中考经典二次函数应用题(含答案)
中考二次函数应用题(及答案解析)
中考二次函数应用题(及答案解析)二次函数应用题1.如图,在某中学的一场篮球赛中,小明在距离篮圈中心7.3m(水平距离)远处跳起投篮,已知球出手时离地面209m,当篮球运行的水平距离为4m时达到离地面的最大高度4m.已知篮球在空中的运行路线为一条抛物线,篮圈中心距地面3m.(1)建立如图的平面直角坐标系,求篮球运行路线所在抛物线的函数表达式;(2)场边看球的小丽认为:小明投出的此球不能命中篮圈中心.①请通过计算说明小丽判断的正确性;②若球出手的角度和力度都不变,小明应该向前走或向后退多少米才能命中篮圈中心?(3)在球出手后,未达到最高点时,被防守队员拦截下来称为盖帽,但球到达最高点后,处于下落过程时,防守队员再出手拦截,属于犯规.在(1)的条件下,防守方球员小亮前来盖帽,已知小亮的最大摸球高度为3.19m,则他应在小明前面多少米范围处跳起拦截才能盖帽成功?2.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.3.某服装厂批发应季T恤衫,其单价y(元)与一次批发数量x(件)(x为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 4.罗平县小黄姜生产销售扶贫公司,2021年生产并销售小黄姜情况如图.该公司销售量与生产量相等,图中的折线ABD 、线段CD 分别表示该产品每千克生产成本1(y 单位:万元)、销售价2(y 单位:万元)与产量(x 单位:吨)之间的函数关系.(1)求该产品每千克生产成本1y 与x 之间的函数关系式;(2)当该产品产量为多少时,获得的利润最大?最大利润是多少?5.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,己知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个.(1)求出每月销售量y (个)与销售单价x (元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w (元)与销售单价x (元)之间的函数关系式;(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?6.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区一面靠长为9m 的墙,隔离区分成两个区域,中间用塑料膜隔开,已知整个隔离区塑料膜总长为24m ,如果隔离区出入口的大小不计,并且隔离区靠墙的面不能超过墙长,设垂直于墙的一边为m x ,隔离区面积为2m S .(1)求S关于x的函数表达式,并写出x的取值范围;(2)求隔离区面积的最大值.7.第二十四届冬季奥林匹克运动会将于2022年在北京举办,近些年来冰雪运动得到了蓬勃发展,一个滑雪者从山坡滑下,为了得出滑行距离s(单位:m)与滑行时间t(单位:s)之间的关系式,测得一组数据(如下表).滑行时间t/s01234滑行距离s/m0514274 4(1)为观察s与t之间的关系,建立坐标系,以t为横坐标,s为纵坐标.如图,描出表中数据对应的5个点,并用平滑的曲线连接它们;(2)观察图象,可以看出这条曲线像是我们学过的哪种函数图象的一部分?请你用该函数模型来近似地表示s与t之间的关系;(3)如果该滑雪者滑行了230m,请你用(2)中的函数模型推测他滑行的时间是多少秒.(2431849)8.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.(1)求每次下降的百分率.(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?(3)在(2)的条件下,若使商场每天的盈利达到最大值,则应涨价多少元?此时每天的最大盈利是多少?9.小亮创办了一个微店商铺,营销一款小型LED 护眼台灯,成本是20元/盏,在“双十一”前20天进行了网上销售后发现,该台灯的日销售量p (盏)与时间x (天)之间满足一次函数关系,且第1天销售了78盏,第2天销售了76盏.护眼台灯的销售价格y (元/盏)与时间x (天)之间符合函数关系式1254y x =+(120x ≤≤,且x 为整数). (1)求日销售量p (盏)与时间x (天)之间的函数关系式;(2)在这20天中,哪天的日销售利润最大?最大日销售利润是多少?(3)“双十一”当天,小亮采用如下促销方式:销售价格比前20天中最高日销售价格降低a 元;日销售量比前20天最高日销售量提高了7a 盏;日销售利润比前20天中的最大日销售利润多了30元,求a 的值.(注:销售利润=售价-成本).10.为了优化人居环境、提升城市品质,某小区准备在空地上新建一个边长为8m 的正方形花坛;如图,该花坛由4块全等的小正方形组成.在小正方形ABCD 中,O 为对称中心,点E 、F 分别在AB 、AD 上,AE =AF ,G 、H 分别为BE 、DF 的中点.(1)设m AE x =,请用x 的代数式表示四边形OHFG 的面积S (单位:2m );(2)已知:小正方形ABCD 中,在△AFG 、四边形OHFG 内分别种植不同的花卉,每平方米的种植成本分别是80元、60元;其余部分种植草坪,每平方米的种植成本为95元.若另外的3块正方形区域也按相同方式种植,问:在这个花坛内种植花卉和草坪至少需要花费多少元?【参考答案】二次函数应用题1.(1)21(4)49y x =--+(2)①小丽的判断是正确的;②小明应向前走0.3m 才能命中篮圈中心(3)1.3米【解析】【分析】(1)由题意可知,抛物线的顶点坐标为(4,4),球出手时的坐标为20(0)9,,设抛物线的解析式为2(4)4y a x =-+,由待定系数法求解即可;(2) ①求得当x = 7.3时的函数值,与3比较即可说明小丽判断的正确性;②由题意可知出手的角度和力度都不变,小明向前走或向后退时,相当于抛物线的左右平移,故可设抛物线的解析式为21(4)49y x m =--++,将(7.3, 3)代入求得m 的值,根据抛物线左右平移时左加右减的特点,可得答案;(3)将y =3.19代入函数的解析式求得x 的值,进而得出答案.(1)解:由题意可知,抛物线的顶点坐标为(4,4),球出手时的坐标为20(0)9,, 设抛物线的解析式为2(4)4y a x =-+, 将20(0)9,代入2(4)4y a x =-+,得:201649a =+, 解得:19a =-, ∴抛物线的解析式为21(4)49y x =--+; (2)解:①抛物线的解析式为21(4)49y x =--+, ∴当x = 7.3时,21(7.34)4 2.799y =--+=, 2.793≠,∴小丽的判断是正确的; ②出手的角度和力度都不变,∴设抛物线的解析式为21(4)49y x m =--++, 将(7.3, 3)代入21(4)49y x m =--++,得:213(7.34)49m =--++, 解得:10.3m =-,2 6.3m =-(舍去),∴小明应向前走0.3m 才能命中篮圈中心;(3) 解:抛物线的解析式为21(4)49y x =--+, ∴当y = 3.19时,213.19(4)49x =--+,解得:1 1.3x =,2 6.7x =(不符合实际,要想盖帽,必须在篮球下降前盖帽,否则无效), ∴小亮应在小明前面1.3米范围处跳起拦截才能盖帽成功.【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握二次函数的性质是解题的关键.2.(1)10元/千克(2)2244w x x =-+(515x ≤≤,且x 为正整数)最大值是242元,最小值为170元(3)106 107 108【解析】【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:2340244350x x a ≤-++≤,由二次函数的对称性可知x 的取值为9,10,11,12,13,从而计算可得a 值.(1)解:根据题意得342524x --=(), 解得10x =.答:该日瓯柑的单价是10元/千克;(2)解:根据题意得222342524422212112121124]2[w x x x x x x x =--=-+=--+-=--+()()(),由题意得515x ≤≤,且x 为正整数,∵20-< ,∴11x =时,w 有最大值是242元,∵11-5=6,15-11=4,抛物线开口向下,∴5x =时,w 有最小值是22511242170--+=()元;则w 关于x 的函数表达式为:23425244[]w x x x x =--=-+()(515x ≤≤,且x 为正整数);(3)解:由题意得2340244350x x a ≤-++≤,∵只有5种不同的单价使日收入不少于340元,5为奇数,∴由二次函数的对称性可知,x 的取值为9,10,11,12,13当9x =或13时,2244234x x -+=;当10x =或12时,2244240x x -+=,当11x =时,2244242x x -+=.∵补贴后不超过350元,234+106=340,242+108=350,∴当106a =或107或108时符合题意.答:所有符合题意的a 值为:106,107,108.【点睛】本题主要考查二次函数的应用.得到每天可售出的千克数是解决本题的突破点;本题需注意x 的取值应为整数.解题的关键是熟练掌握待定系数法求函数解析式、根据销售额的相等关系列出函数解析式及二次函数的性质.3.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.4.(1)()()10.2600904290130x x y x ⎧-+≤≤⎪=⎨≤≤⎪⎩ (2)当该产品产量为75kg 时,获得的利润最大,最大值为2250.【解析】【分析】(1)根据线段AB ,线段CD 经过的两点的坐标利用待定系数法确定一次函数的表达式即可得;(2)设2y 与x 之间的函数关系式为222y k x b =+,用待定系数法得()20.61200130y x x =-+≤≤, 设产量为xkg 时,获得的利润为W 元,利用二次函数的性质即可得.(1)解:设线段AB 所表示的1y 与x 之间的函数关系式为111y k x b =+,111y k x b =+的图象过点()0,60与()90,42,111609042b k b =⎧∴⎨+=⎩, 解得:110.260k b =-⎧⎨=⎩. ∴线段AB 所表示的一次函数的表达式为;()10.260090y x x =-+≤≤;当90130x ≤≤时,线段BD 的解析式为:()14290130y x =≤≤.∴每千克生产成本1y 与x 之间的函数关系式为:()()10.2600904290130x x y x ⎧-+≤≤⎪=⎨≤≤⎪⎩. (2)解:设2y 与x 之间的函数关系式为222y k x b =+,经过点()0,120与()130,42,22212013042b k b =⎧∴⎨+=⎩, 解得:220.6120k b =-⎧⎨=⎩, ∴线段CD 所表示的一次函数的表达式为()20.61200130y x x =-+≤≤;设产量为xkg 时,获得的利润为W 元,①当090x ≤≤时,()()20.61200.2600.4(75)2250W x x x x ⎡⎤=-+--+=--+⎣⎦,∴当75x =时,W 的值最大,最大值为2250;②当90130x ≤≤时,()20.6120420.6(65)2535W x x x ⎡⎤=-+-=--+⎣⎦, ∴当90x =时,20.6(9065)25352160W =--+=,由0.60-<知,当65x >时,W 随x 的增大而减小,90130x ∴≤≤时,2160W ≤,因此当该产品产量为75kg 时,获得的利润最大,最大值为2250.【点睛】本题考查了一次函数,分段函数,二次函数,,解题的关键是理解题意,掌握一次函数的性质,分段函数和二次函数的性质.5.(1)10500y x =-+(2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元.【解析】【分析】(1)根据“销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个”可得函数解析式;(2)由(1)及题意可进行求解;(3)由题意可得10500200207x x -+≥⎧⎨-≥⎩,然后根据(2)及二次函数的性质可进行求解. (1)解:由题意得:()250102510500y x x =--=-+;(2)解:由(1)及题意得:()()220105001070010000w x x x x =--+=-+-;(3)解:由题意可得10500200207x x -+≥⎧⎨-≥⎩, 解得:2730x ≤≤,由(2)可知21070010000w x x =-+-,∵100-<,即开口向下,对称轴为直线352b x a=-=, ∴当2730x ≤≤时,w 随x 的增大而增大,∴当x =30时,所获利润最大,最大利润为1090070030100002000w =-⨯+⨯-=; 答:销售单价定为30元时,所获利润最大,最大利润是2000元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数中的销售问题是解题的关键. 6.(1)2324S x x =-+,x 的取值范围:5≤x <8(2)45m 2【解析】【分析】(1)垂直于墙的一边为x m ,则隔离区的另一边为(24-3x )m ,根据面积公式即可得到解析式,由24392430x x -≤⎧⎨->⎩即可得到x 的取值范围; (2)先将S 关于x 的函数表达式化为顶点式,即23(4)48S x =--+,求最值即可.(1)垂直于墙的一边为x m ,则隔离区的另一边为(24-3x )m ,∴S=x(24﹣3x),化简得2324S x x=-+根据题意,得不等式组2439 2430xx-≤⎧⎨->⎩解得:5≤x<8,∴S关于x的函数解析式为:2324S x x=-+,x的取值范围:5≤x<8(2)2324S x x=-+23(4)48S x=--+∵该抛物线开口向下,对称轴为直线x=4,∴当5≤x<8时,S随x的增大而减小,当x=5时,S的值最大,最大值=45答:隔离区面积最大值为45m2.【点睛】本题考查了二次函数在实际问题中的应用,涉及二次函数的性质、解一元一次不等式组,准确理解题意是解题的关键.7.(1)图见解析(2)二次函数,223s t t=+.(3)10秒【解析】【分析】(1)描点,连线,画出函数图象;(2)由图象可得出s与t的关系可近似看成二次函数,再根据点的坐标利用待定系数法求出二次函数关系式即可;(3)把s=230m代入即可求出t的值.(1)描点,连线,如图所示.(2)观察函数图象,s 与t 的关系可近似看成二次函数,设s 关于t 的函数关系式为s =at 2+bt ,将(1,5)(2,14)代入s =at 2+bt ,得54214a b a b +=⎧⎨+=⎩, 解得:23a b =⎧⎨=⎩, ∴近似地表示s 关于t 的函数关系式为223s t t =+.(3)当s =230,代入s =223t t +得230=223t t +解得t 1=10,t 2=-11.5(舍去)∴滑行的时间是10秒.【点睛】本题考查了二次函数的应用,根据点的坐标利用待定系数法求出二次函数关系式是解题的关键.8.(1)每次下降的百分率为20%;(2)每千克应涨价5元;(3)应涨价7.5元,此时每天的最大盈利是6125元.【解析】【分析】(1)设每次下降的百分率是x ,找出等量条件列方程求解即可;(2)设每千克应涨价a 元,利润为W ,找出等量条件列方程求解即可;(3)根据(2)中的()()=1050020W a a +-,求二次函数的最值即可.(1)解:设每次下降的百分率是x ,则由题意列方程得:()2501=32x -解之得:1=1.8x (舍去),1=0.2x ,故每次下降的百分率是20%;(2)解:设每千克应涨价a 元,利润为W ,则由题意列方程得: ()()=1050020W a a +-令(10)(50020)=6000W a a =+-,解方程得:5a =或10a =,∵要尽快减少库存,∴取5a =,即每千克应涨价5元;(3)解:由(2)可得()22(10)(50020)=203005000=207.56125W a a a a a =+--++--+,当3007.52(20)a =-=⨯-时,W 取最大值为6125元, ∴应涨价7.5元,此时每天的最大盈利是6125元.【点睛】本题考查一元二次方程的实际应用:增长率问题,二次函数的实际应用:销售问题,解该类题的关键是找出等量条件列方程求解,将销售问题中的最大利润问题转化成求二次函数最值问题.9.(1)日销售量p (盏)与时间x (天)之间函数关系为p-x 280(2)当x =10时,销售利润最大,w 最大=450元(3)a 的值为6【解析】【分析】(1)利用待定系数法求解设该台灯的日销售量p (盏)与时间x (天)之间满足一次函数关系为p kx b =+,代入数据得:k+b=782=76k b ⎧⎨+⎩,解方程组即可; (2)设日销售利润用w 表示,根据日销售利润=(售价-成本)×销量,列函数关系w x x 128025204然后配方为顶点式即可;(3)根据函数的性质p-x 280,k =-2<0,y 随x 的增大而减小,x =1时,p 最大=-218078盏,小亮采用如下促销方式:日销售量为(78+7a ),根据1254y x =+,k =104>,y 随x 的增大而二增大,x =20时y 最大=12025=304⨯+元/盏,得出小亮采用如下促销方式:销售价格为(30-a )元/盏,利用销量×每盏台灯的利润=450+30,列方程即可.(1)解:设该台灯的日销售量p (盏)与时间x (天)之间满足一次函数关系为p kx b =+,代入数据得:k+b=782=76k b ⎧⎨+⎩, 解得:k=-2=80b ⎧⎨⎩, ∴日销售量p (盏)与时间x (天)之间函数关系为p-x 280;(2)解:设日销售利润用w 表示,w x x 128025204 x x21104002 x 21104502,当x =10时,销售利润最大,w 最大=450元;(3)∵p -x 280,k =-2<0,y 随x 的增大而减小,∴x =1时,p 最大=-218078盏,小亮采用如下促销方式:日销售量为(78+7a ), ∵1254y x =+,k =104>,y 随x 的增大而二增大,x =20时y 最大=12025=304⨯+元/盏, ∴小亮采用如下促销方式:销售价格为(30-a )元/盏, 根据题意:a a302078745030, 整理得a +a-2783000, 解得125067a a ==-,(舍去), ∴a 的值为6.【点睛】本题考查待定系数法求一次函数解析式及其性质,二次函数性质在销售中的应用,一元二次方程在销售中的应用,掌握待定系数法求一次函数解析式及其性质,二次函数性质在销售中的应用,一元二次方程在销售中的应用是解题关键.10.(1)21=44S x -+ (2)5475元【解析】【分析】(1)分别计算出AGF 和四边形AGOH 的面积即可得到答案;(2)首先计算出正方形ABCD 中种草坪部分的面积,再根据题意可用x 表示出总共的花费,最后根据二次函数的性质即得出答案.(1)解:∵AE x =,4AB =∴4BE x =-, ∴122EG BG x ==-, ∴112222AG AE EG x x x =+=+-=+, ∴2111()224122AGF AG A S F x x x x =⋅=⨯=++. ∵O 为对称中心,∴O 到AD 的距离等于O 到AB 的距离等于422=, ∴1=22242AGO AHO AGO AGOH S S G x S S A +==⋅⋅⨯+=四边形 ∴2211=4()444A OH GF AG S S x Sx x x -=+-+=-+四边形; (2)解:在正方形ABCD 中,种植草坪的面积为221144()(4)1244AGF ABCD S S x S x x x --=⨯-+--+=-正方形, ∴在正方形ABCD 中,需要费用为2221180()60(4)95(12)515138044x x x x x x ++-++-=-+, ∴在这个花坛内种植花卉和草坪需要花费2224(5151380)2060552020(3)5475x x x x x -+=-+=-+.∴当3x =时,在这个大正方形花坛内种植花卉和草坪所需的总费用最低,为5475元.【点睛】本题考查了二次函数的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出等式.。
2024年中考数学《二次函数的实际应用》真题含解析版
二次函数的实际应用(21题)一、单选题1(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t20≤t≤6.有下列结论:①小球从抛出到落地需要6 s;②小球运动中的高度可以是30 m;③小球运动2 s时的高度小于运动5 s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【分析】本题考查二次函数的图像和性质,令�=0解方程即可判断①;配方成顶点式即可判断②;把t=2和t=5代入计算即可判断③.【详解】解:令�=0,则30t-5t2=0,解得:t1=0,t2=6,∴小球从抛出到落地需要6 s,故①正确;∵�=30t-5t2=-5x-32+45,∴最大高度为45m,∴小球运动中的高度可以是30 m,故②正确;当t=2时,�=30×2-5×22=40;当t=5时,�=30×5-5×52=25;∴小球运动2 s时的高度大于运动5 s时的高度,故③错误;故选C.2(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt△ABC中,∠BAC=90°,AB=12,动点E,F同时从点A出发,分别沿射线AB和射线AC的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接EF,以EF为边向下做正方形EFGH,设点E运动的路程为x0<x<12,正方形EFGH和等腰Rt△ABC重合部分的面积为下列图像能反映y与x之间函数关系的是()A. B.C. D.【答案】A 【分析】本题考查动态问题与函数图象,能够明确y 与x 分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当HG 与BC 重合时,及当x ≤4时图象的走势,和当x >4时图象的走势即可得到答案.【详解】解:当HG 与BC 重合时,设AE =x ,由题可得:∴EF =EH =2x ,BE =12-x ,在Rt △EHB 中,由勾股定理可得:BE 2=BH 2+EH 2,∴2x 2+2x 2=12-x 2,∴x =4,∴当0<x ≤4时,y =2x 2=2x 2,∵2>0,∴图象为开口向上的抛物线的一部分,当HG 在BC 下方时,设AE =x ,由题可得:∴EF =2x ,BE =12-x ,∵∠AEF =∠B =45°,∠A =∠EOB =90°,∴△FAE ∽△EOB ,∴AE EF =EO EB ,∴x 2x=EO 12-x ,∴EO =12-x 2,∴当4<x <12时,y =2x ·12-x 2=12-x x =-x 2+12x ,∵-1<0,∴图象为开口向下的抛物线的一部分,综上所述:A 正确,故选:A .3(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,AB =6cm ,BC =8cm ,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =23cm ,∠E =60°,现将菱形EFGH 以1cm/s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD重叠部分的面积S cm 2 与运动时间t s 之间的函数关系图象大致是()A. B.C. D.【答案】D 【分析】本题考查了解直角三角形的应用,菱形的性质,动点问题的函数图象,二次函数的图象的性质,先求得菱形的面积为63,进而分三种情形讨论,重合部分为三角形,重合部分为五边形,重合部分为菱形,分别求得面积与运动时间的函数关系式,结合选项,即可求解.【详解】解:如图所示,设EG ,HF 交于点O ,∵菱形EFGH ,∠E =60°,∴HG =GF又∵∠E =60°,∴△HFG 是等边三角形,∵EF =23cm ,∠HEF =60°,∴∠OEF =30°∴EG =2EO =2×EF cos30°=3EF =6∴S 菱形EFG H =12EG ⋅FH =12×6×23=63当0≤x ≤3时,重合部分为△MNG ,如图所示,依题意,△MNG 为等边三角形,运动时间为t ,则NG =t cos30°=233t ,∴S =12×NG ×NG ×sin60°=34233t 2=33t 2当3<x≤6时,如图所示,依题意,EM=EG-t=6-t,则EK=EMsin60°=6-t32=2336-t∴S△EKJ=12EJ⋅EM=12×2336-t2=336-t2∴S=S菱形EFGH-S△EKJ=6-336-t2=-33t2+43t-123+6∵EG=6<BC∴当6<x≤8时,S=63当8<x≤11时,同理可得,S=6-33t-82当11<x≤14时,同理可得,S=336-t-82=3314-t2综上所述,当0≤x≤3时,函数图象为开口向上的一段抛物线,当3<x≤6时,函数图象为开口向下的一段抛物线,当6<x≤8时,函数图象为一条线段,当8<x≤11时,函数图象为开口向下的一段抛物线,当11<x≤14时,函数图象为开口向上的一段抛物线;故选:D.二、填空题4(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是74m ,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .【答案】353【分析】本题考查的是二次函数的实际应用,设抛物线为y =a x -5 2+4,把点0,74,代入即可求出解析式;当y =0时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:y =a x -5 2+4,把点0,74 代入得:25a +4=74,解得:a =-9100,∴抛物线解析式为:y =-9100x -5 2+4;当y =0时,-9100x -5 2+4=0,解得,x 1=-53(舍去),x 2=353,即此次实心球被推出的水平距离OM 为353m .故答案为:3535(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系y =-0.02x 2+0.3x +1.6的图象,点B 6,2.68 在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD =4m ,高DE =1.8m 的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当x =2时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵CD =4m ,B 6,2.68 ,∴6-4=2,在y =-0.02x 2+0.3x +1.6中,当x =2时,y =-0.02×22+0.3×2+1.6=2.12,∵2.12>1.8,∴可判定货车能完全停到车棚内,故答案为:能.6(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.三、解答题7(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L 1与缆索L 2均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离OC =100m ,AO =BC =17m ,缆索L 1的最低点P 到FF 的距离PD =2m (桥塔的粗细忽略不计)(1)求缆索L 1所在抛物线的函数表达式;(2)点E 在缆索L 2上,EF ⊥FF ,且EF =2.6m ,FO <OD ,求FO 的长.【答案】(1)y =3500x -50 2+2;(2)FO 的长为40m .【分析】本题考查了二次函数的应用,待定系数法求二次函数解析式,根据题意求得函数解析式是解题的关键.(1)根据题意设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入求解即可;(2)根据轴对称的性质得到缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,由EF =2.6m ,把y =2.6代入求得x 1=-40,x 2=-60,据此求解即可.【详解】(1)解:由题意得顶点P 的坐标为50,2 ,点A 的坐标为0,17 ,设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入得17=a 0-50 2+2,解得a =3500,∴缆索L 1所在抛物线的函数表达式为y =3500x -50 2+2;(2)解:∵缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,∴缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,∵EF =2.6,∴把y =2.6代入得,2.6=3500x +50 2+2,解得x 1=-40,x 2=-60,∴FO=40m或FO=60m,∵FO<OD,∴FO的长为40m.8(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为Scm2.(1)求y与x,s与x的关系式.(2)围成的矩形花圃面积能否为750cm2,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.【答案】(1)y=80-2x19≤x<40;s=-2x2+80x(2)能,x=25(3)s的最大值为800,此时x=20【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据AB+BC+CD=80可求出y与x之间的关系,根据墙的长度可确定x的范围;根据面积公式可确立二次函数关系式;(2)令s=750,得一元二次方程,判断此方程有解,再解方程即可;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【详解】(1)解:∵篱笆长80m,∴AB+BC+CD=80,∵AB=CD=x,BC=y,∴x+y+x=80,∴y=80-2x∵墙长42m,∴0<80-2x≤42,解得,19≤x<40,∴y=80-2x19≤x<40;又矩形面积s=BC⋅AB=y⋅x=80-2xx=-2x2+80x;(2)解:令s=750,则-2x2+80x=750,整理得:x2-40x+375=0,此时,Δ=b 2-4ac =-40 2-4×375=1600-1500=100>0,所以,一元二次方程x 2-40x +375=0有两个不相等的实数根,∴围成的矩形花圃面积能为750cm 2;∴x =--40 ±1002,∴x 1=25,x 2=15,∵19≤x <40,∴x =25;(3)解:s =-2x 2+80x =-2x -20 2+800∵-2<0,∴s 有最大值,又19≤x <40,∴当x =20时,s 取得最大值,此时s =800,即当x =20时,s 的最大值为8009(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度h m 满足关系式h =-5t 2+v 0t ,其中t s 是物体运动的时间,v 0m/s 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后s 时离地面的高度最大(用含v 0的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【答案】(1)v 010(2)20m/s (3)小明的说法不正确,理由见解析【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可;(2)把t =v 010,h =20代入h =-5t 2+v 0t 求解即可;(3)由(2),得h =-5t 2+20t ,把h =15代入,求出t 的值,即可作出判断.【详解】(1)解:h =-5t 2+v 0t=-5t -v 010 2+v 0220,∴当t =v 010时,h 最大,故答案为:v 010;(2)解:根据题意,得当t =v 010时,h =20,∴-5×v 0102+v 0×v 010=20,∴v 0=20m/s (负值舍去);(3)解:小明的说法不正确.理由如下:由(2),得h =-5t 2+20t ,当h =15时,15=-5t 2+20t ,解方程,得t 1=1,t 2=3,∴两次间隔的时间为3-1=2s ,∴小明的说法不正确.10(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线y =ax 2+x 和直线y =-12x +b .其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①a =-115,b =8.1;②8.4km (2)-227<a <0【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将9,3.6 代入即可求解;②将y =-115x 2+x 变为y =-115x -152 2+154,即可确定顶点坐标,得出y =2.4km ,进而求得当y =2.4km 时,对应的x 的值,然后进行比较再计算即可;(2)若火箭落地点与发射点的水平距离为15km ,求得a =-227,即可求解.【详解】(1)解:①∵火箭第二级的引发点的高度为3.6km∴抛物线y=ax2+x和直线y=-12x+b均经过点9,3.6∴3.6=81a+9,3.6=-12×9+b解得a=-115,b=8.1.②由①知,y=-12x+8.1,y=-115x2+x∴y=-115x2+x=-115x-1522+154∴最大值y=154km当y=154-1.35=2.4km时,则-115x2+x=2.4解得x1=12,x2=3又∵x=9时,y=3.6>2.4∴当y=2.4km时,则-12x+8.1=2.4解得x=11.44-3=8.4km∴这两个位置之间的距离8.4km.(2)解:当水平距离超过15km时,火箭第二级的引发点为9,81a+9,将9,81a+9,15,0代入y=-12x+b,得81a+9=-12×9+b,0=-12×15+b解得b=7.5,a=-2 27∴-227<a<0.11(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),求y关于x的函数表达式并求出y的最大值.【答案】(1)猪肉粽每盒50元,豆沙粽每盒30元(2)y=-10x2+1200x-35000或y=-10x-602+1000,当x=60时,y取得最大值为1000元【分析】本题考查列分式方程解应用题和二次函数求最值,解决本题的关键是正确寻找本题的等量关系及二次函数配方求最值问题.(1)设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元.根据“用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同”即可列出方程,求解并检验即可;(2)根据题意可列出y关于x的函数解析式,再根据二次函数的性质即可解答.【详解】(1)解:设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元由题意得:5000n+20=3000n解得:n=30经检验:n=30是原方程的解且符合题意∴n+20=50答:猪肉粽每盒50元,豆沙粽每盒30元.(2)解:设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),则y=x-50180-10x-52=-10x2+1200x-35000=-10x-602+1000∵52≤x≤70,-10<0,∴当x=60时,y取得最大值为1000元.12(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元⋯1214161820⋯销售量y/盒⋯5652484440⋯(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.【答案】(1)y=-2x+80(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w元,根据利润=单件利润×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w元,根据利润=单件利润×销售量-m×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y与x的函数表达式为y=kx+b,把x=12,y=56;x=20,y=40代入,得12k+b=56 20k+b=40 ,解得k =-2b =80 ,∴y 与x 的函数表达式为y =-2x +80;(2)解:设日销售利润为w 元,根据题意,得w =x -10 ⋅y=x -10 -2x +80=-2x 2+100x -800=-2x -25 2+450,∴当x =25时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;(3)解:设日销售利润为w 元,根据题意,得w =x -10-m ⋅y=x -10-m -2x +80=-2x 2+100+2m x -800-80m ,∴当x =-100+2m 2×-2=50+m 2时,w 有最大值为-250+m 2 2+100+2m 50+m 2 -800-80m ,∵糖果日销售获得的最大利润为392元,∴-250+m 22+100+2m 50+m 2 -800-80m =392,化简得m 2-60m +116=0解得m 1=2,m 2=58当m =58时,x =-b 2a=54,则每盒的利润为:54-10-58<0,舍去,∴m 的值为2.13(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润×销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,w =5-x -2 100+50x=-50x 2+50x +300=-50x-122+312.5,∵-50<0,∴当x=12时,w有最大值,最大值为312.5,∴5-x=4.5,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.14(2024·四川遂宁·中考真题)某酒店有A、B两种客房、其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【答案】(1)A种客房每间定价为200元,B种客房每间定价为为120元;(2)当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【分析】(1)设A种客房每间定价为x元,B种客房每间定价为为y元,根据题意,列出方程组即可求解;(2)设A种客房每间定价为a元,根据题意,列出W与a的二次函数解析式,根据二次函数的性质即可求解;本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键.【详解】(1)解:设A种客房每间定价为x元,B种客房每间定价为为y元,由题意可得,24x+20y=7200 10x+10y=3200,解得x=200 y=120 ,答:A种客房每间定价为200元,B种客房每间定价为为120元;(2)解:设A种客房每间定价为a元,则W=24-a-200 10a=-110a2+44a=-110a-2202+4840,∵-110<0,∴当a=220时,W取最大值,W最大值=4840元,答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.15(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A类特产的售价为60元/件,B类特产的售价为72元/件(2)y=10x+60(0≤x≤10)(3)A类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,1 根据题意设每件A类特产的售价为x元,则每件B类特产的售价为132-x元,进一步得到关于x的一元一次方程求解即可;2 根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;3 结合(2)中A类特产降价x元与每天的销售量y件,得到A类特产的利润,同时求得B类特产的利润,整理得到关于x的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A类特产的售价为x元,则每件B类特产的售价为132-x元.根据题意得3x+5132-x=540.解得x=60.则每件B类特产的售价132-60=72(元).答:A类特产的售价为60元/件,B类特产的售价为72元/件.(2)由题意得y=10x+60∵A类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴0≤x≤10.答:y=10x+60(0≤x≤10).(3)w=(60-50-x)(10x+60)+100×(72-60)=-10x2+40x+1800=-10(x-2)2+1840.∵-10<0,∴当x=2时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【答案】任务1:y=-13x+703;任务2:w=-2x2+72x+3360(x>10);任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有70-x-y人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有70-x-y人,∵“正”服装总件数和“风”服装相等,∴70-x-y×1=2y,整理得:y=-13x+703;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,∴w=2y×24+70-x-y×48+x100-2x-10,整理得:w=-16x+1120+-32x+2240+-2x2+120x∴w=-2x2+72x+3360(x>10)任务3:由任务2得w=-2x2+72x+3360=-2x-182+4008,∴当x=18时,获得最大利润,y=-13×18+703=523,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,y=533,不符合题意;当x=19时,y=513=17,符合题意;∴70-x-y=34,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.17(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?【答案】(1)y=-25x2+20x+12000,每辆轮椅降价20元时,每天的利润最大,为12240元(2)这天售出了64辆轮椅【分析】本题考查二次函数的实际应用,正确的列出函数关系式,是解题的关键:(1)根据总利润等于单件利润乘以销量,列出二次函数关系式,再根据二次函数的性质求最值即可;(2)令y=12160,得到关于x的一元二次方程,进行求解即可.【详解】(1)解:由题意,得:y=200-x60+x10×4=-25x2+20x+12000;∵每辆轮椅的利润不低于180元,∴200-x≥180,∴x≤20,∵y=-25x2+20x+12000=-25x-252+12250,∴当x<25时,y随x的增大而增大,∴当x=20时,每天的利润最大,为-25×20-252+12250=12240元;答:每辆轮椅降价20元时,每天的利润最大,为12240元;(2)当y=12160时,-25x2+20x+12000=12160,解得:x1=10,x2=40(不合题意,舍去);∴60+1010×4=64(辆);答:这天售出了64辆轮椅.18(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数y=ax2+bx a<0刻画,斜坡可以用一次函数y=14x刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如下表:x012m4567⋯y07261528152n72⋯(1)①m =,n =;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系y =-5t 2+vt .①小球飞行的最大高度为米;②求v 的值.【答案】(1)①3,6;②152,158;(2)①8,②v =410【分析】本题主要考查二次函数的应用以及从图象和表格中获取数据,(1)①由抛物线的顶点坐标为4,8 可建立过于a ,b 的二元一次方程组,求出a ,b 的值即可;②联立两函数解析式求解,可求出交点A 的坐标;(2)①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v 值.【详解】(1)解:①根据小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律表可知:抛物线顶点坐标为4,8 ,∴-b 2a =4-b 24a =8 ,解得:a =-12b =4 ,∴二次函数解析式为y =-12x 2+4x ,当y =152时,-12x 2+4x =152,解得:x =3或x =5(舍去),∴m =3,当x =6时,n =y =-12×62+4×6=6,故答案为:3,6.②联立得:y =-12x 2+4x y =14x ,解得:x =0y =0 或x =152y =158,∴点A 的坐标是152,158,(2)①由题干可知小球飞行最大高度为8米,故答案为:8;②y =-5t 2+vt =-5t -v 10 2+v 220,则v 220=8,解得v =410(负值舍去).19(2024·江苏苏州·中考真题)如图,△ABC 中,AC =BC ,∠ACB =90°,A -2,0 ,C 6,0 ,反比例函数y =k xk ≠0,x >0 的图象与AB 交于点D m ,4 ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数y =k xk ≠0,x >0 图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM ∥AB ,交y 轴于点M ,过点P 作PN ∥x 轴,交BC 于点N ,连接MN ,求△PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)m =2,k =8(2)S △PMN 最大值是92,此时P 3,83【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM =QP ,设点P 的坐标为t ,8t ,2<t <6 ,则可求出S △PMN =12⋅6-t ⋅t ,然后利用二次函数的性质求解即可.【详解】(1)解:∵A -2,0 ,C 6,0 ,∴AC =8.又∵AC =BC ,∴BC =8.∵∠ACB =90°,∴点B 6,8 .设直线AB 的函数表达式为y =ax +b ,将A -2,0 ,B 6,8 代入y =ax +b ,得-2a +b =06a +b =8 ,。
中考二次函数应用题(含答案解析)
中考二次函数应用题(含答案解析)二次函数应用题1.某商场销售一种小商品,进货价为8元/件,当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为x(元/件)(10x≥的整数),每天销售利润为y(元).(1)求y与x的函数关系式,并写出x的取值范围;(2)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润y的取值范围.2.某地在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为: y81620712x x xx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如表:x123456789101112z191817161514131211101010(1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?3.某商场购进一种每件成本为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;(3)疫情期间,有关部门规定每件商品的利润率不得超过30%,那么将售价定为多少,来保证每天获得的总利润最大,最大总利润是多少?(利润率=利润÷成本×100%)(4)疫情过后,有关部门规定每件商品的利润率不得超过50%,每销售一件商品便向某慈善机构捐赠a 元(10≤a ≤25),捐赠后发现,该商品每天销售的总利润仍随着售价的增大而增大.请直接写出a 的取值范围.4.北京冬奥会上,由于中国冰雪健儿们的发挥出色,中国金牌总数位列第三,向世界证明了中国是冰雪运动强国!青蛙公主谷爱凌发挥出色一人斩获两金一银.在数学上,我们不妨约定:在平面直角坐标系中,将点()2,1P 称为“爱凌点”,经过点()2,1P 的函数,称为“爱凌函数”.(1)若点()34,r s r s ++是“爱凌点”,关于x 的数2y x x t =-+都是“爱凌函数”,则r =_____,s =_____,t =_____.(2)若关于x 的函数y kx b =+和my x=都是“爱凌函数”,且两个函数图象有且只有一个交点,求k 的值.(3)如图,点()11,C x y 、()22,D x y 是抛物线232y x x =-+上两点,其中D 在第四象限,C 在第一象限对称轴右侧,直线AC 、AD 分别交y 轴于F 、E 两点: ①求点E ,F 的坐标;(用含1x ,2x 的代数式表示);②若1OE OF ⋅=,试判断经过C 、D 两点的一次函数()0y kx b k =+≠是否为“爱凌函数”,并说明理由.5.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A ,B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同. (1)求A ,B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台,设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润,求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少6.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y (件)与每件销售价x (元)的关系数据如下: x 30 32 34 36 y40363228(1)已知y 与x 满足一次函数关系,根据上表,求出y 与x 之间的关系式(不写出自变量x 的取值范围);(2)设该商店每天销售这种商品所获利润为w (元),求出w 与x 之间的关系式,并求出每件商品销售价定为多少元时利润最大?7.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 8.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆; (2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?9.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,己知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个. (1)求出每月销售量y (个)与销售单价x (元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w (元)与销售单价x (元)之间的函数关(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?10.如图,用长30米的竹篱笆围成一个矩形菜园,其中一面靠墙,墙长10米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x 米,菜园的面积为S 平方米.(1)直接写出S 与x 的函数关系式; (2)若菜园的面积为96平方米,求x 的值;(3)若在墙的对面再开一个宽为a (0<a <3)米的门,且面积S 的最大值为124平方米,直接写出a 的值.【参考答案】二次函数应用题1.(1)2102801600y x x =-+- (10x ≥的整数) (2)200360y ≤≤ 【解析】 【分析】(1)销售单价为x 元/件时,每件的利润为(8)x -元,此时销量为[10010(10)]x --,由此计算每天的利润y 即可;(2)首先求出利润不超过100%时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可. (1)解:(1)根据题意得: (8)[10010(10)]y x x =--- 整理,得 2102801600y x x =-+-(10x ≥的整数) (2)解:∵每件小商品的利润不超过100%,∴8100%8x -⨯≤, ∴16x ≤,∵每天进货总成本不超过800元, ∴[100(10)10]8800x --⨯⨯≤, ∴10x ≥, ∴1016x ≤≤,∵2210280160010(14)360y x x x =-+-=--+, 当14x =时,有360y =最大值当10x =时,有210(1014)360200y =-⨯-+=最小值,∴小商品每天销售利润y 的取值范围是:200360y ≤≤ 【点睛】本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键.2.(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数 (2)()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数 (3)当6x =时,w 有最大值为196. 【解析】 【分析】(1)观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =,则z 与x 的关系式可得;(2)分三种情况:当16x 时,当79x ≤≤时,当1020x ≤≤时,分别写出w 关于x 的函数关系式并化简,则可得答案;(3)分别写出当16x 时,当78x 时,当912x 时的函数最大值,然后比较取最大值即可. (1)解:观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =. z ∴与x 的关系式为:()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数; (2)解:当16x 时,2(20)(8)12160w x x x x =-++=-++; 当79x ≤≤时,2(20)(20)40400w x x x x =-+-+=-+; 当1020x ≤≤时,10(20)10200w x x =-+=-+;w ∴与x 的关系式为:()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)解:当16x 时,212160w x x =-++2(6)196x =--+,6x ∴=时,w 有最大值为196;当79x ≤≤时,2240400(20)w x x x =-+=-,w 随x 增大而减小,7x ∴=时,w 有最大值为169;当1020x ≤≤时,10200w x =-+,w 随x 增大而减小,10x ∴=时,w 有最大值为100;100169196<<,6x ∴=时,w 有最大值为196.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系正确列式并分段计算是解题的关键.3.(1)180(100180)y x x =-+<≤ (2)228018000(100180)W x x x =-+-<≤(3)将售价定为130元,每天获得的总利润最大,最大总利润是1500元 (4)2025a ≤≤ 【解析】 【分析】(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,利用待定系数法可求出其解析式,再求出x 的取值范围即可;(2)根据利润=(售价-单价)×销售量,即可得出答案;(3)根据题意可求出x 的取值范围,再根据二次函数的性质,即可得出答案;(4)根据题意可求出x 的取值范围和W 与x 、a 的关系式,再将其配方,根据该商品每天销售的总利润仍随着售价的增大而增,即可得出关于a 的不等式,解出a 的解集即可得出答案. (1)解:设y 与x 之间的函数关系式为(0)y kx b k =+≠, 根据图象可知点(130,50)和点(150,30)在y kx b =+的图象上,∴5013030150k b k b =+⎧⎨=+⎩, 解得:1180k b =-⎧⎨=⎩.∴180y x =-+. 令0y =,则1800x -+=, 解得:180x =,∴y 与x 之间的函数关系式为180(100180)y x x =-+<≤; (2)根据题意可得2(100)(100)(180)28018000W x y x x x x =-=--+=-+-,即每天的利润W 与销售单价x 之间的函数关系式为228018000(100180)W x x x =-+-<≤; (3)根据题意可得:10030%100x -≤, 解得:130x ≤. ∴100130x <≤.∵2228018000(140)1600W x x x =-+-=--+, ∴当130x =时,W 有最大值,且2max (130140)16001500W =--+=(元).故将售价定为130元,每天获得的总利润最大,最大总利润是1500元; (4)根据题意可知10050%100x -≤ 解得:150x ≤.22228018000(180)(140)40160024a a W x x a x x a ⎡⎤=-+---+=--++-+⎢⎥⎣⎦.∵该商品每天销售的总利润仍随着售价的增大而增大, ∴1401502a+≥, 解得:20a ≥. ∵1025a ≤≤, ∴2025a ≤≤. 【点睛】本题考查一次函数与二次函数的实际应用.根据题意找到等量关系,列出等式是解题关键.4.(1)2;-1;-1;(2)12k =-;(3)①()20,2E x -+;()10,2F x -+;②经过C 、D 两点的一次函数y =kx +b (k ≠0)是“爱凌函数”;理由见解析 【解析】 【分析】(1)根据已知条件,代入求解即可;(2)首先用待定系数法求出反比例函数解析式,然后应用一元二次方程根的判别式求出k 的值;(3)首先根据前提条件推出x 1与x 2的关系,然后利用C ,D 坐标用x 1和x 2表示出直线斜率kCD ,进一步代入点C 或者点D 的坐标,表示出截距b ,然后将坐标(2,1)代入一次函数,和前面的结论比较是否符合条件. (1)解:∵(3r +4s ,r +s )为“爱凌点”,∴3421r s r s ⎧⎨⎩+=+=, 解得:21r s ⎧⎨-⎩==,将(2,1)代入y =x 2−x +t 得:2122t =-+,解得t =−1. 故答案为:2;-1;-1. (2)将(2,1)分别代入y =kx +b 与y =mx中, 得1212k bm =+⎧⎪⎨=⎪⎩,即122b k m =-⎧⎨=⎩,∵两个函数图象有且只有一个交点,∴kx +1−2k =2x只有一个根,即:kx 2+(1−2k )x −2=0, Δ=(1−2k )2+8k =0, ∴k =−12. (3)①令x 2−3x +2=0,得:11x =,x 2=2, ∴A (1,0),B (2,0), ∵C 、D 两点在抛物线上,∴C (x 1,x 12−3x 1+2),D (x 2,22232x x -+),设AD 的函数关系式为:11AD y k x b =+,则11212122032k b k x b x x +=⎧⎨+=-+⎩, 解得:121222k x b x =-⎧⎨=-+⎩,∴()()2222AD y x x x =-+-+, 令x =0,则22y x =-+,∴()202E x -+,, 设AC 的函数关系式为:22AC y k x b =+,则22221211032k b k x b x x +=⎧⎨+=-+⎩, 解得:212122k x b x =-⎧⎨=-+⎩,∴()()1122AC y x x x =-+-+, 令x =0,则12y x =-+,∴()102F x -+,; ②y =kx +b 是“爱凌函数”,理由如下: ∵若OE •OF =1,∴21221x x -+-+=, ∴(2−x 2)(x 1−2)−1=0, ∴2x 1−x 1x 2+2x 2−5=0,∵一次函数y =kx +b 经过C 、D 两点,∴211122223232kx b x x kx b x x ⎧+=-+⎨+=-+⎩, 解得:121232k x x b x x =+-⎧⎨=-⎩,∴CD 的关系式为:y =(x 1+x 2−3)x +2−x 1x 2, 将(2,1)代入得: 2(x 1+x 2−3)+2−x 1x 2=1,即2x 1−x 1x 2+2x 2−5=0,与前提条件OE•OF =1所得出的结论一致, ∴经过C ,D 的一次函数y =kx +b 是“爱凌函数”. 【点睛】本题考查一次函数、反比例函数和二次函数相关知识点,将结论与前提条件进行比较,整个题目涉及的未知数比较多,计算过程中需要仔细.5.(1)A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元 (2)①B 型汽车的最低售价为414万元/台,②A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元 【解析】 【分析】(1)设未知数,用未知数分别表示A 型汽车、B 型汽车的进价,然后根据花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同列分式方程求解即可.(2)①用利润公式:利润=(售价-进价)×数量,分别表示出A 、B 型汽车利润,然后列不等式求解即可;②B 型号的汽车售价为t 万元/台,然后将两车的总利润相加得出一个二次函数,求二次函数的最值即可. (1)解:设B 型汽车的进货单价为x 万元,根据题意,得: 502x +=40x, 解得x =8,经检验x =8是原分式方程的根, 8+2=10(万元),答:A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元; (2)设B 型号的汽车售价为t 万元/台,则A 型汽车的售价为(t +1)万元/台, ①根据题意,得:(t +1﹣10)[﹣(t +1)+18]≥(t ﹣8)(﹣t +14), 解得:t ≥414,∴t 的最小值为414,即B 型汽车的最低售价为414万元/台, 答:B 型汽车的最低售价为414万元/台; ②根据题意,得:w =(t +1﹣10)[﹣(t +1)+18]+(t ﹣8)(﹣t +14) =﹣2t 2+48t ﹣265 =﹣2(t ﹣12)2+23,∵﹣2<0,当t =12时,w 有最大值为23.答:A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元. 【点睛】本题考查了分式方程的应用,不等式的应用,二次函数的应用,理清数量关系,明确等量关系是解题关键. 6.(1)2100y x =-+(2)221603000w x x =-+-,当销售单价为40元时获得利润最大 【解析】 【分析】(1)待定系数法求解一次函数解析式即可;(2)根据题意得210()(3)00w x x +--=,计算求出满足要求的解即可. (1)解:设该函数的表达式为y kx b =+,根据题意,得30403236k b k b +=⎧⎨+=⎩解得2100k b =-⎧⎨=⎩∴y 与x 之间的关系式为2100y x =-+. (2)解:根据题意,得210()(3)00w x x +--= 221603000x x =-+-224020(0)x =--+∵20a =-<∴当40x =时,w 的值最大∴当销售单价为40元时,获得利润最大. 【点睛】本题考查了一次函数的应用,二次函数的应用,二次函数的图象与性质.解题的关键在于熟练掌握一次函数与二次函数的知识. 7.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.8.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元【解析】【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可.(1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=, ∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =,当7x =时,5777W =,∵57785777>,∴6x =时,W 最大,最大利润为5778元.【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 9.(1)10500y x =-+(2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元.【解析】【分析】(1)根据“销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个”可得函数解析式;(2)由(1)及题意可进行求解;(3)由题意可得10500200207x x -+≥⎧⎨-≥⎩,然后根据(2)及二次函数的性质可进行求解. (1)解:由题意得:()250102510500y x x =--=-+;(2)解:由(1)及题意得:()()220105001070010000w x x x x =--+=-+-;(3)解:由题意可得10500200207x x -+≥⎧⎨-≥⎩, 解得:2730x ≤≤,由(2)可知21070010000w x x =-+-,∵100-<,即开口向下,对称轴为直线352b x a=-=, ∴当2730x ≤≤时,w 随x 的增大而增大,∴当x =30时,所获利润最大,最大利润为1090070030100002000w =-⨯+⨯-=;答:销售单价定为30元时,所获利润最大,最大利润是2000元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数中的销售问题是解题的关键.10.(1)S=﹣2x2+32x(2)12(3)2.8【解析】【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=96代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(32-2x+a)m,根据矩形的面积公式即可求解.(1)根据题意得,S=(30﹣2x+2)x=﹣2x2+32x;(2)当S=96时,即96=﹣2x2+32x,解得:x1=12,x2=4,∵墙长10米,∴30﹣8+2=25>10,∴x的值为12;(3)∵S=(30﹣2x+a+2)x=﹣2x2+(32+a)x,∵32﹣2x+a≤10,则x≥12a+11,∵面积取得最大值为S=124,∴﹣2x2+(32+a)x=124,把x=12a+11代入,得﹣2(12a+11)2+(32+a)(12a+11)=124,解得a=2.8.答:a的值为2.8.【点睛】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.。
二次函数综合应用题(有答案)中考23题必练经典
二次函数综合应用题一、求利润的最值1.(2010·武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
当每个房间每天的房价每增加10元时,就会有一个房间空闲。
宾馆需对游客居住的每个房间每天支出20元的各种费用。
根据规定,每个房间每天的房价不得高于340元。
设每个房间的房价每天增加x 元(x 为10的正整数倍)。
(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围; (2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。
(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000;(3) W= -101x 2+34x +8000= -101(x -170)2+10890,当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。
答:一天订住34个房间时,宾馆每天利润最大,最大利润是10880元。
2.(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?解:(1)(且为整数); (2).,当时,有最大值2402.5. ,且为整数,当时,,(元),当时,,(元)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当时,,解得:. 当时,,当时,.当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).3.(2008·武汉)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。
二次函数综合应用题(有答案)中考题必练经典(学有余力的看)
函数综合应用题题目分析及题目对学生的要求1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。
需要注意的是:(1) 不能忘记写自变量的取值范围(需要用的前提下)(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。
2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。
(一般式化为定点式)最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。
(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。
3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。
推荐思路:画出不等式左右两边的图象,结合函数图象求出x 的取值范围。
备选思路一:先将不等号看做等号,求出x 的取值,再结合图象考虑将等号还原为不等号后x 的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。
这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。
一、求利润的最值1. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
当每个房间每天的房价每增加10元时,就会有一个房间空闲。
宾馆需对游客居住的每个房间每天支出20元的各种费用。
根据规定,每个房间每天的房价不得高于340元。
设每个房间的房价每天增加x 元(x 为10的正整数倍)。
(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。
(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890, 当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。
中考数学总复习《二次函数的实际应用》专项测试卷带答案
中考数学总复习《二次函数的实际应用》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是( )A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点A(3,32的坐标是.3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE=6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是;当2≤t≤3时,w的取值范围是.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B的坐标.(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务三还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.请根据活动过程完成任务一、任务二和任务三.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y随x的增大而增大时,求x的取值范围.Ⅱ.若关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解,求t的取值范围.Ⅲ.若在函数图象上有点P,Q(P与Q不重合).P的横坐标为m,Q的横坐标为-m+1.小明对P,Q之间(含P,Q两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m的变化而变化时,直接写出m的取值范围.参考答案【A层·基础过关】1.(2024·遵义红花岗一模)如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是(D)A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.(2024·青海中考改编)在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点A(3,32)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点的坐标是(74,4916).3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE= 6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是46.4m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是0≤w≤5;当2≤t≤3时,w的取值范围是5≤w≤20.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.【解析】设该果商定价x万元时每天的“利润”为w万元w=(x-2)[100+50(5-x)]=-50(x-4.5)2+312.5∵-50<0∴w随x的增大而减小∴当x=4.5时,w有最大值,最大值为312.5万元.答:该果商定价为4.5万元时才能使每天的“利润”或“销售收入”最大,其最大值为312.5万元.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【解析】(1)设每盒猪肉粽的进价为x元,每盒豆沙粽的进价为y元由题意得{x-y=10x+2y=100,解得{x=40 y=30∴每盒猪肉粽的进价为40元,每盒豆沙粽的进价为30元;(2)w=(a-40)[100-2(a-50)]=-2(a-70)2+1 800,∵-2<0,∴当a=70时,w有最大值,最大值为1 800元.∴该商家每天销售猪肉粽获得的最大利润为1 800元.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.【解析】(1)由题意,根据抛物线过原点,设抛物线解析式为y =ax 2+bx 把x =2,y =0.88和x =6,y =2.16代入y =ax 2+bx 得:{4a +2b =0.8836a +6b =2.16解得{a =-0.02b =0.48∴抛物线解析式为y =-0.02x 2+0.48x. (2)由题意,当x =8时,y =-0.02×82+0.48×8=2.56. ∵2.56>2.3∴喷水头喷出的水柱能越过这棵树. (3)∵喷水头喷出的水柱能够越过这棵树 ∴当x =8时,y >2.3 即-0.04×82+8b >2.3 ∴b >243400∵喷水头喷出的水柱不会浇到墙外 ∴当x =18时,y <2.2 即-0.04×182+18b <2.2,∴b <379450抛物线对称轴为x =-b2×(-0.04)=b2×0.04∵喷水头喷出的水柱能够越过这棵树,且不会浇到墙外 ∴对称轴所在直线在围墙与喷水头中点的左侧. ∴b 2×0.04<182=9,∴b <1825.∴243400<b <1825.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值. 【解析】(1)当0≤t ≤10时,设y 2=kt ∵(10,40)在其图像上,∴10k =40,∴k =4 ∴y 2与t 的函数关系式为y 2=4t ; 当10≤t ≤30时,设y 2=mt +n 将(10,40),(30,60)代入得{10m +n =4030m +n =60,解得{m =1n =30∴y 2与t 的函数关系式为y 2=t +30综上所述,y 2与t 的函数关系式为y 2={4t (0≤t ≤10且为整数)t +30(10<t ≤30且为整数);(2)依题意得y =y 1+y 2,当0≤t ≤10时,y =-15t 2+6t +4t =-15t 2+10t =-15(t -25)2+125,∴t =10时,y最大=80;当10<t ≤30时,y =-15t 2+6t +t +30=-15t 2+7t +30=-15(t -352)2+3654∵t 为整数,∴t =17或18时,y 最大=91.2∵91.2>80,∴当t =17或18时,日销售总量y 达到最大,最大值为91.2百件.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B 的坐标. (2)若运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由. 【解析】∵运动员在空中最高处A 点的坐标为(34,916),∴A 点为抛物线的顶点,∴设该抛物线的解析式为y =a (x -34)2+916∵该抛物线经过点(0,0),∴916a =-916∴a =-1∴抛物线的解析式为y =-(x -34)2+916=-x 2+32x. ∵跳水运动员在10米跳台上进行跳水训练 ∴令y =-10,则-x 2+32x =-10∴x =4或x =-52,∴B (4,-10);(2)该运动员此次跳水不会失误,理由:∵运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,点E 的坐标为(-1,-10),∴运动员在空中调整好入水姿势时的点的横坐标为3当x=3时,y=-32+3×32=-92∴运动员距水面高度为10-92=5.5(米)∵5.5>5,∴该运动员此次跳水不会失误.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.三请根据活动过程完成任务一、任务二和任务三.【解析】任务一:∵AB∥x轴,AB=5 cm,点B为水流抛物线的顶点,∴抛物线的对称轴为x=5.∴-b=5.∴b=-10a.2a把点M(15,0)代入抛物线y=ax2+bx+15得:15a+b+1=0把b=-10a代入15a+b+1=0 得:15a-10a+1=0,解得a=-1,∴b=25x2+2x+15.∴水流抛物线的函数表达式为y=-15任务二:圆柱形水杯最左端到点O的距离是15-3=12,当x=12时×122+2×12+15=10.2,∵11>10.2y=-15∴水流不能流到圆柱形水杯内.任务三:2+3√5<OP<8+3√5.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程ax 2+bx +3-t =0(t 为实数),在0<x <4时无解,求t 的取值范围. Ⅲ.若在函数图象上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为-m +1.小明对P ,Q 之间(含P ,Q 两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m 的变化而变化时,直接写出m 的取值范围. 【解析】(1)∵x =-2<0 ∴将x =-2,y =1代入y =kx +3 得-2k +3=1,解得k =1. ∵x =2>0,x =3>0∴将x =2,y =3,x =3,y =6代入 y =ax 2+bx +3得{4a +2b +3=39a +3b +3=6,解得{a =1b =-2. (2)Ⅰ.∵k =1,a =1,b =-2∴一次函数解析式为y =x +3,二次函数解析式为y =x 2-2x +3. 当x >0时,y =x 2-2x +3,对称轴为直线x =1,开口向上 ∴当x ≥1时,y 随x 的增大而增大; 当x ≤0时,y =x +3,k =1>0∴当x ≤0时,y 随x 的增大而增大. 综上,x 的取值范围为x ≤0或x ≥1.Ⅱ.∵ax 2+bx +3-t =0∴ax 2+bx +3=t 在0<x <4时无解∴问题转化为抛物线y =x 2-2x +3与直线y =t 在0<x <4时无交点.∵对于y=x2-2x+3,当x=1时,y=2∴顶点为(1,2),如图:∴当t=2时,抛物线y=x2-2x+3与直线y=t在0<x<4时正好有一个交点;当t<2时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点.当x=4时,y=16-8+3=11∴当t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点∴当t<2或t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点即当t<2或t≥11时,关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解.Ⅲ.∵x P=m,x Q=-m+1∴m+(-m+1)2=1 2∴点P,Q关于直线x=12对称.当x=1时,y最小值=1-2+3=2,当x=0时,y最大值=3.∵图象对应函数的最大值与最小值均不随m的变化而变化,而当x=2时,y=3,当x=-1时,y=2∴①当m>12时,如图:由题意得{-1≤-m+1≤01≤m≤2∴1≤m≤2;时,如图:②当m<12由题意得{-1≤m≤01≤-m+1≤2∴-1≤m≤0.综上,-1≤m≤0或1≤m≤2.。
中考二次函数应用题(及答案解析)
中考二次函数应用题(及答案解析)二次函数应用题1.如图1,足球场上守门员李伟在O 处抛出一高球,球从离地面1m 处的点A 飞出,其飞行的最大高度是4m ,最高处距离飞出点的水平距离是6m ,且飞行的路线是抛物线的一部分.以点O 为坐标原点,竖直向上的方向为y 轴的正方向,球飞行的水平方向为x 轴的正方向建立坐标系,并把球看成一个点(参考数据:取437≈,265≈)(1)求足球的飞行高度(m)y 与飞行水平距离(m)x 之间的函数关系式; (2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(3)若对方一名1.7m 的队员在距落点3m C 的点H 处,跃起0.3m 进行拦截,则这名队员能拦到球吗?(4)如图2,在(2)的情况下,若球落地后又一次弹起,据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半,那么足球弹起后,会弹出多远?2.东东在网上销售一种成本为30元/件的T 恤衫.销售过程中的其他各种费用(不再含T 恤衫成本)总计50(百元).若销售价格为x (元/件).销售量为y (百件).当4060x ≤≤时,y 与x 之间满足一次函数关系.且当40x =时,6y =,有关销售量y (百件)与销售价格x (元/件)的相关信息如下: 销售量y (百件) _____________ 240y x =销售价格x (元/件)4060x ≤≤6080x ≤≤(1)求当4060x ≤≤时.y 与x 的函数关系式:(2)①求销售这种T 恤衫的纯利润w (百元)与销售价格x (元/件)的函数关系式; ②销售价格定为每件多少元时.获得的利润最大?最大利润是多少?3.因为疫情,体育中考中考生进入考点需检测体温.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下: 时间x (分钟) 0 123456789915x <≤人数y (人)0 170 320 450 560 650 720 770 800 810 810(1)研究表中数据发现9分钟内考生进入考点的累计人数是时间的二次函数,请求出9分钟内y 与x 之间的函数关系式.(2)如果考生一进考点就开始排队测量体温,体温检测点有2个,每个检测点每分钟检测20人,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?4.某社区委员会决定把一块长40m ,宽30m 的矩形空地改建成健身广场;设计图如图所示,矩形四周修建4个全等的长方形花坛,花坛的长比宽多5米,其余部分修建健身活动区,设花坛的长为()m 610x x ≤≤,健身活动区域的面积为2m S .(1)求出S 与x 之间的函数关系式; (2)求健身活动区域的面积S 的最大值.5.某地草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售后,发现该草莓销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围.(2)若产量足够,当该品种的草莓定价为多少时,每天销售获得的利润最大?最大利润是多少?6.为进一步落实“双减增效”政策,某校增设活动拓展课程——开心农场.如图,准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB BC ⊥,3AB =米,1BC =米)和总长为14米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图1),也可能在线段BA 的延长线上(如图2),点E 在线段BC 的延长线上.(1)当点D在线段AB上时,①设DF的长为x米,请用含x的代数式表示EF的长;②若要求所围成的小型农场DBEF的面积为12平方米,求DF的长;(2)DF的长为多少米时,小型农场DBEF的面积最大?最大面积为多少平方米?7.在“乡村振兴”行动中,某村办企业开发了一种有机产品,该产品的成本为每盒30元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒,每涨价1元,每天少销售10盒.(1)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式;(2)当每盒售价订为多少元时,可使当天获得最大销售利润,销售利润是多少?a>给村级经济合作社,物价部门要(3)现在该企业打算回报社会,每销售1盒捐赠a元()5求该产品销售定价不得超过每盒75元,该企业在严格执行物价部门的定价前提下欲使每天捐赠后的日销售利润随产品售价的增大而增大,求a的取值范围.8.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x 元(x为正整数且x≤80),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该店每月所获利润为w元,当销售单价降低多少元时,每月所获利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从出售的每条裤子中捐出5元资助贫困学生.总捐款额不低于750元,求捐款后每月最大利润.9.某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.经调查,若该商品每降价0.5元,每天可多销售4件,设每件商品的售价下降x元,每天的销售利润为w元.(1)求w与x的函数关系式;(2)每天要想获得510元的利润,每件应降价多少元?(3)每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?10.如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA ,A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式是2724y x x =-++(x >0).(1)柱子OA 的高度是______米;(2)若不计其他因素,水池的半径至少为多少米,才能使喷出的水流不至于落在池外?【参考答案】二次函数应用题1.(1)21(6)412y x =--+ (2)13m(3)这名队员不能拦到球 (4)足球弹起后,会弹出10m 【解析】 【分析】(1)根据其飞行的最大高度是4m ,最高处距离飞出点的水平距离是6m ,设顶点式()264y a x =-+,将()0,1A 代入,待定系数法求解析式即可;(2)令0y =,求得与x 轴的交点坐标即可求解; (3)将10x =代入求得y 的值,进而比较即可求解(4)根据题意求得新抛物线的解析式,根据题意即求元抛物线与2y =的所截线段长即可,解一元二次方程求解即可 (1)①当最大高度4y =时,6x =,∴设y 与x 之间的函数关系式为()264y a x =-+, 又()0,1A , ∴()21064a =-+, ∴112a =-,∴21(6)412y x =--+; (2)令0y =,则210(6)412x =--+, 解得143613x =+≈,2436x =-+(负值舍去), ∴球飞行的最远水平距离是13m ; (3)当13310x =-=时,81.70.323y =>+=, ∴这名队员不能拦到球; (4))如图,足球第二次弹出后的距离为CD ,根据题意知CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位长度),∴21(6)4212x --+=, 解得1626x =-,2626x =+, ∴214610m CD x x =-=≈. 答:足球弹起后,会弹出10m .【点睛】本题考查了二次函数的应用,掌握二次函数的平移,二次函数与坐标轴的交点问题,二次函数图像与性质,掌握二次函数图像与性质是解题的关键. 2.(1)0.110y x =-+(2)①当4060x ≤≤时,20.113350=-+-w x x ;当6080x <≤时,7200190=-+w x; ②销售价格定为80元/件时,获得的利润最大,最大利润是100百元 【解析】 【分析】(1)把把60x =代入240y x=得4y =,设y 与x 的函数关系式为:y =kx +b ,把x =40,y =6;x =60,y =4,代入解方程组即可得到结论;(2)①根据x 的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式; ②结合①中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可. (1)解:把60x =代入240y x=得4y =. 设y 与x 的函数关系式为:y kx b =+, ∵当40x =时,6y =,当60x =时,4y =,∴406604k b k b +=⎧⎨+=⎩, 解得:0.110k b =-⎧⎨=⎩,∴y 与x 的函数关系式为:0.110y x =-+. (2)①当4060x ≤≤时,()()2300.110500.113350w x x x x =--+-=-+-;当6080x <≤时,()24072003050190w x x x=-⋅-=-+; ②当4060x ≤≤时,()220.1133500.16572.5w x x x =-+-=--+, ∵4060,65,x x ω≤≤≤随x 的增大而增大. ∴当60,70x w ==最大 (百元). 当6080x ≤≤时,7200190xω=-+ ∵72000-<,∴w 随x 的增大而增大,当80x =时,100w =最大 (百元).答:销售价格定为80元/件时,获得的利润最大,最大利润是100百元. 【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键. 3.(1)210180y x x =-+(2)排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟; (3)2 【解析】 【分析】(1)利用待定系数法可求解析式;(2)设第x 分钟时的排队人数为w 人,由二次函数的性质和一次函数的性质可求当x =7时,w 的最大值=490,当9<x ≤15时,210≤w <450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m 个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解. (1)根据表格中数据可知,当x =0时,y =0, ∴二次函数的关系式可设为:y =ax 2+bx ,将()()1,1703450,,代入,得17093450a b a b =⎧⎨=⎩++ 解得:10180a b =-⎧⎨=⎩,∴9分钟内y 与x 之间的函数关系式()21018009y x x x =-≤≤+; (2)设第x 分钟时的排队人数为w 人,()810915y x =<≤由题意可得:w =y −40x =210140(09)81040(915)x x x x x ⎧-≤≤⎨-≤⎩+<,①当0≤x ≤9时,w =−10x 2+140x =−10(x −7)2+490, ∴当x =7时,w 的最大值=490,②当9<x ≤15时,w =810−40x ,w 随x 的增大而减小, ∴210≤w <450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810−40x =0, 解得:x =20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟; (3)设从一开始就应该增加m 个检测点,由题意得:12×20(m +2)≥810, 解得m ≥118, ∵m 是整数, ∴m ≥118的最小整数是2, ∴一开始就应该至少增加2个检测点. 【点睛】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y 与x 之间的函数关系式是本题的关键. 4.(1)24201200S x x =-++;()610x ≤≤ (2)活动区域面积S 的最大值为21176m 【解析】 【分析】(1)利用健身区域的面积等于矩形的面积减掉周围四个长方形花坛的面积即可求解; (2)把(1)中求得的S 与x 之间的函数关系式化成二次函数的顶点式,利用二次函数的增减性即可求解. (1)(1)由题意解得:()2=4030454201200S x x x x ⨯--=-++;()610x ≤≤(2)(2)2254201200412252S x x x ⎛⎫=-++=--+ ⎪⎝⎭,∵40a =-<,抛物线开口向下,对称轴为52x =, ∴当610x ≤≤时,S 随x 的增大而减小, ∴当6x =时,S 有最大值,最大值为1176, 答:活动区域面积S 的最大值为21176m . 【点睛】本题考查了二次函数的应用及二次函数的性质,读懂题意,找出题目中的等量关系是解题的关键.5.(1)10300y x =-+,1030x ≤≤;(2)当该品种的草莓定价为20元时,每天销售获得的利润最大,为1000元. 【解析】 【分析】(1)由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系,设y kx b =+,将(10,200),(15,150)代入解析式求解即可;(2)设利润为w 元,求得w 与x 的关系式,然后利用二次函数的性质求解即可. (1)解:由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系, 设y kx b =+,将(10,200),(15,150)代入解析式,可得1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩ 即10300y x =-+,由题意可得,10x ≥,103000x -+≥,解得1030x ≤≤ 即10300y x =-+,1030x ≤≤, (2)解:设利润为w 元,则2(10)(10300)104003000w x x x x =--+=-+-, ∵100-<,开口向下,对称轴为20x ,1030x ≤≤∴当20x 时,w 有最大值,为1000元,【点睛】此题考查了一次函数与二次函数的应用,解题的关键是掌握二次函数的性质,理解题意,找到题中的等量关系,正确列出函数关系式. 6.(1)①153EF x =-;②4米(2)饲养场的宽DF 为3米时,饲养场DBEF 的面积最大,最大面积为272平方米 【解析】 【分析】(1)①根据题意结合图形即可求解; ②根据矩形的面积公式列方程求解即可;(2)设饲养场DBEF 的面积为S ,求出关于DF 的长的关于x 的函数关系式,根据二次函数的性质即可解答. (1)①设DF 的长为x 米, ∵点D 在线段AB 上,∴()()1421153EF x x x =---=-米, ②∵3AB =,∴3EF ≤,即1533x -≤, ∴4x ≥;设DF 的长为x 米,根据题意得:()15312x x -=, 解得:14x =,21x =(此时点D 不在线段AB 上,舍去), ∴4x =,答:饲养场的长DF 为4米; (2)设饲养场DBEF 的面积为S ,DF 的长为x 米, ①点D 在15段AB 上,由(1)知此时4x ≥, 则()22575153315324S x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,∵30a ,抛物线对称轴是直线52x =, ∴在对称轴右侧,S 随x 的增大而减小,∴4x =时,S 有最大值,23415412S =-⨯+⨯=最大值(平方米);②点D 在线段BA 的延长线上,此时4x <, 则()()2132715333222S x x x =-+=--+, ∵302a =-<,34<,∴3x =时,S 有最大值,272S =最大值, ∴3x =时,272S =最大值(平方米); ∵27122>, ∴饲养场的宽DF 为3米时,饲养场DBEF 的面积最大,最大面积为272平方米. 答:饲养场的宽DF 为3米时,饲养场DBEF 的面积最大,最大面积为272平方米. 【点睛】此题主要考查的是二次函数的应用,一元二次方程的应用,掌握矩形的面积计算方法是解题的关键.7.(1)w=-10x2+1400x-33000;(2)每盒售价订为70元时,可使当天获得最大销售利润,销售利润是16000元;(3)10≤a<30.【解析】【分析】(1)根据利润=(售价-进价)×销量,即可得到w关于x的函数解析式;(2)把(1)中的函数解析式化成顶点式,根据二次函数的性质,即可得出答案;(3)根据题意,仿照(1)列出函数关系式,求出对称轴,再根据二次函数的性质分析,即可得到a的取值范围.(1)解:当售价为x元时,上涨(x-60)元,销量为500-10(x-60)=-10x+1100,∴w=(x-30)(-10x+1100)=-10x2+1400x-33000,故w关于x的函数解析式是w=-10x2+1400x-33000;(2)解:w=-10x2+1400x-33000=-10(x-70)2+16000∵-10<0∴抛物线开口向下,函数有最大值即当x=70时,w有最大值,最大值是16000,故每盒售价订为70元时,可使当天获得最大销售利润,销售利润是16000元.(3)解:由题意得w=(x-30-a)(-10x+1100)=-10x2+(1400+10a)x-(33000+1100a)其中60≤x≤75,∵-10<0∴抛物线开口向下,函数有最大值,抛物线的对称轴是x=140010170202aa+-=+-,∵每天捐赠后的日销售利润随产品售价的增大而增大,∴当60≤x≤75时,w随着x的增大而增大,∴1702a+≥75即a≥10,又∵x-30-a>0,∴a<x-30,其中60≤x≤75,∴ a <60-30,即a <30时,a <x -30恒成立,∴ 10≤a <30∴a 的取值范围是10≤a <30.【点睛】本题考查了二次函数在销售问题中的应用,熟练应用二次函数求最值是解决问题的关键. 8.(1)5500y x =-+(x 为正整数且x ≤80)(2)10元,4500元(3)3750元【解析】【分析】(1)直接利用销售单价每降1元,则每月可多销售5条列出y 与x 的函数关系式并整理即可;(2)利用“销售量×每件利润=总利润”列出函数关系式,然后运用二次函数的性质求最值即可;(3) 利用“销售量×(每件利润-5)=总利润”列出函数关系式,再根据总捐款额不低于750元以及题意列不等式组求出x 的取值范围,最后利用二次函数的性质求最值即可.(1)解:由题意可得:y =100+5(80﹣x ),整理得 y =﹣5x +500(x 为正整数且x ≤80).(2)(2)由题意,得:w =(x ﹣40)(﹣5x +500)=﹣5x 2+700x ﹣20000=﹣5(x ﹣70)2+4500,∵a =﹣5<0,∴w 有最大值,即当x =70时,w 最大值=4500,∴应降价80﹣70=10(元).答:当降价10元时,每月获得最大利润为4500元.(3)(3)由题意,得:w =(x ﹣40﹣5)(﹣5x +500)=﹣5(x ﹣72.5)2+3781.25,由题意得5(5500)75080x x -+≥⎧⎨≤⎩, 解得x ≤70,∵﹣5<0,∴x <72.5时,w 随x 的增大而增大,∴x =70时,w 最大值=﹣5(x ﹣72.5)2+3781.25=3750.答:捐款后每月最大利润是3750元.【点睛】本题主要考查了二次函数和不等式组在销售问题中的应用,理清题中的数量关系、正确列出函数关系式是解答本题的关键.9.(1)w =−8x 2+32x +480;(2)每件商品应降价2.5元;(3)每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【解析】【分析】(1)设每件商品应降价x 元,由每件利润×销售数量=每天获得的利润可列出关于x 的关系式;(2)根据题意列出一元二次方程,解方程可得答案;(3)把w 关于x 的函数解析式配方成顶点式,再利用二次函数的性质可得答案.(1)解:由题意得w =(40−30−x )(4×0.5x +48)=−8x 2+32x +480, 答:w 与x 的函数关系式是w =−8x 2+32x +480;(2)解:由题意得,510=−8x 2+32x +480,解得:x 1=1.5,x 2=2.5,所以为尽快减少库存每件商品应降价2.5元;答:每天要想获得510元的利润,每件应降价2.5元.(3)解:∵w =−8x 2+32x +480=−8(x −2)2+512,∴当x =2时,w 有最大值512,此时售价为40−2=38(元),答:每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【点睛】此题主要考查了二次函数的应用,一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.10.(1)74(2) 【解析】【分析】(1)OA 在y 轴上,2724y x x =-++中,令x =0,可得y 即为OA ; (2)水流落得最远时,落点在x 轴上,在2724y x x =-++中,当y =0时,27204x x -++=,求得1x . (1)在2724y x x =-++中,令x =0,则y = 74, ∴柱子OA 的高度为74米; 故答案为74; (2)(2)在2724y x x =-++中, 当y =0时27204x x -++=, 272-04-x x =, ()27=-2-41-=114⎛⎫∆⨯⨯ ⎪⎝⎭,∴1x ==∴1x =,2x =·, 又∵x >0,∴解得x =【点睛】本题考查了二次函数的应用,解决问题的关键是平面直角坐标系中x 轴上的纵坐标为0,y 轴上的横坐标为0,解方程.。
(完整版)中考经典二次函数应用题(含答案)(最新整理)
二次函数应用题1、某体育用品商店购进一批滑板,每件进价为 100 元,售价为 130 元,每星期可卖出 80 件.商家决定降价促销,根据市场调查,每降价 5 元,每星期可多卖出 20 件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?2、某商场将进价为 2000 元的冰箱以 2400 元售出,平均每天能售出 8 台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低 50 元,平均每天就能多售出 4 台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32 米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB 边的长为x 米.矩形ABCD 的面积为 S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量 x 的取值范围).(2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数y =ax2+bx +c (a ≠ 0 ),当x =-b时,y =2a 最大( 小) 值4ac -b2)4a4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x 之间满足函数关系y =-50x + 2600,去年的月销售量p(万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份 1 月 5 月销售量 3.9 万台 4.3 万台求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?5、某商场试销一种成本为每件60 元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y =kx +b ,且x = 65 时,y = 55 ;x = 75 时,y = 45 .(1)求一次函数y =kx +b 的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于 500 元,试确定销售单价x 的范围.36、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件 20 元,并且每周(7 天)涨价 2 元,从第 6 周开始,保持每件 30 元的稳定价格销售,直到 11 周结束,该童装不再销售。
中考二次函数应用题含答案解析
中考二次函数应用题含答案解析二次函数应用题1.某校九年级一班为了鼓励同学们努力学习,营造良好的学习环境,准备到某文具店购买A ,B 两种文具,奖励期末考试综合评定优秀的学生.据了解,购买A 种文具3个,B 种文具5个,共需210元;购买A 种文具4个,B 种文具10个,则需380元.(1)求A ,B 两种文具的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A 、B 两种文具共12个进行奖励.该文具店为了支持本次活动,为该班同学提供以下优惠:购买几个B 种文具,B 种文具每个就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱? 2.为响应江阴市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m ,另外三边由36m 长的栅栏围成.设矩形ABCD 空地中,垂直于墙的边AB =x cm ,面积为y m 2如图所示).(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲 乙 丙 单价(元/棵)14 16 28 合理用地(m 2/棵) 0.4 1 0.43.某社区委员会决定把一块长40m ,宽30m 的矩形空地改建成健身广场;设计图如图所示,矩形四周修建4个全等的长方形花坛,花坛的长比宽多5米,其余部分修建健身活动区,设花坛的长为()m 610x x ≤≤,健身活动区域的面积为2m S .(1)求出S与x之间的函数关系式;(2)求健身活动区域的面积S的最大值.4.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)607080周销售量y(件)1008060周销售利润w(元)200024002400【注:周销售利润=周销售量×(售价﹣进价)】(1)①直接写出:此商品进价元,y关于x的函数解析式是.(不要求写出自变量的取值范围)②当售价是多少元/件时,周销售利润最大,并求出最大利润.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过70元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1600元,求m的值.5.某地草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售后,发现该草莓销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)若产量足够,当该品种的草莓定价为多少时,每天销售获得的利润最大?最大利润是多少?6.安徽省在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额-生产费用)(1)请直接写出y 与x 以及z 与x 之间的函数关系式;(写出自变量x 的取值范围)(2)求W 与x 之间的函数关系式;(写出自变量x 的取值范围):并求年产量多少万件时,所获毛利润最大?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?7.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区一面靠长为9m 的墙,隔离区分成两个区域,中间用塑料膜隔开,已知整个隔离区塑料膜总长为24m ,如果隔离区出入口的大小不计,并且隔离区靠墙的面不能超过墙长,设垂直于墙的一边为m x ,隔离区面积为2m S .(1)求S 关于x 的函数表达式,并写出x 的取值范围;(2)求隔离区面积的最大值.8.河口街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y (件)与销售单价x (元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w (元)与销售单价x (元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?9.某商场将进价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至70元范围内,这种台灯的售价每上涨1元,其销售量就减少10个.为了实现每月获得最大的销售利润,这种台灯的售价应定为多少?最大利润为多少元? 10.如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA ,A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式是2724y x x =-++(x >0).(1)柱子OA的高度是______米;(2)若不计其他因素,水池的半径至少为多少米,才能使喷出的水流不至于落在池外?【参考答案】二次函数应用题1.(1)A种文具的单价为20元,B种文具单价为30元.(2)本次购买至少准备216元钱,最多准备265元钱.【解析】【分析】(1)设A种文具的单价为x元,B种文具单价为y元,由题意:购买A种文具3个,B种文具5个,共需210元;购买A种文具4个,B种文具10个,则需380元.找等量关系,列出二元一次方程组,解方程组即可;(2)设购买B种文具a个,则购买A种文具(12-a)个,准备m元钱,由题意得m=a (30-a)+20(12-a)=-(a-5)2+265,则当a=5时,m有最大值为265,再由a=0时,m=240;a=12时,m=216;即可得出结论.(1)解:设A种文具的单价为x元,B种文具单价为y元,由题意得:35210 410380x yx y+=⎧⎨+=⎩,解得:2030xy=⎧⎨=⎩,答:A种文具的单价为20元,B种文具单价为30元;(2)解:设购买B种文具a个,则购买A种文具(12﹣a)个,准备m元钱,由题意得:m=a(30﹣a)+20(12﹣a)=﹣a2+10a+240=﹣(a﹣5)2+265,则当a=5时,m有最大值为265,∵a=0时,m=240;a=12时,m=216;∴本次购买至少准备216元钱,最多准备265元钱.【点睛】此题考查了二元一次方程组的应用以及二次函数的应用等知识,解题的关键是理解题意,找准等量关系.2.(1)y =﹣2x 2+36x (9≤x <18)(2)丙种植物最多可以购买214棵,此时这批植物可以全部栽种到这块空地上.理由见解析【解析】【分析】(1)根据矩形的面积公式计算即可;(2)利用二次函数的性质求出y 的最大值,设购买了乙种绿色植物a 棵,购买了丙种绿色植物b 棵,由题意得1440016288600a b a b --++=(),可得71500a b +=,推出b 的最大值为214,此时2a =,再求出实际植物面积即可判断.(1)解:∵AB =x ,∴BC =36﹣2x ,∴y =x (36﹣2x )=﹣2x 2+36x ,∵0<36﹣2x ≤18,∴9≤x <18.∴y 与x 之间的函数关系式为y =﹣2x 2+36x (9≤x <18);(2)解:∵y =﹣2x 2+36x =﹣2(x ﹣9)2+162,∴x =9时,y 有最大值162(m 2),设购买了乙种绿色植物a 棵,购买了丙种绿色植物b 棵,由题意:14(400﹣a ﹣b )+16a +28b =8600,∴a +7b =1500,∴b 的最大值为214,此时a =2.需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=161.2(m 2)<162m 2,∴丙种植物最多可以购买214棵,此时这批植物可以全部栽种到这块空地上.【点睛】本题考查二次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题. 3.(1)24201200S x x =-++;()610x ≤≤(2)活动区域面积S 的最大值为21176m【解析】【分析】(1)利用健身区域的面积等于矩形的面积减掉周围四个长方形花坛的面积即可求解; (2)把(1)中求得的S 与x 之间的函数关系式化成二次函数的顶点式,利用二次函数的增减性即可求解.(1)(1)由题意解得:()2=4030454201200S x x x x ⨯--=-++;()610x ≤≤(2)(2)2254201200412252S x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∵40a =-<,抛物线开口向下,对称轴为52x =, ∴当610x ≤≤时,S 随x 的增大而减小,∴当6x =时,S 有最大值,最大值为1176,答:活动区域面积S 的最大值为21176m .【点睛】 本题考查了二次函数的应用及二次函数的性质,读懂题意,找出题目中的等量关系是解题的关键.4.(1)①40,y =﹣2x +220;②当售价是75元/件时,周销售利润最大,最大利润是2450元;(2)销售最大利润是1600元时,m 的值为10.【解析】【分析】(1)①该商品进价等于周销售利润除以周销售量,再减去进价;设y 关于x 的函数解析式为y =kx +b ,用待定系数法求解即可;②根据周销售利润=周销售量×(售价-进价),列出w 关于x 的二次函数,根据二次函数的性质可得答案;(2)根据周销售利润=周销售量×(售价-进价),列出w 关于x 的二次函数,根据题意及二次函数的性质得出取得最大利润时的售价,再列出关于m 的方程,求解即可.(1)解:(1)①该商品进价是60﹣2000÷100=40(元/件);设y 关于x 的函数解析式为y =kx +b ,将(60,100),(70,80)分别代入得: 100608070k b k b =+⎧⎨=+⎩, 解得:k =﹣2,b =220.∴y 关于x 的函数解析式为y =﹣2x +220;故答案为:40,y =﹣2x +220;②由题意得:w =y (x ﹣40)=(﹣2x +220)(x ﹣40)=﹣2x 2+300x ﹣8800=﹣2(x ﹣75)2+2450,∵二次项系数﹣2<0,抛物线开口向下,∴当售价是75元/件时,周销售利润最大,最大利润是2450元;(2)解∶ 由题意得:w =(﹣2x +220)(x ﹣40﹣m )=﹣2x 2+(300+2m )x ﹣8800﹣220m ,∵二次项系数﹣2<0,抛物线开口向下,对称轴为:300217542m x m +=-=+-, 又∵x ≤70,∴当x <7512m +时,w 随x 的增大而增大, ∴当x =70时,w 有最大值:(﹣2×70+220)(70﹣40﹣m )=1600,解得:m =10.∴周销售最大利润是1600元时,m 的值为10.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.5.(1)10300y x =-+,1030x ≤≤;(2)当该品种的草莓定价为20元时,每天销售获得的利润最大,为1000元.【解析】【分析】(1)由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系,设y kx b =+,将(10,200),(15,150)代入解析式求解即可;(2)设利润为w 元,求得w 与x 的关系式,然后利用二次函数的性质求解即可.(1)解:由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系, 设y kx b =+,将(10,200),(15,150)代入解析式,可得1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩ 即10300y x =-+,由题意可得,10x ≥,103000x -+≥,解得1030x ≤≤即10300y x =-+,1030x ≤≤,(2)解:设利润为w 元,则2(10)(10300)104003000w x x x x =--+=-+-,∵100-<,开口向下,对称轴为20x,1030x ≤≤ ∴当20x时,w 有最大值,为1000元, 【点睛】此题考查了一次函数与二次函数的应用,解题的关键是掌握二次函数的性质,理解题意,找到题中的等量关系,正确列出函数关系式.6.(1)21(0100)10y x x =≤≤,130(0100)10z x x =-+≤≤; (2)21(75)1125(0100)5W x x =--+≤≤,年产量75万件时,所获毛利润最大; (3)今年最多可获得1080万元的毛利润【解析】【分析】(1)利用待定系数法可求出y 与x 以及z 与x 之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额-生产费用,可得出w 与x 之间的函数关系式; (3)首先求出x 的取值范围,再利用二次函数增减性得出答案即可.(1)解:设y 与x 之间的函数关系式为2y ax =,21000100a =⨯,得110a =, 即y 与x 之间的函数关系式为21(0100)10y x x =≤≤; 设z 与x 的函数关系式为z kx b =+,3010020b k b =⎧⎨+=⎩,得1,1030k b ⎧=-⎪⎨⎪=⎩ 即z 与x 的函数关系式为130(0100)10z x x =-+≤≤; (2)解:由题意可得, 2211130(75)112510105W zx y x x x x ⎛⎫=-=-+-=--+ ⎪⎝⎭, 即W 与x 之间的函数关系式为21(75)1125(0100)5W x x =--+≤≤, ∵21(75)11255W x =--+, ∴当75x =时,W 取得最大值,此时1125W =,即年产量75万件时,所获毛利润最大;(3)解:∵今年投入生产的费用不会超过360万元,∴360y ≤,令y =360,得2136010x =, 解得:x =±60(负值舍去),由图象可知,当0<y ≤360时,0<x ≤60, ∵21(75)11255W x =--+, ∴当60x =时,W 取得最大值,此时1080W =,即今年最多可获得1080万元的毛利润.【点睛】本题考查了二次函数的应用及一次函数的应用,解题的关键是利用待定系数法求函数解析式,注意培养自己利用数学知识解决实际问题的能力,难度一般.7.(1)2324S x x =-+,x 的取值范围:5≤x <8(2)45m 2【解析】【分析】(1)垂直于墙的一边为x m ,则隔离区的另一边为(24-3x )m ,根据面积公式即可得到解析式,由24392430x x -≤⎧⎨->⎩即可得到x 的取值范围; (2)先将S 关于x 的函数表达式化为顶点式,即23(4)48S x =--+,求最值即可.(1)垂直于墙的一边为x m ,则隔离区的另一边为(24-3x )m ,∴S =x (24﹣3x ),化简得2324S x x =-+根据题意,得不等式组24392430x x -≤⎧⎨->⎩ 解得:5≤x <8,∴S 关于x 的函数解析式为:2324S x x =-+,x 的取值范围:5≤x <8(2)2324S x x =-+23(4)48S x =--+∵该抛物线开口向下,对称轴为直线x =4,∴当5≤x <8时,S 随x 的增大而减小,当x =5时,S 的值最大,最大值=45答:隔离区面积最大值为45m 2.【点睛】本题考查了二次函数在实际问题中的应用,涉及二次函数的性质、解一元一次不等式组,准确理解题意是解题的关键.8.(1)()2018006080y x x =-+≤≤(2)2203000108000w x x =-+-(3)商场销售该品牌童装获得的最大利润是4480元【解析】【分析】(1)销售量y 件为200件加增加的件数()8020x -⨯;(2)利润w 等于单件利润×销售量y 件,即()()60201800w x x =--+,整理即可; (3)先利用二次函数的性质得到2203000108000w x x =-+-的对称轴为()300075220x =-=⨯-,而7680x ≤≤,根据二次函数的性质得到,当7680x ≤≤时,w 随x 的增大而减小,把76x =代入计算即可得到商场销售该品牌童装获得的最大利润.(1)解:根据题意得,()2008020201800y x x =+-⨯=-+,所以销售量y 件与销售单价x 元之间的函数关系式为()2018006080y x x =-+≤≤;(2)()()()26060201800203000108000w x y x x x x =-=--+=-+-,所以销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式为:2203000108000w x x =-+-;(3)根据题意得7680x ≤≤,2203000108000w x x =-+-的对称轴为()300075220x =-=⨯-, ∵200a =-<,∴抛物线开口向下,∴当7680x ≤≤时,w 随x 的增大而减小,∴76x =时,w 有最大值,最大值为()()7660207618004480w =--⨯+=(元).所以商场销售该品牌童装获得的最大利润是4480元.【点睛】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质和二次函数的最值,解决实际问题中的最大或最小值问题.9.这种台灯的售价应定为65元时,最大利润为12250元.【解析】【分析】设这种台灯应涨价x 元,那么就少卖出10x 个,根据“总利润=每个台灯的利润×销售量”列出函数解析式,最后运用二次函数求最值即可.【详解】解:设售价为x 元,根据题意得:()()()2306001040106512250W x x x =---=--+⎡⎤⎣⎦,∴当x =65时,12250y =最大,答:这种台灯的售价应定为65元时,最大利润为12250元.【点睛】本题主要考查二次函数的应用,根据“总利润=每个台灯的利润×销售量”列出函数解析式是解答本题的关键. 10.(1)74(2) 【解析】【分析】(1)OA 在y 轴上,2724y x x =-++中,令x =0,可得y 即为OA ; (2)水流落得最远时,落点在x 轴上,在2724y x x =-++中,当y =0时,27204x x -++=,求得1x . (1) 在2724y x x =-++中,令x =0,则y = 74, ∴柱子OA 的高度为74米; 故答案为74; (2)(2)在2724y x x =-++中, 当y =0时27204x x -++=, 272-04-x x =, ()27=-2-41-=114⎛⎫∆⨯⨯ ⎪⎝⎭,∴1x ==∴1x =,2x =·, 又∵x >0,∴解得x =【点睛】本题考查了二次函数的应用,解决问题的关键是平面直角坐标系中x 轴上的纵坐标为0,y 轴上的横坐标为0,解方程.。
人教版初中数学九年级二次函数(经典例题含答案)
二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。
中考二次函数应用题含答案解析
中考二次函数应用题含答案解析二次函数应用题1.春节前夕,某花店采购了一批鲜花礼盒,成本价为30元/件,物价局要求,销售该鲜花礼盒获得的利润率不得高于120%.分析往年同期的鲜花礼盒销售情况,发现每天的销售量y (件)与销售单价x (元/件)近似的满足一次函数关系,数据如下表:(1)直接写出y 与x 的函数关系式:_______;(2)试确定销售单价取何值时,花店销售该鲜花礼盒每天获得的利润最大?并求出最大利润;(3)为了确保今年每天销售此鲜花礼盒获得的利润不低于5000元,请预测今年销售单价的范围是多少?2.某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y (件)是关于售价x (元/件)的一次函数,下表仅列出了该商品的售价x ,周销售量y ,周销售利润W (元)的三组对应值数据.(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a (元/件),售价x 为多少时,周销售利润W 最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m (元/件)()0m >,公司为回馈消费者,规定该商品售价x 不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是2700元,求m 的值.3.东东在网上销售一种成本为30元/件的T 恤衫.销售过程中的其他各种费用(不再含T 恤衫成本)总计50(百元).若销售价格为x (元/件).销售量为y (百件).当4060x ≤≤时,y 与x 之间满足一次函数关系.且当40x =时,6y =,有关销售量y (百件)与销售价格x (元/件)的相关信息如下:(1)求当4060x ≤≤时.y 与x 的函数关系式:(2)①求销售这种T恤衫的纯利润w(百元)与销售价格x(元/件)的函数关系式;②销售价格定为每件多少元时.获得的利润最大?最大利润是多少?4.某地在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为: y81620712x x xx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如表:x123456789101112z191817161514131211101010(1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?5.为了提高巴中市民的生活质量,巴中市对老旧小区进行了美化改造.如图,在老旧小区改造中,某小区决定用总长27m的栅栏,再借助外墙围成一个矩形绿化带ABCD,中间用栅栏隔成两个小矩形,已知房屋外墙长9m.(1)当AB长为多少时,绿化带ABCD的面积为242m(2)当AB长为多少时,绿化带ABCD的面积最大,最大面积是多少?6.2020年是脱贫攻坚的收官司之年,老李在驻村干部的帮助下,利用网络平台进行“直播带货”,销售一批成本为每件30元的商品,按单价不低于成本价,且不高于50元销售,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,部分数据如表所示.销售单价x(元)304045销售数量y(件)1008070(1)求该商品每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)销售单价定为多少元时,每天的销售利润为800元?(3)销售单价定为多少元时,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少元?7.为了助农增收,推动乡村振兴,某网店出售“碱水”面条.面条进价为每袋40元,当售价为每袋60元时,每月可销售300袋.为了吸引更多顾客,该网店采取降价措施.据市场调研反映,销售单价每降1元,则每月可多销售30袋.该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.设当每袋面条的售价降了x 元时,每月的销售量为y 袋.(1)求出y 与x 的函数关系式;(2)设该网店捐款后每月利润为w 元,则当每袋面条降价多少元时,每月获得的利润最大,最大利润是多少?8.星光公司投资150万元引进一台新设备,若不计维修保养费用,投入生产后每月可创收33万元,投入生产后从第一个月到第x 月的维修保养费用累计为y (万元),且2y ax bx =+,若将创收扣除投资和维修保养费用,成为该新设备的纯收益w (万元),w也是关于x 的二次函数.(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y 与x 的解析式; (2)求纯收益w 关于x 的解析式;(3)问新设备投入生产第几个月后,纯收益达到最大?几个月后,能收回投资?9.蔗糖是决定杨梅果实中糖度的主要成分,某果农种植东魁杨梅,5月26日检测到杨梅果实中的蔗糖含量为2%,从5月27日开始到6月1日,测量出蔗糖含量数据,并根据这些数据建立蔗糖含量变化率y (蔗糖含量变化率=当天的蔗糖含量-上一天的蔗糖含量/上一天的蔗糖含量100%⨯)与生长天数(0x x = 表示5月26日)的函数关系是: 20.00210.0630.21y x x =-+-. 根据这一函数模型解决下列问题:(1)这种杨梅果实中蔗糖含量增长最快的是哪一天?请说明理由. (2)求出这种杨梅果实中蔗糖含量在哪一天最高;(3)当蔗糖含量最高时,杨梅口感最好,计划用6天时间采摘完这批杨梅,请给这位果农提出采摘日期的合理化建议.10.某商店销售一种商品,经市场调查发现:在实际销售中,售价x 为整数,且该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x (元/件)、月销售量y (件)、月销售利润w (元)的部分对应值如表:注:月销售利润=月销售量×(售价-进价) (1)求y 关于x 的函数表达式;(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(3)现公司决定每销售1件商品就捐赠m 元利润(6m ≤)给“精准扶贫”对象,要求:在售价不超过52元时,每月扣除捐赠后的月销售利润随售价x 的增大而增大,求m 的取值范围.【参考答案】二次函数应用题1.(1)5500y x =-+(2)销售单价为65元时,销售利润最大,最大利润为6125元 (3)5066x ≤≤ 【解析】 【分析】(1)利用待定系数法求出函数解析式;(2)列出函数解析式()()2550030565015000W x x x x =-+-=-+-﹐二次函数的性质得到最大值;(3)根据抛物线的性质得到取值范围. (1)解:设y 关于x 的函数解析式为y kx b =+, 把40300x y ==、和50250x y ==、代入,得:4030050250k b k b +=⎧⎨+=⎩,解得5500k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为5500y x =-+, 故答案是:5500y x =-+; (2)设用W (元)表示每天销售的利润,则()()2550030565015000W x x x x =-+-=-+-﹐∵03030120%x ≤-≤⨯, ∴3066x ≤≤,∵开口方向向下,对称轴是直线65x =, ∴当65x =时,W 有最大值,为6125,答:销售单价为65元时,销售利润最大,最大利润为6125元. (3)当5000W =时,25650150005000x x -+-=,解得,1250,80x x ==, 由二次函数的图像可知,当5000W ≥时,5080x ≤≤, 又∵66x ≤, ∴5066x ≤≤. 【点睛】本题考查利用二次函数解决实际问题,利用利润=单个利润×数量列出函数解析式是解决问题的关键. 2.(1)2200y x =-+(2)售价为60元时,周销售利润最大为3200元(3)5 【解析】 【分析】(1)设y =kx +b ,把x =30,y =140和x =50,y =100,代入可得解析式;(2)根据利润=(售价−进价)×数量,得()()202200w x x =--+,根据顶点的纵坐标是有最大值求解即可;(3)根据利润=(售价−进价)×数量,得W =()()202200x m x ---+(x ≤55),其对称轴x =60+2m>60,0<x ≤55时,函数单调递增,只有x =55时周销售利润最大,即可得m =5. (1)解:设y 关于x 的函数解析式为y kx b =+, 把x =30,y =140和x =50,y =100,代入得,1403010050k bk b =+⎧⎨=+⎩, 解得2200k b =-⎧⎨=⎩,∴2200y x =-+;(2)∵()140301400a -=, ∴20a =,()()()22202200224040002603200w x x x x x =--+=-+-=--+,∴售价为60元时,周销售利润最大为3200元. (3)()()()2202200222402004000w x m x x m x m =---+=-++--对称轴为:60552mx =+> ∵55x ≤,在对称轴左侧,w 随x 的增大而增大,当55x =时,w 最大=2700,()()55202552002700m ---⨯+=, ∴5m =. 【点睛】本题考查了本题考查二次函数的应用,解本题的关键理解题意,掌握二次函数的性质和销售问题中利润公式. 3.(1)0.110y x =-+(2)①当4060x ≤≤时,20.113350=-+-w x x ;当6080x <≤时,7200190=-+w x; ②销售价格定为80元/件时,获得的利润最大,最大利润是100百元 【解析】 【分析】(1)把把60x =代入240y x=得4y =,设y 与x 的函数关系式为:y =kx +b ,把x =40,y =6;x =60,y =4,代入解方程组即可得到结论;(2)①根据x 的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式; ②结合①中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可. (1)解:把60x =代入240y x=得4y =. 设y 与x 的函数关系式为:y kx b =+, ∵当40x =时,6y =,当60x =时,4y =,∴406604k b k b +=⎧⎨+=⎩, 解得:0.110k b =-⎧⎨=⎩,∴y 与x 的函数关系式为:0.110y x =-+. (2)①当4060x ≤≤时,()()2300.110500.113350w x x x x =--+-=-+-;当6080x <≤时,()24072003050190w x x x=-⋅-=-+; ②当4060x ≤≤时,()220.1133500.16572.5w x x x =-+-=--+, ∵4060,65,x x ω≤≤≤随x 的增大而增大. ∴当60,70x w ==最大 (百元). 当6080x ≤≤时,7200190xω=-+ ∵72000-<,∴w 随x 的增大而增大,当80x =时,100w =最大 (百元).答:销售价格定为80元/件时,获得的利润最大,最大利润是100百元. 【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键. 4.(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数(2)()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数(3)当6x =时,w 有最大值为196. 【解析】 【分析】(1)观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =,则z 与x 的关系式可得;(2)分三种情况:当16x 时,当79x ≤≤时,当1020x ≤≤时,分别写出w 关于x 的函数关系式并化简,则可得答案;(3)分别写出当16x 时,当78x 时,当912x 时的函数最大值,然后比较取最大值即可. (1)解:观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =. z ∴与x 的关系式为:()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数; (2)解:当16x 时,2(20)(8)12160w x x x x =-++=-++; 当79x ≤≤时,2(20)(20)40400w x x x x =-+-+=-+; 当1020x ≤≤时,10(20)10200w x x =-+=-+;w ∴与x 的关系式为:()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)解:当16x 时,212160w x x =-++2(6)196x =--+,6x ∴=时,w 有最大值为196;当79x ≤≤时,2240400(20)w x x x =-+=-,w 随x 增大而减小,7x ∴=时,w 有最大值为169;当1020x ≤≤时,10200w x =-+,w 随x 增大而减小, 10x ∴=时,w 有最大值为100;100169196<<,6x ∴=时,w 有最大值为196.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系正确列式并分段计算是解题的关键.5.(1)AB 长为7m 时,绿化带ABCD 的面积为242m (2)当AB 长为6m 时,绿化带ABCD 的面积最大,为254m 【解析】 【分析】(1)设AB 长为x m ,则BC 长为()273x -m ,由题意得:()27342x x -=,计算求出满足要求的解即可;(2)设绿化带ABCD 的面积为2m y ,AB 长为x m ,由题意得()273y x x =-,根据函数的图象与性质,x 的取值范围,求出符合要求的解即可. (1)解:设AB 长为x m ,则BC 长为()273x -m 由题意得:()27342x x -= 整理得:29140x x -+= 解得:12x =,27x = ∵02739x <-≤, ∴69x ≤<, ∴x =7∴AB 长为7m 时,绿化带ABCD 的面积为242m . (2)解:设绿化带ABCD 的面积为2m y ,AB 长为x m ,由题意得()229243273327324y x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭∵6930x ≤<-<,, ∴当x =6时,54y =最大∴当AB 长为6m 时,绿化带ABCD 的面积最大,最大面积为254m . 【点睛】本题考查了一元二次方程的应用,二次函数的应用.解题的关键在于熟练掌握解一元二次方程,二次函数的图象与性质. 6.(1)y =-2x +160(2)销售单价定为40元时,每天的销售利润为800元(3)销售单价定为50元时,每天的利润最大,最大利润是1200元 【解析】 【分析】(1)设该商品每天的销售量y (件)与销售单价x (元)之间的函数关系式为y kx b =+,用待定系数法求解即可;(2)根据每件的利润乘以销售量等于利润800元,列出方程并求解,再结合单价不低于成本价,且不高于50元销售,可得符合题意的答案;(3)根据每件的利润乘以销售量等于利润得出w 关于x 的二次函数,将其写成顶点式,根据二次函数的性质及自变量的取值范围可得答案. (1)解:设y =kx +b把(30,100) , (40,80)代入得301004080k b k b +=⎧⎨+=⎩ 解得:k =-2 b =160 ∴y =-2x +160当x =45,y =70时也适合.所以y 与x 的一次函数关系式是y =-2x +160; (2)解:根据题意,得800=(x -30)(-2x +160) 整理,得211028000x x +=- 解得1240,70x x == ∵30≤x ≤502x =70(不合题意,舍去)∴销售单价定为40元时,每天的销售利润为800元; (3)解:由题意,得w =(x -30)(-2x +160) =-222204800x x +- =2-2(55)x -+1250∵a =-2<0,∴w 有最大值.∵30≤x ≤50, 当x <55时,w 随x 的增大而增大,∴当x =50时,w 有最大值, 此时,w =-2(50-55)2+1250=1200 答:销售单价定为50元时,每天的利润最大,最大利润是1200元. 【点睛】本题考查了二次函数和一元二次方程在销售问题中的应用,明确成本利润问题的基本数量关系并熟练掌握二次函数的性质是解题的关键. 7.(1)30030y x =+(2)当降价5元时,每月获得的利润最大,最大利润是6550元 【解析】 【分析】(1)由销售单价每降1元,则每月可多销售30袋,可知降了x 元时,销量增加30x 袋,由此可解;(2)根据每月利润=每袋利润×月销量-捐款,得到w 关于x 的函数表达式,改成顶点式求出函数的最大值即可. (1)解:由题意得,y 与x 之间的函数关系式为y =300+30x ; (2)解:由题意得,22(6040)(30030)200303005800=305)6550w x x x x x =--+-=-++--+(,∵300-<,∴当x =5时,w 有最大值,最大值为6550.答:当降价5元时,每月获得的利润最大,最大利润是6550元. 【点睛】本题考查二次函数的实际应用,根据题意列出w 关于x 的函数表达式是解题的关键. 8.(1)2y x x =+ (2)232150w x x =-+-(3)投入生产第6个月后,纯收益达到最大w 最大值106=;投入生产第6个月后,能收回投资. 【解析】 【分析】(1)将x ,y 的两组对应值代入即可求a 、b 的值,继而即可求y 的函数关系式; (2)根据纯收益w =投入后每月可创收33万元×月数x ﹣投资150万元﹣从第1个月到第x 个月的维修保养费用累计y ,列出函数关系式;(3)求函数最大值,及w >0时,x 的值,可确定回收投资的月份. (1)由题意,得:当1x =时,2y =; 当2x =时,246y =+=,将上述两组数据代入2y ax bx =+,得:2642a ba b =+⎧⎨=+⎩ , 解得:11a b =⎧⎨=⎩,∴y 与x 的解析式为:2y x x =+; (2)由题意得:()233150w x x x =--+233150x x x =---232150x x =-+-∴纯收益w 关于x 的解析式为:232150w x x =-+-; (3)∵()223215016106w x x x =-+-=--+, ∴当16x =时,w 最大值106=,即投入生产第6个月后,纯收益达到最大, 又∵当016x <≤,w 随x 的增大而增大, 当05x <≤时,0w <;当6x ≥时,0w >, ∴投入生产第6个月后,能收回投资. 【点睛】本题考查了用待定系数法求二次函数解析式及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.9.(1)6月10日,蔗糖增加速度最快,理由见解析; (2)6月21日; (3)见解析 【解析】 【分析】(1)求出顶点横坐标即可得答案; (2)求出y =0时x 的值,即可得答案;(3)在杨梅果实中蔗糖含量最高的6天采摘,而当x>26时,含糖量降低的速度比x=23时上升的速度快,解可得到答案.(1)∵y=−0.0021x2+0.063x−0.21=−0.0021(x−15)2+0.2625,∴在第15天,即6月10日,这种杨梅果实中蔗糖含量增长最快;(2)当蔗糖含量比前一天增加时,y>0,当蔗糖含量比前一天减少时,y<0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(参考公式:二次函数y = ax 2 bx c ( a = 0),当x = 4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价函数关系y = -50x 2600,去年的月销售量 p (万台)与月份x 之间成一次函数关系,其二次函数应用题100元,售价为130元,每星期可卖出 5元,每星期可多卖出 20件. 1、 某体育用品商店购进一批滑板,每件进价为 件.商家决定降价促销,根据市场调查,每降价 (1 )求商家降价前每星期的销售利润为多少元? (2)降价后,商家要使每星期的销售利润最大, 少? 2、 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家 电下乡”政策的实施,商场决定采取适当的降价措施 .调查表明:这种冰箱的售价每降低 元,平均每天就能多售出 4台. (1) 假设每台冰箱降价 x 元,商场每天销售这种冰箱的利润是 y 元,请写出y 与x 之间 的函数表达式;(不要求写自变量的取值范围) (2) 商场要想在这种冰箱销售中每天盈利 4800元,同时又要使百姓得到实惠,每台冰 箱应降价多少元? (3 )每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? A应将售价定为多少元?最大销售利润是多 3、张大爷要围成一个矩形花圃•花圃的一边利用足够长的墙 另三边用总长为32米的篱笆恰好围成•围成的花圃是如图所 示的矩形ABCD 设AB 边的长为x 米.矩形ABCD 勺面积为 平方米. (1) 求S 与x 之间的函数关系式(不要求写出自变量 取值范围). (2) 当x 为何值时,S 有最大值?并求出最大值.80 “4 豕 50 花圃中两个月的销售情况如下表: 月份 1 销售量 3.9 月 万台 5月 4.3万台 (1 )求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少? (2)由于受国际金融危机的影响,今年 1、2月份该品牌电视机销往农村的售价都比去年 12月份下降了 m%,且每月的销售量都比去年 12月份下降了 1.5m%国家实施“家电下乡” 政策,即对农村家庭购买新的家电产品,国家按该产品售价的 13%给予财政补贴.受此政策 的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年 2月份的售价不变的情 况下,平均每月的销售量比今年 2月份增加了 1.5万台.若今年3至5月份国家对这种电视 机的销售共给予了财政补贴 936万元,求m 的值(保留一位小数). (参考数据:.34〜5.831 , .35 〜5.916 , , 37 〜6.083 , 、38 〜6.164 )5、某商场试销一种成本为每件 60元的服装,规定试销期间销售单价不低于成本单价, 且获利不得高于45%经试销发现, 销售量y (件)与销售单价x (元)符合一次函数y =kx ■ b ,且 x=65 时,y=55; x = 75 时,y = 45 .b4ac -b 2芬时,y 最大(小汁y (元)与月份x 之间满足(1)求一次函数y = kx • b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.6、某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1 )请建立销售价格y (元)与周次x之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x之间的关系为1 2z (x -8)12, 1 < x < 11,且x为整数,那么该品牌童装在第几周售出后,每8件获得利润最大?并求最大利润为多少?)7、茂名石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求y1和y与x的函数关系式(注:利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?8、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查•调查发现这种水产品的每千克售价y1(元)与销售月份x (月)满足3关系式y x 36,而其每千克成本y2 (元)与销售月份x (月)满足的函数关系如图8所示.(1)试确定b、c的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五•一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?二次函数应用题答案1、解:(1)(130-100 )X 80=2400(元)(2)设应将售价定为x元,则销售利润130 —x y=(x-100)(80 20) 5二-4x 2 1000x -60000 = -4(x -125)22500 .当X =125时,y 有最大值2500. •••应将售价定为125元,最大销售利润是2500元.2、解:(1) y =(2400 _2000 — x) i 8 4 必,即 y 2 x 2 24x 3200.V 50 丿'25 2(2)由题意,得x 2 24x 3200 = 4800 •整理,得 x 2 -300x 20000 二 0 . 25得捲=100, x^200 •要使百姓得到实惠,取 x=200 •所以,每台冰箱应降价 200元.2 224(3)对于 y x 24x 3200,当 x150 时,y 252 丄25『150 )y 最大值=(2400 -2000 -150)18 4250 20 =5000 .所以,每台冰箱的售价降价 150元时,商场的利润最大,最大利润是5000元.3、、47 ■■■■■« ■-« 7............. .... 2分 . ............... * 1 分......... | | 刁}4、 解:(1)设p 与x 的函数关系为p =kx • b(k = 0),根据题意,得设月销售金额为 w 万元,则w =py =(0.1x • 3.8)(-50x • 2600).22化简,得 W = -5x 70x 9800,所以,w =—5(x -7) 10125 . 当X =7时,W 取得最大值,最大值为 10125 .答:该品牌电视机在去年 7月份销往农村的销售金额最大,最大是 10125万元. (2)去年12月份每台的售价为 -50 12 *2600 = 2000 (元), 去年12月份的销售量为0.1 12-3.8=5 (万台), 根据题意,得 2000(1 -m%) [5(1 -1.5m%)1.5] 13% 3 = 936.21.解:由題意得 S=AB-BC=X (32-2K ).\S=-2x 3+32x ...................■.-a=-2<G iS 有最尢值 •x 丄一」—知12a 2x(-2)C 4ac-b 3 _ -32 4a "4x(-2) =l2S S 有杲大值是128/,i=8 时k b =3.9,5k b =43解得lb =3.8.所以, p =0.1x 3.8 .令m% =t ,原方程可化为7.5t 2 -14t • 5.3 =0 .14 _ . (_14)2一4 7.5 5.32 汉 7.5答:m 的值约为52.8 . 5、解:(1)根据题意得碱"55,解得k 「1, 一20 .、75k+b = 45.所求一次函数的表达式为 y = -x • 120 .(2) W =(x-60)|J-x 120) = _x 2 180x-7200 =-(x-90)2 900 ,:抛物线的开口向下,.当x :: 90时,W 随x 的增大而增大,而 60 < x < 87 , .当 x =87时,W 二―(87 -90)2 900 =891 ..当销售单价定为87元时,商场可获得最大利润,最大利润是891元.2(3) 由 W =500,得 500 =-x 2 180x -7200 ,整理得,x 2 -180x 7700 =0,解得,为=70, x^110 . 由图象可知,要使该商场获得利润不低于500元,销售单价应在 70元到110元之间,而60 < x < 87,所以,销售单价 x 的范围是70 < x < 87 . 6 解 (门_[20+2(x —1)=2x+18(1 兰 xc6)(x 为整数)……(2 分) 牛,‘ ―[30(6兰x 兰11)(x 为整数)……(4分)(2)设利润为w1 1y - z =20 2(x -1) — (x -8)2 -12 x 2 14(1 乞 x :: 6)(x 为整数)……(6分)8 8 w =1 2 1 2 、, y -z =30(x-8) -12 (x-8) 18(6 _ x _11)(x 为整数)……(8分) L8811W = — X 2+14 当x=5 时,w 最大=17-(元)....(9 分)8 8 1 1 1w (x -8)2 18 当x=11 时,w 最大=—9 18=19—(元)....(10分)8 8 81综上知:在第11周进货并售出后,所获利润最大且为每件 191元 (10)87.解:(1)依题意得:% =(2100 -800 -200)x =1100x ,y 2 =(2400 -1100 -100)x-20000 =1200x -20000 ,(2)设该月生产甲种塑料 x 吨,则乙种塑料(700 -x)吨,总利润为 W 元,依题意得:14_ .37 15.t 1 〜0.528 , t 2 〜1.339 (舍去)W "OOx 1200(700 _x) _20000 =_1OOx 820000 .x w 40°'解得: 700 _ x < 400,••• -100 :::0,••• W 随着x 的增大而减小,.••当 x=300时,W 最大=790000 (元)此时,700-x =400 (吨)• 因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为 790000元.17 25 = _x32+3b+cb = _1_8、解:(1)由题意:8解得81 124 42 4b cc = 29I 8 I 28::0,•抛物线开口向下•在对称轴-6左侧y 随x 的增大而增大.由题意x :5,所以在4月份出售这种水产品每千克的利润最大. 1 2 1最大利润(4 -6)2 -11 = 10—(元). 8 2300 w x w 400 •(2)3 1 2 二 % - y 2x 36 _ _ x 815x 29- 8 23x 6-; 2 2(3)1 ,2 8' :3x 6】」(x 2 2 8 -12x 36) 4- 612 2 --(x — 6)2 11 8。