数字信号处理 实验六

合集下载

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告⼀、课程设计(综合实验)的⽬的与要求⽬的与要求:1.掌握《数字信号处理基础》课程的基本理论; 2.掌握应⽤MATLAB 进⾏数字信号处理的程序设计;实验内容:已知低通数字滤波器的性能指标如下:0.26p ωπ=,0.75dB p R =,0.41s ωπ=,50dB s A =要求:1. 选择合适的窗函数,设计满⾜上述指标的数字线性相位FIR 低通滤波器。

⽤⼀个图形窗⼝,包括四个⼦图,分析显⽰滤波器的单位冲激响应、相频响应、幅频响应和以dB 为纵坐标的幅频响应曲线。

2. ⽤双线性变换法,设计满⾜上述指标的数字Chebyshev I 型低通滤波器。

⽤⼀个图形窗⼝,包括三个⼦图,分析显⽰滤波器的幅频响应、以dB 为纵坐标的幅频响应和相频响应。

3. 已知模拟信号1234()2sin(2)5sin(2)8cos(2)7.5cos(2)x t f t f t f t f t ππππ=+++其中10.12f kHz =,2 4.98f kHz =,3 3.25f kHz =,4 1.15f kHz =,取采样频率10s f kHz =。

要求:(1) 以10s f kHz =对()x t 进⾏取样,得到()x n 。

⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x t 以及()x n (0511n ≤≤)的波形;(2) ⽤FFT 对()x n 进⾏谱分析,要求频率分辨率不超过5Hz 。

求出⼀个记录长度中的最少点数x N ,并⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x n 以及()X k 的幅值; (3) ⽤要求1中设计的线性相位低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出1()y n ,并⽤FFT 对1()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。

求出⼀个记录长度中的最少点数1y N ,并⽤⼀个图形窗⼝,包括四个⼦图,分别显⽰()x n (01x n N ≤≤-)、()X k 、1()y n (101y n N ≤≤-)和1()Y k 的幅值;(4) ⽤要求2中设计的Chebyshev 低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出2()y n ,并⽤FFT 对2()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。

数字信号处理实验

数字信号处理实验

实验六: 用FFT对信号作频谱分析一、实验目的1.了解双音多频信号的产生、检测、包括对双音多频信号进行DFT时的参数选择等。

2.初步了解数字信号处理在是集中的使用方法和重要性。

3.掌握matlab的开发环境。

二、实验原理与方法1、引言双音多频(Dual Tone Multi Frequency, DTMF)信号是音频电话中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于电话网络中。

这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。

这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。

这些系统中用户可以用电话发送DTMF信号选择语音菜单进行操作。

DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A变换器;在接收端用A/D变换器将其转换成数字信号,并进行数字信号处理与识别。

为了系统的检测速度并降低成本,还开发一种特殊的DFT算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。

下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。

下面先介绍电话中的DTMF信号的组成。

在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。

每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用表示。

这样8个频率形成16种不同的双频信号。

具体号码以及符号对应的频率如表10.6.1所示。

表中最后一列在电话中暂时未用。

DTMF信号在电话中有两种作用,一个是用拨号信号去控制交换机接通被叫的用户电话机,另一个作用是控制电话机的各种动作,如播放留言、语音信箱等。

北邮-DSP数字信号处理 实验-实验报告

北邮-DSP数字信号处理 实验-实验报告

北京邮电大学电子工程学院电子实验中心<数字信号处理实验>实验报告班级: xxx学院: xxx实验室: xxx 审阅教师:姓名(班内序号): xxx 学号: xxx 实验时间: xxx评定成绩:目录一、常规实验 (3)实验一常用指令实验 (3)1.试验现象 (3)2.程序代码 (3)3.工作原理 (3)实验二数据储存实验 (4)1.试验现象 (4)2.程序代码 (4)3.工作原理 (4)实验三I/O实验 (5)1.试验现象 (5)2.程序代码 (5)3.工作原理 (5)实验四定时器实验 (5)1.试验现象 (5)2.程序代码 (6)3.工作原理 (9)实验五INT2中断实验 (9)1.试验现象 (9)2.程序代码 (9)3.工作原理 (13)实验六A/D转换实验 (13)1.试验现象 (13)2.程序代码 (14)3.工作原理 (18)实验七D/A转换实验 (19)1.试验现象 (19)2.程序代码 (19)3.工作原理 (37)二、算法实验 (38)实验一快速傅里叶变换(FFT)算法实验 (38)1.试验现象 (38)2.程序代码 (38)3.工作原理 (42)实验二有限冲击响应滤波器(FIR)算法实验 (42)1.试验现象 (42)2.程序代码 (42)3.工作原理 (49)实验三无限冲击响应滤波器(IIR)算法实验 (49)1.试验现象 (49)2.程序代码 (49)3.工作原理 (56)作业设计高通滤波器 (56)1.设计思路 (56)2.程序代码 (57)3.试验现象 (64)一、常规实验实验一常用指令实验1.试验现象可以观察到实验箱CPLD右上方的D3按一定频率闪烁。

2.程序代码.mmregs.global _main_main:stm #3000h,spssbx xf ;将XF置1,D3熄灭call delay ;调用延时子程序,延时rsbx xf ;将XF置0,D3点亮call delay ;调用延时子程序,b _main ;程序跳转到"_MAIN"nopnop;延时子程序delay:stm 270fh,ar3 ;将0x270f(9999)存入ar3loop1:stm 0f9h,ar4 ;将0x0f9(249)存入ar4loop2:banz loop2,*ar4- ;*ar4自减1,不为0时跳到loop2的位置banz loop1,*ar3- ;*ar3自减1,不为0时跳到loop1的位置ret ;可选择延迟的返回nopnop.end3.工作原理主程序循环执行:D3熄灭→延时→D3点亮→延时。

数字信号处理实验答案

数字信号处理实验答案

数字信号处理实验答案第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。

实验一系统响应及系统稳定性。

实验二时域采样与频域采样。

实验三用FFT对信号作频谱分析。

实验四IIR数字滤波器设计及软件实现。

实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。

建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。

学习完第六章进行;实验五在学习完第七章后进行。

实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。

10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。

也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

数字信号处理实验报告_五个实验

数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。

二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。

实验六用窗函数法设计FIR滤波器分析解析

实验六用窗函数法设计FIR滤波器分析解析

实验六用窗函数法设计FIR滤波器分析解析一、引言数字滤波器是数字信号处理中的重要组成部分。

滤波器可以用于去除噪声、调整频率响应以及提取感兴趣的信号。

有许多方法可以设计数字滤波器,包括窗函数法、频域法和优化法等。

本实验将重点介绍窗函数法设计FIR滤波器的原理和过程。

二、窗函数法设计FIR滤波器窗函数法是设计FIR滤波器的一种常用方法。

其基本原理是将滤波器的频率响应与理想滤波器的频率响应进行乘积。

理想滤波器的频率响应通常为矩形函数,而窗函数则用于提取有限长度的理想滤波器的频率响应。

窗函数的选择在FIR滤波器的设计中起着重要的作用。

常用的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。

对于每种窗函数,都有不同的特性和性能指标,如主瓣宽度、副瓣抑制比等。

根据不同的应用需求,可以选择合适的窗函数。

窗函数法设计FIR滤波器的具体步骤如下:1.确定滤波器的阶数N。

阶数N决定了滤波器的复杂度,一般情况下,阶数越低,滤波器的简单度越高,但频率响应的近似程度也会降低。

2.确定滤波器的截止频率。

根据应用需求,确定滤波器的截止频率,并选择合适的窗函数。

3.根据窗函数长度和截止频率计算理想滤波器的频率响应。

根据所选窗函数的特性,计算理想滤波器的频率响应。

4.根据理想滤波器的频率响应和窗函数的频率响应,得到所需的FIR滤波器的频率响应。

将理想滤波器的频率响应与窗函数的频率响应进行乘积,即可得到所需滤波器的频率响应。

5.对所得到的频率响应进行逆傅里叶变换,得到时域的滤波器系数。

6.实现滤波器。

利用所得到的滤波器系数,可以通过卷积运算实现滤波器。

三、实验结果与分析本实验以Matlab软件为平台,利用窗函数法设计了一个低通滤波器。

滤波器的阶数为16,截止频率为500Hz,采样频率为1000Hz,选择了汉宁窗。

根据上述步骤,计算得到了所需的滤波器的频率响应和时域的滤波器系数。

利用这些系数,通过卷积运算,实现了滤波器。

为了验证滤波器的性能,将滤波器应用于输入信号,观察输出信号的变化。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。

二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。

2、数据采集卡。

三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。

在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。

2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。

通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。

3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。

四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。

2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。

3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。

4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。

(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。

五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。

通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。

2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。

dsp实验报告

dsp实验报告

dsp实验报告DSP实验报告一、引言数字信号处理(Digital Signal Processing,DSP)是一种对数字信号进行处理和分析的技术。

它在许多领域中被广泛应用,如通信、音频处理、图像处理等。

本实验旨在通过实际操作,探索和理解DSP的基本原理和应用。

二、实验目的1. 理解数字信号处理的基本概念和原理;2. 掌握DSP实验平台的使用方法;3. 进行一系列DSP实验,加深对DSP技术的理解。

三、实验器材和软件1. DSP开发板;2. 电脑;3. DSP开发软件。

四、实验内容1. 实验一:信号采集与重构在此实验中,我们将通过DSP开发板采集模拟信号,并将其转换为数字信号进行处理。

首先,我们需要连接信号源和开发板,然后设置采样频率和采样时间。

接下来,我们将对采集到的信号进行重构,还原出原始模拟信号,并进行观察和分析。

2. 实验二:滤波器设计与实现滤波器是DSP中常用的模块,用于去除或增强信号中的特定频率成分。

在此实验中,我们将学习滤波器的设计和实现方法。

首先,我们将选择合适的滤波器类型和参数,然后使用DSP开发软件进行滤波器设计。

最后,我们将将设计好的滤波器加载到DSP开发板上,并进行实时滤波处理。

3. 实验三:频谱分析与频域处理频谱分析是DSP中常用的方法,用于分析信号的频率成分和能量分布。

在此实验中,我们将学习频谱分析的基本原理和方法,并进行实际操作。

我们将采集一个包含多个频率成分的信号,并使用FFT算法进行频谱分析。

然后,我们将对频谱进行处理,如频率选择、频率域滤波等,并观察处理后的效果。

4. 实验四:音频处理与效果实现音频处理是DSP中的重要应用之一。

在此实验中,我们将学习音频信号的处理方法,并实现一些常见的音频效果。

例如,均衡器、混响、合唱等。

我们将使用DSP开发软件进行算法设计,并将设计好的算法加载到DSP开发板上进行实时处理。

五、实验结果与分析通过以上实验,我们成功完成了信号采集与重构、滤波器设计与实现、频谱分析与频域处理以及音频处理与效果实现等一系列实验。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

(实验六 随机信号功率谱分析)

(实验六 随机信号功率谱分析)

实验报告实验课程:数字信号处理实验开课时间:2020—2021 学年秋季学期实验名称:随机信号功率谱分析实验时间: 2020年9月30日星期三学院:物理与电子信息学院年级:大三班级:182 学号:1843202000234 姓名:武建璋一、实验预习实验目的要求深刻理解随机信号的特性,掌握随机信号功率谱估计的基本原理,灵活运用各种随机信号功率谱估计的基本方法。

实验仪器用具装有Matlab的计算机一台实验原理功率谱估计是随机信号处理中的一个重要的研究和应用领域.功率谱估计基本上可以非参数估计的经典方法和参数估计的近代方法.典型功率谱估计是基于FFT 算法的非参数估计,对足够长的记录数据效果较好。

在工程实际中,经典功率谱估计法获得广泛应用的是修正期图发。

该方法采取数据加窗处理再求平均的办法。

通过求各段功率谱平均,最后得到功率谱计P(m),即:式中:为窗口函数ω[k]的方差。

K表示有重叠的分数段。

由于采用分段加窗求功率谱平均,有效地减少了方差和偏差,提高了估计质量,使修正周期图法在经典法中得到普遍应用。

但在估计过程存在两个与实际不符的假设,即(1)利用有限的N个观察数据进行自相关估计,隐含着在已知N个数据之外的全部数据均为零的假设。

(2)假定数据是由N个观察数据以N为周期的周期性延拓。

同时在计算过程中采用加窗处理,使得估计的方差和功率泄露较大,频率分辨率较低,不适用于短系列的谱分析和对微弱信号的检测。

近代谱估计是建立在随机信号参数模型的基础上,通过信号参数模型或预测误差滤波器(一步预测器)参数的估计,实现功率谱估计。

由于既不需要加窗,又不需要对相关函数的估计进行如经典法那样的假设,从而减少公里泄露,提高了频谱分辨率。

常用的参数模型有自回归(AR)模型、滑动平均(MA)模型、自回归滑动平均(ARMA)模型。

其中AR模型是基本模型,求解AR模型的参数主要有L—D算法和Burg算法。

1.某随机信号由两余弦信号与噪声构成x(t)=cos(20*pi*t)+cos(40*pi*t)+s(t)式中:s(t)是均值为0、方差为1的高斯白噪声。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。

实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。

程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。

数字信号处理实验报告11-12-10

数字信号处理实验报告11-12-10

《数字信号处理》实验报告专业学号姓名实验一 利用FFT 实现快速卷积一、实验目的1.加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。

2.掌握循环卷积和线性卷积两者之间的关系。

二、实验原理用FFT 来快速计算有限长度序列的线性卷积。

这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样值()x k ,然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)。

现以FFT 求有限长序列的卷积及求有限长度序列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。

序列x(n)和h(n)的长差不多。

设x(n)的长为N 1,h(n)的长为N 2,要求∑-=-=⊗=1)()()()()(N m m n x m h n y n x n y用FFT 完成这一卷积的具体步骤如下:①为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运算,要求m N 2=(m 为整数)。

②用补零方法使x(n)和h(n)变成列长为N 的序列。

1122()01()01()01()01x n n N x n N n N h n n N h n N n N ≤≤-⎧=⎨≤≤-⎩≤≤-⎧=⎨≤≤-⎩③用FFT 计算x(n)和h(n)的N 点离散傅里叶变换。

④完成X(k)和H(k)乘积,)()()(k H k x k Y = ⑤用FFT 计算 ()Y k 的离散傅里叶反变换得*10*10)(1)(1)(⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∑∑-=--=N k nk N nk N N k W k Y N W k Y N n y三、主要实验仪器及材料微型计算机、Matlab6.5教学版。

四、实验内容1.数字滤波器的脉冲响应为()22()1/2(),8nN h n R n N ==。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列x (n )(0≤n ≤N −1)的离散时间傅里叶变换X (e jω)在频率区间(0≤ω≤2π)的N 个等间隔分布的点kω=2πk /N (0≤k ≤N −1)上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列x (n )的N 点DFT X k ,实际上就是x (n )序列的DTFT 在N 个等间隔频率点kω=2πk /N (0≤k ≤N −1)上样本X k 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFTX (ejω)12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。

二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。

其主要内容包括采样、量化、滤波、变换分析、重建等。

其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。

频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。

采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。

三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。

采集的信号包括噪声信号、含有正弦波和方波的混合信号等。

2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。

这一步通常通过ADC(模数转换器)实现。

3.滤波处理:将量化后的数字信号输入到数字滤波器中。

我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。

4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。

5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。

我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。

四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。

这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。

2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。

在频域分析中,我们可以更清楚地看到信号的频率特性。

例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告西南交通大学信息科学与技术学院姓名:伍先春学号:20092487班级:自动化1班指导老师:张翠芳实验一序列的傅立叶变换实验目的进一步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅立叶变换(FFT )的应用。

实验步骤1. 复习DFS 和DFT 的定义,性质和应用;2. 熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;利用提供的程序例子编写实验用程序;按实验内容上机实验,并进行实验结果分析;写出完整的实验报告,并将程序附在后面。

实验内容1. 周期方波序列的频谱试画出下面四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。

2. 有限长序列x(n)的DFT(1) 取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2) 将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3) 取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。

利用FFT进行谱分析 已知:模拟信号以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。

请分别画出N=45; N=50;N=55;N=60时的幅值曲线。

数字信号处理实验一1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=⎩⎨⎧-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验二 用双线性变换法设计IIR 数字滤波器 一、 实验目的1. 熟悉用双线性变换法设计IIR 数字滤波器的原理与方法; 2. 掌握数字滤波器的计算机仿真方法;3.通过观察对实际心电图的滤波作用,获得数字滤波器的感性知识。

数字信号处理课程实验报告

数字信号处理课程实验报告

数字信号处理课程实验报告课题名称:IIR滤波器相位校正实验一、实验内容与分析1、实验目的和内容1)利用MATLAB设计一个IIR滤波器;2)结合课本关于全通滤波器特性知识(课本p128),在IIR滤波器后级联一个全通相位滤波器进行相位校正,使此滤波器最终实现线性相位特性;3)分别使用相位校正前后两滤波器实现对某一信号的处理;4)画出IIR滤波器、全通滤波器、相位校正后滤波器的幅度频率特性曲线、相位频率特性曲线,信号时域波形、信号的幅度频率特性曲线、相位频率特性曲线;5)详述实验设计原理,分析相位校正前后两类滤波器对信号处理后的区别。

2、实验的分析1)、IIR滤波器的设计通过对实验内容的理解,我们首先需要设计一个IIR滤波器,对课本第六章的学习我们知道IIR数字滤波器有两种设计方法:间接设计法和直接设计法。

间接设计法中有巴特沃斯滤波器,切比雪夫I型、II型滤波器,椭圆滤波器和贝塞尔滤波器五种。

我们选择设计切比雪夫II型低通滤波器,其中的技术指标为:通带边界频率fp=1000Hz,阻带边界频率fs=2000 Hz,阻带最小衰减As=40 dB,通带最大衰减Ap=1 dB。

2)全通滤波器的设计全通滤波器的幅度特性是在整个频带上均等于常数,或者等于1.信号通过全通滤波器后,其输出的幅度特性保持不变,仅相位发生变化。

由于IIR滤波器后需要级联一个全通相位滤波器,使整个系统实现线性相位特性,为了求解全通滤波器的参数,我们先假设整个系统具有线性相位特性,再根据已经设计好了的切比雪夫II 型滤波器的系统参数,求解全通滤波器的参数。

二、实验的过程1、切比雪夫II型滤波器的设计过程在确定了滤波器的参数之后,我们运用cheb2ord函数计算模拟低通滤波器的最小阶数;然后用cheby2计算滤波器传输函数的系数。

然后运用脉冲响应不变法将模拟低通滤波器转换成数字滤波器。

这样我们就设计出了满足给定参数的切比雪夫II型滤波器。

数字信号处理实验六IIR数字滤波器的设计实验报告

数字信号处理实验六IIR数字滤波器的设计实验报告

数字信号处理实验六IIR数字滤波器的设计实验报告一、实验目的1.学习理解数字滤波器的概念和基本原理;2.掌握IIR数字滤波器的设计方法;3.了解数字滤波器的时域和频域特性。

二、实验原理1.数字滤波器的概念和基本原理数字滤波器是一种将输入信号转换为输出信号的设备,通过在时域或频域对信号进行处理来过滤或改变信号的特性。

数字滤波器可以分为无限脉冲响应(IIR)和有限脉冲响应(FIR)两种类型。

在IIR数字滤波器中,输出信号的当前值与过去的输出值和输入值之间存在关联,即存在反馈回路。

IIR数字滤波器可以实现较窄的带通和带阻滤波,且具有较高的效率。

2.IIR数字滤波器的设计方法IIR数字滤波器的设计需要选择合适的滤波器类型,确定滤波器的阶数和截止频率等参数。

常用的IIR数字滤波器设计方法有:(1) Butterworth滤波器设计:通过选择滤波器阶数和截止频率来实现对输入信号的平滑处理。

(2) Chebyshev滤波器设计:通过选择滤波器阶数、截止频率和最大纹波来实现对输入信号的均衡增益或陡峭截止。

3.数字滤波器的时域和频域特性时域特性是指数字滤波器的输出与输入之间的时域关系。

常见的时域特性包括单位脉冲响应(IMPULSE)和单位阶跃响应(STEP)。

频域特性是指数字滤波器对不同频率的输入信号的响应程度。

常见的频域特性包括幅频特性(Amplitude-frequency Characteristics)和相频特性(Phase-frequency Characteristics)。

三、实验步骤1. 根据实验要求选择合适的IIR数字滤波器类型,比如Butterworth滤波器。

2.根据实验要求确定滤波器的阶数和截止频率等参数。

3.使用MATLAB等软件进行滤波器设计,得到滤波器的传输函数。

4.将传输函数转化为巴特沃斯模拟滤波器的传输函数形式。

5.根据传输函数的分母和分子系数,使用巴特沃斯滤波器原型的模拟滤波器电路设计方法,确定滤波器的电路结构。

《数字信号处理》实验讲义(信息计算)

《数字信号处理》实验讲义(信息计算)

《数字信号处理》实验指导书实验一 常见离散信号的产生一、实验目的1. 加深对离散信号的理解。

2. 掌握典型离散信号的Matlab 产生和显示。

二、实验原理及方法在MATLAB 中,序列是用矩阵向量表示,但它没有包含采样信息,即序列位置信息,为此,要表示一个序列需要建立两个向量;一是时间序列n,或称位置序列,另一个为取值序列x ,表示如下: n=[…,-3,-2,-1,0,1,2,3,…]x=[…,6,3,5,2,1,7,9,…]一般程序都从0 位置起始,则x= [x(0), x(1), x(2),…]对于多维信号需要建立矩阵来表示,矩阵的每个列向量代表一维信号。

数字信号处理中常用的信号有指数信号、正弦信号、余弦信号、方波信号、锯齿波信号等,在MATLAB 语言中分别由exp, sin, cos, square, sawtooth 等函数来实现。

三、实验内容1. 用MATLAB 编制程序,分别产生长度为N(由输入确定)的序列:①单位冲击响应序列:()n δ可用MATLAB 中zeros 函数来实现; ②单位阶跃序列:u(n)可用MATLAB 中ones 函数来实现; ③正弦序列:()sin()x n n ω=; ④指数序列:(),nx n a n =-∞<<+∞⑤复指数序列:用exp 函数实现()0()a jb nx n K e+=,并给出该复指数序列的实部、虚部、幅值和相位的图形。

(其中00.2,0.5,4,40a b K N =-===.)参考流程图:四、实验报告要求1. 写出实验程序,绘出单位阶跃序列、单位阶跃序列、正弦序列、指数序列的图形以及绘 出复指数序列的实部、虚部、幅值和相位的图形。

2. 序列信号的实现方法。

3. 在计算机上实现正弦序列0()sin(2)x n A fn πϕ=+。

实验二 离散信号的运算一、实验目的1. 掌握离散信号的时域特性。

2. 用MATLAB 实现离散信号的各种运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验六
序列的FFT及频域分辨率
一、实验目的:
1.充分熟悉FFT函数的使用;
2.熟悉序列快速傅里叶变换的计算;
3.能够画出结果的图形。

二、实验步骤:
1.用help查找FFT函数的使用情况;
2.编辑并生成函数sigfft .m(带长度的卷积和)
clear;
%计算长度为N的原始信号的DTFT
f1=2.67;f2=3.75;f3=6.75;fs=20;w=2*pi/fs;
N=16;
x=sin(w*f1*(0:N-1))+sin(w*f2*(0:N-1)+pi/2)+sin(w*f3*(0:N-1)); f=0:fs/N:fs/2-1/N;
X=fft(x);
X=abs(X);
f=fs/N*(0:N/2-1);
subplot(221)
stem(f,X(1:N/2),'.');grid on;
xlabel('Hz')
%在数据末补N个零
x(N:2*N-1)=0;
X=fft(x); X=abs(X);
f=fs*(0:N-1)/(2*N);
subplot(222)
stem(f,X(1:N),'.');grid on;
xlabel('Hz')
%在数据末补7*N个零
x(N:8*N-1)=0;
X=fft(x); X=abs(X);
f=fs*(0:4*N-1)/(8*N);
subplot(223)
stem(f,X(1:4*N),'.');grid on;
xlabel('Hz')
%在数据末补29*N个零
x(N:30*N-1)=0;
X=fft(x); X=abs(X);
f=fs*(0:15*N-1)/(30*N);
subplot(224)
plot(f,X(1:15*N));grid on;
xlabel('Hz')
3.运行该函数, 分析四个图的分辨率;
4.改变N=8, 分析四个图的分辨率, 第四图代表频谱包络,说明在N 较小时, 补
零能否提高分辨率?
N至少应该是多少, 才能通过补零提高有效的分辨率;
5.改变N=32, 128和2048分析结果。

三、实验报告要求:
1.实验目的
2.实验步骤
3.根据图形的结果,得出结论或体会。

相关文档
最新文档