数据分析与命题单元测试 (北师版)(含答案)

合集下载

四年级下册数学单元测试-6.数据的表示和分析 北师大版 (含答案)

四年级下册数学单元测试-6.数据的表示和分析 北师大版 (含答案)

四年级下册数学单元测试-6.数据的表示和分析一、单选题1.敬老院有四位老人,甲乙两人的年龄和是150岁,丙79岁,丁83岁.四人的平均年龄是()A. 312岁B. 78岁C. 87岁D. 86岁2.如表是小明的田径考试成绩,他跳高的成绩是()分项目跑步跳高跳远平均分分数70 ?85 83A. 79B. 80C. 93D. 943.甲、乙、丙三数的平均数是87,甲、乙两数的和为126,丙数为( )。

A. 135B. 39C. 87二、判断题4.小强所在班级同学的平均身高是140cm,小刚所在班级同学的平均身高是142cm,由此判断小明一定比小刚矮。

5.一辆车,从A地开往B地的速度为56千米/时,从B地返回A地的速度为60千米/时,那么这两车的平均速度列式为:(56+60)÷2。

6.折线统计图不但可以表示出数量的多少,而且能清楚地表示出数量增减变化情况。

三、填空题7.小华期中测验,语文、数学、英语三科的平均分为96分,其中语文91分,数学98分,则英语________分.8.毕业考,李想的语文、数学、英语三科的平均成绩是92分,其中语文、数学两科的平均分是94分,则英语得________分。

9.单式折线统计图用来表示________种数据,复式折线统计图可以表示________种数据。

10.少年宫影院在科技电影周每天上演4部电影,后4天的售票情况如下表:(1)4天内,每部电影平均每天售票为________张、________张、________张、________张.(按顺序依次填写)(2)照这样计算,这一周4部电影一共可能售票________张.(3)如果每张票价是3元,这一周大约可收入________元票款.(4)比较一下后4天,第________部电影观众最多,第________部观众最少,相差________人.四、解答题11.幸福小学四年级一班学生向汶川灾区捐款。

一组8人平均每人捐款15元,二组7人共捐款110元,三组7人共捐款90元,四组8人共捐款100元。

第6章 数据的分析 北师大版数学八年级上册单元测试卷(含答案)

第6章 数据的分析 北师大版数学八年级上册单元测试卷(含答案)

第六章 数据的分析时间:60分钟 满分:100分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数分别为6,10,5,3,4,8,4,这组数据的中位数是( )A.4B.7C.5D.32.(2022·广东深圳龙华区期末)某运动品牌旗舰店统计了某款运动服11月份的销售情况,绘制成了如图所示的统计图,经过分析,该店店长决定12月份采购该款式更多的蓝色型号运动服,这一决定主要依据销售数据中的( )A.众数B.方差C.中位数D.平均数3.(2022·山东济南莱芜区期末)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x(单位:分)及方差s2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )甲乙丙丁x6776s211.111.6A.甲B.乙C.丙D.丁4.甲、乙、丙三种糖果售价分别为每千克10元、16元、18元,若将甲种糖果3 千克、乙种糖果5千克、丙种糖果2 千克混在一起,则售价应定为每千克( ) A.14.2元 B.14.5元C.14.6元D.14.8元5.(2022·河北邯郸永年区期末)小明在计算一组数据的方差时,列出的算式如下:s2= 1[2(7-x)2+3(8-x)2+(9-x)2],根据算式信息,这组数据的众数是( ) 6A.3B.6C.7D.86.(2022·四川成都成华区期末)为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如下表,则这些被调查学生睡眠时间的众数和中位数分别是( )睡眠时间/时78910人数69114A.9,8.5B.9,9C.10,9D.11,8.57.(2022·江苏苏州工业园区期中)某篮球队5名场上队员的身高(单位:cm)是184,188,190,190,194.现用两名身高分别为185 cm和188 cm的队员换下场上身高为184 cm和190 cm的队员.与换人前相比,场上队员的身高( )A.平均数变小,众数变小B.平均数变小,众数变大C.平均数变大,众数变小D.平均数变大,众数变大8.为了解八(1)班学生的体温情况,小明对这个班所有学生测量了一次体温(单位:℃),并将测量结果绘制成统计表和如图所示的扇形统计图.体温/℃36.136.236.336.436.536.6人数48810x2下列说法错误的是( )A.这些体温的众数是36.5 ℃B.这些体温的中位数是36.35 ℃C.这个班有40人D.x=89.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表.星期日一二三四五六个数11121312其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据的唯一众数是13,平均数是12,那么这组数据的方差是( )A.107B.97C.87D.110.(2022·山东曲阜期末)有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数.下列说法:①两组样本数据的样本平均数相同;②两组样本数据的样本中位数相同;③两组样本数据的样本方差相同;④两组样本数据的样本极差相同.正确说法的序号是( )A.①②B.③④C.②④D.①③二、填空题(共5小题,每小题4分,共20分)11.甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是 .(填“甲”或“乙”)12.(2022·辽宁沈阳期末改编)北京冬奥会的开幕式惊艳了世界,在这背后离不开志愿者们的默默奉献.某高校为积极响应号召,组织了志愿者选拔活动,并规定总成绩由面试、体能测试和专业技能三部分成绩组成,各部分所占比例如图所示.若某位志愿者的面试、体能测试和专业技能三项成绩得分依次为88分,80分,85分,则这位志愿者的总成绩是 分.[(6-7)2+(10-7)2+(a-7)2+(b-13.(2022·山东烟台期中)已知一组数据的方差s2=1n7)2+(8-7)2](a,b为常数),则a+b的值为 .14.(2021·山东枣庄台儿庄区期末)已知3,a,b,5与a,4,2b的平均数都是3,若将这两组数据合并为一组新数据,则这组新数据的众数为 . 15.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 .三、解答题(共4小题,共50分)16.(11分)(2022·山东济南济阳区期末改编)甲、乙两名运动员参加射击训练,他们射击10次的成绩情况统计如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环方差甲8.5b0.85乙a8.5c(1)求出表格中a,b,c的值;(2)分别运用表中的三个统计量,简要分析这两名运动员的射击训练成绩,若选派其中一名参赛,你认为应选哪名运动员?17.(12分)(2022·山东寿光期末)青年歌手大奖赛的决赛在甲、乙两名歌手之间进行,9位评委的评分(10分为满分)情况如下表所示(单位:分).评委编号123456789甲的得分8.89.58.69.67.28.98.88.88.8乙的得分8.59.18.59.19.98.59.28.68.3(1)分别求出甲、乙两名歌手得分的平均数(精确到0.01)、中位数和众数;(2)由(1)的结果,分析甲、乙两名歌手中谁的演唱水平较高;(3)如果以平均分为标准区分比赛的名次,那么制订怎样的计分规则比较合理?18.(13分)(2021·江苏南京期末)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中队和高中队进行复赛,两个队学生的复赛成绩如图所示.(1)根据图示填表:平均数中位数众数方差初中队 8.5分 0.7高中队8.5分 10分 (2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.19.(14分)(2021·重庆沙坪坝区期末)为贯彻《关于全面加强新时代大中小学劳动教育的意见》的方针政策,各学校都在深入开展劳动教育.某校为了解七、八年级学生一学期参加课外劳动时间(单位:时)的情况,从该校七、八年级中随机各抽查了20名学生进行问卷调查,并将调查结果进行整理、描述和分析(A:0≤t<20,B:20≤t<40,C:40≤t<60,D:60≤t<80,E:80≤t<100),下面给出了部分信息.七年级抽取的学生在C组的课外劳动时间为40,40,50,55.八年级抽取的20名学生的课外劳动时间为10,15,20,25,30,35,40,40,45,50,50,50,55,60,60,75,75,80,90,95.七年级抽取的学生的课外劳动时间的扇形统计图如图所示.七、八年级抽取的学生的课外劳动时间的统计量如下表.平均数众数中位数方差七年级5035a580八年级50b50560根据以上信息,解答下列问题:(1)直接写出a,b,m的值.(2)根据以上数据,在该校七、八年级中,你认为哪个年级参加课外劳动的情况较好?请说明理由(一条即可).(3)若该校七、八年级分别有学生400人,试估计该校七、八年级学生一学期参加课外劳动时间不少于60小时的人数之和.第六章 数据的分析12345678910C A C CD A A A C B11.乙12.8413.1114.315.4.8或5或5.21.C2.A 在决定下个月进该型号运动服时多进一些蓝色的,主要考虑的是各色运动服的销量,而且蓝色上周销量最大.由于众数是数据中出现次数最多的数,因此考虑的是各色运动服的销量的众数.3.C 因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.4.C 根据题意售价应定为10×3+16×5+18×2=14.6(元/千克).3+5+25.D ∵在这6个数中,8出现了3次,出现的次数最多,∴这组数据的众数是8.6.A 被调查学生的人数为6+9+11+4=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时.将这30名学生的睡眠时间从=8.5,因此中位数是8.5小时.小到大排列,处在中间位置的两个数的平均数为8+92×(184+188+190+190+194)=189.2,众数是190;新数据7.A 原数据的平均数为15×(185+188+188+190+194)=189,众数是188.∵189<189.2,188<190,的平均数为15∴平均数变小,众数变小.8.A 由题中扇形统计图可知,体温为36.1 ℃的学生人数所占的百分比为36360×100%=10%,则八(1)班学生总数为4=40(人),故C中说法正确;x=40-10%(4+8+8+10+2)=8,故D中说法正确;由题中表格可知这些体温的众数是36.4 ℃,=36.35(℃),故故A中说法错误;由题中表格可知这些体温的中位数是36.3+36.42B中说法正确.故选A.9.C ∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖的三天的个数的和=84-(11+12+13+12)=36.∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为[(11-12)2+(12-12)2+(10-12)2+(13-12)2+(13-12)2+(13-12)2+(12-10,13,13,∴s2=17.12)2]=8710.B 对于①,两组数据的平均数的差为c ,故①错误;对于②,两组样本数据的样本中位数的差是c ,故②错误;对于③,∵方差s 2(y i )=s 2(x i +c )=s 2(x i ),∴两组样本数据的样本方差相同,故③正确;对于④,∵y i =x i +c (i=1,2,…,n ),c 为非零常数,x 的极差为x max -x min ,y 的极差为(x max +c )-(x min +c )=x max -x min ,∴两组样本数据的样本极差相同,故④正确.故选B .11.乙 观察题中日平均气温统计图可知,乙地的日平均气温波动较小,比较稳定,则乙地的日平均气温的方差较小,即日平均气温的方差较小的是乙.12.84 这位志愿者的总成绩是88×25%+80×35%+85×40%=84(分).13.11 根据题意知,数据6,10,a ,b ,8的平均数为7,∴a+b=7×5-(6+10+8)=11.14.3 由题意得3+a +b +5=3×4,a +4+2b =3×3,解得a =3,b =1,所以这两组数据为3,3,1,5和3,4,2,将这两组数据合并成一组新数据,在这组新数据中,出现次数最多的是3,因此这组新数据的众数是3.15.4.8或5或5.2 (分类讨论思想)∵数据1,3,5,12,a 的中位数是整数a ,∴a=3或a=4或a=5.当a=3时,这组数据的平均数为1+3+3+5+125=4.8;当a=4时,这组数据的平均数为1+3+4+5+125=5;当a=5时,这组数据的平均数为1+3+5+5+125=5.2.故该组数据的平均数是4.8或5或5.2.16.【参考答案】(1)乙的平均成绩a=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,将甲的射击成绩按从小到大的顺序排列为7,7,8,8,9,9,9,9,9,10,所以甲的射击成绩的中位数b=(9+9)÷2=9,乙的射击成绩的方差为c=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45.故a=8.5,b=9,c=1.45.(6分)(2)从平均成绩看,甲、乙两人的平均成绩相等,均为8.5环.从中位数看,甲的中位数大于乙的中位数.从方差看,甲的成绩比乙的成绩稳定. (9分)综合以上因素,若选派一名运动员参加比赛,应选甲参赛.(11分)(答案合理即可)17.【参考答案】(1)将甲歌手的得分按从小到大的顺序排列为7.2,8.6,8.8,8.8,8.8,8.8,8.9,9.5,9.6,甲歌手得分的平均数为(7.2+8.6+8.8×4+8.9+9.5+9.6)÷9≈8.78(分),中位数是8.8分,众数是8.8分.(3分)将乙歌手的得分按从小到大的顺序排列为8.3,8.5,8.5,8.5,8.6,9.1,9.1,9.2,9.9,乙歌手得分的平均数为(8.3+8.5×3+8.6+9.1×2+9.2+9.9)÷9≈8.86(分),中位数是8.6分,众数是8.5分.(6分)(2)由(1)的结果可知,甲、乙两名歌手中甲的演唱水平较高.理由:虽然甲歌手得分的平均数比乙低,但是甲的中位数、众数均比乙的高,所以甲的演唱水平较高.(9分) (3)比赛规则为9位评委打分,去掉一个最高分和一个最低分后,所剩数据取平均数,即为选手的最后得分,这样的计分规则比较合理.(12分) 18.【参考答案】(1)补全表格如下.平均数中位数众数方差初中队8.5分8.5分8.5分0.7高中队8.5分8分10分1.6(4分)解法提示:由题中条形统计图知,初中队成绩数据为7.5,8,8.5,8.5,10,高中队成绩数据为7,7.5,8,10,10,=8.5(分),众数为8.5分;所以初中队成绩的平均数为7.5+8+8.5+8.5+105×[(7-8.5)2+(7.5-8.5)2+(8-8.5)2+2×(10-高中队成绩的中位数为8分,方差为158.5)2]=1.6.(2)小明是初中队的学生.(6分)理由:根据(1)可知,初中、高中队成绩的中位数分别为8.5分和8分,因为8<8.5,所以小明是初中队的学生.(8分) (3)初中队的成绩好些.(10分)因为两个队成绩的平均数相同,初中队成绩的中位数高,而且初中队成绩的方差小于高中队成绩的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.(13分) 19.【参考答案】(1)45 50 30 (6分)解法提示:七年级B组所占百分比为1-10%-20%-25%-15%=30%,所以m=30.根据题中扇形统计图可知,七年级A组有2人,B组有6人,C组有4人,D组有5人,E 组有3人,中位数是第10个和第11个数据的平均数,第10个数据是40,第11个数据是50,则中位数是(40+50)÷2=45,所以a=45.八年级数据中,50出现了3次,出现的次数最多,所以b=50.(2)八年级学生参加课外劳动的情况较好,理由如下:因为七、八年级被抽取的学生的课外劳动时间的平均数都是50,而八年级学生的课外劳动时间的中位数50高于七年级学生的课外劳动时间的中位数45,所以八年级学生参加课外劳动的情况较好.(用数据说明,合理即可)(10分)=300(人).(13分) (3)400×(15%+25%)+400×720答:估计该校七、八年级学生一学期参加课外劳动时间不少于60小时的人数之和为300人.(14分)。

四年级下册数学单元测试6.数据的表示和分析北师大版(含答案)

四年级下册数学单元测试6.数据的表示和分析北师大版(含答案)

四年级下册数学单元测试-6。

数据的表示和分析一、单选题1.在一个圆形花坛内种了三种花(如图所示),统计图( )能准确地表示各种花的占地面积。

A. B. C.2.折线统计图表示( )。

A. 数量的多少和增减变化情况B. 数量的多少C. 部分量与总量的关系3.在“书香校园”活动中,我校同学平均每人捐了5本书。

()A. 全校每个同学一定都捐了5本。

B. 可能有人捐了10本书。

4.要反映一个病人的体温变化情况,用()比较合适。

A. 条形统计图B. 折线统计图C. 统计表D. 以上三种都可以二、判断题5.条形统计图可以直观的看出每个数据的多少。

()6.:折线统计图可以清楚地表示出各部分同总数之间的关系.()7.条形统计图不但能反映数量的多少,还能反映数量的变化情况。

()8.医生通常用扇形统计图记录病人的体温变化情况。

()三、填空题9.常见的统计图有________和________。

10.甲、乙的平均数是86,甲、乙、丙的平均数是77,那么丙数是________.11.下面是3个同学1分钟跳绳情况的统计图。

请根据统计图,完成下面的问题.(1)1格代表________次。

(2)________跳的是最快,________跳的是最慢。

你想对他们说________四、解答题12.阳光少儿书店第二季度图书销售统计表。

(1)请把上表填写完整。

(2)________月份出售的书最多。

(3)第二季度平均每月出售科技书________本。

(4)这家书店准备为七月份进书,你有什么建议?13.(1)从统计图中可以得到哪些信息?(2)学校要添置一些新书,你有什么建议?说说理由.14.这是乐园水果店一个星期苹果的销售量。

时间星期一星期二星期三星期四星期五星期六星期日销售量(千克)100 120 130 150 160 180 210(1)根据统计表画出折线统计图。

(2)说一说乐园水果店这一周的销量变化趋势?(3)这一周平均每天销售水果多少千克?五、应用题15.6个人加工一批零件,前3个人平均每人加工20个,后3个人共加工66个,平均每个人加工多少个零件?参考答案一、单选题1.【答案】C【解析】【解答】根据分析可知,统计图C能准确地表示各种花的占地面积.故答案为:C.【分析】观察扇形统计图可知,花坛中一共种了三种花,玫瑰和菊花的占地面积相等,百合的占地面积是玫瑰或菊花占地面积的2倍,据此选择合适的条形统计图即可.2.【答案】A【解析】【解答】解:折线统计图表示数量的多少和增减变化情况。

第六章数据的分析单元测试 2024—2025学年北师大版数学八年级上册

第六章数据的分析单元测试 2024—2025学年北师大版数学八年级上册

第六章数据的分析单元测试北师大版2024—2025学年八年级上册秋季考生注意:本试卷共三道大题,23道小题,满分100分,时量90分钟第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.数据10,10,x,8的众数与平均数相同,那么这组数的中位数是()A.10B.8C.12D.42.对已知数据﹣4,1,2,﹣1,2,下面结论错误的是()A.中位数为1B.极差为5C.众数为2D.平均数为0 3.为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定4.某学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分.其中三位男生的方差为6(分2),两位女生的成绩分别为17分,15分.则这个学习小组5位同学考试分数的标准差为()A.B.2C.D.65.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量(双)12251则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25B.24.5,25C.25,24.5D.24.5,24.5 6.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)180185180185方差8.17.4 3.6 3.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁7.某市一周七天每一天最高气温变化如折线图所示,下面描述正确的是()A.最小值是32℃B.众数是33℃C.中位数是34℃D.平均数是34℃8.在第60届国际数学奥林匹克比赛中,中国队荣获团体总分第一名.我国参赛选手比赛成绩的方差计算公式为:S2=,下列说法错误的是()A.我国一共派出了6名选手B.我国参赛选手的平均成绩为38分C.我国选手比赛成绩的中位数为38D.我国选手比赛成绩的团体总分为228分9.在数学史演讲比赛中,小明对七位评委老师给自己打出的分数进行了分析,并制作了如下表格:平均数众数中位数方差9.19.39.20.1如果每个评委打分都高0.1,那么表格中数据一定不会发生变化的是()A.中位数B.众数C.平均数D.方差10.某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是()A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人D.甲地区的人数比丙地区的人数少180人二.填空题(6小题,每题3分,共18分)11.学校团委会为了举办活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有人.12.某中学有270名学生,为了了解学生们的上学方式,抽取部分学生做调查后绘制了如图所示的条形图,那么此次调查的样本容量为.13.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,则这两人5次射击命中的环数的方差S甲2S乙2(填“>”“<”或“=”).14.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数是.15.某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x,10,8,若这组数据的中位数和平均数相等,那么x=.16.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.第II卷第六章数据的分析单元测试北师大版2024—2025学年八年级上册秋季姓名:____________ 学号:____________准考证号:___________ 123456789101112题号答案13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,共计52分,解答题要有必要的文字说明)17.为了增加校园体育文化氛围,初一年级举行师生踢毽子比赛,七年级1班有42人参赛,预赛成绩统计如下(踢毽子标准数量为20个):踢毽子个数与标准数量的差值﹣11﹣6081015人数41010m84(1)表中m的值为.(2)求七年级1班参赛选手平均每人踢多少个毽子?18.交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况如表.车速4050607080车辆数23721(1)计算这些车的平均速度;(2)车速的众数是;(3)车速的中位数是.19.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?20.某市对教师试卷讲评课中学生参与的深度与广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形图补充完整;(3)扇形统计图中,独立思考所在扇形的圆心角是度;(4)如果全市有16万名初中学生,那么在试卷评讲课中,“独立思考”的学生约有多少万人?21.为了解某校八年级学生暑假期间每天的睡眠时长(单位:h),随机调查了该校八年级a名学生,得到如下统计图.(1)m=,a=;(2)求这组学生每天睡眠时长的平均数;(3)根据样本数据,若该校八年级共有学生400人,估计该校八年级学生暑假期间每天睡眠时长不足8h的人数约为多少?22.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?23.某中学的“爱上阅读”小组成员,于2023年12月28日线上观看了阳城县委宣传部举办的书香润阳城共读共享:“悦读悦心”——“阅读的力量”读书活动(第17期).为了了解学校学生课外阅读情况,他们决定对本校学生每天的课外阅读情况进行调查,他们随机抽取了本校部分学生进行了问卷调查,并将结果分为A,B,C,D四个等级,表、图如下,请根据图中信息解答下列问题:等级A B C Dt<11≤t<1.5 1.5≤t<2t≥2每天课外阅读时间(小时)(1)本次抽样调查共抽取了多少名学生?(2)将条形统计图补充完整;(3)表示D等级的扇形圆心角的度数是多少?(4)若该校共有1200名学生,每天课外阅读时间在2小时以内的学生有多少人?。

2020-2021学年北师大版小学四年级数学下册《第六章 数据的表示和分析》单元测试题(有答案)

2020-2021学年北师大版小学四年级数学下册《第六章 数据的表示和分析》单元测试题(有答案)

2020-2021学年北师大版小学四年级数学下册《第六章数据的表示和分析》单元测试题一.选择题(共8小题)1.如图,()可以表示下面哪种情况的统计.A.4个学生期末数学考试成绩B.四年级喜欢各项运动的男女生人数C.小明1﹣﹣8岁的身高D.蛋糕店的草莓蛋糕和芒果蛋糕最近5天的销售情况2.如图是小明每天上学走的路程统计图,那么他从家到学校需要走()千米.A.5B.2.5C.103.下面说法中错误的是()A.在研究平均数问题时可以用移多补少的方法B.我们在研究小数的意义时运用了数形结合的思想方法C.28+374+26 此题进行简便运算,我们头脑里可以想a﹣b﹣c=a﹣(b+c)这一运算律4.游泳池平均水深130厘米,小红身高1.35米,她在游泳池里一定不会有危险.这句话对吗?()A.对B.不对C.不知道5.淘气从家去书城,中途休息了几分钟,到书城买完书后直接回家.下面正确描述淘气这一过程的图象是()A.B.C.D.6.下面三幅图是4名学生一分钟内投篮投进个数情况统计图,图()中虚线所指的位置表示平均每人投进的个数.A.B.C.7.淘气家的热水器中有60L水,晚上,爸爸先洗了10min澡,用了一半的水.5min后,淘气也去洗澡,他洗了15min,把热水器中的水刚好用完了.下面能描述热水器中水的体积随时间变化的情况的是()A.B.C.D.8.下面是育英小学和西门小学四、五、六年级学生回收电池统计图.根据统计情况估计一下,哪个学校的学生回收的电池更多?()A.西门小学B.育英小学C.两个学校一样多二.填空题(共8小题)9.下面是某学校五(1)班学生拥有课外读物情况,五(1)班共有学生人,平均每人拥有课外读物本.性别人数平均每人拥有课外读物/本男生1625女生243010.刘小兵折的纸飞机前4次飞行的距离如表:第1次第2次第3次第4次飞行距离/米18122117(1)这架纸飞机前4次飞行的平均距离是米.(2)如果再飞一次,并使平均飞行距离达到18米,第5次飞行的距离至少要达到米.11.看图回答问题.如图是小军从家去图书馆借书的行程图.①小军家到图书馆距离千米.②小军在图书馆待了分钟.③小军去的途中停了分钟.④小军去的时候平均每小时行千米.12.如图是打国际长途电话所需付的电话费与通话时间之间的关系图.(1)打2分钟需要元电话费,3分钟以上每分钟元.(2)打6分钟需要元,10.4元打了分钟.13.五(1)一班有男生20人,平均身高158cm;有女生16人,平均身高140cm,全班学生的平均身高是cm.14.在一幅条形统计图中,用3.5厘米长的直条表示21人,用厘米的直条表示42人.15.如图是希望小学四年级一周内向“我爱祖国”主题活动投稿情况统计图.请根据条形图回答问题.(1)每格代表篇.(2)这一周内,周投稿篇数最多,周投稿篇数最少.(3)周四比周二多投稿篇.(4)这一周一共投稿篇.16.一个长方体容器(如图1)现在以每分钟25升的速度向这个容器注水,容器的底面有一块隔板(垂直于底面,不考虑厚度),将容器隔为A,B部分,B部分的底有一个洞,水按每分钟10升的速度往下漏.(如图2)表示从注水开始A部分水的高度变化情况,观察并思考回答下面的问题:(1)隔板的高度是分米.(2)注水36分钟共漏出水升.(3)如果不让B部分的洞漏水,只要分就能使水箱A部分的水位到达5分米.三.判断题(共5小题)17.四一班的数学平均分是92分,四一班没有不及格的.(判断对错)18.在一幅条形统计图中,用2厘米长的直条表示600吨,那么表示1800吨的直条应画6厘米..(判断对错)19.折线统计图便于直观了解数据的大小及不同数据的差异.(判断对错)20.游泳池平均水深110厘米,小强身高130厘米,下水游泳一定没有危险。

2020年北师大版八年级数学上册第六章数据的分析单元测试题(含答案)

2020年北师大版八年级数学上册第六章数据的分析单元测试题(含答案)

第六章数据的分析[时间:120分钟分值:150分]A卷(共100分)一、选择题(共9个小题,每小题4分,共36分)1.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是() A.众数是108 B.中位数是105C.平均数是101 D.方差是932.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差3.下列说法正确的是()A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x-,那么(x1-x-)+(x2-x-)+…+(x n-x-)=0D.一组数据的方差是这组数据的极差的平方4.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况,则下列关于车速描述错误的是()A.平均数是23 B.中位数是25C.众数是30 D.方差是1295.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如下表:投中次数35678人数1322 2则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6C.5,5,6 D.5,6,56.某企业1~6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书售价组成的一组数据中,中位数是4C.在该班级所售图书售价组成的一组数据中,众数是15D.在该班级所售图书售价组成的一组数据中,方差是28.一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4 B.92C.5 D.11 29.在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是()A.88, 2 B.88,2C.90, 2 D.90,2二、填空题(共4个小题,每小题5分,共20分)10.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他的数学学期综合成绩是____分.11.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是____小时.12.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是____.13.某单位举办了英语培训,100名职工在一个月内参加英语培训的次数如图所示.这个月职工参加英语培训次数的众数为____次,中位数是____次.三、解答题(共3个小题,共44分)14.(14分)某单位欲从内部公开选拔一名管理人员,对甲、乙、丙三名候选人进行了笔试、面试两项测试,三人的测试成绩如下表所示:笔试758090面试937068根据录用程序,组织400名职工对三人采用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.民主评议得票率(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩(精确到0.1分),那么谁将被录用?15.(15分)[2019·天津]某校为了解初中学生每天在校体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果绘制出如下的统计图1和图2,请根据相关信息解答下列问题:(1)本次接受调查的初中学生人数为___,图1中的m的值为____;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1 h的学生人数.16.(15分)洋洋八年级上学期的数学成绩如下表所示:(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.B卷(共50分)四、填空题(共4个小题,每小题5分,共20分)17.一组数据:2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是____.18.某地区前两周从星期一到星期五各天的最低气温依次是(单位:℃)x1,x2,x3,x4,x5和x1+1,x2+2,x3+3,x4+4,x5+5.若第一周这五天的平均最低气温为7 ℃,则第二周这五天的平均最低气温为_________.19.某公司员工的月工资统计如下:则该公司员工月工资的平均数为________________元,中位数为__________元,众数为__________元.20.一组数据4,5,6,x的众数与中位数相等,则这组数据的方差是____.五、解答题(共2个小题,共30分)21.(15分)为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是____(填“甲”或“乙”),请说明理由.解:整理数据:表一分析数据:将甲组数据重新排列为:393,394,395,400,400,400,406,408,409,410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402.表二得出结论:由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.22.(15分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查,其中A,B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值),图中,从左往右第四组的成绩如下:A小区50名居民成绩的频数直方图【信息二】A,B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):AB根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.参考答案1. D【解析】 把六名学生的数学成绩从小到大排列为82,96,102,108,108,110,∴众数是108,中位数为102+1082=105,平均数为 82+96+102+108+108+1106=101, 方差为16[(82-101)2+(96-101)2+(102-101)2+(108-101)2+(108-101)2+(110-101)2]≈94.3≠93.2. B【解析】 由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.11个不同的成绩按从小到大排序后,成绩的中位数为第6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故本题选B.3. C 4. D 5. A【解析】 因为投中5次的人数最多,故众数为5;把10名队员投中的次数按由小到大的顺序排列为3,5,5,5,6,6,7,7,8,8,中间的两个数的平均数为6,故中位数为6;3×1+5×3+6×2+7×2+8×210=6,故平均数为6. 6. D【解析】 1~6月份利润的众数是120万元,故A 错误;1~6月份利润的中位数是125万元,故B错误;1~6月份利润的平均数约是128万元,故C错误;1~6月份利润的极差是40万元,故D正确.故选D.7. A【解析】 该班级所售图书的总收入为3×14+4×11+5×10+6×15=226(元),所以A 选项正确;将售价按由小到大的顺序排列,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;这组数据的众数为6,所以C 选项错误;这组数据的平均数为x =22650=4.52,所以这组数据的方差s 2=150[14×(3-4.52)2+11×(4-4.52)2+10×(5-4.52)2+15×(6-4.52)2]≈1.4,所以D 选项错误.8. B【解析】 本题考查了众数、中位数的概念与中位数的求法,由众数是4,知x =4,把数据重排为2,3,4,4,5,6,7,9,中间两个数的平均数为92,就是这组数据的中位数,因此本题选B.9. B【解析】 根据题意得:90×5-(91+89+92+90)=88(分),则丙的得分是88分,方差=15[(91-90)2+(89-90)2+(88-90)2+(92-90)2+(90-90)2]=2.10. 8811.1【解析】∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.12.乙【解析】x-甲=15×(90+88+92+94+91)=91,x-乙=15×(90+91+93+94+92)=92,s2甲=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s2乙=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,因为x-乙>x-甲,s乙<s甲.所以乙的成绩较好且比较稳定.13.6 614.解:(1)甲得分:400×25%=100(分).乙得分:400×40%=160(分).丙得分:400×35%=140(分).(2)将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩,则甲得分:(5×75+3×93+2×100)÷(5+3+2)=85.4(分).乙得分:(5×80+3×70+2×160)÷(5+3+2)=93(分).丙得分:(5×90+3×68+2×140)÷(5+3+2)=93.4(分).则丙将被录用.15.40 25解:(2)平均数为1.5 h ,众数为1.5 h ,中位数为1.5 h . (3)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1 h 的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1 h 的人数为800×90%=720(人).16.解:(1)洋洋该学期的数学平时平均成绩为 (106+102+115+109)÷4=108(分). (2)洋洋该学期的数学总评成绩为108×10%+112×30%+110×60%=110.4(分). 17. 5【解析】 ∵整数a 是这组数据中的中位数,∴a =4, ∴这组数据的平均数=15(2.2+3.3+4.4+4+11.1)=5. 18. 10 ℃【解析】 由题意得x 1+x 2+x 3+x 4+x 55=7(℃), 则x 1+1+x 2+2+x 3+3+x 4+4+x 5+55=7+3=10(℃). 19. 2 000 1 000 1 000 20.12【解析】 若众数为4,则数据为4,4,5,6,此时中位数为4.5,不符合题意;若众数为5,则这组数据为4,5,5,6,中位数为5,符合题意,此时平均数为4+5+5+64=5,方差为14[(4-5)2+(5-5)2+(5-5)2+(6-5)2]=12;若众数为6,则这组数据为4,5,6,6,中位数为5.5,不符合题意.21.乙 22. 75 解:(1)75分. (2)2450×500=240(人).(3)从平均数、中位数、众数、方差等方面,选择合适的统计量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数.1、天下兴亡,匹夫有责。

北师大版八年级(上)数学《数据的分析》单元测试4(含答案)

北师大版八年级(上)数学《数据的分析》单元测试4(含答案)

《数据的分析》单元测试题一、精挑细选一锤定音(本大题共10小题,每小题3分,共30分)1、一组数据:-3、-1、2、6、6、8、16、99,这组数据的中位数和众数分别是()A.6和6B.8和6C.6和8D.8和162、一组数据:2、7、10、8、x、6、0、5的平均数是6,那么x的值应为()A.12B.10C.8D.63、在某次歌手大奖赛中,8位评委给某歌手的评分如下:9.8、9.5、9.7、9.8、9.8、9.7、9.5、9.8;按规定去掉一个最高分,去掉一个最低分,其余分数的平均数作为该选手的最后得分,该选手的最后得分(精确到0.01)是()A.9.70B.9.71C.9.72D.9.734、某天上午8:00小李从家中出发,以2米/秒的速度于8:15到了商店,然后以2.5米/秒的速度于8:20到达书店,则小李从家到书店的平均速度为()A.2.25B.2.125C.2.175D.2.2255、某商店选用28元/千克的A型糖3千克,20元/千克的B型糖2千克,12元/千克的C型糖5千克混合成杂拌糖后出售,这种杂拌糖平均每千克的售价应为()A.20元B.18元C.19.6元D.18.4元6、某班主任想了解本班学生平均每月有多少零用钱,随机抽取了10位同学进行调查,他们每月的零用钱数目是(单位:元):10、20、20、30、20、30、10、10、50、100,则该班学生每月平均零用钱约为()A.10元B.20元C.30元D.40元;7、某青年足球队12名队员的年龄情况如右表:则这个球队队员年龄的众数和中位数是()A.19,20B.19,19C.19,20.5D.20,198、某班在一次数学测试后,成绩统计如右表:该班这次数学测试的平均成绩是()A.82B.75C.65D.629、班主任为了解学生星期六、日在家的学习情况,家访了班内的六位同学,了解到他们在家的学习时间如右表所示:那么这六位学生学习时间的众数和中位数分别是()A.4小时和4.5小时B.4.5小时和4小时;C.4小时和3.5小时D.3.5小时和4小时;10、某校四个绿化小组一天植树棵数分别为10,10,x,8,已知这组数据的众数与平均数相等,则这组数据的中位数是()A.8B.9C.10D.12二、慎思妙解画龙点睛(本大题共10小题,每小题3分,共30分)11、某校初二年级有4个班级,在一次测试中,一班40人,平均成绩81分;二班41人,平均成绩78分;三班42人,平均成绩80分;四班40人,平均成绩82分;则这四个班级的平均成绩(保留两位小数)为分12、一超市备有某种绿色蔬菜100千克,上午按每千克1.2元的价格售出50千克,中午按每千克1元的价格售出30千克,下午按每千克0.8元的价格将剩下的蔬菜全部售完,那么这批蔬菜售出的平均价格是每千克元13、一组数据:6、x、2、4,的平均数是5,则中位数为14、有6个数,它们的平均数是12,再添一个数5后,则这7个数的平均数为15、某班共有学生50名,平均身高为165cm,其中30名男生的平均身高为168 cm,则20名女生的平均身高为cm16、某校八(2)班期中考试的数学成绩如下:100分3人,95分5人,90分6人,80分12人,70分16人,60分5人,50分6人,则该班学生这次考试的平均成绩(精确到0.01)为分17、一组数据:23、27、20、18、x、16,它们的中位数是21,则平均数为18、期末考试,小军的6门功课成绩为:85、79、88、88、95、95,则其众数为,中位数是19、在环保知识竞赛中,包括小明同学在内的6名同学的平均分为74分,其中小明同学考了89分,则除小明以外的5名同学的平均分为分.20、一组数据5,7,7,x的中位数与平均数相等,则x的值为三、过关斩将胜利在望(本大题6道题,共60分)21、(8分)学期末,某班评选优秀学生干部,下面是班长、学习委员和团支部书记的得分情况,假设三个方面的权重分别为30%、30%和40%,则谁会当选?22、(8分)某家电商场三、四月份出售同一种品牌各种规格的空调,销售台数如下表,根据下表回答下列问题:(1)商场平均每月销售空调多少台?(2)商场出售的各种规格的空调中,众数落在哪个规格内?(3)在研究六月份的进货方案时,你认为哪种规格的空调要多进,哪种规格的空调要少进?23、(10分)已知数据:10、10、x、8的中位数与平均数相等,求这组数据的中位数24、(10分)小林在八年级第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分,期中考试得82分,期末考试得90分,如果按照平时、期中、期末的权重分别为10%,30%,60%计算,那么小林该学期的数学书面测验的总平成绩应为多少分?25、(12分)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱”赈灾捐款活动。

北师大版四年级下册数学第六单元 数据的表示和分析单元测试卷及答案

北师大版四年级下册数学第六单元 数据的表示和分析单元测试卷及答案

北师大版四年级下册数学第六单元数据的表示和分析单元测试卷及答案一、选择题(共5题,共计20分)1、甲、乙两位同班同学是邻居,甲中午回家吃午饭,乙在班级吃午饭。

下面()图描述的是乙一天的情况.A. B. C.D.2、在“书香校园”活动中,我校同学平均每人捐了5本书。

()A.全校每个同学一定都捐了5本。

B.可能有人捐了10本书。

3、学科检测中,小红语文得了86分,英语得了92分,她三门科目的平均分是91分,数学得了()分。

A.91B.93C.95D.974、某小学六(1)班环保小组的5名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下(单位:个):32,25,27,26,25.如果该班有45名同学,根据提供的数据估计本周全班同学各家共丢弃塑料袋大约()A.900B.1080C.12155、梅梅做跳绳练习,第一次跳了69下,第二次跳了75下。

她要想三次的平均成绩达到80下,第三次至少要跳()。

A.80下B.96下C.90下D.75下二、填空题(共8题,共计24分)6、从一箱桃子中随意取出5个,分别重88克、98克、80克、95克、89克,平均每个重________克。

这箱桃子共有50个,估一估,这箱桃子大约重________克。

7、18、19、20、21、22这五个数的平均数是________。

8、统计表用________呈现数据,条形统计图用________呈现数据。

统计过程中,记录调查结果和整理数据,常用画________字的方法。

9、如图是六年级两个班同学8~12月参加社会实践活动的人数统计图,六(1)班8~12月平均每月参加社会实践活动的有________人.10、下面是星球商场第一季度销售电视机数量统计表:2月份销售的台数被弄污了,请你帮忙算出2月份销售________台电视机。

11、下图________是单式统计图.________是复式条形统计图.12、在一个10千米的越野赛中,小刚的参赛方法是:前半程以20千米/时的速度前进,后半段路以15千米/时的速度到达终点,那么在整个过程中,小刚的平均速度是________千米/时.13、学校气象小组一天中测得气温如下:14度、16度、20度、21度、14度,这一天的平均气温是________度。

北师版八年级数学上册 第六章 数据的分析(单元综合测试卷)

北师版八年级数学上册  第六章 数据的分析(单元综合测试卷)

第六章数据的分析(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.已知一组数据:4,1,2,3,4,这组数据的中位数和众数分别是()A .4,4B .3.5,4C .3,4D .2,42.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A .众数B .方差C .平均数D .中位数3.已知数据3,x ,7,1,10的平均数为5,则x 的值是()A .3B .4C .5D .64.甲、乙、丙、丁四人参加射击训练,经过三组练习,他们的平均成绩都是9.5环,方差分别是20.45s =甲,20.55s =乙,20.4s =丙,20.35s =丁,你认为谁的成绩更稳定()A .甲B .乙C .丙D .丁5.在“双减”政策下,某学校规定,学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为80分,90分,92分,则小颖本学期的学业成绩为()A .92分B .90分C .89分D .85分6.在第60届国际数学奥林匹克比赛中,中国队荣获团体总分第一名.我国参赛选手比赛成绩的方差计算公式为:()()()222212613838386s x x x ⎡⎤=-+-++-⎣⎦ ,下列说法错误的是().A .我国一共派出了6名选手B .我国参赛选手的平均成绩为38分C .我国选手比赛成绩的中位数为38D .我国选手比赛成绩的团体总分为228分7.我校开展了“好书伴我成长”读书活动,为了解5月份九年级学生的读书情况,随机调查了九年级50名学生读书的册数,统计数据如下表所示,下列说法正确的是()册数01234人数41216171A.众数是17B.中位数是2C.平均数是2D.方差是28.某聊天软件规定:若任意连续5天,好友双方的每日聊天记录的条数不低于100,则双方可以获得“星形”标识.甲、乙两位好友连续5天在该软件上聊天,下面是这5天日聊天记录条数的统计量,一定能判断甲、乙获得“星形”标识的是()A.中位数为110条,极差为20条B.中位数为110条,众数为112条C.中位数为106条,平均数为102条D.平均数为110条,方差为10条29.某商场招聘员工一名,现有甲、乙、丙三人竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示,若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,那么从成绩看,应该录取()应试者计算机语言商品知识甲607080乙807060丙708060A.甲B.乙C.丙D.任意一人都可10.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为188cm 的队员换下场上身高为194cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题(本大题共8小题,每小题3分,共24分)11.数据1,8,8,4,6,4的中位数为.12.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.13.已知一组数据3,a ,4,6,7,它们的平均数是5,则这组数据的方差是.14.新冠疫情期间,小李同学连续两周居家健康检测,如下图是小李记录的体温情况折线统计图,记第一周体温的方差为21s ,第二周体温的方差为22s ,试判断两者之间的大小关系21s 22s (用“>”、“=”、“<”填空).小李连续两周居家体温测量折线统计图15.开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温(℃)36.336.436.536.636.736.8天数(天)233411这14天中,小芸体温的中位数和众数分别是℃.16.宁城有机苹果园引进了甲、乙、丙、丁四个品种的苹果树.为了了解每种苹果树的产量情况,从每个品种中随机抽取10棵进行采摘,经统计每种苹果树10棵产量的平均数x 和方差2s 如下表:甲乙丙丁平均数()kg x 194194188188方差2s 9.28.68.99.7若从这四个品种中选出一种产量既高又稳定的苹果树进行种植,应选的品种为.17.将5个整数从大到小排列,中位数是4;如果这个样本中的唯一众数是6,则这5个整数可能的最大的和是.18.一组数据1x 、2x 、…、n x 的方差是0.8,则另一组数据11x +、21x +、…、1n x +的方差是.三、解答题(本大题共9小题,共66分)19.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩依次如下(单位:环):甲:9,6,7,6,7,7乙:4,5,8,7,8,10(1)计算两人打靶成绩的方差;(2)请推荐一人参加比赛,并说明理由.20.某公司要在甲、乙两人中招聘一名职员,对两人的学历、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用.图1是甲、乙两人测试成绩的条形统计图.(1)分别计算甲、乙两人三项成绩之和,则会被录用;(2)若将甲、乙两人的三项测试成绩,分别按照扇形统计图(图2)各项所占之比进行计算,甲成绩为分,乙成绩为分,则会被录用.21.某调查小组采用随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下不完整的统计图.(1)填空:本次调查的中位数为________小时;(2)通过计算补全条形统计图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.22.某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图,请根据相关信息,解答下列问题:(1)图①中的m值为________;此次抽样随机抽取了口罩_______枚;(2)求统计的这些数据的平均数、众数和中位数;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩约有多少枚?23.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:跳绳成绩(个)132133134135136137一班人数(人)120232二班人数(人)014122(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:众数中位数平均数方差一班136135.5135 2.8二班134a135b表中数据a=,b=;(2)请用所学的统计知识,从两个不同角度比较两个班跳绳比赛的成绩.24.为鼓励学生积极加入中国共青团组织,某学校团委在八、九年级各抽取50名学生开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示.平均数众数中位数方差八年级87b 1.88九年级8a8c请根据图表中的信息,解答下列问题:(1)填空:a =______,b =______,c =________;(2)现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?25.为了了解学生对党的二十大精神的学习领会情况,某校团委从七、八年级各随机抽取20名学生进行测试,获得了他们的测试成绩(百分制),并对数据(测试成绩)进行整理、描述和分析.下面给出了部分信息.a .八年级学生测试成绩的频数分布直方图如下,(数据分为4组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤).b .八年级学生测试成绩在8090x ≤<这一组的是:81838484848689c .七、八年级学生测试成绩的平均数、中位数、众数如下:年级平均数中位数众数七83.18889八83.5m根据以上信息,回答下列问题:(1)表中m 的值为______,八年级学生测试成绩在8090x ≤<这一组的众数是______;(2)七年级学生小亮和八年级学生小宇的成绩都是86分,这两名学生在本年级成绩排名更靠前的是______(填“小亮”或“小宇”);(3)成绩不低于80分的学生可获得优秀奖,假设该校八年级300名学生都参加测试,估计八年级获得优秀奖的学生人数.26.今年是五四运动100周年,也是中华人民共和国成立70周年,为缅怀五四先驱崇高的爱国情怀和革命精神,巴蜀中学开展了“青春心向党,建功新时代”为主题的系列纪念活动.历史教研组也组织了近代史知识竞赛,七、八年级各有300名学生参加竞赛.为了解这两个年级参加竞赛学生的成绩情况,从中各随机抽取20名学生的成绩,并对数据进行了整理和分析(成绩得分用x 表示,数据分为6组:7075A x ≤<;:7589B x <<;:8085C x ≤<;:8590D x ≤<;:9095E x ≤<;:95100F x ≤≤)绘制了如下统计图表:年级平均数中位数众数极差七年级85.8mn26八年级86.286.58718七年级测试成绩在C 、D 两组的是:8183838383868788888989根据以上信息,解答下列问题(1)上表中m =_______,n =_______.(2)记成绩90分及90分以上为优秀,则估计七年级参加此次知识竞赛成绩为优秀的学生有多少名?(3)此次竞赛中,七、八两个年级学生近代史知识掌握更好的是________(填“七”或“八“)年级,并说明理由?27.某市民用水拟实行阶梯水价,每人每月用水量中不超过w 吨的部分按4元/吨收费,超出w 吨的部分按10元/吨收费,该市随机调查居民,获得了他们3月份的每人用水量数据,绘制出如图不完整的两张统计图表:请根据以下图表提供的信息,解答下列问题:表1组别月用水量x 吨/人频数频率第一组0.51x <≤1000.1第二组1 1.5x <≤n第三组 1.52x <≤2000.2第四组2 2.5x <≤m 0.25第五组 2.53x <≤1500.15第六组3 3.5x <≤500.05第七组 3.54x <≤500.05第八组4 4.5x <≤500.05合计1(1)观察表1可知这次抽样调查的中位数落在第_______组,表1中m 的值为_________,n 的值为_______;表2扇形统计图中“用水量2.5 3.5x <≤”部分的的圆心角为___________.(2)如果w 为整数,那么根据此次调查,为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为多少吨?(3)利用(2)的结论和表1中的数据,假设表1中同组中的每个数据用该组区间的右端点值代替,估计该市居民3月份的人均水费.第六章数据的分析(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.已知一组数据:4,1,2,3,4,这组数据的中位数和众数分别是()A.4,4B.3.5,4C.3,4D.2,4【答案】C【分析】根据中位数和众数的定义分别进行解答即可.【解析】解:把这组数据从小到大排列:1,2,3,4,4,最中间的数是3,则这组数据的中位数是3;4出现了2次,出现的次数最多,则众数是4;故选:C.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.2.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数【答案】D【分析】此题主要考查统计中的中位数、理解中位数的定义是解题的关键.11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解析】解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.3.已知数据3,x,7,1,10的平均数为5,则x的值是()A.3B.4C.5D.6【答案】B【分析】本题考查算术平均数,解题的关键是根据平均数的计算方法列方程求解.【解析】解: 数据3,x ,7,1,10的平均数为5,3711055x ∴++++=⨯,解得4x =,故选:B .4.甲、乙、丙、丁四人参加射击训练,经过三组练习,他们的平均成绩都是9.5环,方差分别是20.45s =甲,20.55s =乙,20.4s =丙,20.35s =丁,你认为谁的成绩更稳定()A .甲B .乙C .丙D .丁【答案】D【分析】本题考查了根据方差判断稳定性,根据方差越小数据越稳定,即可解答.【解析】解:∵2222s s s s <<<丁丙甲乙,∴丁的成绩更稳定,故选:D .5.在“双减”政策下,某学校规定,学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为80分,90分,92分,则小颖本学期的学业成绩为()A .92分B .90分C .89分D .85分【答案】C【分析】本题主要考查加权平均数,根据加权平均数的计算方法计算即可.熟练掌握加权平均数的意义是解题的关键.【解析】解:小颖本学期的学业成绩为:20%8030%9050%9289⨯+⨯+⨯=(分).故选:C .6.在第60届国际数学奥林匹克比赛中,中国队荣获团体总分第一名.我国参赛选手比赛成绩的方差计算公式为:()()()222212613838386s x x x ⎡⎤=-+-++-⎣⎦ ,下列说法错误的是().A .我国一共派出了6名选手B .我国参赛选手的平均成绩为38分C .我国选手比赛成绩的中位数为38D .我国选手比赛成绩的团体总分为228分【答案】C7.我校开展了“好书伴我成长”读书活动,为了解5月份九年级学生的读书情况,随机调查了九年级50名学生读书的册数,统计数据如下表所示,下列说法正确的是()册数01234人数41216171A.众数是17B.中位数是2C.平均数是2D.方差是28.某聊天软件规定:若任意连续5天,好友双方的每日聊天记录的条数不低于100,则双方可以获得“星形”标识.甲、乙两位好友连续5天在该软件上聊天,下面是这5天日聊天记录条数的统计量,一定能判断甲、乙获得“星形”标识的是()A.中位数为110条,极差为20条B.中位数为110条,众数为112条C.中位数为106条,平均数为102条D.平均数为110条,方差为10条29.某商场招聘员工一名,现有甲、乙、丙三人竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示,若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,那么从成绩看,应该录取()应试者计算机语言商品知识甲607080乙807060丙708060A.甲B.乙C.丙D.任意一人都可10.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为188cm 的队员换下场上身高为194cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题(本大题共8小题,每小题3分,共24分)11.数据1,8,8,4,6,4的中位数为.12.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.【答案】 6.8 6.5 6.5【分析】根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;13.已知一组数据3,a,4,6,7,它们的平均数是5,则这组数据的方差是.14.新冠疫情期间,小李同学连续两周居家健康检测,如下图是小李记录的体温情况折线统计图,记第一周体温的方差为21s,第二周体温的方差为22s,试判断两者之间的大小关系21s22s(用“>”、“=”、“<”填空).小李连续两周居家体温测量折线统计图【答案】<【分析】方差反应是数据的波动程度,方差越大,波动性越大,结合折线图可得小丽第一周居家体温在36.6C ~36.8C ︒︒之间,第二周居家体温在36.4C ~37.2C ︒︒之间,从最大值与最小值的差可以得到答案.【解析】解:根据折线统计图很容易看出小丽第一周居家体温在36.6C ~36.8C ︒︒之间,第二周居家体温在36.4C ~37.2C ︒︒之间,小丽第一周居家体温数值波动小于其第二周居家体温数值波动,2212s s ∴<.故答案为:<.【点睛】本题考查的是折线统计图,数据的波动性即方差,理解方差的含义是解题的关键.15.开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温(℃)36.336.436.536.636.736.8天数(天)233411这14天中,小芸体温的中位数和众数分别是℃.【答案】36.5,36.6【分析】根据中位数的定义:一组数据从小到大(或从大到小)排列,若数据有奇数个,则最中间的数为中位数,若数据有偶数个,则最中间两数的平均数为中位数,根据众数的定义:一组数据出现次数最多的数,即可判断.【解析】 共有14个数据,其中第7、8个数据均为36.5,∴这组数据的中位数为36.5;其中36.6出现了4次,出现次数最多,∴众数为36.6.【点睛】本题考查了中位数和众数,理解中位数和众数的定义是解题的关键.16.宁城有机苹果园引进了甲、乙、丙、丁四个品种的苹果树.为了了解每种苹果树的产量情况,从每个品种中随机抽取10棵进行采摘,经统计每种苹果树10棵产量的平均数x 和方差2s 如下表:甲乙丙丁平均数()kg x 194194188188方差2s 9.28.68.99.7若从这四个品种中选出一种产量既高又稳定的苹果树进行种植,应选的品种为.【答案】乙【分析】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.先比较平均数得到甲组和乙组的产量较好,然后比较方差得到乙品种既高产又稳定.【解析】解:因为丙、丁的平均数比甲、乙的平均数小,而乙的方差比甲的小,所以乙的产量既高产又稳定,所以产量既高又稳定的苹果树进行种植,应选的品种是乙;故答案为:乙.17.将5个整数从大到小排列,中位数是4;如果这个样本中的唯一众数是6,则这5个整数可能的最大的和是.【答案】21【分析】根据中位数为4,可得第三个数是4,再由这组数据的唯一众数是6,可得6应该是4后面的两个数字,4前面两个数字最大的时候是3,2,即可求解.【解析】∵这组数据共5个,且中位数为4,∴第三个数是4;又∵这组数据的唯一众数是6,∴6应该是4后面的两个数字,且4前面两个数字都小于4,且都不相等,∴4前面两个数字最大的时候是3,2,∴其和为2346621++++=,∴这组数据可能的最大的和为21.故答案为21.【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.18.一组数据1x 、2x 、…、n x 的方差是0.8,则另一组数据11x +、21x +、…、1n x +的方差是.三、解答题(本大题共9小题,共66分)19.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩依次如下(单位:环):甲:9,6,7,6,7,7乙:4,5,8,7,8,10(1)计算两人打靶成绩的方差;(2)请推荐一人参加比赛,并说明理由.(或推荐乙.在甲、乙平均成绩相同的前提下,乙一直处于上升趋势,有潜力.【点睛】本题考查了方差的概念,利用方差做决策,结合生活实际理解数学概念是本题的亮点.20.某公司要在甲、乙两人中招聘一名职员,对两人的学历、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用.图1是甲、乙两人测试成绩的条形统计图.(1)分别计算甲、乙两人三项成绩之和,则会被录用;(2)若将甲、乙两人的三项测试成绩,分别按照扇形统计图(图2)各项所占之比进行计算,甲成绩为分,乙成绩为分,则会被录用.21.某调查小组采用随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下不完整的统计图.(1)填空:本次调查的中位数为________小时;(2)通过计算补全条形统计图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.【答案】(1)1(2)见解析(3)1.18小时.【分析】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.(1)利用0.5小时的人数为100人,所占比例为20%,即可求出样本容量;(2)先可求出1.5小时的人数,画图即可;(3)计算出该市中小学生一天中阳光体育运动的平均时间即可.【解析】(1)解:由题意可得:0.5小时的人数为:100人,所占比例为:20%,10020%500÷=,∴本次调查共抽样了500名学生;∴第250名学生的运动时间为1小时,第251名学生的运动时间为1小时,(3)根据题意得:1000.52001120100200120⨯+⨯+++即该市中小学生一天中阳光体育运动的平均时间约22.某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图,请根据相关信息,解答下列问题:(1)图①中的m值为________;此次抽样随机抽取了口罩_______枚;(2)求统计的这些数据的平均数、众数和中位数;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩约有多少枚?【答案】(1)28,50(2)1.52元,1.8元,1.5元(3)960枚23.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:跳绳成绩(个)132133134135136137一班人数(人)120232二班人数(人)014122(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:众数中位数平均数方差一班136135.5135 2.8二班134a135b表中数据a=,b=;(2)请用所学的统计知识,从两个不同角度比较两个班跳绳比赛的成绩.【答案】(1)134.5,1.8;(2)①两个班级的平均成绩相同,二班的方差比一班的方差小,所以二班成绩比)(2137+-24.为鼓励学生积极加入中国共青团组织,某学校团委在八、九年级各抽取50名学生开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示.平均数众数中位数方差八年级87b 1.88九年级8a 8c请根据图表中的信息,解答下列问题:(1)填空:a =______,b =______,c =________;(2)现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?25.为了了解学生对党的二十大精神的学习领会情况,某校团委从七、八年级各随机抽取20名学生进行测试,获得了他们的测试成绩(百分制),并对数据(测试成绩)进行整理、描述和分析.下面给出了部分信息.a .八年级学生测试成绩的频数分布直方图如下,(数据分为4组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤).b.八年级学生测试成绩在8090x≤<这一组的是:81838484848689c.七、八年级学生测试成绩的平均数、中位数、众数如下:年级平均数中位数众数七83.18889八83.5m根据以上信息,回答下列问题:(1)表中m的值为______,八年级学生测试成绩在8090x≤<这一组的众数是______;(2)七年级学生小亮和八年级学生小宇的成绩都是86分,这两名学生在本年级成绩排名更靠前的是______(填“小亮”或“小宇”);(3)成绩不低于80分的学生可获得优秀奖,假设该校八年级300名学生都参加测试,估计八年级获得优秀奖的学生人数.【答案】(1)83.5,84(2)小宇(3)180【分析】本题考查频数分布直方图,平均数,中位数,众数的意义和用样本估计总体,准确理解这些概念是的关键.(1)结合题意,根据中位数和众数的意义解答即可,(2)根据中位数的意义,比较七、八年级的中位数即可得出答案,(3)先算出样本中成绩不低于80分的百分比,再乘以300即可得到答案.【解析】(1)解:八年级一共有20名同学,中位数是成绩数据由小到大排列后第10,11个数据分别为83、84,26.今年是五四运动100周年,也是中华人民共和国成立70周年,为缅怀五四先驱崇高的爱国情怀和革命精神,巴蜀中学开展了“青春心向党,建功新时代”为主题的系列纪念活动.历史教研组也组织了近代史知识竞赛,七、八年级各有300名学生参加竞赛.为了解这两个年级参加竞赛学生的成绩情况,从中各随机抽取20名学生的成绩,并对数据进行了整理和分析(成绩得分用x 表示,数据分为6组:7075A x ≤<;:7589B x <<;:8085C x ≤<;:8590D x ≤<;:9095E x ≤<;:95100F x ≤≤)绘制了如下统计图表:年级平均数中位数众数极差七年级85.8m n 26八年级86.286.58718七年级测试成绩在C、D两组的是:8183838383868788888989根据以上信息,解答下列问题(1)上表中m=_______,n=_______.(2)记成绩90分及90分以上为优秀,则估计七年级参加此次知识竞赛成绩为优秀的学生有多少名?(3)此次竞赛中,七、八两个年级学生近代史知识掌握更好的是________(填“七”或“八“)年级,并说明理由?。

(北师大版)杭州市八年级数学上册第六单元《数据的分析》测试题(含答案解析)

(北师大版)杭州市八年级数学上册第六单元《数据的分析》测试题(含答案解析)

一、选择题1.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个得分.若去掉一个最低分,平均分为x ;去掉一个最高分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y z x >> B .x z y >> C .y x z >> D .z y x >> 2.数据201,202,198,199,200的方差与极差分别是( )A .1,4B .2,2C .2,4D .4,23.随着体育中考的临近,我校随机地调查了50名学生,了解他们一周在校的体育锻炼时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是( )A .平均数是9B .众数是9C .中位数是9D .方差是94.为了解某电动车一次充电后行驶的里程数(千米),抽检了10辆车统计结果是:200、210、210、210、220、220、220、220、230、230,则这组数据中众数和中位数分别是( ) A .220,220B .220,210C .200,220D .230,2105.点点同学对数据26,36,46,5,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数 B .中位数 C .方差 D .标准差 6.一组数据:3,4,4,4,5.若拿掉一个数据4,则发生变化的统计量是( ) A .极差B .方差C .中位数D .众数7.学校举行演讲比赛,共有13名同学进入决赛,比赛将评出金奖1名,银奖2名,铜奖3名,某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的( ) A .平均数B .中位数C .众数D .方差8.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖). 组员 甲 乙 丙 丁 戊方差 平均成绩 得分79 80 ■ 81 81■80那么被盖住的两个数依次是( ) A .79,0.8B .79,1C .80,0.8D .80,19.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是( )A .极差是6B .众数是7C .中位数是5D .方差是810.为了解九年级()1班学生某天的体温情况,班长把所有同学当天上报的体温(单位:C )绘制成了如下统计表.这组体温数据的众数是( ) 体温()C35.8 36.1 36.2 36.3 36.4 36.536.6 36.8人数(人)348 810 822A .36.2CB .36.3C C .36.4CD .36.5C 11.若一组数据2,2,x ,5,7,7的众数为7,则这组数据的x 为( )A .2B .5C .6D .712.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为2=0.51S 甲,2=0.41S 乙,2=0.62S 丙,2=0.45S 丁,则四人中成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁二、填空题13.数据﹣3、﹣2、1、3.6、x 、5的中位数是1,那么这组数据的众数是_____. 14.某班有50名学生,其中20名女生的平均身高为163,30cm 名男生的平均身高为168,cm 则全班的平均身高为__________cm15.已知一组数据a ,b ,c 的方差为4,那么数据32a -,32b -,32c -的方差是_________.16.某果园种植甲、乙、丙、丁四个品种的苹果树,为了解每种苹果树的产量情况,从这四个品种中各随机选取10棵进行采摘,经统计,每种苹果树10棵产量的平均数x (单位:kg )及方差S 2如表所示:17.某班6名同学参加体能测试的成绩(单位:分)分别为:75,95,75,75,80,80,则这组数据的众数是_______.18.下表是某学习小组一次数学测验的成绩统计表:19.若一组数据123,,n x x x x ⋯⋯的平均数是a ,方差是b ,则1232323,2323n x x x x ---⋯⋯-、的平均数是_____________,方差是__________.20.某校开展“节约每滴水”活动,为了了解开展活动一个月以来节约用水情况,从九年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况,如下表:请你估计这400名同学的家庭一个月节约用水的总量大约是_________3m .三、解答题21.某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表: 综合评价得分统计表(单位:分)(1)请根据表中的数据完成下表(注:方差的计算结果精确到0.1)乙组1411.7评价.22.珍爱生命,增强安全意识.新学期开始,某校开展“开学安全第一课”知识竞赛,并从五年级、八年级年级各随机抽取10名学生的竞赛成绩进行统计.整理如下:八年级抽取的学生竞赛成绩:80,60,80,90,80,90,90,50,100,90.五年级抽取的学生竞赛成绩条形统计图:五年级、八年级抽取的学生竞赛成绩统计表:年级平均数众数中位数五年级817080八年级81a b根据以上信息,解答下列问题: (1)a =______,b =______;(2)该校五年级的2000名学生和八年级的1000名学生参加了此次竞赛活动,请估计这两个年级竞赛成绩达到90分及以上的学生共有多少名?(3)根据以上数据分析,两个年级“开学安全第一课”知识竞赛的学生成绩谁更优秀?请选取一个方面进行解释评价.23.小强帮助母亲预算家庭一年煤气开支,他连续7个月估计了每个月的煤气使用数据,并记录如表:日期 6月1日 7月1日 8月1日 9月1日 10月1日 11月1日 12月1日 使用量(方)9.5110.129.479.6310.1210.1211.03(2)若煤气每方3元,估计小强家一年的煤气费为多少元.24.为了解学生参加体育活动的情况,某地对九年级学生每天参加体育活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生总数和每天体育活动时间为1.5小时的学生数; (2)每天体育活动时间的中位数;(3)该校共有3500名学生,请估计该地九年级每天体育活动时间超过1小时的学生有多少人?25.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测试,两个人在相同条件下各射靶5次,甲命中的环数分别是:10、6、10、6、8,乙命中的环数分别是:7、9、7、8、9.经过计算,甲命中的平均数为8x =甲,方差为23.2S =甲.(1)求乙命中的平均数x 乙和方差2S 乙;(2)现从甲、乙两名队员中选出一人去参加射击比赛,你认为应该选哪名队员去?为什么?26.在一次广场舞比赛中,甲、乙两个队参加表演的女演员的身高(单位:cm )分别是甲队:163 165 165 164 168 乙队:162 164 164 167 168(1)求甲队女演员身高的平均数、中位数﹑众数;(2)计算两队女演员身高的方差,并判断哪个队女演员的身高更整齐?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题. 【详解】解:由题意可得,去掉一个最低分,平均分为x ,此时x 的值最大;若去掉一个最高分,平均分为y ,则此时的y 一定小于同时去掉一个最高分和一个最低分后的平均分为z , 故x z y >>, 故选:B . 【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.2.C解析:C 【分析】极差=数据最大值-数据最小值,求出数据的平均数,后套用方差公式计算即可. 【详解】∵最大数据为202,最小数据为198, ∴极差=202-198=4; ∵1200(12210)5x =++--+=200, ∴2222221[(201200)(202200)(198200)(199200)(200200)]5S =-+-+-+-+- =2, 故选C. 【点睛】本题考查了方差和极差的计算,熟记方差的公式,极差的定义是解题的关键.3.D解析:D 【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.解:A、平均数是:27128209161050⨯+⨯+⨯+⨯=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:150[2(7-9)2+12(8-9)2+20(9-9)2+16(10-9)2]=0.72,故命题错误;故选:D.【点睛】本题考查了加权平均数公式、方差公式以及众数、中位数的定义,理解方差的计算公式是关键.4.A解析:A【分析】根据众数与中位数的定义,找出出现次数最多的数,把这组数据从小到大排列,求出最中间两个数的平均数即可.【详解】数据220出现了4次,最多,故众数为220,重新排序后为:200、210、210、210、220、220、220、220、230、230,排序后位于第5和第6位的数均为220,故中位数为220,故选:A.【点睛】本题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.B解析:B【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【详解】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.【点睛】本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.6.B【分析】依据定义和公式分别计算新旧两组数据的极差、方差、中位数、众数,由此即可求解.【详解】原数据3,4,4,4,5的极差为5-3=2,原数据3,4,4,4,5的中位数为4,原数据3,4,4,4,5的众数为4,原数据3,4,4,4,5的平均数为344455++++=4,原数据3,4,4,4,5的方差为15×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;新数据的3,4,4,5的极差为5-3=2,新数据的3,4,4,5的中位数为(4+4)÷2=4,新数据的3,4,4,5的众数为4,新数据的3,4,4,5的平均数为34455+++=4,新数据的3,4,4,5的方差为14×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;∴添加一个数据4,方差发生变化,故选B.【点睛】本题主要考查的是众数、中位数、方差、极差,熟练掌握相关概念和公式是解题的关键.7.B解析:B【分析】根据进入决赛的13名学生所得分数互不相同,所以这13名学生所得分数的中位数即是获奖的学生中的最低分,所以某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,据此解答即可.【详解】解:∵进入决赛的13名学生所得分数互不相同,共有1+2+3=6个奖项,∴这13名学生所得分数的中位数即是获奖的学生中的最低分,∴某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,如果这名学生的分数大于或等于中位数,则他能获奖,如果这名学生的分数小于中位数,则他不能获奖.故选:B.【点睛】本题考查了统计量的选择,要熟练掌握,解答此题的关键是要明确:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量.8.A解析:A 【分析】先根据算术平均数的定义列式求出丙的成绩,再利用方差的定义计算可得. 【详解】解:丙的成绩为5×80﹣(79+80+81+81)=79, 所以这五名学生成绩的方差为15×[2×(79﹣80)2+(80﹣80)2+2×(81﹣80)2]=0.8, 故选:A . 【点睛】本题考查了方差,解题的关键是掌握算术平均数和方差的定义.9.D解析:D 【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断. 【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9. A .极差1138=-=,结论错误,故A 不符合题意; B .众数为5,7,11,3,9,结论错误,故B 不符合题意;C .这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D .平均数是()57113957++++÷=,方差()()()()()2222221577711737975S ⎡⎤=-+-+-+-+-⎣⎦8=.结论正确,故D 符合题意. 故选D . 【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.10.C解析:C 【分析】直接利用众数的概念求解可得. 【详解】解:∵在这组数据中,36.4出现了10次,次数最多, ∴学生体温数据的众数是36.4C ,故选:C.【点睛】本题考查众数,解题关键是熟练掌握一组数据中出现次数最多的数据叫做众数.11.D解析:D【分析】根据众数的定义可得x的值.【详解】解:∵数据2,3,x,5,7的众数为7,∴x=7,故选:D.【点睛】本题考查众数的意义,掌握众数是数据中出现最多的一个数是解题的关键.12.B解析:B【分析】比较四个人的方差,然后根据方差的意义可判断谁的成绩最稳定.【详解】解:∵S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,∴S丙2>S甲2>S丁2>S乙2,∴四人中乙的成绩最稳定.故选:B.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.二、填空题13.1【分析】先根据中位数的定义求出x的值再根据众数的定义即可求解【详解】解:∵数据﹣3﹣2136x5的中位数是1∴x=1∴这组数据的众数是1故答案为:1【点睛】本题为统计题考查众数与中位数的意义中位数解析:1【分析】先根据中位数的定义求出x的值,再根据众数的定义即可求解.【详解】解:∵数据﹣3、﹣2、1、3.6、x、5的中位数是1,∴x=1,∴这组数据的众数是1.故答案为:1.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.14.【分析】根据加权平均数的公式求解即可【详解】解:全班的平均身高为:(cm )故答案为:166【点睛】本题考查的是加权平均数的求法本题易出现的错误是求163168这两个数的平均数对平均数的理解不正确解析:166【分析】根据加权平均数的公式求解即可.【详解】 解:全班的平均身高为:16320168301662030⨯+⨯=+(cm ). 故答案为:166.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是求163,168这两个数的平均数,对平均数的理解不正确. 15.36【分析】根据方差的公式进行计算即可【详解】设甲组数据的平均数为则的平均数为∵∴故答案为:【点睛】本题考查了方差的计算关键是熟悉计算公式会将所求式子变形再整体代入解析:36【分析】根据方差的公式进行计算即可.【详解】设甲组数据a b c 、、的平均数为x ,则32a -,32b -,32c -的平均数为32x -, ∵(222211 [()())43S a x b x c x ⎤=-+-+-=⎦, ∴(222221[(3232)(3232)3232)3S a x b x c x ⎤=--++--++--+⎦ (2221 [(33)(33)33)3a x b x c x ⎤=-+-+-⎦ (2221 [9()9()9)3a x b x c x ⎤=-+-+-⎦ 49=⨯36=.故答案为:36.【点睛】本题考查了方差的计算.关键是熟悉计算公式,会将所求式子变形,再整体代入.16.丁【分析】先比较平均数得到丙组和丁的产量较好然后比较方差得到丁品种既高产又稳定【详解】因为甲乙的平均数比丙丁的平均数小而丁的方差比丙的小所以丁的产量既高产又稳定所以产量既高又稳定的苹果树进行种植应选解析:丁【分析】先比较平均数得到丙组和丁的产量较好,然后比较方差得到丁品种既高产又稳定.【详解】因为甲、乙的平均数比丙、丁的平均数小,而丁的方差比丙的小,所以丁的产量既高产又稳定,所以产量既高又稳定的苹果树进行种植,应选的品种是丁;故答案为:丁.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.17.75分【分析】利用众数的定义求解找出数据中出现次数最多的数即可【详解】解:数据75出现了三次次数最多故75分为众数故答案为:75分【点睛】考查了众数的定义一组数据中出现次数最多的数据叫做众数它反映了解析:75分【分析】利用众数的定义求解.找出数据中出现次数最多的数即可.【详解】解:数据75出现了三次,次数最多,故75分为众数.故答案为:75分.【点睛】考查了众数的定义,一组数据中出现次数最多的数据叫做众数.它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.18.3【分析】利用加权平均数的计算公式列出方程求解即可【详解】解:由题意得70+80×3+90x+100=85×(1+3+x+1)解得x=3故答案为3【点睛】本题考查了加权平均数的计算和列方程解决问题的解析:3【分析】利用加权平均数的计算公式列出方程求解即可.【详解】解:由题意,得70+80×3+90x+100=85×(1+3+x+1),解得x=3.故答案为3.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.19.4b【分析】根据平均数和方差的变化规律即可得出答案【详解】∵数据x1x2…xn的平均数是a∴数据2x1-32x2-3…2xn-3的平均数是;∵数据x1x2…xn的方差是b∴数据2x1-32x2-3…a- 4b解析:23【分析】根据平均数和方差的变化规律,即可得出答案.【详解】∵数据x1、x2、…、x n的平均数是a,∴数据2x1-3、2x2-3、…、2x n-3的平均数是23a-;∵数据x1、x2、…、x n的方差是b,∴数据2x1-3、2x2-3、…、2x n-3的方差是224⋅=,b ba-;4b.故答案为:23【点睛】本题考查了平均数与方差,关键是掌握平均数与方差的计算公式和变化规律:若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.20.120【分析】先计算这20名同学各自家庭一个月的节水量的平均数即样本平均数然后乘以总数400即可解答【详解】解:20名同学各自家庭一个月平均节约用水是:(02×4+025×6+03×3+04×7)÷解析:120【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】解:20名同学各自家庭一个月平均节约用水是:(0.2×4+0.25×6+0.3×3+0.4×7)÷20=0.3(m3),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.3=120(m3),故答案为:120.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.三、解答题21.(1)14,1.7,15;(2)甲组成绩相对稳定,但进步不大,且略有下降趋势.乙组成绩不够稳定,但进步较快,呈上升趋势(答案不唯一)【分析】(1)根据平均数、中位数、方差的定义求出后填表即可解答.(2)根据折线统计图的特点描述即可,答案不唯一.【详解】解:(1)甲组平均数=(12+15+16+14+14+13)÷6=14,甲组方差=()()()()()222221121415141614141413146⎡⎤-+-+-+-+-⎣⎦≈1.7 乙组数据从小到大排列为:9;10;14;16;17;18∴中位数=(14+16)÷2=15,故答案为:稳定,但进步较快,呈上升趋势.【点睛】本题主要考查了平均数、中位数、众数的概念,方差是描述一组数据波动大小的量. 22.(1)90,85;(2)估计这两个年级竞赛成绩达到90分及以上的学生共有1300名;(3)八年级“开学安全第一课”知识竞赛的学生成绩更优秀.【分析】(1)由八年级抽取的学生竞赛成绩结合众数和中位数的定义即可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的中位数高于五年级的中位数,可得八年级“开学安全第一课”知识竞赛的学生成绩谁更优秀.【详解】解:(1)按照从小到大的顺序排列为50,60,80,80,80,90,90,90,90,100,一共10个数据,则a=90,b=80902+=85. 故答案为:90,85;(2)452000100013001010⨯+⨯=(名). 答:估计这两个年级竞赛成绩达到90分及以上的学生共有1300名;(3)∵平均数相等,八年级的众数和中位数高于五年级的众数和中位数,∴八年级“开学安全第一课”知识竞赛的学生成绩更优秀.【点睛】本题考查中位数、众数、平均数的意义和计算方法,以及样本估计总体,理解各个概念的内涵和计算方法是解题的关键.23.(1)这7个月每月煤气使用量的众数为10.12方,中位数为10.12方,平均数为10方;(2)估计小强家一年的煤气费为360元.【分析】(1)将数据重新排列,再根据众数、中位数和平均数的定义求解即可;(2)用每方的费用乘以12个月,再乘以平均每月的使用量,据此可得答案.【详解】解:(1)将这7个数据重新排列为:9.47,9.51,9.63,10.12,10.12,10.12,11.03, 则这7个月每月煤气使用量的众数为10.12方,中位数为10.12方,平均数为9.479.519.6310.1210.1210.1211.037++++++=10(方); (2)估计小强家一年的煤气费为3×12×10=360(元).【点睛】本题考查了众数、中位数、平均数、用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的.24.(1)500人,120人;(2)1小时;(3)1400人【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数; (2)根据条形统计图可以得到这组数据的中位数;(3)用样本中超过1小时的比例乘以总人数3500,即可得该校九年级每天体育活动时间超过1小时的学生有多少人.【详解】解:(1)由条形统计图和扇形统计图可得,0.5小时的有100人占被调查总人数的20%, 故被调查的人数有:100÷20%=500(人),1.5小时的人数有:500×24%=120(人);(2)由(1)可知被调查学生500人,∴中位数是第250和251对应的数的平均数,由条形统计图可得,中位数是1小时;(3)∵12080500+×3500= 1400(人), ∴该地九年级每天体育活动时间超过1小时的学生约为1400人.【点睛】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.25.(1)8x =乙;20.8S =乙;(2)乙,见解析【分析】(1)利用平均数以及方差的定义得出即可;(2)利用方差的意义,分析得出答案即可.【详解】解:(1)()7978958x =++++÷=乙(个),()()()()()222222178987888980.85S ⎡⎤=-+-+-+-+-=⎣⎦乙; (2)应选乙去,理由:∵x x =甲乙∵2 3.2S =甲,20.8S =乙,∴22S S >甲乙,∴乙的波动小,成绩更稳定∴应选乙去参加射击比赛.【点睛】此题主要考查了平均数以及方差,正确记忆相关定义是解题关键.26.(1)甲队女演员身高的平均数是165cm ,中位数是165cm ,众数是165cm ;(2)甲队数据方差为2.8;乙队数据方差为4.8;甲队女演员的身高更整齐【分析】(1)根据平均数、众数、中位数的定义分别进行解答即可;(2)先求出乙队女演员的平均数身高,再根据方差公式求出甲队和乙队的方差,然后根据方差的意义即可得出答案.【详解】解:(1)()()1163164165165168165cm 5⨯++++=,∴甲队女演员身高的平均数是165cm ,把这些数从小到大排列,则中位数是165cm ,165cm 出现了2次,出现的次数最多,则众数是165cm ;(2)乙队女演员身高的平均数()()1162164164167168165cm 5=⨯++++=, 甲队数据方差 ()()()()()2222221163165164165165165165165168165 2.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦甲,乙队数据方差()()()()()2222221162165164165164165167165168165 4.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦乙,∵22s s <甲乙,∴甲队女演员的身高更整齐.【点睛】本题考查了平均数、众数、中位数和方差,平均数表示一组数据的平均程度.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.。

2023-2024学年小学数学北师大版六年级上第5章 数据处理单元测试(含答案解析)

2023-2024学年小学数学北师大版六年级上第5章 数据处理单元测试(含答案解析)

2023-2024学年北师大版小学数学单元测试学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;一、填空题(本大题共计9小题,每题3分,共计27分)1.(1)在参加的学生中,诵读________的人最多,诵读________的人最少。

1.(2)三年级有________人参加此次活动,四年级有________人参加此次活动。

【答案】《三字经》, 《诗经》【解析】16+ 31=47(人)25+ 6=31(人)14+ 20=34(人)9+ 17=26(人)30+ 11=41(人)因为47\gt 41\gt 34\gt 31\gt 26,所以朗诵《三字经》是人数最多,朗诵《诗经》的人数最少,答:朗诵《三字经》是人数最多,朗诵《诗经》的人数最少。

【答案】94, 85【解析】16+ 25+ 14+ 9+ 30=41+ 14+ 9+ 30=55+ 9+ 30=64+ 30=94(人)31+ 6+ 20+ 17+ 11=37+ 20+ 17+ 11=57+ 17+ 11=74+ 11=85(人)答:三年级有94人参加此次活动,四年级有85人参加此次活动。

故答案为:《三字经》、《诗经》;94、85.2.要绘制某小学师生向“希望工程”捐赠图书的情况,选用________统计图;把一个病人的血压变化情况绘制成统计图,应绘制________统计图。

【答案】条形, 折线【解析】解:根据统计图的特点可知:要绘制某小学师生向“希望工程”捐赠图书的情况,选用条形统计图;把一个病人的血压变化情况绘制成统计图,应绘制折线统计图。

故答案为:条形,折线。

3.要表示兴化市2015年月平均气温变化情况,应选择________统计图;要表示全校学生喜欢各类图书的百分比情况,应选择________统计图。

北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案

北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案

北师大版八年级数学上册《第六章数据的分析》单元检测卷-带答案核心考点整合考点1 平均数1.下表是小红参加一次“阳光体育”活动比赛的得分情况:项目跑步花样跳绳跳绳得分90 80 70评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为分.2. 某新能源车销售网点2023 年7月至12月的销售数量如图所示,则这半年来平均每月的销售量为辆(结果保留整数).考点2 中位数3.2024 年4 月24 日是我国第九个“中国航天日”,某校开展了一次航天知识竞赛,共选拔5名选手参加总决赛,他们的决赛成绩(单位:分)分别是92,93,94,90,96.则这5名选手决赛成绩的中位数是.4.已知一组数据:7,6,8,x,3,它们的平均数是6,则这组数据的中位数是( )A.2B.6C.8D.7考点3 众数5.为了解某班学生参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位;分钟)分别为65,60,75,60,80.这组数据的众数为( )A.65B.60C.75D.80考点4 方差,由公式提供的信息判断:①样本容量为3;②样本中6.某组数据的方差计算公式为s2=2(2−x̅)2+3(3−x̅)2+2(5−x̅)2n位数为3;③样本众数为3;④样本平均数为10₃.其说法正确的( )3A.①②④B.②④C.②③D.③④考点5 极差7.在杭州亚运会的跳水比赛中,对某运动员的第一个动作,8位裁判的打分如下(单位:分):9,8.5,7.5,8.5,8.5, 7.5,7,8,这组数据的极差是.考点6 标准差8.对于一次函数y=3x+4,自变量分别取值x₁,x₂,…,xₙ,若这组数据的方差为5,则对应的函数值为y ₁,y₂,…, yn 这组数据的标准差为.考点7 平均数、众数、中位数的应用9.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20 份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)工作人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求工作人员抽取的问卷所评分数为几分? 与(1)相比,中位数是否发生变化?考点8 方差的应用10.超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为x,s²,i该顾客选购的鸡蛋的质量平均数和方差分别为x₁,s²,则下列结论一定成立的是( )A.x̅<x̅1B.x̅>x̅1C.s2>s12D.s2<s1211.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中投进球的个数统计如下表:(1)求甲、乙两名队员投进球个数的平均数;(2)如果从甲、乙两名队员中选出一人去参加定点投篮比赛,应选哪名队员? 请说明理由.思想方法整合思想1 整体思想12.已知一组数据a₁,a₂,a₃,a₄,a₅的平均数为8,则另一组数据a₁+10,a₂−10,a₃+10,a₄−10,a₅+10的平均数为( )A.6B.8C.10D.12思想2 方程思想13.8名学生在一次数学测试中的成绩(单位:分)为80,82,79,69,74,78,x,81,这组成绩的平均数是77 分,则x的值为( )A.76B.75C.74D.73参考答案1 832 470 3.93分4. B 5. B 6. C 7.28. √5【点拨】因为这组数据x₁,x₂,…,x₀的方差为5所以函数值y₁,y₁,…,yₙ这组数据的方差是:3²×5 =45,所以这组数据的标准差为√45=3√5,【解】(1)由统计图可知,第10个数据是3分,第11个数据是4分,所以中位数为3.5分,由统计图可得平均数为1×1+3×2+6×3+5×4+5×5=3.5(分),所以客户所评分数的平均数和中位数都不低于3.5分20所以该部门不需要整改.>3.55,解得x>4.55(2) 设工作人员抽取的问卷所评分数为x 分,则有 3.5×20+x20+1因为满意度从低到高为1分,2分,3分,4分,5分,共5档.所以工作人员抽取的问卷所评分数为5分所以加入这个数据,客户所评分数按从小到大排列后,第11 个数据是4 分,即加入这个数据后,中位数是4 分所以与(1)相比,中位数发生了变化,由3.5分变成4 分。

北师大版八年级数学上册《数据的分析》单元测试卷及答案解析

北师大版八年级数学上册《数据的分析》单元测试卷及答案解析

北师大版八年级数学上册《数据的分析》单元测试卷一、选择题1、已知下面一组数据:5、-2、0、1、4,这组数据的中位数是()A.0 B.-2 C.1 D.42、已知甲、乙两名同学在四次模拟测试中的数学平均成绩都是112分,但他们的方差不同,分别是s=5,s=12,那么成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定3、甲、乙、丙、丁四名射击运动员参加了预选赛,其平均环数及方差s2如下表所示.假如要从两人中选出一个成绩较好且状态稳定的一个去参赛,那么应选()A. 甲B. 乙C. 丙D. 丁4、已知一组数据3,5,7,m ,n的平均数是6,那么m,n的平均数是( )A.7.5 B.7 C.6.5 D.65、下列哪种说法是错误的?()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为,,则甲的射击成绩较稳定D.数据3,5,4,1,-2的中位数是46、甲、乙、丙三种糖果每千克售价分别是6元、7元、8元,如果把甲种8千克、乙种10千克和丙种3千克混合在一起,那么每千克售价应定为多少元?().A.6.7元B.6.8元C.7.5元D.8.6元7、一位同学使用计算器求30个数据的平均数时,将其中一个数据108错误地输成18,那么由此求出的平均数与实际平均数的差是()A.3.5 B.3 C.0.5 D.﹣38、假如数据、、的平均数是3,那么数据、、的平均数是 ( )A.2 B.3 C.4 D.69、已知一组数据从小到大依次为-1,0,4,x,6,15,中位数为5,那么其众数为 ( ) A.4 B.5 C.5.5 D.610、如果将一组数据中的每一个数都减去40后,得到新的一组数据的平均数是2,那么原来那组数据的平均数是()A.40 B.42 C.38 D.2二、填空题11、在大华中学七年级(1)班随机抽取 7 名女同学,称得她们的体重(单位:kg)分别是:53、40、42、42、35、36、45 。

2019—2020年最新北师大版八年级上学期数学《数据的分析》单元检测题及答案解析.doc

2019—2020年最新北师大版八年级上学期数学《数据的分析》单元检测题及答案解析.doc

第六章数据的分析单元检测一、选择题1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( ).A.40 B.42C.38 D.22.一城市准备选购一千株高度大约为2 m的某种风景树来进行街道绿化,有四个苗圃生产基地投标(单株树的价格都一样).采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购( ).A.甲苗圃的树苗B.乙苗圃的树苗C.丙苗圃的树苗D.丁苗圃的树苗3.衡量样本和总体的波动大小的特征数是( ).A.平均数B.方差C.众数D.中位数4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则该射手射中环数的中位数和众数分别为( ).A.8,9 B.8,8C.8.5,8 D.8.5,95.对于数据3,3,2,3,6,3,10,3,6,3,2.有下列说法:①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的说法有( ).A.1个B.2个C.3个D.4个6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分输入汉字的个数经统计计算后结果如下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( ).A.(1)(2)(3) B.(1)(2)C.(1)(3) D.(2)(3)7.某学校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),则学期总评成绩优秀的是( ).A.甲B.乙、丙C.甲、乙D.甲、丙8.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:x甲=x乙=80,s2甲=240,s2乙=180,则成绩较为稳定的班级是( ).A.甲班B.乙班C.两班成绩一样稳定D.无法确定期中考试后,学习小组长算出全组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M∶N为( ).A.56B.1 C.65D.2 10.下列说法错误的是( ).A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个二、填空题11.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是__________,众数是__________.12.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是____________.13.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1∶4∶3的比例确定测试总分.已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为__________.14.如果样本方差s2=14[(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2],那么这个样本的平均数为__________,样本容量为________.15.已知x1,x2,x3的平均数x=10,方差s2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.三、解答题16.图①,②分别是根据某地近两年6月上旬日平均气温情况绘制的折线统计图,通过观察图表回答:去年6月上旬①今年6月上旬②(1)该地这两年6月上旬日平均气温分别是多少?(2)该地这两年6月上旬日平均气温的极差分别是多少?由此可以判断哪一年6月上旬气温比较稳定?分析:折线图能直观地反映数据的变化趋势,能比较容易地看出变动范围,求出极差,运用时还要注意观察,通过纵横坐标的交点寻找所需要的数据信息,根据信息和题目要求作出正确分析.观察图可知去年6月上旬的日平均气温(单位:℃)分别是:24,30,29,24,23,26,27,26,30,26.由图可知今年6月上旬的日平均气温(单位℃)分别是:24,26,25,26,24,26,27,26,27,26.然后求这两年的平均气温及极差.17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数如下:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?18.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点? (2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位: cm).并且数据15,16,16,14,14,15的方差223s =甲,数据11,15,18,17,10,19的方差2353s =乙)参考答案1答案:B 点拨:由题意知原来数据的平均数比新数据的平均数大40,所以为42.2答案:D3答案:B4答案:B5答案:A 点拨:这组数据的众数为3,中位数为3,平均数为4.6答案:B 点拨:甲班的方差比乙班的方差大,说明甲班的波动大.7答案:C 点拨:甲得分为90×50%+83×20%+95×30%=90.1.乙得分为98×50%+90×20%+95×30%=95.5.丙得分为80×50%+88×20%+90×30%=84.6.8答案:B 点拨:乙班的方差小.9答案:B 点拨:因为6个分数的平均数为(M+5M)÷6=M,所以M∶N=1.10答案:B 点拨:中位数是唯一确定的.11答案:7 812答案:2 点拨:由题意知(2+3+a+5+6)÷5=4,得a=4.故s2=22222(24)(34)(44)(54)(64)5-+-+-+-+-=2.13答案:65.75分点拨:88×18+72×48+50×38=65.75(分).14答案:2 415答案:20 12 点拨:平均数变为原来的2倍,方差变为原来的22=4倍.16解:(1)去年和今年6月上旬的平均气温分别是26.5 ℃,25.7 ℃.(2)去年和今年6月上旬平均气温的极差分别是:7 ℃,3 ℃,今年6月上旬气温比较稳定.17解:(1)平均数:260(件) 中位数:240(件) 众数:240(件)(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性.因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.18解:(1)相同点:两段台阶路台阶高度的平均数相同.不同点:两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)由于每个台阶高度均为15 cm(原平均数)时,可使得方差为0,因此应把每个台阶的高度统一修为15 cm高.。

北师大八年级数学上册:第六章数据的分析单元测试题(含答案)

北师大八年级数学上册:第六章数据的分析单元测试题(含答案)

第六章数据的分析综合测评一、选择题(每小题3分,共30分)1.一组数据6,7,8,9,10,这组数据的平均数是()A.6 B.7 C.8 D.92.已知一组数据75,80,80,85,90,那么这组数据的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,803.九年级某班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(1 2 3 4 5 7个)人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75B.3C.3.5D.74. 教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各射出5发子弹,命中环数如下:甲:9,8,7,7,9;乙:10,8,9,7,6.应该选择参加比赛的是()A.甲B.乙C.甲、乙都可以D.无法确定5. (2021年临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成图1所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时图1 图26. 某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成图2所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台7. 若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或68.九年级体育素质测试,某小组5名同学成绩如下表所示,其中有两个数据被遮盖:那么被遮盖的两个数据依次是()A.35,2B.36,4C.35,3D.36,39. 某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.中位数B.最高分C.方差D.平均数10. 下表是某校合唱团成员的年龄分布情况:年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.中位数、方差C.平均数、方差D.众数、中位数二、填空题(每小题4分,共32分)11. 某学习小组有8人,在一次数学测验中的成绩分别是102,115,100,105,92,105,85,104,则他们成绩的平均数是_____________.12. 某超市决定招聘广告策划人员一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是_____________分.13某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___________岁.14.已知一组数据3,3,4,7,8,则这组数据的方差为____________.15.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图3所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.图316. 一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.17.两组数据3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为________,中位数为________.18. 下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择____________.三、解答题(共58分)19.(8分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分,请你依据样本数据的中位数,推断他的成绩如何?20.(2021年盐城)(8分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3︰3︰2︰2计算,那么甲、乙的数学综合素质成绩分别为多少分?21. (8分)从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.请回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知2s甲=6,2s乙=42,你认为选谁参加比赛更合适,说明理由.22.(10分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班100 98 110 89 103 500乙班89 100 95 119 97 500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.24.(12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.七、八、九三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)七年级80 86 88 80 88 99 80 74 91 89八年级85 85 87 97 85 76 88 77 87 88九年级82 80 78 78 81 96 97 88 89 86(1)请你填写下表:平均数众数中位数七年级85.5 87八年级85.5 85九年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.附加题(15分,不计入总分)25. 小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,由于经营不善,经常导致牛奶滞销(没卖完)或脱销(量不够),为此细心的小红结合所学知识帮奶奶统计了一个星期牛奶的销售情况,并绘制成下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,会给奶奶哪些建议?第六章数据的分析综合测评参考答案一、1. C 2. D 3. B 4. A 5. C 6. C 7. C 8. B 9. A 10. D二、11. 101 12. 77.413. 15 14. 4.415. c<a<b16. 3.2 17.12 6 18.甲三、19. 解:(1)将样本数据按从小到大的顺序排列,得到最中间两个数据是148,152,所以中位数为150分,平均数为112(140+146+143+…+148)=151(分).(2)由(1)知样本数据的中位数为150分,可以估计这次马拉松比赛有一半选手的成绩快于150分,这名选手的成绩为147分,快于中位数150分,可以推断他的成绩比一半以上选手的成绩好.20. 解:(1)将甲的成绩按从小到大的顺序排列为89,90,90,93,中位数为90;将乙的成绩按从小到大的顺序排列为86,92,94,94,中位数为(92+94)÷2=93.(2)甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分);乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).21. 解:(1)83 82(2)选甲参加比赛更合适.理由如下:∵甲成绩的平均数>乙成绩的平均数,且2s甲<2s乙,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.22. 解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1.(3)乙23.解:(1)甲班踢100个以上(含100个)的人数是3,则优秀率是60%;乙班踢100个以上(含100个)的人数是2,则优秀率是40%.(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97.(3)因为两班的总分均为500,所以平均数都为100.2 s 甲=15[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8;2 s 乙=15[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2.(4)应把冠军奖状给甲班.理由:甲班的优秀率、中位数都高于乙班,甲班的方差小于乙班,说明甲班成绩更稳定.24.解:(1)表从上到下、从左到右依次填80,86,85.5,78(2)①八年级的成绩更好一些.②七年级的成绩好一些.(3)九年级的实力较强.理由:如果从三个年级中分别选出3人参加总决赛,可以看到九年级的高分较多,成绩更好一些.25.解:(1)金键学生奶的平均数是3,金键酸牛奶的平均数是80,金键原味奶的平均数是40,金键酸牛奶的销量最高.(2)学生奶的方差=17[(2﹣3)2+2×(1﹣3)2+2×(0﹣3)2+(9﹣3)2+(8﹣3)2]≈12.57;酸牛奶的方差=17[2×(70﹣80)2+(80﹣80)2+(75﹣80)2+(84﹣80)2+(81﹣80)2+(100﹣80)2]≈91.71;原味奶的方差=17[(40﹣40)2+2×(30﹣40)2+(35﹣40)2+(38﹣40)2+(47﹣40)2+(60﹣40)2]≈96.86.金键学生奶销量最稳定.(3)答案不唯一,合理即可.如建议学生奶平常尽量少进或不进,周末可以进几瓶.。

【数学】北师大版数学四年级下册《数据的表示和分析》单元检测(含答案)

【数学】北师大版数学四年级下册《数据的表示和分析》单元检测(含答案)

北师大版数学四年级下册《数据的表示和分析》单元检测(含答案)一、填一填。

(第10题4分,其余每空1分,共28分)1.下面有三堆小棒,要使每堆的根数相等,可以从()移动()根到();再从()移动()根到(),这样平均每堆有()根。

2.这三根彩带的平均长度是()米。

3.小明跳绳162下,比小芳多跳18下,小明和小芳平均每人跳()下。

4.气象小组的同学在一天的不同时间测得的温度如下表:(1)在这四个时刻中,()时的温度最高,()时的温度最低。

(2)估计这一天的平均温度是()℃。

(3)估计这一天所在的季节是一年中的()季。

5.四年级3个班平均每班有图书40本,其中四(1)班有38本,四(2)班有36本,四(3)班有()本。

6.A、B、C三个数的平均数是87,A、B两数的平均数是92,C是()。

7.某商场第一季度销售电冰箱368台,第二季度销售电冰箱604台,上半年平均每月销售电冰箱()台。

8.有两箱青苹果,甲箱重18千克,乙箱重8千克,若从甲箱中取()千克到乙箱中,则两箱青苹果的质量相同。

9.下面是2010~2014年青山村人均收入情况统计图。

看图回答下面的问题。

(1)横轴表示(),纵轴表示()。

(2)()年的人均收入最少,()年的人均收入最多,相差()元。

(3)从()年到()年人均收入增长得最快。

10.根据下面的统计表完成统计图,并回答问题。

(1)上面的统计图补充完整。

(2)纵轴1格表示()元。

(3)第()组捐的钱最多,是()元。

二、选一选。

(每空2分,共14分)①条形②折线1.我们学过的统计图有()统计图和()统计图。

2.要统计四年级五个班各班的人数,选用()统计图比较合适。

3.证券公司用()统计图表示股票的涨跌情况。

4.表示事物的发展变化趋势要用到()统计图。

5.()统计图常用来表示不同事物的数量的多少。

6.爸爸把小华每次考试的成绩做了记录,然后制成一个统计图来分析小华的成绩是提高了还是下降了,制成()统计图比较恰当。

第6章《数据的分析》(完整版)单元检测题试卷及答案(1)

第6章《数据的分析》(完整版)单元检测题试卷及答案(1)

精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最||新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最||正确选择 .2021新版北师大版八年级||数学上册第6章<数据的分析>单元测试试卷及答案 (1 )(本检测题总分值:100分,时间:90分钟)一、选择题(共10小题,每题3分,共30分)1. (2021·潍坊中|考)在某校"我的中|国梦〞演讲比赛中,有9名学生参加决赛,他们决赛的最||终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )2. (2021·莱芜中|考)一组数据:10,5,15,5,20,那么这组数据的平均数和中位数分别是( )A.10,10B.10, C D.11,103.对于数据3 ,3 ,2 ,3 ,6 ,3 ,10 ,3 ,6 ,3 ,2. (1 )这组数据的众数是3; (2 )这组数据的众数与中位数的数值不相等; (3 )这组数据的中位数与平均数的数值相等; (4 )这组数据的平均数与众数的数值相等.其中正确结论的个数为( )A.1B.24. (2021·临沂中|考)在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是( )A.94,94 ,95 C.94,95 D.95,945.某公司员工的月工资如下表:员工经理副经理职员职员职员职员职员职员职员月工资/元 4 800 3 500 2 000 1 900 1 800 1 600 1 600 1 600 1 000 那么这组数据的平均数众数中位数分别为()A. B.C. D.6.以下说法中正确的有()①描述一组数据的平均数只有一个;②描述一组数据的中位数只有一个;③描述一组数据的众数只有一个;④描述一组数据的平均数、中位数和众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数.A.1个B.2个C.3个D.4个7.某同学在本学期的前四次数学测验中得分依次是95,82,76,88 ,马上要进行第五次测验了,他希望五次成绩的平均分为85分,那么这次测验他应得( )分.A.84B.75C.828. (2021·陕西中|考)我省某市五月份第二周连续七天的空气质量指数分别为111 ,96 ,47 ,68 ,70 ,77 ,105.那么这七天空气质量指数的平均数是( )B.77C.829. (2021·重庆中|考)某特警部队为了选拔"神枪手〞,举行了1 000米射击比赛,最||后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28 ,乙的方差是0.21 ,那么以下说法中,正确的选项是( )C.甲、乙两人成绩的稳定性相同10.某赛季甲、乙两名篮球运发动12场比赛得分情况用图表示如下:对这两名运发动的成绩进行比较,以下四个结论中,不正确的选项是.......( )二、填空题(每题3分,共24分)11.某校八年级|| (1 )班一次数学考试的成绩为:分的3人,分的人,分的17人,分的人,分的人,分的人,全班数学考试的平均成绩为_______分.12. (2021•十堰中|考)某射击小组有20人,教练根据他们某次射击的数据绘制成如下列图的统计图,那么这组数据的众数是.13.(2021•咸宁中|考)某校为了解学生喜爱的体育活开工程,随机抽查了100名学生,让每人选一项自已喜欢的工程,并制成如下列图的扇形统计图.如果该校有1 200名学生,那么喜爱跳绳的学生约有人.14.有个数由小到大依次排列,其平均数是,如果这组数的前个数的平均数是,后个数的平均数是,那么这个数的中位数是_______.15.假设数据的平均数为,那么数据的平均数(用含的表达式表示)为_______.16.某超市招聘收银员一名,对三名应聘者进行了三项素质测试.下面是三名应聘者的素质测试成绩:测试成绩素质测试小李小张小赵计算机70 90 65商品知识50 75 55语言80 35 80公司根据实际需要, 对计算机、商品知识、语言三项测试成绩分别赋予权重4、3、2 ,那么这三人中将被录用.17.数据1 ,2 ,3 ,4 ,5的方差为2 ,那么11 ,12 ,13 ,14 ,15的方差为_____________ ,标准差为__________.18.某校八年级||甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:班级|| 参加人数平均字数中位数方差甲55 135 149 191乙55 135 151 110 有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的选项是___________ (填序号).三、解答题(共46分)19. (6分) 某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数如下:加工零件数540 450 300 240 210 120人数 1 1 2 6 3 2(1 )写出这15人该月加工零件数的平均数、中位数和众数.(2 )假设生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,为什么?20. (6分)为调查八年级||某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:)分别为:60 ,55 ,75 ,55 ,55 ,43 ,65 ,40.(1 )求这组数据的众数、中位数.(2 )求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?21. (6分)||王大伯几年前承包了甲、乙两片荒山 ,各栽100棵杨梅树 ,成活98%.现已结果 ,经济效益初步显现 ,为了分析收成情况 ,他分别从两山上随意各采摘了4棵树上的杨梅 ,每棵的产量如折线统计图所示.分别计算甲、乙两山样本的平均数 ,并估算出甲、乙两山杨梅的产量总和.22. (7分)某校在一次数学检测中,八年级||甲、乙两班学生的数学成绩统计如下表:分数50 60 70 80 90 100人数甲班 1 6 12 11 15 5 乙班 3 5 15 3 13 11请根据表中提供的信息答复以下问题:第21题图(1 )甲班的众数是多少分,乙班的众数是多少分,从众数看成绩较好的是哪个班?(2 )甲班的中位数是多少分,乙班的中位数是多少分,甲班成绩在中位数以上(包括中位数)的学生所占的百分比是多少;乙班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,从中位数看成绩较好的是哪个班?(3 )甲班的平均成绩是多少分,乙班的平均成绩是多少分,从平均成绩看成绩较好的班是哪个班?23. (7分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(分)测试工程甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如下列图,每得一票记作1分.(1 )请算出三人的民主评议得分.(2 )如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到) ?(3 )根据实际需要,单位将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么谁将被录用?24. (7分)一次期中|考试中,A、B、C、D、E五位同学的数学、英语成绩有如下信息:A B C D E 平均分标准差数学71 72 69 68 70 2英语88 82 94 85 76 85(1 )求这5位同学在本次考试中数学成绩的平均分和英语成绩的标准差.(2 )为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?25.(7分)某校八年级||学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100 )为优秀.下表是成绩最||好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考. 请你答复以下问题:(1 )计算两班的优秀率.(2 )求两班比赛成绩的中位数.(3 )两班比赛数据的方差哪一个小?(4 )根据以上三条信息,你认为应该把冠|军奖状发给哪一个班级|| ?简述你的理由.参考答案一、选择题1. D 解析:此题考查了平均数、众数、中位数及方差等几个统计量,众数是出现次数最||多的数,方差表示数据的波动程度,平均数表示一组数据的平均水平,中位数是一个位置代表值,把一组数据按由小到大(或由大到小)的顺序排列后,它处于这组数据的中间位置,大于或等于中位数的数据至||少有一半.2. D 解析:平均数为==11,把这组数据按照从小到大的顺序排列为5,5,10,15,20,故其中位数为10.,由此可知(1 )正确, (2 )、(3 )、(4 )均错误,应选A.4. D 解析:众数是指在一组数据中,出现次数最||多的数据.在这组数据中,出现次数最||多的是95 ,故这组数据的众数为95.中位数是指一组数据按从小到大(或从大到小)的顺序重新排列后,如果有奇数个数据,中位数就是最||中间的那个数;如果有偶数个数据,中位数就是最||中间两个数的平均数.因此,这7个数据的中位数是第4个数据:94.5. C 解析:元出现了次,出现的次数最||多,所以这组数据的众数为元;将这组数据按从大到小的顺序排列,中间的(第5个)数是元,即其中位数为元;,即平均数为2 200元,应选C.6. B 解析:一组数据的中位数和平均数只有一个,但出现次数最||多的数即为众数,可以有多个,所以①②对,③错;由于一组数据的平均数是取各数的平均值,中位数是将原数据按由小到大(或由大到小)顺序排列后,进行计算得来的,所以平均数与中位数不一定是原数据里的数,故④错;一组数据中的一个数大小发生了变化,它的平均数一定发生变化,众数、中位数可能发生改变,也可能不发生改变,所以⑤错.7.A 解析:利用求平均数的公式.设第五次测验得分,那么588768295x++++, 解得.8. C 解析: ==82.9. B 解析:此题考查了方差的意义,方差越小,数据越稳定.在甲、乙两名战士的总成绩相同的条件下,∵>,∴乙的成绩比甲的成绩稳定.二、填空题 11.78.8 解析:.8.783212171333502601270178013903100(分)=+++++⨯+⨯+⨯+⨯+⨯+⨯12.7 解析:观察条形统计图可知 ,环数7出现了7次 ,次数最||多 ,即这组数据的众数为7.故答案为7.13.360 解析:由扇形统计图可知 ,喜爱跳绳的学生所占的百分比 =1 -15% -45% -10% =30%.∵ 该校有1 200名学生 ,∴ 喜爱跳绳的学生约有1 200×30% =360 (人 ). 14.解析:设中间的一个数即中位数为 ,那么,所以中位数为.15.解析:设的平均数为 ,那么31)(21)(21)(2321+++++x x x 13233)2(321321+++⨯=+++=xx x x x x .又因为3321x x x ++ =x ,于是y.16.小张 解析:∵ 小李的成绩是9565234280350470=++⨯+⨯+⨯ ,小张的成绩是9772234235375490=++⨯+⨯+⨯ ,小赵的成绩是65234280355465=++⨯+⨯+⨯ ,∴ 小张将被录用. 17.2 ,2 解析:根据方差和标准差的定义进行求解.18. ①②③ 解析:由于乙班学生每分钟输入汉字的平均数为135 ,中位数为151 ,说明有一半以上的学生都到达每分钟150个以上 ,而甲班学生的中位数为149 ,说明不到一半的学生到达150个以上 ,说明乙班优秀人数比甲班优秀人数多 ,故②正确;由平均数和方差的意义可知①③也正确. 三、解答题 19.解: (1 )平均数:(件);260152120321062402300450540=⨯+⨯+⨯+⨯++中位数:240件 ,众数:240件.(2 )不合理 ,因为表中数据显示 ,每月能完成件以上的一共是4人 ,还有11人不能到达此定额 ,尽管是平均数 ,但不利于调动多数员工的积极性.因为既是中位数 ,又是众数 ,是大多数人能到达的定额 ,故定额为件较为合理.20.解: (1 )在这8个数据中 ,55出现了3次 ,出现的次数最||多 ,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40 ,43 ,55 ,55 ,55 ,60 ,65 ,75 ,其中最||中间的两个数据都是55 ,即这组数据的中位数是55. (2 )这8个数据的平均数是,所以这8名学生完成家庭作业的平均时间为.因为,所以估计该班学生每天完成家庭作业的平均时间符合学校的要求.21. 分析:根据平均数的求法求出平均数 ,再用样本估计总体的方法求出产量总和即可解答. 解: 40434403650=+++=甲x (千克 ) ,40436484036=+++=乙x (千克 ) ,甲、乙两山杨梅的产量总和为40×100×98%×2 =7 840 (千克 ). 22.解: (1 )甲班中分出现的次数最||多 ,故甲班的众数是分;乙班中分出现的次数最||多 ,故乙班的众数是分.从众数看 ,甲班成绩好. (2 )两个班都是人 ,甲班中的第人的分数都是分 ,故甲班的中位数是分;乙班中的第人的分数都是分 ,故乙班的中位数是分.甲班成绩在中位数以上 (包括中位数 )的学生所占的百分比为;乙班成绩在中位数以上 (包括中位数 )的学生所占的百分比为.从中位数看成绩较好的是甲班. (3 )甲班的平均成绩为;乙班的平均成绩为.从平均成绩看成绩较好的是乙班.23.分析:通过阅读表格获取信息 ,再根据题目要求进行平均数与加权平均数的计算. 解: (1 )甲、乙、丙的民主评议得分分别为50分、80分、70分. (2 )甲的平均成绩为75935021872.6733++=≈ (分 ) ,乙的平均成绩为80708023076.6733++=≈ (分 ) ,丙的平均成绩为90687022876.0033++== (分 ).由于76.67>76.00>72.67 ,所以乙将被录用. (3 )如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩 ,那么甲的个人成绩为472.9433⨯75+3⨯93+3⨯50=++ (分 ) ,乙的个人成绩为477433⨯80+3⨯70+3⨯80=++ (分 ) , 丙的个人成绩为477.4433⨯90+3⨯68+3⨯70=++ (分 ) ,由于丙的个人成绩最||高 ,所以丙将被录用. 24.解: (1 )数学成绩的平均分为7057068697271=++++ (分 ) ,英语成绩的方差为51 ,故标准差为6.(2 )A 同学数学成绩的标准分是;英语成绩的标准分是.可以看出数学成绩的标准分高于英语成绩的标准分 ,所以A 同学的数学成绩要比英语成绩考得好.25.解: (1 )甲班的优秀率:52 ,乙班的优秀率:53.(2 )甲班5名学生比赛成绩的中位数是97个; 乙班5名学生比赛成绩的中位数是100个. (3 )甲班的平均数 =100597+118+96+100+89= (个 ) ,甲班的方差;乙班的平均数 =1005104+91+110+95+100= (个 ) ,乙班的方差.∴.∴乙班比赛数据的方差小.(4 )冠|军奖状应发给乙班.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较高.以下为赠送内容别想一下造出大海,必须先由小河川开始 .成功不是只有将来才有,而是从决定做的那一刻起,持续积累而成!人假设软弱就是自己最||大的敌人,人假设勇敢就是自己最||好的朋友 .成功就是每天进步一点点!如果要挖井,就要挖到水出为止 .即使爬到最||高的山上,一次也只能脚踏实地地迈一步 .今天拼搏努力,他日谁与争锋 .在你不害怕的时候去斗牛,这不算什么;在你害怕的时候不去斗牛,这没什么了不起;只有在你害怕的时候还去斗牛才是真正的了不起 .行动不一定带来快乐,但无行动决无快乐 .只有一条路不能选择- -那就是放弃之路;只有一条路不能拒绝|| - -那就是成长之路 .坚韧是成功的一大要素,只要在门上敲得够久够大声,终会把人唤醒的 .只要我努力过,尽力过,哪怕我失败了,我也能拍着胸膛说:"我问心无愧 ."用今天的泪播种,收获明天的微笑 .人生重要的不是所站的位置,而是所朝的方向 .弱者只有千难万难,而勇者那么能披荆斩棘;愚者只有声声哀叹,智者却有千路万路 .坚持不懈,直到成功!最||淡的墨水也胜过最||强的记忆 .凑合凑合,自己负责 .有志者自有千计万计,无志者只感千难万难 .我中|考,我自信!我尽力我无悔!听从命运安排的是凡人;主宰自己命运的才是强者;没有主见的是盲从,三思而行的是智者 .相信自己能突破重围 .努力造就实力,态度决定高度 .把自己当傻瓜,不懂就问,你会学的更多 .人的活动如果没有理想的鼓舞,就会变得空虚而渺小 .安乐给人予舒适,却又给人予早逝;劳作给人予磨砺,却能给人予长久 .眉毛上的汗水和眉毛下的泪水,你必须选择一样!假设不给自己设限,那么人生中就没有限制你发挥的藩篱 .相信自己我能行!任何业绩的质变都来自于量变的积累 .明天的希望,让我们忘了今天的痛苦 .世|界上最||重要的事情,不在于我们身在何处,而在于我们朝着什么方向走 .爱拼才会赢努力拼搏,青春无悔!。

数据的分析单元测试(北师版)(含答案)

数据的分析单元测试(北师版)(含答案)

学生做题前请先回答以下问题问题1:本章学习的刻画数据集中趋势的统计量有哪些?问题2:本章刻画数据离散程度的统计量有哪些?问题3:本章所学习的平均数分为哪几类?问题4:中位数的定义是什么?众数的定义是什么?问题5:平均数、中位数和众数各有什么特点?问题6:极差、方差、标准差的定义分别是什么?问题7:当一组数据中每一个数都减去同一个数时,这组数据的方差,标准差是如何变化的?例如:一组数据,同时减去5,变为,则这组数据的方差,标准差是如何变化的?问题8:当一组数据中每一个数都乘以同一个不为零的数时,这组数据的方差,标准差是如何变化的?例如:一组数据,同时乘以2,变为,则这组数据的方差,标准差是如何变化的?数据的分析单元测试(北师版)一、单选题(共10道,每道9分)1.八年级一班有学生48人,八年级二班有学生52人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为82分,这两个班100名学生的平均分是( )A.81.76B.81.75C.81.74D.81.65答案:A解题思路:两个班的总平均分是总分数除以总人数,则故选A.试题难度:三颗星知识点:平均数2.某公司欲招收职员2名,从学历、经验和工作态度等三个方面对甲、乙、丙三名应聘者进行了初步测试,测试成绩如下表:如果将学历、经验和工作态度三项得分按1:2:2的比例确定各人的最终得分,并以此为依据确定应聘者排名,取前两名为录取者,那么按照录取顺序分别被录取的是( )A.甲,乙B.甲,丙C.乙,甲D.乙,丙答案:C解题思路:甲:,所以甲的加权平均数是7;乙:,所以乙的加权平均数是;丙:,所以丙的加权平均数是;故应被录取的是乙和甲,故选C.试题难度:三颗星知识点:加权平均数3.为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是( )A.极差是7B.众数是8C.中位数是8.5D.平均数是9答案:B解题思路:把数据从小到大排列:7,7,7,8,8,9,9,10,11,14,极差为14-7=7,故选项A正确;由于7出现3次,出现次数最多,∴众数为7,故选项B错误;中位数为,故选项C正确;平均数为,故选项D正确.综上,答案选B.试题难度:三颗星知识点:极差4.在校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都可以答案:B解题思路:∵参赛选手共有15名,且他们的分数互不相同,∴第8名的成绩是中位数,∴要判断是否进入前8名,只需要了解自己的成绩以及全部成绩的中位数.故选B.试题难度:三颗星知识点:中位数5.一组数据的平均数为5,方差为16,其中n是正整数,则另一组数据的平均数和标准差分别是( )A.15,144B.17,144C.17,12D.7,16答案:C解题思路:∵的平均数为,∴的平均数为:,∵的方差为,∴的方差为,∴的标准差为12,故选C.试题难度:三颗星知识点:平均数6.一组数据,若改变其中一个数据,这组数据的“平均数”、“中位数”、“众数”这三个量中,下列说法:①三个量一定都会发生变化;②“平均数”一定变化;③“众数”一定不变化;④“中位数”、“众数”不一定变化.其中正确的有( )A.①②B.④C.②③D.②④答案:D解题思路:如在1,2,5,8,9这组数据中,将2变为3时,中位数仍为5,没发生变化,故①错误;当一组数据中的一个数据发生改变时,数字个数不变,但总和变化,所以平均数一定变化,故②正确;如在2,2,5,8,9这组数据中,将8变为5时,众数就变为两个:2和5,故③错误;如在2,2,5,8,9这组数据中,将5变为6时,众数不变,而由①知,中位数可能不变,故④正确.综上,答案选D.试题难度:三颗星知识点:平均数7.用样本估计总体,下列说法中正确的个数是( )①样本的概率与实验次数有关;②样本容量越大,估计就越精确;③样本的标准差可以近似地反映总体的平均水平;④数据的方差越大,说明数据越不稳定.A.1B.2C.3D.4答案:B解题思路:样本的概率与实验次数无关,故①错;用样本估计总体时,样本容量越大,估计就越精确,故②正确;样本的标准差可以近似地反映总体的波动状态,故③错;数据的方差越大,说明数据越不稳定,故④正确.综上,答案选B.试题难度:三颗星知识点:样本容量8.某公司共有51名员工(包括经理),经理的工资高于其他员工的工资.今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加答案:B解题思路:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数为元;今年工资的平均数为元;∵,∴平均数增加;∵经理的工资高于其他员工的工资,∴这51个数据从小到大排列的次序没有变化,∴中位数不变,故选B.试题难度:三颗星知识点:中位数9.下列说法中,正确的说法有( )①将一组数据中的每一个减去5,标准差也减少5;②将一组数据中的每一个减去5,标准差不变;③将一组数据中的每一个缩小为原来的一半,标准差也缩小为原来的一半;④将一组数据中的每一个乘以3,标准差变为原来的9倍.A.1个B.2个C.3个D.4个答案:B解题思路:将一组数据中的每一个减去5,方差不变,标准差也不变,故①错误;将一组数据中的每一个减去5,标准差不变,故②正确;将一组数据中的每一个缩小为原来的一半,方差缩小为原来的,标准差,缩小为原来的一半,故③正确;将一组数据中的每一个乘以3,方差变为原来的9倍,标准差变为原来的3倍,故④错误.综上,答案选B.试题难度:三颗星知识点:标准差10.某班有48名学生,某次数学考试的成绩经计算得到的平均分为70分,标准差为S,后来发现成绩记录有误,某甲得80分却误记为50分,某乙得70分,却误记为100分,更正后计算得标准差为S1,则S与之间的大小关系是( )A. B.C. D.无法判断答案:A解题思路:设更正前甲、乙、丙…的成绩依次为a1,a2,…,a48,其中a1=50,a2=100,则:,更正后平均分,,故选A.试题难度:三颗星知识点:标准差二、填空题(共1道,每道10分)11.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.(单位:m)这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差____(填“变大”、“不变”或“变小”).答案:变小解题思路:∵李刚再跳两次,成绩分别为7.7,7.9,∴这组数据的平均数是,∴这8次跳远成绩的方差是:,∴方差变小,故答案为:变小.试题难度:知识点:平均数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据分析与命题单元测试(北师版)
一、单选题(共11道,每道8分)
1.八年级一班有学生48人,八年级二班有学生52人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为82分,这两个班100名学生的平均分是( )
A.81.76
B.81.75
C.81.74
D.81.65
答案:A
解题思路:
两个班的总平均分是总分数除以总人数,则
故选A.
试题难度:三颗星知识点:平均数
2.某公司欲招收职员2名,从学历、经验和工作态度等三个方面对甲、乙、丙三名应聘者进行了初步测试,测试成绩如下表:
如果将学历、经验和工作态度三项得分按1:2:2的比例确定各人的最终得分,并以此为依据确定应聘者排名,取前两名为录取者,那么按照录取顺序分别被录取的是( )
A.甲,乙
B.甲,丙
C.乙,甲
D.乙,丙
答案:C
解题思路:
试题难度:三颗星知识点:加权平均数
3.为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是( )
A.极差是7
B.众数是8
C.中位数是8.5
D.平均数是9
答案:B
解题思路:
试题难度:三颗星知识点:极差
4.在校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,只需要了解自己的成绩以及全部成绩的( )
A.平均数
B.中位数
C.众数
D.以上都可以
答案:B
解题思路:
∵参赛选手共有15名,且他们的分数互不相同,
∴第8名的成绩是中位数,
∴要判断是否进入前8名,只需要了解自己的成绩以及全部成绩的中位数.故选B.
试题难度:三颗星知识点:中位数
5.一组数据的平均数为5,方差为16,其中n是正整数,则另一组数据
的平均数和标准差分别是( )
A.15,144
B.17,144
C.17,12
D.7,16
答案:C
解题思路:
试题难度:三颗星知识点:平均数
6.一组数据,若改变其中一个数据,这组数据的“平均数”、“中位数”、“众数”这三个量中,下列说法:①三个量一定都会发生变化;②“平均数”一定变化;③“众数”一定不变化;④“中位数”、“众数”不一定变化.其中正确的有( )
A.①②
B.④
C.②③
D.②④
答案:D
解题思路:
试题难度:三颗星知识点:平均数
7.用样本估计总体,下列说法中正确的个数是( )
①样本的概率与实验次数有关;
②样本容量越大,估计就越精确;
③样本的标准差可以近似地反映总体的平均水平;
④数据的方差越大,说明数据越不稳定.
A.1
B.2
C.3
D.4
答案:B
解题思路:
样本的概率与实验次数无关,故①错;
用样本估计总体时,样本容量越大,估计就越精确,故②正确;
样本的标准差可以近似地反映总体的波动状态,故③错;
数据的方差越大,说明数据越不稳定,故④正确.
综上,答案选B.
试题难度:三颗星知识点:样本容量
8.某公司共有51名员工(包括经理),经理的工资高于其他员工的工资.今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
A.平均数和中位数不变
B.平均数增加,中位数不变
C.平均数不变,中位数增加
D.平均数和中位数都增加
答案:B
解题思路:
试题难度:三颗星知识点:中位数
9.下列说法中,正确的说法有( )
①将一组数据中的每一个减去5,标准差也减少5;
②将一组数据中的每一个减去5,标准差不变;
③将一组数据中的每一个缩小为原来的一半,标准差也缩小为原来的一半;
④将一组数据中的每一个乘以3,标准差变为原来的9倍.
A.1个
B.2个
C.3个
D.4个
答案:B
解题思路:
试题难度:三颗星知识点:标准差
10.某班有48名学生,某次数学考试的成绩经计算得到的平均分为70分,标准差为S,后来发现成绩记录有误,某甲得80分却误记为50分,某乙得70分,却误记为100分,更正后
计算得标准差为S1,则S与之间的大小关系是( )
A. B.
C. D.无法判断
答案:A
解题思路:
试题难度:三颗星知识点:标准差
11.下列命题中是假命题是( )
A.直角都相等
B.任何一个角都比它的余角小
C.两条平行线被第三条直线所截,一组内错角的平分线互相平行
D.两点之间,线段最短
答案:B
解题思路:
试题难度:三颗星知识点:命题
二、填空题(共1道,每道12分)
12.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,
7.9.(单位:m)这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差____(填“变大”、“不变”或“变小”).
答案:变小
解题思路:
试题难度:知识点:平均数。

相关文档
最新文档