的最少天数n(n∈N+)为
学建模求解等比数列问题.
3.常见误区:不能正确地使用等比数列的性质;涉及与数列有关的数学问题,
不能准确地转化为等比、等差数列问题.
学以致用•随堂检测全达标
1.已知等比数列{an}的前n项和为Sn,若Sn=p·3n-2,则p等于(
第2课时 等比数列前n项和的性质及应用
![第2课时 等比数列前n项和的性质及应用](https://img.taocdn.com/s3/m/52bd633403d8ce2f0066236f.png)
第2课时 等比数列前n 项和的性质及应用学习目标:1.掌握等比数列前n 项和的性质的应用(重点).2.掌握等差数列与等比数列的综合应用(重点).3.能用分组转化方法求数列的和(重点、易错点).[自 主 预 习·探 新 知]1.等比数列前n 项和的变式当公比q ≠1时,等比数列的前n 项和公式是S n =a 1-qn1-q,它可以变形为S n =-a 11-q·qn+a 11-q ,设A =a 11-q,上式可写成S n =-Aq n+A .由此可见,非常数列的等比数列的前n 项和S n是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数).思考:在数列{a n }中,a n +1=ca n (c 为非零常数)且前n 项和S n =3n -1+k ,则实数k 的取值是什么?[提示] 由题{a n }是等比数列, ∴3n的系数与常数项互为相反数, 而3n的系数为13,∴k =-13.2.等比数列前n 项和的性质性质一:若S n 表示数列{a n }的前n 项和,且S n =Aq n-A (Aq ≠0,q ≠±1),则数列{a n }是等比数列.性质二:若数列{a n }是公比为q 的等比数列,则 ①在等比数列中,若项数为2n (n ∈N *),则S 偶S 奇=q . ②S n ,S 2n -S n ,S 3n -S 2n 成等比数列.思考:在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,如何求S 6的值? [提示] S 2=20,S 4-S 2=40,∴S 6-S 4=80,∴S 6=S 4+80=S 2+40+80=140.[基础自测]1.思考辨析(1)等比数列{a n }共2n 项,其中奇数项的和为240,偶数项的和为120,则该等比数列的公比q =2.( )(2)已知等比数列{a n }的前n 项和S n =a ·3n -1-1,则a =1.( )(3)若数列{a n }为等比数列,则a 1+a 2,a 3+a 4,a 5+a 6也成等比数列.( ) (4)若S n 为等比数列的前n 项和,则S 3,S 6,S 9成等比数列.( ) [答案] (1)× (2)× (3)√ (4)×提示:(1)S 偶S 奇=q =120240=12;(2)由等比数列前n 项和的特点知13a =1得a =3;(4)由S 3,S 6-S 3,S 9-S 6成等比数列知(4)错误.2.已知数列{a n }为等比数列,且前n 项和S 3=3,S 6=27,则公比q =________. 2 [q 3=S 6-S 3S 3=27-33=8,所以q =2.] 3.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.【导学号:91432227】(-2)n -1[当n =1时,S 1=23a 1+13,所以a 1=1.当n ≥2时,a n =S n -S n -1=23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23(a n -a n -1),所以a n =-2a n -1,即a na n -1=-2, 所以{a n }是以1为首项的等比数列,其公比为-2, 所以a n =1×(-2)n -1,即a n =(-2)n -1.]4.设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. 35 [设两等差数列组成的和数列为{c n },由题意知新数列仍为等差数列且c 1=7,c 3=21,则c 5=2c 3-c 1=2×21-7=35,即a 5+b 5=35.][合 作 探 究·攻 重 难]等比数列前n 项和公式的函数特征应用已知数列{a n }的前n 项和S n =a n-1(a 是不为零且不等于1的常数),则数列{a n }( )【导学号:91432228】A .一定是等差数列B .一定是等比数列C .是等差数列或等比数列D .既非等差数列,也非等比数列 B [当n ≥2时,a n =S n -S n -1=(a -1)·a n -1;当n =1时,a 1=a -1,满足上式. ∴a n =(a -1)·a n -1,n ∈N *.∴a n +1a n=a ,∴数列{a n }是等比数列.] )已知)若数列q n-,其中跟踪训练1.若{a n }是等比数列,且前n 项和为S n =3n -1+t ,则t =________.-13 [显然q ≠1, 此时应有S n =A (q n-1), 又S n =13·3n+t ,∴t =-13.]等比数列前n 项和性质的应用[探究问题]1.在等差数列中,我们知道S m ,S 2m -S m ,S 3m -S 2m ,…仍组成等差数列.在等比数列{a n }中,若连续m 项的和不等于0,那么S m ,S 2m -S m ,S 3m -S 2m ,…仍组成等比数列吗?为什么?提示:S m ,S 2m -S m ,S 3m -S 2m ,…仍组成等比数列. ∵在等比数列{a n }中有a m +n =a m q n, ∴S m =a 1+a 2+…+a m ,S 2m -S m =a m +1+a m +2+…+a 2m =a 1q m +a 2q m +…+a m q m =(a 1+a 2+…+a m )q m =S m ·q m .同理S 3m -S 2m =S m ·q 2m,…,在S m ≠0时,S m ,S 2m -S m ,S 3m -S 2m ,…,仍组成等比数列.2.若数列{a n }为项数为偶数的等比数列,且S 奇=a 1+a 3+a 5+…,S 偶=a 2+a 4+a 6+…,那么S 偶S 奇等于何值? 提示:由等比数列的通项公式可知S 偶S 奇=S 奇·q S 奇=q .(1)等比数列{a n }的前n 项和为S n ,S 2=7,S 6=91,则S 4为( ) A .28 B .32 C .21 D .28或-21(2)等比数列{a n }中,公比q =3,S 80=32,则a 2+a 4+a 6+…+a 80=________【导学号:91432229】思路探究:(1)由S 2,S 4-S 2,S 6-S 4成等比数列求解.(2)利用S 偶S 奇=q ,及S 2n =S 奇+S 偶求解. (1)A (2)24 [(1)∵{a n }为等比数列, ∴S 2,S 4-S 2,S 6-S 4也为等比数列, 即7,S 4-7,91-S 4成等比数列,∴(S 4-7)2=7(91-S 4),解得S 4=28或S 4=-21. ∵S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2=(a 1+a 2)(1+q 2)=S 2(1+q 2)>S 2,∴S 4=28. (2)设S 1=a 2+a 4+a 6+…+a 80,S 2=a 1+a 3+a 5+…+a 79.则S 1S 2=q =3,即S 1=3S 2.又S 1+S 2=S 80=32,∴43S 1=32,解得S 1=24.即a 2+a 4+a 6+…+a 80=24.]母题探究:1.(变条件)将例题(1)中的条件“S 2=7,S 6=91”改为“正数等比数列中S n =2,S 3n =14”求S 4n 的值.[解] 设S 2n =x ,S 4n =y ,则2,x -2,14-x ,y -14成等比数列,所以⎩⎪⎨⎪⎧x -2=-x ,-x2=x -y -,所以⎩⎪⎨⎪⎧x =6,y =30或⎩⎪⎨⎪⎧x =-4,y =-40(舍去),所以S 4n =30.2.(变条件变结论)将例题(2)中的条件“q =3,S 80=32”变为“项数为偶数的等比数列,它的偶数项之和是奇数项之和的12,又它的首项为12,且中间两项的和为3128”求此等比数列的项数.[解] 设等比数列为{a n },项数为2n ,一个项数为2n 的等比数列中,S 偶S 奇=q .则q =12, 又a n 和a n +1为中间两项,则a n +a n +1=3128,即a 1q n -1+a 1q n=3128,又a 1=12,q =12,∴12·⎝ ⎛⎭⎪⎫12n -1+12·⎝ ⎛⎭⎪⎫12n=3128⇒12·⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫1+12=3128⇒n =6. ∴项数为2n =12. 则此等比数列的项数为12.分组求和法已知数列{a n }构成一个新数列:a 1,(a 2-a 1),…,(a n -a n -1),…此数列是首项为1,公比为13的等比数列.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .思路探究:通过观察,不难发现,新数列的前n 项和恰为a n ,这样即可将问题转化为首项为1,公比为13的等比数列的前n 项和,数列{a n }的通项公式求出后,计算其前n 项和S n 就容易多了. [解] (1)a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+13+⎝ ⎛⎭⎪⎫132+…+⎝ ⎛⎭⎪⎫13n -1=32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n.(2)S n =a 1+a 2+a 3+…a n=32⎝ ⎛⎭⎪⎫1-13+32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫132+…+32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n=32n -34⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n=34(2n -1)+14⎝ ⎛⎭⎪⎫13n -1.2.求数列214,418,6116,…,2n +12n +1,…的前n 项和S n .【导学号:91432230】[解] S n =214+418+6116+…+⎝ ⎛⎭⎪⎫2n +12n +1=(2+4+6+…+2n )+⎝ ⎛⎭⎪⎫14+18+…+12n +1=n n +2+14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n1-12=n (n +1)+12-12n +1.[当 堂 达 标·固 双 基]1.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5等于( ) A .3∶4 B .2∶3 C .1∶2D .1∶3A [设S 5=2k (k ≠0),则S 10=k ,∴S 10-S 5=-k .由S 5,S 10-S 5,S 15-S 10成等比数列得S 15-S 10=12k ,于是S 15=32k ,∴S 15∶S 5=32k ∶2k =3∶4.]2.等比数列{a n }的公比为q (q ≠1),则数列a 3,a 6,a 9,…,a 3n ,…的前n 项和为( )【导学号:91432231】A.a 1-q 2n1-qB.a 1-q 3n1-q 3C.a 3-q 3n 1-q3D.a 2-q 2n1-qC [等比数列中,序号成等差数列,则项仍成等比数列,则a 3,a 6,…,a 3n 是等比数列,且首项为a 3,公比为a 6a 3=q 3,再用等比数列的前n 项和公式求解,即S n =a 3-q 3n1-q3,故答案为C 项.]3.(2018·全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. -63 [通解 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1; 当n =2时,a 1+a 2=2a 2+1,解得a 2=-2; 当n =3时,a 1+a 2+a 3=2a 3+1,解得a 3=-4; 当n =4时,a 1+a 2+a 3+a 4=2a 4+1,解得a 4=-8; 当n =5时,a 1+a 2+a 3+a 4+a 5=2a 5+1,解得a 5=-16; 当n =6时,a 1+a 2+a 3+a 4+a 5+a 6=2a 6+1,解得a 6=-32.所以S 6=-1-2-4-8-16-32=-63.优解 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1,当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2n -1,所以S 6=--261-2=-63.]4.数列12,12+14,12+14+18,…,12+14+…+12n 的前n 项和为________.【导学号:91432232】n -1+12n [通项a n =12+14+…+12n =12⎝⎛⎭⎪⎫1-12n 1-12n=1-12n∴前n 项和S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-14+…+⎝ ⎛⎭⎪⎫1-12n =n -⎝ ⎛⎭⎪⎫12+14+…+12n =n -1+12n .]5.设等比数列{a n }的前n 项和为S n ,已知S 4=2,S 8=6,求a 17+a 18+a 19+a 20的值. [解] 由等比数列前n 项和的性质,可知S 4,S 8-S 4,S 12-S 8,…,S 4n -S 4n -4,…成等比数列. 由题意可知上面数列的首项为S 4=2,公比为S 8-S 4S 4=2, 故S 4n -S 4n -4=2n(n ≥2),所以a 17+a 18+a 19+a 20=S 20-S 16=25=32.。
4.3 4.3.2 第二课时 数列求和[习题课]公开课
![4.3 4.3.2 第二课时 数列求和[习题课]公开课](https://img.taocdn.com/s3/m/bf895af3b9f67c1cfad6195f312b3169a451ea2c.png)
1.把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求
得其和.
2.裂项求和的几种常见类型:
(1)n(n1+k)=1kn1-n+1 k;
(2)
1 n+k+
n=1k
n+k-
n;
(3)(2n-1)1(2n+1)=122n1-1-2n1+1;
(4)若{an}是公差为 d 的等差数列,则ana1n+1=1da1n-an1+1.
(1)求数列{an},{bn}的通项公式; (2)记 cn=abnn,求数列{cn}的前 n 项和 Tn. 注:如果选择多个条件分别解答,按第一个解答计分.
[解] 选条件①: (1)∵a3=5,a2+a5=6b2,a1=b1,d=q,d>1, ∴a21a+1+2d5= d=5,6b1q=6a1d,解得ad1==21,或ad1==152265,(舍去),∴bq1==21,, ∴an=a1+(n-1)d=2n-1,bn=b1qn-1=2n-1.
第四
章
数列
4.3 等比数列 4.3.2 等比数列的前 n 项和公式
第二课时 数列求和(习题课)
分组转化法求和
[例 1] 已知数列{an}的前 n 项和 Sn=n2+2 n,n∈N *. (1)求数列{an}的通项公式; (2)设 bn=2an+(-1)nan,求数列{bn}的前 2n 项和.
[解] (1)当 n=1 时,a1=S1=1; 当 n≥2 时,an=Sn-Sn-1=n2+2 n-(n-1)2+2 (n-1)=n. a1=1 也满足 an=n,故数列{an}的通项公式为 an=n. (2)由(1)知 an=n,故 bn=2n+(-1)nn. 记数列{bn}的前 2n 项和为 T2n, 则 T2n=(21+22+…+22n)+(-1+2-3+4-…+2n). 记 A=21+22+…+22n,B=-1+2-3+4-…+2n, 则 A=2(11--222n)=22n+1-2, B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n. 故数列{bn}的前 2n 项和 T2n=A+B=22n+1+n-2.
人教版高中数学选择性必修第二册 等比数列的前n项和公式(第2课时) 分层作业(含解析)
![人教版高中数学选择性必修第二册 等比数列的前n项和公式(第2课时) 分层作业(含解析)](https://img.taocdn.com/s3/m/801aa23c001ca300a6c30c22590102020740f22c.png)
人教版高中数学选择性必修第二册等比数列的前n 项和公式(第2课时)分层作业(原卷版)(50分钟100分)基础对点练基础考点分组训练知识点1等比数列前n 项和的性质1.(5分)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则()A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n2.(5分)在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4等于()A .35B .53C .-35D .-533.(5分)等比数列{a n }共有2n 项,它的全部项的和是奇数项的和的3倍,则公比q =________.4.(5分)在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项的和S 15=________.知识点2分组求和5.(5分)数列12,12+14,12+14+18,…,12+14+…+12n 的前n 项和为()A .n +12nB .n -1+12nC .n -1+12n +1D .n +12n-16.(5分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则数列{c n }的前10项和为()A .978B .557C .467D .979知识点3等差数列与等比数列的综合问题7.(5分)已知数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=()A .1033B .1034C .2057D .20588.(5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a1=()A.2B.-2C.12D.-129.(5分)(多选)已知{a n}为等比数列,S n是其前n项和.若a2a3=8a1,且a4与2a5的等差中项为20,则()A.a1=-1B.公比q=-2C.a4=8D.S5=31能力提升练能力考点拓展提升10.(5分)等比数列{a n}的前n项和为S n,若S3=2,S6=18,则S10S5等于()A.-3B.5C.-31D.3311.(5分)设等比数列的前n项和、前2n项和、前3n项和分别为A,B,C,则() A.A+B=C B.B2=ACC.A+B-C=B2D.A2+B2=A(B+C)12.(5分)已知等比数列{a n}的前n项和S n=2n-1,则数列{log2a n}的前12项和等于() A.66B.55C.45D.613.(5分)已知{a n}是等比数列,若a1=1,a6=8a3,n项和为T n,则T5=() A.3116B.31C.158D.15414.(5分)在等比数列{a n}中,公比q=2,前n项和为S n,若S5=1,则S10=________.15.(5分)若等比数列{a n}的前n项和S n=2×3n+r,则r=________.16.(12分)已知等差数列{a n}(n∈N*)的前n项和为S n,且a3=5,S3=9.(1)求数列{a n}的通项公式;(2)等比数列{b n}(n∈N*),若b2=a2,b3=a5,求数列{a n+b n}的前n项和T n.17.(13分)已知数列{a n}是等比数列,S n是其前n项的和,a1,a7,a4成等差数列,求证:2S3,S6,S12-S6成等比数列.人教版高中数学选择性必修第二册等比数列的前n 项和公式(第2课时)分层作业(解析版)(50分钟100分)基础对点练基础考点分组训练知识点1等比数列前n 项和的性质1.(5分)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则()A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a nD解析:在等比数列{a n }中,S n =a 1-a n q 1-q =1-a n ×231-23=3-2a n .2.(5分)在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4等于()A .35B .53C .-35D .-53D解析:设等比数列{a n }的公比为q ,则a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=158,a 2a 3=a 21q 3=-98,∴1a 1+1a 2+1a 3+1a 4=+1q +1q 2+=q 3+q 2+q +1a 1q 3=a 1(q 3+q 2+q +1)a 21q3=158-98=-53.3.(5分)等比数列{a n }共有2n 项,它的全部项的和是奇数项的和的3倍,则公比q =________.2解析:设{a n }的公比为q ,由已知可得q ≠1,则奇数项也构成等比数列,其公比为q 2,首项为a 1,S 2n =a 1(1-q 2n )1-q ,S 奇=a 1[1-(q 2)n ]1-q2.由题意得a 1(1-q 2n )1-q =3a 1(1-q 2n )1-q 2,∴1+q =3,∴q =2.4.(5分)在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项的和S 15=________.11解析:∵S 3=1,S 6-S 3=-2,∴S 9-S 6=4,S 12-S 9=-8,S 15-S 12=16,∴S 15=S 3+S 6-S 3+S 9-S 6+S 12-S 9+S 15-S 12=1-2+4-8+16=11.知识点2分组求和5.(5分)数列12,12+14,12+14+18,…,12+14+…+12n 的前n 项和为()A .n +12nB .n -1+12nC .n -1+12n +1D .n +12n -1B解析:∵数列的通项a n =12+14+…+12n =21-12=1-12n ,∴前n 项和S n…=n +14+…=n -1+12n .6.(5分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则数列{c n }的前10项和为()A .978B .557C .467D .979A解析:设等比数列{a n }的公比为q ,等差数列{b n }的公差为d .∵c n =a n +bn 1+b 1=1,2+b 2=1,3+b 3=2,1=1,=-1,=2.∴c n =2n -1+(1-n ).∴{c n }的前10项和为1-2101-2+10×(0-9)2=978.知识点3等差数列与等比数列的综合问题7.(5分)已知数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=()A .1033B .1034C .2057D .2058A解析:∵a n =n +1,b n =2n -1,∴ab 1+ab 2+…+ab 10=a 1+a 2+a 4+…+a 29=(1+1)+(2+1)+(22+1)+…+(29+1)=10+(1+2+22+…+29)=10+1-2101-2=1033.8.(5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=()A .2B .-2C .12D .-12D解析:∵S 1,S 2,S 4成等比数列,∴S 22=S 1·S 4,∴(2a 1-1)2=a 1·(4a 1-6),∴a 1=-12.9.(5分)(多选)已知{a n }为等比数列,S n 是其前n 项和.若a 2a 3=8a 1,且a 4与2a 5的等差中项为20,则()A .a 1=-1B .公比q =-2C .a 4=8D .S 5=31CD解析:∵a 2a 3=8a 1,∴a 1q 3=8,即a 4=8.∵a 4+2a 5=40,∴a 4(1+2q )=40,∴q =2,a 1=1.∴S 5=1-251-2=31.能力提升练能力考点拓展提升10.(5分)等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于()A .-3B .5C .-31D .33D解析:设{a n }的公比为q ,∵S 3=a 1·(1-q 3)1-q =2,S 6=a 1·(1-q 6)1-q =18,∴1+q 3=9,∴q =2,∴S 10S 5=1-q 101-q5=1+q 5=33.11.(5分)设等比数列的前n 项和、前2n 项和、前3n 项和分别为A ,B ,C ,则()A .A +B =C B .B 2=ACC .A +B -C =B 2D .A 2+B 2=A(B +C)D解析:∵S n ,S 2n -S n ,S 3n -S 2n 成等比数列,∴(S 2n -S n )2=S n (S 3n -S 2n ),即(B -A)2=A(C -B),∴A 2+B 2=A(B +C).12.(5分)已知等比数列{a n }的前n 项和S n =2n -1,则数列{log 2a n }的前12项和等于()A .66B .55C .45D .6A解析:∵S n =2n -1,∴S n -1=2n -1-1(n ≥2),两式相减得a n =2n -1(n ≥2).又a 1=S 1=1,∴a n =2n -1.∴log 2a n =n -1.∴{log 2a n }是等差数列,首项为0,公差为1.∴前12项和为66.13.(5分)已知{a n }是等比数列,若a 1=1,a 6=8a 3,n 项和为T n ,则T 5=()A .3116B .31C .158D .154A解析:∵a 1=1,a 6=8a 3,∴q =2.1,公比为12,∴T 51-12=3116.14.(5分)在等比数列{a n }中,公比q =2,前n 项和为S n ,若S 5=1,则S 10=________.33解析:∵S 5=a 1(1-25)1-2=1,∴a 1=131.∴S 10=a 1(1-210)1-2=131×1023=33.15.(5分)若等比数列{a n }的前n 项和S n =2×3n +r ,则r =________.-2解析:∵S n =2×3n +r ,∴当n ≥2时,a n =S n -S n -1=2×3n -2×3n -1=4×3n -1.当n =1时,a 1=S 1=6+r .∵{a n }为等比数列,∴6+r =4.∴r =- 2.16.(12分)已知等差数列{a n }(n ∈N *)的前n 项和为S n ,且a 3=5,S 3=9.(1)求数列{a n }的通项公式;(2)等比数列{b n }(n ∈N *),若b 2=a 2,b 3=a 5,求数列{a n +b n }的前n 项和T n .解:(1)由S 3=9,得3a 2=9,所以a 2=3.又因为a 3=5,所以公差d =2.从而a n =a 2+(n -2)d =2n -1.(2)由(1)可得b 2=a 2=3,b 3=a 5=9,所以公比q =3.从而b n =b 2q n -2=3n -1,则a n +b n =(2n -1)+3n -1,分组求和可得T n =n 2+12(3n -1).17.(13分)已知数列{a n }是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6成等比数列.证明:∵a 1,a 7,a 4成等差数列,∴2a 7=a 1+a 4,∴2q 6=1+q 3,∴q 3=-12或q 3=1.若q 3=1,则2S 3=6a 1,S 6=6a 1,S 12-S 6=6a 1.∴2S 3,S 6,S 12-S 6成等比数列.若q 3=-12,则2S 3=3a 11-q ,S 6=34a 11-q ,S 12-S 6=316a 11-q .34a 11-q 2=3a 11-q ·316a 11-q ,即S 26=2S 3·(S 12-S 6),∴2S 3,S 6,S 12-S 6成等比数列.。
第2课时 等比数列前n项和的性质及应用
![第2课时 等比数列前n项和的性质及应用](https://img.taocdn.com/s3/m/0ad8653feffdc8d376eeaeaad1f34693dbef1056.png)
4.若等比数列{an}的公比为13,且 a1+a3+…+a99=60,则{an}的前 100 项 和为__8_0__.
解析 令X=a1+a3+…+a99=60, Y=a2+a4+…+a100, 则S100=X+Y, 由等比数列前 n 项和性质知XY=q=13, 所以Y=20,即S100=X+Y=80.
三、等比数列前n项和公式的实际应用
例3 《算法统宗》是中国古代数学名著,程大位著,共17卷,书中有
这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一
半,六朝才得到其关,要见次日行里数,请公仔细算相还.”大致意思
是:有一个人要到距离出发地378里的地方,第一天健步行走,从第二
天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.那
解析 设塔的顶层共有a1盏灯,则数列{an}是公比为2的等比数列, ∴S7=a111--227=381,解得 a1=3.
反思感悟 (1)解应用问题的核心是建立数学模型. (2)一般步骤:审题、抓住数量关系、建立数学模型. (3)注意问题是求什么(n,an,Sn).
随堂演练
1.设等比数列{an}的前n项和为Sn,若S10∶S5=1∶2,则S15∶S5等于
部杀死至少需要
A.6秒钟
B.7秒钟
√C.8秒钟
D.9秒钟
1234
解析 根据题意,每秒钟细菌杀死的病毒数成等比数列, 设需要n秒细菌可将病毒全部杀死, 则1+2+22+23+…+2n-1≥200, ∴11--22n≥200, ∴2n≥201,结合n∈N*,解得n≥8, 即至少需8秒细菌将病毒全部杀死.
解析 由SS奇偶=2,S 偶-S 奇=100 可知 S 偶=200,S 奇=100,故 S2n=300.
高中数学第一章数列3.2等比数列的前n项和第2课时数列求和习题课数学
![高中数学第一章数列3.2等比数列的前n项和第2课时数列求和习题课数学](https://img.taocdn.com/s3/m/93cd9cf37cd184254a3535dd.png)
第二十一页,共三十五页。
=1311--1331n-3nn+1 =12-2×1 3n-3nn+1, 所以 Sn=34-4×13n-1-2×n3n=34-24n×+33n .
12/9/2021
第二十二页,共三十五页。
规范解答
数列求和
(本题满分 12 分)已知数列{an}的前 n 项和 Sn=3n2+8n, {bn}是等差数列,且 an=bn+bn+1. (1)求数列{bn}的通项公式; (2)令 cn=((abn+n+12))n+n1,求数列{cn}的前 n 项和 Tn.
12/9/2021
第十六页,共三十五页。
【解】 (1)设{an}的公比为 q, 由题意知:a1(1+q)=6,a21q=a1q2. 又 an>0,解得:a1=2,q=2, 所以 an=2n.
12/9/2021
第十七页,共三十五页。
(2)由题意知:S2n+1=(2n+1)(2 b1+b2n+1)=(2n+1)·bn+1, 又 S2n+1=bnbn+1,bn+1≠0, 所以 bn=2n+1. 令 cn=bann,则 cn=2n2+n 1, 因此 Tn=c1+c2+…+cn=32+252+273+…+22nn--11+2n2+n 1, 又12Tn=232+253+274+…+2n2-n 1+22nn++11,
12/9/2021
第十五页,共三十五页。
错位相减法求和 已知{an}是各项均为正数的等比数列,且 a1+a2=6, a1a2=a3. (1)求数列{an}的通项公式; (2){bn}为各项非零的等差数列,其前 n 项和为 Sn.已知 S2n+1= bnbn+1,求数列bann的前 n 项和 Tn.
第二页,共三十五页。
【解】 (1)等比数列{bn}的公比 q=bb32=93=3, 所以 b1=bq2=1,b4=b3q=27. 设等差数列{an}的公差为 d. 因为 a1=b1=1,a14=b4=27, 所以 1+13d=27,即 d=2. 所以 an=2n-1(n=1,2,3,…).
人教A版高中数学选择性必修第二册 分层作业册精品课件 第四章 第2课时 等比数列前n项和的性质及应用
![人教A版高中数学选择性必修第二册 分层作业册精品课件 第四章 第2课时 等比数列前n项和的性质及应用](https://img.taocdn.com/s3/m/1f6ca1acbb0d4a7302768e9951e79b896802688e.png)
a1a2a3=-27,则a5=( D )
A.81
B.24
C.-81
D.-24
解析 由等比数列的性质可得a1a2a3= 23 =-27,解得a2=-3.设等比数列{an}
的公比为q,则S2n=3(a1+a3+…+a2n-1)=(q+1)(a1+a3+…+a2n-1),所以q=2,所以
为1,且4a5,a3,2a4成等差数列,则{an}的前6项和为( C )
A.31
31
B.32
63
C.32
D.63
解析 ∵4a5,a3,2a4成等差数列,
∴2a3=4a5+2a4,
又正项等比数列{an}的首项为1,
∴2q +q-1=0,解得
2
1
q= 或
2
q=-1(舍去),
6
1
1×[1-( ) ]
1 (1-6 )
10 -1
5 -1
10
q≠1,S10=
,S5= ,所以
1-
1-
5
10-1
31
1
1-
5
=q +1=32,解得 q=-2.
5
-1
1-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
=
6.[探究点二·2024黑龙江大庆校级高三模拟]已知正项等比数列{an}的首项
A级 必备知识基础练
1.[探究点一]在各项都为正数的等比数列{an}中,a1=3,前3项和S3=21,则
等比数列前n项和的性质及应用 第2课时
![等比数列前n项和的性质及应用 第2课时](https://img.taocdn.com/s3/m/15c660fd5022aaea998f0f92.png)
答案 设{an}的公比为q,则Sn,S2n-Sn,S3n-S2n都不为0,
Sn=a1+a2+…+an,
S2n-Sn=an+1+an+2+…+a2n =a1qn+a2qn+…+anqn=qnSn, S3n-S2n=a2n+1+a2n+2+…+a3n =an+1qn+an+2qn+…+a2nqn =qn(S2n-Sn), ∴Sn,S2n-Sn,S3n-S2n成等比数列,公比为qn.
例1 已知数列{an}的前n项和Sn=an-1(a是不为零且不等于 1的常数),
求证:数列{an}为等比数列.
证明 当n≥2时,an=Sn-Sn-1=(a-1)· an-1;
当n=1时,a1=a-1,满足上式, ∴an=(a-1)· an-1,n∈N*.
an+1 ∴ a =a, n
∴数列{an}是等比数列.
③
解答
命题角度2 不连续n项之和问题
例3
a1+a3+a5+a7 1 已知等比数列{an}的公比 q=-3,则 等于 a2+a4+a6+a8 1 B.-3 C.3 1 D.3
√
A.-3
解析 ∵a2+a4+a6+a8=a1q+a3q+a5q+a7q =q(a1+a3+a5+a7)
a1+a3+a5+a7 1 ∴ =q=-3. a2+a4+a6+a8
n 项和.
1 2 3 n 解 设 Sn=2+22+23+…+2n, n-1 1 1 2 n 则有2Sn=22+23+…+ 2n + n+1, 2 1 1 1 1 1 n 两式相减,得 Sn-2Sn=2+22+23+…+2n- n+1, 2 1 1 1 - n 2 2 1 1 n n 即2Sn= - n+1=1- n- n+1. 1 2 2 2 1-2 n+2 1 n ∴Sn=2- n-1-2n=2- 2n . 2
4.3.2.1等比数列的前n项和课件(人教版)
![4.3.2.1等比数列的前n项和课件(人教版)](https://img.taocdn.com/s3/m/1dba40a388eb172ded630b1c59eef8c75fbf95a4.png)
易错辨析 忽略对公比 q 的讨论致误 例 5 已知等比数列{an}中,a1=2,S3=6,a3=________. 解析:若 q=1,则 S3=3a1=6,符合题意,此时 a3=a1=2. 若 q≠1 时,则 S3=a111--qq3=211--qq3=6, 解得 q=-2,此时 a3=a1q2=2×(-2)2=8. 综上 a3 的值为 2 或 8. 答案:2 或 8
2.已知等比数列{an}的首项 a1=3,公比 q=2,则 S5 等于( ) A.93 B.-93 C.45 D.-45 解析:S5=a111--qq5=311--225=93.故选 A. 答案:A
3.已知等比数列{an}的前 n 项和为 Sn,若 S3=1,S6=9,则公 比 q=________.
(4)当 q≠-1 时,连续 m 项的和(如 Sm,S2m-Sm,S3m-S2m,…) 仍组成__等__比____数列(公比为__q_m_____,m≥2),注意:这连续 m 项
的和必须非零才能成立.
笔记小结 (1)当 q = -1 且 k 为偶数时,Sk,S2k -Sk,S3k -S2k,…不 是等比数列; (2)当 q≠ -1 时,或 q = -1 且 k 为奇数时,Sk,S2k -Sk, S3k -S2k,…是等比数列.
解 析 : S6 - S3 = a4 + a5 + a6 = (a1 + a2 + a3)q3 = S3·q3 = 1×q3 = 8.∴q=2.
答案:2
题型一 等比数列前 n 项和的基本运算 例 1 在等比数列{an}中, (1)S2=30,S3=155,求 Sn;
(2)a1+a3=10,a4+a6=54,求 S5; (3)a1+an=66,a2an-1=128,Sn=126,求 q.
高中数学第二章数列第5节等比数列的前n项和第2课时数列求和(习题课)课件新人教A版3必修5
![高中数学第二章数列第5节等比数列的前n项和第2课时数列求和(习题课)课件新人教A版3必修5](https://img.taocdn.com/s3/m/8100bb7dc4da50e2524de518964bcf84b9d52deb.png)
(2)cn=(3n-2)·2n-1, Tn=1·20+4·21+…+(3n-2)·2n-1, 2Tn=1·21+4·22+…+(3n-2)·2n, ∴-Tn=1+3×(21+22+…+2n-1)-(3n-2)·2n =1+6(2n-1-1)-(3n-2)·2n =(5-3n)·2n-5, Tn=(3n-5)·2n+5.
4n,
(x()x(2-x21n)+2+1)+2n. (x≠±1)
当一个数列本身既不是等差数列也不是等比数 列,但如果它的通项公式可以拆分为几项的和,而这 些项又构成等差数列或等比数列,那么就可以用分组 求和法,即原数列的前 n 项和等于拆分成的每个数列 前 n 项和的和.
讲一讲 3.等差数列an的前 n 项和为 Sn,已知 a1=10,a2 为整 数,且 Sn≤S4. (1)求an的通项公式; (2)设 bn=ana1n+1,求数列bn的前 n 项和 Tn.
[尝试解答] (1)由 a1=10,a2 为整数知:等差数列an 的公差 d 为整数.又 Sn≤S4,故 a4≥0,a5≤0;
和.形如 an=(-1)nf(n)类型,可采用两项合并求解.
2.本节课的难点和易错点是“错位相减法”和 “奇偶并项求和法”.如讲 2 和讲 4.
第 2 课时 数列求和(习题课)
[思考]
若数列 c 是公差为 n
d
的等差数列,数列bn
是公比为 q(q≠1)的等比数列,且 an=cn+bn,如何求数
列 a 的前 n 项和? n
名师指津:数列 a 的前 n 项和等于数列 c 和 b n
n
n
的前 n 项和的和.
=
1 3
+3×31211--313n1-1
-
(3n
高中数学北师大版(新)必修第一册 第四章 数 列 课件 第2课时 等比数列前n项和公式的应用
![高中数学北师大版(新)必修第一册 第四章 数 列 课件 第2课时 等比数列前n项和公式的应用](https://img.taocdn.com/s3/m/bfd71d1cc381e53a580216fc700abb68a982add9.png)
(3)自然数的和、平方和、立方和
nn+1 1+2+3+…+n=_______2______.
nn+12n+1 12+22+32+…+n2=_________6_________.
【评价自测】
1.判一判(正确的打“√”,错误的打“×”)
(1)如果已知等差数列的通项公式,则在求其前 n 项和时使用公式 Sn=na12+an
较为合理.( )
(2)如果数列{an}为等比数列,且公比不等于 1,则其前 n 项和 Sn=a11--aqn+1.(
)
(3)当 n≥2 时,n2-1 1=12n-1 1-n+1 1.(
答案:(1)56 (2)15
2+n (3)2- 2n
(4)20+2110
【题型探究】
题型一 分组求和法求和
例 1 已知数列{cn}:112,214,318,…,试求{cn}的前 n 项和. [解] 令{cn}的前 n 项和为 Sn, 则 Sn=112+214+318+…+n+12n =(1+2+3+…+n)+12+14+18+…+12n =nn+ 2 1+1211--1212n=nn+ 2 1+1-12n. 即数列{cn}的前 n 项和为 Sn=n2+2 n+1-12n.
nn+12 13+23+33+…+n3=______2_______.
知识点二 倒序相加法 如果一个数列{an}的前 n 项中与首末两端等“距离”的两项的和相等或 等于同一个常数,那么求这个数列的前 n 项和即可用___倒__序__相__加__法____, 如_等__差___数列的前 n 项和即是用此法推导的. 知识点三 错位相减法 如果一个数列的各项是由一个_等__差___数列和一个_等__比___数列的对应项 之_积__构成的,那么这个数列的前 n 项和即可用此法来求,如_等__比___数 列的前 n 项和就是用此法推导的.
等比数列的前n项和公式(第二课时)课件-高二上学期数学人教A版(2019)选择性必修第二册)
![等比数列的前n项和公式(第二课时)课件-高二上学期数学人教A版(2019)选择性必修第二册)](https://img.taocdn.com/s3/m/ec894769a9956bec0975f46527d3240c8447a1cd.png)
(1)若等比数列{an}的项数有2n项,则
(2)若等比数列{an}的项数有2n+1项,则
S奇=a1+a3+… + a2n-1 +a2n+1
=a1+(a3+… a2n-1 +a2n+1)
=a1+q(a2+a4+…+a2n)
课本P40
新知探究一:等比数列的前n项和公式的实际应用
例11 去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理,预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨. 为了确定处理生活垃圾的预算,请写出从今年起n年内通过填埋方式处理的垃圾总量的计算公式,并计算从今年起5年内通过填埋方式处理的垃圾总量 (精确到0.1万吨).
新知探究一:等比数列的前n项和公式的实际应用
12
课本P40
新知探究二:等比数列的前n项和公式的性质
➱பைடு நூலகம்
➱
当q≠1时,
即Sn是n的指数型函数.
当q=1时,Sn=na1,即Sn是n的正比例函数.
结构特点:qn的系数与常数项互为相反数.
【例】 数列{an}的前n项和Sn=3n-2.求{an}的通项公式, 并判断{an}是否是等比数列.
2、等比数列前n项和公式的推导:错位相减法;
20
新知探究一:等比数列的前n项和公式的实际应用
= 20 ( 1.05+1.052+…+1.05n ) -( 7.5+9+…+6+1.5n )
常用数列求和方法之分组求和法(1)求形如cn=an±bn的前n项和公式,其中{an}与{bn}是等差数列或等比数列;(2) 将等差数列和等比数列分开: Tn= c1 + c2 +… + cn = (a1 + a2 +… + an )± (b1 + b2 +… + bn )(3) 利用等差数列和等比数列前n项和公式来计算Tn.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、等比数列前n项和的应用
例2.如果一个等比数列的前5项的和等于10,前10项的和等于50,那么
它前15项的和等于多少?
思路一:
利用等比数列的前n项和公式
Sn
a1 1 q n 1 q
思路二: 利用等比数列的前n项和公式的变形 S n = A Aqn
思路三: 利用等比数列的前n项和公式的性质
中项式 前n项和公式
若m+n=k+s,则
am+an=ak+as
Sn
na1
2
an
na1
nn 1 d
2
若m+n=k+s,则
a m a n = a k a s
Sn
a1 1 qn 1 q
a1 anq q 1
1 q
二、等比数列前n项和的应用
例1.某商场今年销售计算机5000台.如果平均每年的销售量比上一年的销售
若Sn是等比数列{an}的前n项和,若连续m项的和不等于0, 则Sm,S2m-Sm,S3m-S2m,…仍组成等比数列,且公比为qm.
二、等比数列前n项和的应用
练习2.等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则(D )
A.A+B=C
B.B2=AC
C.(A+B)-C=B2
D.A2 +B2 =A(B+C)
注意: 找出基本量!!!
解得n≈5(年).
答:大约5年可以使总销售量达到30000台.
二、等比数列前n项和的应用
练习1:某企业去年产值是138万元,计划今后5年内每年比上一年产值
增长10%,这5年的总产值是多少?
提示:a1=138(1+10%)=151.8
答:这5年的总产值是1518(1.15-1)万元.
注 意:
对公比q的讨论!
[错解] 由等比数列的前 n 项和公式得 S3=a111--qq3=211--qq3=6,
∴1-q11-+qq+q2=3,∴1+q+q2=3,∴q2+q-2=0.∴q=-2 或 q=1(舍
去)∴a3=a1q2=2×(-2)2=8.
[正解] 若 q=1,则 S3=3a1=6,符合题意.此时,q=1,a3=a1=2. 若 q≠1,则由等比数列的前 n 项和公式,得 S3=a111--qq3=211--qq3=6, 解得 q=1(舍去)或 q=-2.此时,a3=a1q2=2×(-2)2=8.综上所述,q=1, a3=2 或 q=-2,a3=8.
二、等比数列前n项和的应用
练习4.若等比数列{an}的公比为,且a1+a3+a5+…+a99=60,求{an}的前100项和.
解: 令
X=Ya=1a+2a+3a+4a+05a+6……++aa19090=6
则Байду номын сангаасS100=X+Y 由等比数列的前n项和性质知
Y q1
X
3
∴Y=20
即 S100=X+Y=80
等比数列的前n项和
随堂巩固 1.已知Sn是等比数列{an}的前n项和,a5=-2,a8=16,则S6等于( A)
A.
B.
C.
D.
2.等比数列{an}中,公比q=-2,S5=44,则a1的值为( A )
A. 4
B. -4
C. 2 D. -2
等比数列的前n项和
随堂巩固
3.已知等比数列{an}的前n项和
等比数列的前n项和
课后作业
1.等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列. (1)求{an}的公比q; (2)若a1-a3=3,求Sn.
2.已知数列{an}为等差数列,且a3=5,a7=13. (1)求数列{an}的通项公式; (2)若数列{bn}满足an=log4bn,求数列{bn}的前n项和Tn.
量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保 留到个位)?
解:由题意知,从今年起,每年的销售量组成一个等比数列{an},其中
a1=5000,q=1+10%=1.1,Sn=30000
于是得到 5000 11.1n 30000 1 1.1
整理,得1.1n=1.6
人教A版 必修五
第二章 数列
2.5 等比数列的前n项和
第2课时 等比数列的前n项应用
等比数列 复习回顾
数列
等差数列
定义式
an+1-an=d
公差(比)
d 叫公差
等比数列
an1 q an
q叫公比
通项公式 一般形式
an= a1+(n-1)d an=am+(n-m)d
an=a1qn-1 an=amqn-m
二、等比数列前n项和的应用
例3.已知一个等比数列的首项为1,项数为偶数,奇数项的和为85,
偶数项的和为170,求此数列的公比和项数.
解:设该等比数列为{an}.公比为 q,项数为 n,由 题意得:
SS偶奇=aa1+2+aa3+4+……++aan-n 1=q=18750=2,∴q=2 Sn=a111--qqn=2n-1=85+170=255. ∴2n=256,∴n=8.
an=n+2 1.
(2)由(1)得 b1=1,b4=a15=15+ 2 1=8.设{bn}的公比为 q,则 q3=bb41=8,从而 q=2.故{bn}的前 n 项和 Tn=b111--qqn=1×1-1-22n=2n-1.
二、等比数列前n项和的应用
例5.已知等比数列{an}中,a1=2,S3=6,求a3和q.
二、等比数列前n项和的应用
练习5.已知等差数列{an}满足a3=2,前3项和S3=
9.
2
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b1=a1,b4=a15,求{bn}的前n项和Tn.
[解析] (1)设{an}的公差为 d,则由已知条件得 a1+2d=2,3a1+3×2 2d=92,
化简得 a1+2d=2,a1+d=32,解得 a1=1,d=12,故通项公式 an=1+n-2 1,即
则m=( C)
A. 3
B. 4
C. 5
D. 6
6.已知等比数列{an}中,a1+a3=10,前4项和为40.则数列{an}的通项 公式为 a1 n=3.n-
7.等比数列的公比为2,前4项之和等于10,则前8项之和等于 170 .
等比数列的前n项和 课后作业
6.已知Sn是等比数列{an}的前n项和,S3,S9,S6 成 等差数列,求证a2,a8,a5成等差数列.
二、等比数列前n项和的应用
练习3.等比数列{an}共2n项,其和为-240,且奇数项的和比偶数项的和大80,
求该数列的公比q.
解析: 由题意知 S 奇=S 偶+80, 则 S2n=S 偶+S 奇=2S 偶+80=-240, ∴S 偶=-160,则 S 奇=-80,∴q=SS偶 奇=--18600=2.
Sn
t 5n,2则 实1 数t的值为( 5
)
B
A.4 B.5 C.
D54.0
4.已知等比数列{an}的公比q = 12,且a1+a3+a5+…+a99=60,则
a1+a2+a3+a4+…+a100等于( B )
A.100 B.90 C.60 D.40
等比数列的前n项和 随堂巩固
5.设等比数列{an}的前n项和为Sn, 若Sm-1=5,Sm=-11,Sm+1=21,
二、等比数列前n项和的应用
例4.已知等差数列{an}和等比数列{bn}满足a1=b1=1,a2+a4=10,b2b4=
a5. (1)求{an}的通项公式; (2[解)求析和] :(1b)1设+等b差3+数b列5+{a…n}的 +公b2差n-为1. d.
因为 a2+a4=10,所以 2a1+4d=10, 解得 d=2,所以 an=2n-1. (2)设等比数列{bn}的公比为 q, 因为 b2b4=a5,所以 b1qb1q3=9, 解得 q2=3. 所以 b2n-1=b1q2n-2=3n-1. 从而 b1+b3+b5+…+b2n-1=1+3+32+…+3n-1=3n-2 1.