数字信号处理 实验一
数字信号处理实验
实验一: 系统及响应时域采样及频域采样1. 实验目的(1)掌握用卷积求系统响应及卷积定理的验证;(2)掌握连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。
(3)掌握频域采样引起时域周期化概念, 加深对频域采样定理的理解。
(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
3. 实验内容及步骤(1) 认真复习卷积定理、 时域采样和频域采样理论。
(2) 编制实验用主程序及相应子程序。
①系统单位脉冲响应序列产生子程序。
有限长序列线性卷积子程序,用于完成两个给定长度的序列的卷积。
可以直接调用MATLAB 语言中的卷积函数conv 。
conv 用于两个有限长度序列的卷积,它假定两个序列 都从n=0开始。
调用格式如下: y=conv (x, h) ② 卷积定理的验证。
(3)时域采样定理的验证:信号产生子程序, 用于产生实验中要用到的下列信号序列:x a (t)=Ae -at sin(Ω0t)u(t) 进行采样, 可得到采样序列x a (n)=x a (nT)=Ae -anT sin(Ω0nT)u(n), 0≤n<50其中A 为幅度因子, a 为衰减因子, Ω0是模拟角频率, T 为采样间隔。
这些参数都要在实验过程中由键盘输入, 产生不同的x a (t)和x a (n)。
>> %1时域采样序列分析 A=400;a=200;w=200; n=0:50-1;fs=1000;xa=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200;w=(pi/100)*k;Xk=fft(xa,length(k));magX=abs(Xk);angX=angle(Xk); subplot(2,1,1);stem(n,xa,'.');xlabel('n');ylabel('xa(n)'); title('信号的类型');)()(10n R n h a =)3()2(5.2)1(5.2)()(-+-+-+=n n n n n h b δδδδ1,,2,1,0,)()()(-==M k e H e X e Y k k k j j a j ωωωsubplot(2,1,2);plot(w/pi,magX);xlabel('w/pi'); ylabel('|Yjw|');title('Y(|jw|)');5101520253035404550n x a (n )信号的类型-2.5-2-1.5-1-0.500.51 1.5205001000w/pi|Y j w |Y(|jw|)(4)频域采样定理的验证:>> %1时域采样序列分析fs=1000 A=400; a=200; w=200;;ts=64*10^(-3); fs=1000;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,1);stem(n,xn);xlabel('n,fs=1000Hz'); ylabel('xn');title('xn'); subplot(3,2,2);plot(n,abs(Xk));xlabel('k,fs=1000Hz'); title('|X(k)|');20406080n,fs=1000Hzx nxn2040608005001000k,fs=1000Hz|X(k)|51015n,fs=200Hzx nxn51015100200k,fs=200Hz |X (k)|10203040n,fs=500Hzx nxn102030400500k,fs=500Hz|X (k)|>> %频域采样定理验证M=26;N=32;n=0:M;n1=0:13;x1=n1+1; n2=14:26;x2=27-n2; x=[x1,x2];Xk=fft(x,512); X32k=fft(x,32);k=0:511;w=(pi/512)*k;subplot(321);stem(n,x);xlabel('n'); ylabel('xn');axis([0,31,0,15]);subplot(322);plot(w,abs(Xk));xlabel('k'); ylabel('|X(k)|');axis([0,1,0,200]) X16k=X32k(1:2:N);x32n=ifft(X32k);x16n=ifft(X16k,16); k1=0:31;k2=0:15;subplot(323);stem(k1,abs(X32k));xlabel('k'); ylabel('X32k');axis([0,31,0,200]);subplot(325);stem(k2,abs(X16k));xlabel('k'); ylabel('|X(k)|');axis([0,15,0,200]) n=0:31;subplot(324);stem(n,abs(x32n));xlabel('n'); ylabel('|x(n)|');axis([0,31,0,15]) n1=0:15;subplot(326);stem(n1,abs(x16n));xlabel('n'); ylabel('|x(n)|');axis([0,31,0,15])102030nx n0.51100200k|X (k )|kX 32kn|x (n )|k|X (k )|102030n|x (n )|实验二:用FFT作谱分析1.实验目的(1) 进一步加深DFT算法原理和基本性质的理解(因为FFT只是DFT的一种快速算法,所以FFT的运算结果必然满足DFT的基本性质)。
数字信号处理实验报告
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验
数字信号处理实验实验一信号、系统及系统响应1、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。
2、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。
b. 线性时不变系统单位脉冲响应为h(n)=(0.9)nu(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。
c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。
计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?d. 序列x(n)=(0.8)nu(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。
观察它是否具有周期性?e. 线性时不变系统的差分方程为y(n)=0.7y(n-1)+x(n),求系统的频率响应H(ejω),如果系统输入为x(n)=cos(0.05πn)u(n),求系统的稳态响应并绘图。
f. 设连续时间信号x(t)=e-1000|t|,计算并绘制它的傅立叶变换;如果用采样频率为每秒5000 样本对x(t)进行采样得到x1(n),计算并绘制X1(ejω),用x1(n)重建连续信号x(t),并对结果进行讨论;如果用采样频率为每秒1000 样本对x(t)进行采样得到x2(n),计算并绘制X2(ejω),用x2(n)重建连续信号x(t),并对结果进行讨论。
加深对采样定理的理解。
g. 设X1(z)=z+2+3z-1,X2(z)=2z2+4z+3+5z-1,用卷积方法计算X1(z)X2(z)。
数字信号处理实验一实验报告
实验一离散时间信号与系统时域分析一、实验目的1、学习MATLAB语言编程和调试技巧。
2、学会简单的矩阵输入和图形表示法3、掌握简单的绘图命令。
二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令stem()和plot()。
实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。
其基本原理分别如下:对一个模拟信号x(t)进行采样离散化x(n),为了不失真地从采样信号x(n)中恢复原始信号x(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2备。
一个离散时间系统,输入信号为x(n),输出信号为y(n),运算关系用T【.】表示,则输入与输出的关系可表示为y(n)=T[x(n)]。
三、实验结果实验一x=[3 1 2 0 -4 2 -3];n=-3:1:3;stem(n,x);xlabel('n');ylabel('x(n)');axis([-4 4 -5 5]);grid;n x (n )实验二n=0:9;x=0.5.^n;stem(n,x);xlabel('n');ylabel('x(n)');grid;n x (n )实验三x=[-2 0 1 -1 3];h=[1 2 0 -1];c=conv(x,h);M=length(c)-1;n=0:1:M;stem(n,c);xlabel('n');ylabel('幅度’);n 幅度实验四t=0:1/256:2;x=3*cos(2*pi*t)-2*cos(6*pi*t)+cos(10*pi*t); plot(t,x);grid;实验五T=0.2;t=0:T:2;x=3*cos(2*pi*t)-2*cos(6*pi*t)+cos(10*pi*t); stem(t,x);grid;实验六N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[1 zeros(1,N-1)];n=0:1:N-1;y=filter(a,b,x);stem(n,y);xlabel('n');ylabel('幅度');n 幅度实验七n=0:1:40;x=[5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)]; plot(n,x);N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)]; n=0:1:40;y=filter(a,b,x);stem(n,y);xlabel('n');ylabel('幅度 ');n 幅度。
数字信号处理实验实验一
数字信号处理实验报告实验名称:离散时间系统的时域特性分析学生姓名:z学生学号:学生班级:上课时间:周二上午指导老师:一、实验目的线性时不变离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应序列可以刻画其时域特性。
本实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变特性的理解。
二、实验原理1.线性系统满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。
即:如果系统在x1(n)和x2(n)输入时对应的输出分别为y1(n)和y2(n),当对任意常数a1和a2,式T[a1x1(n)+a2x2(n)]=a1T[x1(n)]+a2[x2(n)]=a1y1(n)+a2y2(n)成立,则该系统是线性系统。
2.时不变系统若输入x(n)的输出为y(n),则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应保持不变。
即:当T[x(n)]=y(n),满足T[x(n-m)]=y(n-m) (m为任意整数)时,则该系统就称为时不变系统。
3.常系数线性差分方程线性时不变离散系统的输入、输出关系可以用以下常系数线性差分描述: y(n)=- ∑aky(n-k)+ ∑brx(n-r)当输入x(n)为单位冲激序列时,输出y(n)即为系统的单位冲击响应h(n)。
三、实验内容考虑如下差分方程描述的两个离散时间系统:系统1:y(n)=0.5x(n)+0.27x(n-1)+0.77x(n-2)系统2:y(n)=0.45x(n)+0.5x(n-1)+0.45x(n-2)+0.53y(n-1)-0.46y(n-2)输入想x(n)=cos(20n/256)+cos(200n/256)(1)编程求上述两个系统的输出,并分别画出系统的输入与输出波形。
(2)编程求上述两个系统的冲激响应序列,并画出其波形。
数字信号处理实验报告_完整版
实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。
2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。
实验一 数字信号处理 实验报告
1.已知系统的差分方程如下式:y1(n)=0.9y1(n-1)+x(n)程序编写如下:(1)输入信号x(n)=R10 (n),初始条件y1(-1)=1,试用递推法求解输出y1(n);a=0.9; ys=1; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10),定义其宽度为0~9n=1:35; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=sign(sign(10-n)+1);B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,1);stem(n,yn,'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1 ');xlabel('n');ylabel('y(n)')(2) 输入信号x(n)=R10 (n),初始条件y1(-1)=0,试用递推法求解输出y1(n)。
a=0.9; ys=0; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10)B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,2);stem(n,yn, 'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0 ');xlabel('n');ylabel('y(n)') 图形输出如下:-505101502468图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1ny (n )-55101502468图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0ny (n )2. 已知系统差分方程为: y 1(n )=0.9y 1(n -1)+x (n ) 用递推法求解系统的单位脉冲响应h (n ),要求写出h (n )的封闭公式,并打印h (n )~n 曲线。
数字信号处理实验
抽样定理: 1、分别对三角波和正弦波抽样,至少给出三 个抽样频率的结果。一个满足抽样定理,一个 不满足抽样定理,另一个随意。 信号恢复 2、分别对三个抽样结果进行信号恢复。
要求:实验报告中有理论分析。 可以用信号与系统实验箱做,也可以用matlab或C 做。
实验2:FFT频谱分析实验
1、用matlab或C编程计算N点序列x(n)的N 点DFT和FFT。 2、设x(n)=R8(n),求x(n)的离散傅立叶变换, 给出幅频图像和相频图像,然后用上述程序 求16点和32点的DFT及FFT. 给出
要求:实验报告中有理论分析(要有计算量的表 示)。
实验3:IIR滤波器设计实验
1、已知通带截止频率为5KHz,通带最大衰减2dB, 阻带截止频率12KHz,阻带最小衰减30dB,按照如 上指标设计巴特沃斯低通滤波器。 2、用双线性变换法设计一个带通数字滤波器,通带 频率为20~ 30Hz,在通带内的最大衰减为0.5dB在 频率为10Hz和40Hz的最小衰减为50dB,在阻带内, 采样频率为150Hz。 要求:实验报告中有理论分析(要有双线性变换 法的变换式,说明模拟频率和数字频率的关系)。
实验4:窗函数法FIR滤波器设计实验
• 利用矩形窗、汉宁窗(Hanning)、海明窗(Hamming) 设计线性相位FIR低通滤波器,要求通带截止频率 c 4 • 求出分别对应的单位脉冲响应,并进行比较。
• 画出单位脉冲响应图形和对数幅度响应图形。
数字信号处理实验一
数字信号处理实验一实验目的:掌握利用Matlab产生各种离散时间信号,实现信号的相加、相乘及卷积运算实验函数:参考课本77-19页,注意式(2.11.1)的表达与各matlab子函数间的关系。
1、stem(x,y) % 绘制以x为横轴,y为纵轴的离散序列图形2、[h ,t] = impz(b, a) % 求解数字系统的冲激响应h,取样点数为缺省值[h, t] = impz(b, a, n) % 求解数字系统的冲激响应h,取样点数为nimpz(b, a) % 在当前窗口用stem(t, h)函数出图3、[h ,t] = dstep(b, a) % 求解数字系统的阶跃响应h,取样点数为缺省值[h, t] = dstep (b, a, n) % 求解数字系统的阶跃响应h,取样点数为ndstep (b, a) % 在当前窗口用stairs(t, h)函数出图4、y = filter(b,a,x) % 在已知系统差分方程或转移函数的情况下求系统输出实验原理:一、常用的时域离散信号及其程序1、产生单位抽样函数δ(n)n1 = -5;n2 = 5;n0 = 0;n = n1:n2;x = [n==n0]; % x在n=n0时为1,其余为0stem(n,x,'filled'); %filled:序列圆心处用实心圆表示axis([n1,n2,0,1.1*max(x)])title('单位抽样序列')xlabel('time(n)')ylabel('Amplitude:x(n)')2、产生单位阶跃序列u(n)n1 = -2;n2 = 8;n0 = 0;n = n1:n2;x = [n>=n0]; % x在n>=n0时为1,其余为0stem(n,x,'filled');axis([n1,n2,0,1.1*max(x)])title('单位阶跃序列')xlabel('time(n)')ylabel('Amplitude:x(n)')3、复指数序列复指数序列的表示式为()(),00,0j n e n x n n σω+⎧≥⎪=⎨<⎪⎩,当0ω=时,()x n 为实指数序列;当0σ=时,()x n 为虚指数序列,即()()cos sin j n e n j n ωωω=+,即其实部为余弦序列,虚部为正弦序列。
数字信号处理实验报告实验一
实验一:系统响应及系统稳定性1 实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2 实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件,可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的,系统的稳态输出是指当n→∞时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零。
3 实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv 函数求解系统输出响应的主程序。
程序中要有绘制信号波形的功能。
(2)给定一个低通滤波器的差分方程为y(n) = 0.05x(n) + 0.05x(n-1) + 0.9y(n-1)输入信号x1(n) = R8(n) , x8 = u(n)①分别求出x1 = R8(n) 和x8 = u(n) 的系统响应,并画出其波形。
数字信号处理实验一
实验一 离散时间信号分析一、实验目的1.熟悉MATLAB 应用环境,常用窗口的功能和使用方法。
2.掌握各种常用的序列,理解其数学表达式和波形表示。
3.掌握在计算机中生成及绘制数字信号波形的方法。
4.掌握序列的相加、相乘、移位、反褶、卷积等基本运算及计算机实现。
5.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。
二、实验原理1.序列的基本概念离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。
离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。
离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t a x 进行等间隔采样,采样间隔为T ,得到一个有序的数字序列)}({nT x a 就是离散时间信号,简称序列。
2.常用序列常用序列有:单位脉冲序列(单位抽样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。
3.序列的基本运算序列的运算包括移位、反褶、和、积、点乘、累加、差分运算、卷积等。
4.序列的卷积运算)()()()()(n h n x m n h m x n y m *=-=∑∞-∞=上式的运算关系称为卷积运算,式中*代表两个序列卷积运算。
两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。
其计算的过程包括以下4个步骤(1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。
(2)移位:将)(m h -移位n ,得)(m n h -。
当n 为正数时,右移n 位;当n 为负数时,左移n 位。
(3)相乘:将)(m n h -和)(m x 的对应点的值相乘。
数字信号处理实验1--5含代码
数字信号处理实验1--5含代码实验一离散时间信号的时域分析 1. 在MATLAB中利用逻辑关系式n,,0来实现序列,显示范围。
(产生如下,,,n,nn,n,n012图所示的单位脉冲信号的函数为impseq(n0,n1,n2),程序如示例所示),3,n,10并利用impseq函数实现序列:; ,,,,,,yn,2,n,3,,n,6,,xn1nnnn120源代码:impseq.mfunction y=impseq(n0,n1,n2)n=[n1:n2]y=[(n-n0)==0]exp01-1.mfunction impseq(n0,n1,n2)n=-3:1:10y=2*impseq(3,-3,10)+impseq(6,-3,10);stem(n,y)n,,0,,2. 在MATLAB中利用逻辑关系式来实现序列,显示范围。
(自己编写un,nn,n,n012产生单位阶跃信号的函数,函数命名为stepseq(n0,n1,n2)) 并利用编写的stepseq函数实现序列: ,,,,,,yn,un,2,un,2,5,n,10源代码:stepseq.mfunction y=stepseq(n0,n1,n2)n=n1:1:n2y=[(n-n0)>=0]exp01-2.mfunction stepseq(n0,n1,n2)n=-5:1:20y=stepseq(-2,-5,20)+stepseq(2,-5,20)stem(n,y)3. 在MATLAB中利用数组运算符“.^”来实现一个实指数序列。
如: n ,,,,xn,0.30,n,15源代码:n=0:1:15;x=0.3.^nstem(n,x)4. 在MATLAB中调用函数sin或cos产生正余弦序列,如:π,, ,,,,xn,3sin0.4πn,,5cos0.3πn0,n,20,,5,,源代码:n=0:1:20x=11*sin(0.3*pi*n+pi/5)+5*cos(0.3*pi*n)stem(n,x)思考题:1.在MATLAB环境下产生单位脉冲序列和单位阶跃序列各有几种方法,如何使用,2.在MATLAB环境下进行序列的相乘运算时应注意什么问题,实验二离散时间系统的时域分析1. 在MATLAB中利用内部函数conv来计算两个有限长序列的卷积。
数字信号处理实验一
实验一:熟悉MATLAB环境一、思考题:1、比较实验内容第2题中的第4和第5小题的结果,试说明对于周期性信号应当如何采样才能保证周期扩展后与原信号保持一致?答:对于周期性信号,在进行采样时,其采样周期必须满足采样定理,即采样频率应该大于信号最高频率的两倍,这样才能避免迭混,以便采样后仍能准确的恢复原信号。
2、对于有限长序列,如何用MATLAB计算其DTFT?答:用函数freqz可以计算序列在给定的离散频率点上的DTFT,该变换序列是以形如式的有理函数来描述的。
这个函数的表达形式有H=freqz(num,den,w)、[H,w]=freqz(num,den,k)。
函数freqz返回的频率响应值为向量H。
在H=freqz(num,den,w)中,0到π之间指定的频率集由向量w给出。
freqz函数的自变量k就是频率点的总数。
3、对于由两个子系统级联或并联的系统,如何用MATLAB计算他们的幅频响应与相频响应?答:系统的级联或并联实现涉及到了因式分解。
在MATLAB中,我们可以用函数roots来实现多项式的因式分解。
例如,函数r=roots(h)会返回多项式向量h 的根向量。
向量h是以的升幂表示的多项式的系数。
通过计算所得的根向量,可以求出二次因式的系数。
更简单的方法是用从以给定的传输函数H(z)直接求出二阶因式的函数zp2sos。
函数sos=zp2sos(z,p,k)产生以零—极点形式确定的等效传输函数H(z)的每个二阶部分系数的矩阵sos。
二、实验内容:第一到四题源程序:第二题图:第五题:%函数命名:function [x1]=stepshift(n0,n1,n2) n=[n1:n2];x1=[(n-n0)>=0];%源程序:>> [x1]=stepshift(2,1,10);>> n=1:10;>> stem(n,x1);第六题:>> b=[1,sqrt(2),1];>> a=[1,-0.67,0.9];>> [h,w]=freqz(b,a);>> am=20*log10(abs(h)); %求幅频特性>> subplot(2,1,1);plot(w,am);>> xlabel('w');ylabel('am');>> ph=angle(h); %求相频特性>> subplot(2,1,2);plot(w,ph);>> xlabel('w');ylabel('ph');第七题:源程序:>> a=[8 -2 -1 2 3];>> b=[2 3 -1 -3];>> c=conv(a,b); %求a、b的线性卷积>> m=length(c)-1;>> n=0:1:m;>> stem(n,c);>> xlabel('n');ylabel('幅度');第八题:源程序:>> n=50;>> a=[1 -2];>> b=[1 0.1 -0.06];>> x=[1 zeros(1,n-1)];>> k=0:1:n-1;>> y=filter(a,b,x);>> stem(k,y);>> xlabel('n');ylabel('幅度');三、实验总结:通过本次实验,熟悉并掌握MATLAB的主要命令操作,比如序列的简单运算、矩阵的输入和计算等,能熟练编写绘图程序,在计算卷积和绘制幅频响应和相频响应的过程中,充分地巩固了数字信号处理学的理论知识,总之,收获颇多。
数字信号处理实验一报告
实验一:用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。
2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。
可以根据此式选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
3.实验步骤及内容(1)对以下序列进行谱分析。
⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
4()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。
实验一 数字信号处理
实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
二实验内容及步骤1、给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1),输入信号x1(n)=R8(n)x2(n)=u(n)a)分别求出系统对x1(n)=R8(n)和x2(n)=u(n)的响应序列,并画出其波形。
b)求出系统的单位冲响应,画出其波形。
xn1=[1 1 1 1 1 1 1 1 zeros(1,50)];xn2=ones(1,128);xn3=[1,zeros(1,50)];B=[0.05,0.05];A=[1,-0.9];yn1=filter(B,A,xn1);yn2=filter(B,A,xn2);yn3=filter(B,A,xn3);figure(1);n1=0:length(yn1)-1;subplot(2,2,1);stem(n1,yn1,'.');xlabel('n');ylabel('yn1');title('yn1');n2=0:length(yn2)-1;subplot(2,2,2);stem(n2,yn2,'.');xlabel('n');ylabel('yn2');title('yn2');n3=0:length(yn3)-1;subplot(2,2,3);stem(n3,yn3,'.');xlabel('n');ylabel('yn3');title('yn3');2、给定系统的单位脉冲响应为h1(n)=R10(n),h2(n)=δ(n)+2.5δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。
数字信号处理上机实验
数字信号处理上机实验一声音信号的频谱分析班级___________________ 学号_____________________ 姓名____________________一、实验目的1、了解声音信号的基本特征2、掌握如何用Matlab处理声音信号3、掌握FFT变换及其应用二、实验原理与方法根据脉动球表面波动方程可知,声压与该球的尺寸和振动的频率的乘积成正比,即声压一定时,球的尺寸越大,振动的频率越小。
可以将此脉动球看作人的声带,人说话的声压变化在0.1~0.6pa的很小范围内,可以看作恒定,所以声带越大,声音频率就越小,反之,声带越小,声音频率就越大。
女子的声带为11~15mm,男子的声带为17~21mm,由此可见,女声频率高,男声频率低,因此听起来女声尖利而男声低沉。
人类歌唱声音频率最大范围的基频:下限可达65.4 Hz,上限可达1046.5 Hz,不包括泛音。
出色的女高音的泛音最高的可达2700hz。
童声:童高音:261.6Hz~880Hz,童低音:196Hz~698.5Hz;女声:女高音:220Hz~1046.5Hz,女低音:174.6Hz~784Hz;男声:男高音:110Hz~523.3Hz,男低音:24.5Hz~349.2Hz。
FFT方法是处理声音信号的基本方法,详细原理参见参考书三、实验内容1、应用Windows录音机录入一段声音文件;2、应用Matlab分析该声音文件的信息,包括采样频率、数据位数,数据格式等;3、应用Matlab画出该声音文件的时域曲线;(如果是双声道数据,只处理左声道数据)4、应用FFT分析该声音文件的频谱信息,并画出频域曲线;5、以100Hz为间隔,在0-1100Hz的基频范围内统计声音能量分布情况,并画出柱形图。
四、思考题1、同一个人不同的声音文件是否具有相同的频谱信号?2、试分析男女声的频谱区别。
3、能否从频谱信号中将自己的声音与其他人的声音区分开来?五、实验报告要求1、简述实验目的及原理2、按实验要求编写Matlab文件,并附上程序及程序运行结果;3、结合所学知识总结实验中的主要结论;4、简要回答思考题。
数字信号处理实验报告(全)
实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。
数字信号处理实验
实验二 IIR、FIR数字滤波器设计
三、实验内容
1. 产生三频率叠加的信号。 2. 显示其频谱分布。 3. 设计一低通IIR滤波器,滤除最高频率信号。 4. 设计一低通FIR滤波器, 滤除两个高频信号。
实验二 I个频率分量,三个信号的频率分 别为100Hz,1400Hz,3000Hz,功率大小一样,绘制其时域 及频谱; ②设计一IIR滤波器,滤除1400Hz和3000Hz,IIR滤波器要求 幅度特性图在通带和阻带均为单调下降,阻带衰减大于40dB ,绘制滤波器及滤波后的时域及频谱; ③设计一FIR滤波器,滤除3000Hz的信号,FIR滤波器(任选 一个要求) i.带内波动小于1dB,带外衰减大于47dB
二、学时安排
2学时
实验一模拟信号采样与重构及频谱分析FFT
三、实验内容
1 给定一连续信号,如正弦、矩形等信号,采用 数字化方式进行近似表示,并描述其频谱,绘 制对应的时域及频谱图。
2 对该连续信号,按不同采样频率进行采样,绘 制对应的时域离散信号的时域及频域图,分析 不同采样率对频谱的影响。
3 对按不同采样率离散后的信号分别采用理想低 通或零阶保持器进行恢复,比较恢复效果。
ii. 过渡带小于4 /8
绘制FIR滤波器及滤波后的时域及频谱;
实验报告填写要求
1. 按照电子工程系实验报告格式要求进行填写;
2. 附上实验的MATLAB原程序;
实验结束时
实验设计完成后,请在场指导老师进行检查程 序及结果,得到老师允许后方可离开。 实验指导老师为:
数字信号处理实验
实验一模拟信号采样与重构及频谱分析FFT
一、实验目的
本实验重在使学生通过MATLAB的编程仿真及绘图,对模 拟信号按照采样定理的要求进行采样,图形表示,再对离散信 号进行无失真重构,对采样前后的信号进行频谱分析,使学生 能够利用计算机完成对信号的上述处理与变换功能,分析频谱 现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验一
序列的绘图
一、实验目的:
1.了解MATLAB的实验环境;
2.充分熟悉subplot函数的使用;
3.能够画出单位脉冲序列及单位阶跃序列的图形;
4.能够画出矩形序列及正弦序列的图形。
二、实验步骤:
1.打开MATLAB,了解三个区域(工作区、命令区、历史记录区)的作用;
2.用help查找subplot函数的使用情况;
3.编辑并生成函数impseq.m(单位脉冲序列)
function [x,n] = impseq(n0,n1,n2)
% 产生 x(n) = delta(n-n0); n1 <= n,n0 <= n2
% [x,n] = impseq(n0,n1,n2)
if ((n0 < n1) | (n0 > n2) | (n1 > n2))
error('参数必须满足 n1 <= n0 <= n2')
end
n = [n1:n2];
%x = [zeros(1,(n0-n1)), 1, zeros(1,(n2-n0))];
x = [(n-n0) == 0];
以及函数stepseq.m(单位阶跃序列)
function [x,n] = stepseq(n0,n1,n2)
% 产生 x(n) = u(n-n0); n1 <= n0 <= n2
% [x,n] = stepseq(n0,n1,n2)
if ((n0 < n1) | (n0 > n2) | (n1 > n2))
error('参数必须满足n1 <= n0 <= n2')
end
n = [n1:n2];
%x = [zeros(1,(n0-n1)), ones(1,(n2-n0+1))];
x = [(n-n0) >= 0];
主函数test1.m
n=[-5:5];
x1=impseq(0,-5,5);
subplot(2,2,1);stem(n,x1);title('单位脉冲序列') xlabel('n');ylabel('x(n)');
n=[0:10];
x2=stepseq(0,0,10);
subplot(2,2,2);stem(n,x2);title('单位阶跃序列'); xlabel('n');ylabel('x(n)');
或主函数test2.m
n=[0:10];
x3=stepseq(0,0,10)-stepseq(5,0,10);
subplot(2,2,3);stem(n,x3);title('矩形序列'); xlabel('n');ylabel('x(n)');
n=[0:20];
x4=sin(0.3*n);
subplot(2,2,4);stem(n,x4);title('正弦序列'); xlabel('n');
ylabel('x(n)');
4. 先运行test1.m, 再运行test2.m,并改变坐标尺度n 的范围,分别画出另外两种坐标尺度的图形。
5. 画出)5(+n δ,)3(-n u ,)2()3(--+n u n u ,sin(0.6*n)的图形。
三、实验报告要求:
1. 实验目的
2. 实验步骤
3. 16个图形的结果,并得出结论或体会。
4. 思考题:请问有几种方法可以改变坐标尺度?。