分子标记与遗传图谱
分子标记在作物育种中的应用

分子标记在作物育种中的应用作物育种是改良作物种质的重要手段,通过对作物的遗传基础的深入研究,运用现代生物技术手段,筛选出具有优良性状基因的优良种质材料,从而加速有关作物的育种进程。
在现代生物技术手段中,分子标记技术在作物育种中扮演了非常重要的角色。
本文将介绍分子标记在作物育种中的应用。
一、分子标记简介分子标记是指与基因组中某个特定区域或特定性状相关的DNA序列片段。
这种技术可以用于确定个体间的遗传差异,进行基因型鉴定,进而确定等位基因种类及其比例。
通过分子标记技术,可以确定物种间的基因组组成和遗传的联系,并且还可以对单个个体的基因组进行分析和定位,制定具体的育种策略。
分子标记技术在育种材料鉴定和筛选中有着广泛的应用。
习惯上,育种过程需要大量的物种杂交,然后去通过后代材料中的遗传差异进行筛选、后代选择和提高纯度。
这种育种方法需要大量的时间和耗费大量的资源。
而采用分子标记技术,可以大大提高材料筛选的速度和效率。
远缘杂交后代中的有些个体通常会表现出可喜的性状,但是由于其他不良的遗传特征,基本上是无法继续进行育种的。
这个时候,分子标记技术就可以对杂交后代的DNA样本进行分析,从而确定哪些个体的基因组组成更加适合于后续育种筛选工作。
2. 分子标记在基因型分析和遗传图谱绘制中的应用在作物遗传基础的研究中,分子标记技术在基因型分析和遗传图谱绘制中的应用日益广泛。
通过分子标记技术,可以分析大量的遗传标记,确定不同基因型间的遗传差异,对遗传多样性和相关性进行统计分析,最终清晰地绘制出遗传图谱,揭示了不同群体间的遗传关系。
遗传图谱的绘制对于作物育种的后续研究至关重要,能够帮助育种人员了解群体内的基因性状分布情况,确定功能多样的分子标记,确保育种目标的达成。
3. 分子标记在杂交组合选择中的应用分子标记在杂交组合选择中的应用同样十分重要。
通过分析杂交后代的DNA序列,可以细致地分析出每个基因型对数量性状、质量性状、抗病性等性状的影响,并且还可以计算各基因型的复杂性状遗传度。
分子标记与遗传图谱

分子标记与遗传图谱AFLP的原理是基于PCR技术扩增基因组DNA限制性片段,基因组DNA先用限制性内切酶切割,然后将双链接头连接到DNA片段的末端,接头序列和相邻的限制性位点序列作为引物结合位点。
限制性片段用二种酶切割产生,一种是罕见切割酶,一种是常用切割酶。
选择特定的片段进行PCR扩增,由于在所有的限制性片段两端加上带有特定序列的“接头”,用与接头互补的但3’端有几个随机选择的核苷酸的引物进行特异PCR扩增,只有那些与3’端严格配对的片段才能得到扩增。
再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。
该技术包括三个步骤: DNA被限制性内切酶切割,然后与AFLP聚核苷酸接头 adapter 连接;利用PCR方法,通过变性、退火、延伸循环,选择性扩增成套的限制性片段,经过多次循环,可使目的序列扩增到0.5~1μg;利用聚丙烯酰胺凝胶电泳分离扩增的DNA片段。
利用一套特别的引物在不需要知道DNA序列的情况下,可在一次单个反应中检测到大量的片段。
由于AFLP扩增可使某一品种出现特定的DNA 谱带,而在另一品种中可能无此谱带产生;这种通过引物诱导及DNA扩增后得到的DNA多态性可作为一种分子标记;所以说AFLP技术是一种新的而且有很大功能的DNA指纹技术。
简单序列长度多态性 Simple Sequence Length Polymorphisms,SSLP 限制性片断长度或PCR产物长度因为小卫星或微卫星随机重复数量的变化形成的差异。
SSLP具有多等位性,有两种SSLP常用于作图:小卫星序列:又称可变串联重复,其重复单位为数十个核苷酸。
微卫星序列:或简单重复序列,其重复单位为1-6个核苷酸,由10-50个重复单位串联组成。
微卫星序列的应用比小卫星序列的应用普遍的多,原因有二:小卫星序列大多集中在染色体的端部;而微卫星序列在整个基因组中分布广密度高;微卫星序列PCR分析:PCR扩增的DNA长度少于300bp时,反应既快速又精确。
DNA分子标记技术的研究与应用

DNA分子标记技术的研究与应用一、本文概述本文旨在对DNA分子标记技术的研究与应用进行全面的概述。
DNA分子标记技术作为现代分子生物学领域的一项重要工具,已经在生物学研究、遗传育种、疾病诊断等多个领域展现出广泛的应用前景。
本文首先介绍了DNA分子标记技术的基本概念、发展历程以及主要类型,包括限制性片段长度多态性(RFLP)、随机扩增多态性DNA(RAPD)、扩增片段长度多态性(AFLP)和单核苷酸多态性(SNP)等。
接着,文章详细阐述了这些技术在不同领域中的具体应用,包括基因克隆、基因定位、遗传图谱构建、物种亲缘关系分析、基因表达和调控研究等。
本文还讨论了DNA分子标记技术在实践应用中面临的挑战和未来发展趋势,如高通量测序技术的结合、大数据分析的利用以及生物信息学的进一步发展等。
通过本文的综述,旨在为相关领域的研究人员和技术人员提供一个全面、深入的了解DNA分子标记技术的平台,以促进该技术的进一步发展和应用。
二、DNA分子标记技术的基本原理与类型DNA分子标记技术是一种直接以DNA多态性为基础的遗传标记技术,其基本原理在于利用DNA分子在基因组中存在的丰富的多态性,通过特定的技术手段将这些多态性转化为可识别的遗传信息,从而实现对生物个体或群体的遗传差异进行精确分析。
这种技术以其高度的准确性、稳定性和多态性,在生物学研究、遗传育种、种质鉴定、基因定位、分子育种、疾病诊断等领域中得到了广泛应用。
基于DNA-DNA杂交的分子标记技术:这类技术主要包括限制性片段长度多态性(RFLP)和DNA指纹技术。
它们通过比较不同个体或群体间DNA片段的杂交信号差异,揭示出基因组中的多态性。
这类标记具有稳定性高、共显性遗传等特点,但操作复杂、成本较高。
基于PCR的分子标记技术:随着聚合酶链式反应(PCR)技术的出现和发展,基于PCR的分子标记技术应运而生。
这类技术包括随机扩增多态性DNA(RAPD)、扩增片段长度多态性(AFLP)和序列特征化扩增区域(SCAR)等。
分子标记和QTL定位分析

四、举例
山葡萄高密度分子遗传图谱构建及抗寒性QTL定位研究
四、举例
山葡萄高密度分子遗传图谱构建及抗寒性QTL定位研究
四、举例
山葡萄高密度分子遗传图谱构建及抗寒性QTL定位研究
四、举例
山葡萄高密度分子遗传图谱构建及抗寒性QTL定位研究
四、举例
山葡萄高密度分子遗传图谱构建及抗寒性QTL定位研究
二、遗传图谱
理论依据
二、遗传图谱
构建遗传图谱步骤
亲本的选择和选配 作图群体的创建 分子标记的连锁分析
二、遗传图谱
构建遗传图谱步骤
亲本的选择和选配
选择原则:
1.亲本间应具有较高的多态性;亲本之间的 DNA多态性与其亲缘
关系有着密切关系,亲本之间亲缘关系越远,多态性越丰富,图谱上连锁的标记才可能越 多,该图谱的经济价值就越大。
二、遗传图谱
分子标记的连锁分析
构建遗传图谱步骤
目前果树上常用的构建遗传图谱的软件有
Mapmaker Join Map WinQTLCart 等
二、遗传图谱
构建遗传图谱的目的
遗传图谱构建是数量性状基因定位(QTL)、基因克隆及 分子标记辅助选择(MAS)的基础。
三、QTL定位
意义
三、QTL定位
四、举例
山葡萄高密度分子遗传图谱构建及抗寒性QTL定位研究
欧亚种葡萄‘红地球’和山葡萄‘双优’杂交的 94 个 F1 代单株,以山欧杂种‘北冰红’ 自交的94 个 F2 代单株为作图群体,采用 SSR 和 SRAP 两种分子标记技术分别构建了‘地 球’、‘双优’和‘北冰红’的分子遗传图谱,并对‘红地球’、‘双优’及其 94 个杂交 后代,对‘北冰红’及其 94 个自交后代的抗寒性进行鉴定,最后用区间作图法对葡萄的寒 性进行了 QTL 定位研究。葡萄高密度遗传图谱的构建和抗寒性的 QTL 定位,为今后抗 寒基因的定位、克隆以及分子标记辅助育种提供了可靠的理论依据和方法材料,对提高 葡萄抗寒育种水平具有重要意义
第3章 分子图谱的构建总结

干扰的程度用符合系数C表示。
C=实际双交换值/理论双交换值
要计算两个相距较远的基因座之间的图距时,如 果中间没有其他基因座可用,则两个基因座之间实际 发生的双交换就不能被鉴定出来。而由于双交换的结
果,会使根据重组值估计的两个基因座位间的距离估
计值偏低。因此,采用一些数学的方法矫正。
Haldane作图函数 :
Dist cM
1
Mar ker Id Name (71) RG472 RG246 K5 U10 RG532 W1 RG173 Amy1B RZ276 RG146 RG345 RG381 RZ19 RG690 RZ730
Dist cM
1-轮回亲本的纯合基因型(aa)
2-杂合体(ab) 3-非轮回亲本的纯合基因型(bb) 0-缺资料
群体的特点:
优点:
群体容易产生;
直接反映了F1代配子的分离比例,作图效率高; 适合亲缘关系较远的亲本;
缺点:
非永久性群体;
当显性时表现型和基因型鉴定都有麻烦;
对人工杂交困难的植物,不易建立大的群体,且易 出现假杂种。
的重组率。
3、图谱制作的统计学原理
(1)两点测验:对两个基因座之间的连锁关系
进行检测。
▲χ2检测标记座位是否符合孟得尔分离比例,严重异常 分离的标记一般不能用于连锁作图; ▲ 重组率是根据分离群体中重组型个体占个体总数的比 率来估算的。这种估算方法无法得到估算值的标准误,因此 无法对估算进行显著性检验。采用最大似然法估计 (maximum likelihood estimation,MLE)方法进行重组率
△排序(sequence):
通过多点分析,可以计算出在同一连锁群内不同排列 顺序下,各座位之间的距离和连锁群的总长度。
分子标记技术原理方法及应用-图文

分子标记技术原理方法及应用-图文一、遗传标记的类型及发展遗传标记(geneticmarker):指可追踪染色体、染色体某一节段、某个基因座在家系中传递的任何一种遗传特性。
它具有两个基本特征,即可遗传性和可识别性;因此生物的任何有差异表型的基因突变型均可作为遗传标记。
包括形态学标记、细胞学标记、生化标记和分子标记四种类型。
形态学标记:主要包括肉眼可见的外部形态特征,如:矮秆、紫鞘、卷叶等;也包括色素、生理特性、生殖特性、抗病虫性等有关的一些特性。
优点:形态学标记简单直观、经济方便。
缺点:(1)数量在多数植物中是很有限的;(2)多态性较差,表现易受环境影响;(3)有一些标记与不良性状连锁;(4)形态标记的获得需要通过诱变、分离纯合的过程,周期较长细胞学标记:植物细胞染色体的变异:包括染色体核型(染色体数目、结构、随体有无、着丝粒位置等)和带型(C带、N带、G带等)的变化。
优点:能进行一些重要基因的染色体或染色体区域定位。
缺点:(1)材料需要花费较大的人力和较长时间来培育,难度很大;(2)有些变异难以用细胞学方法进行检测生化标记:主要包括同工酶和等位酶标记。
分析方法是从组织蛋白粗提物中通过电泳和组织化学染色法将酶的多种形式转变成肉眼可辩的酶谱带型。
优点:直接反映了基因产物差异,受环境影响较小。
缺点:(1)目前可使用的生化标记数量还相当有限;(2)有些酶的染色方法和电泳技术有一定难度分子标记:主要指能反映生物个体或种群间基因组中某种差异特征的DNA片段,它直接反映基因组DNA间的差异,也叫DNA标记。
(1)数量多,高多态性,信息量大(2)与生长发育无关,取材不受限制(3)能明确辨别等位基因(4)均匀分布于整个基因组(5)选择中性,不影响目标性状的表达(6)检测手段简单、快速(7)成本低廉(8)稳定,重复性好(9)共显性遗传在遗传学研究中广泛应用的DNA分子标记已经发展了很多种,一般依其所用的分子生物学技术大致可以分为三大类:第一类是以分子杂交为核心的分子标记,包括RFLP、DNA指纹技术等,这类分子标记被称为第一代分子标记;几种主要的DNA分子标记二、几种常见分子标记的原理及方法1.RFLP2.RAPD3.AFLP4.SSR5.ISSR6.SNP1.RFLP:RetrictionFragmentLengthPolymorphimbyBottein(1980)基本原理:物种的基因组DNA在限制性内切酶作用下,产生相当多的大小不等的片段,用放射性同位素标记的DNA作探针,把与被标记DNA相关的片段检测出来,从而构建出多态性图谱。
实验三 分子标记连锁图的构建

遗传标记
有可以识别的标记, 有可以识别的标记,才能确定目标的方位 及彼此之间的相对位置。 及彼此之间的相对位置。 构建遗传图谱就是寻找基因组不同位置上 的特征标记。 的特征标记。 包括: 包括: 形态标记 细胞学标记 生化标记 DNA分子标记 DNA分子标记
多态性( 多态性(polymophism) )
所有的标记都必须具有 多态性! 多态性
花色:白色、 花色:白色、红色 株高:高、矮 株高: 淀粉: 淀粉:糯、非糯
形态标记
形态性状:株高、颜色、 形态性状:株高、颜色、白化症等 又称表型标记 数量少 很多突变是致死的 受环境、 受环境、生育期等因素的影响
最早建立的果蝇连锁图, 最早建立的果蝇连锁图,就是利用控制 果蝇眼睛的形状、颜色,躯体的颜色、 果蝇眼睛的形状、颜色,躯体的颜色、 翅膀的形状等形态性状作为标记, 翅膀的形状等形态性状作为标记,分析 它们连锁关系及遗传距离,绘制而成的。 它们连锁关系及遗传距离,绘制而成的。 控制性状的其实是基因, 控制性状的其实是基因,所以形态标记 实质上就是基因标记。 实质上就是基因标记。
总数
6708
交换值的计算
sh-wx sh-c
+ wx c sh + + + + c
2708 2538 626 601 113 116 4 2 6708
}亲 型
}单交换
18.29%
sh wx + sh + c + wx + + + +
}单交换
3.41%
} 双交换
0.09%
0.09%
sh wx c 总数 交换值
18.38%
3.50%
遗传标记基因图谱解析

鼠或仓鼠的体细胞进行杂交产生杂种细胞。杂种细胞含有
双亲不同的染色体,但会在其繁殖过程中,保留啮齿类一 方的染色体而逐渐丢失人类的染色体,最后只剩一条或几 条。这种仅保留少数甚至一条人染色体的杂种细胞正是进 行基因连锁分析和基因定位的有用材料
个体表型性状组合类型 ① ② ③ ④ ⑤ ⑥ ec + + + sc cv ec sc + + + cv + sc + ec + cv 个体数量 810 828 62 88 89 103
根据这些数据和重组频率公式可计算出每两个基因之间的互换值:
62 88 ec — sc互换值= 100% 7.6% (810 828 89 103) (62 88)
( 5 )对标记基因型数据进行连锁分析, 构建标记连锁图
设计大量的已知连锁基因个体的杂交试 验; 获得的 F1 再同纯隐性个体测交计算重组 频率;
以重组频率的 1% 作为 1 个摩尔根单位 (即1cM)将基因定位在一条直线上。
杂交:♀ec++/ec++ × ♂+sccv/Y ↓ ♀ec++/+sccv ♂ec++/Y 测交:♀ec++/+sccv×♂ecsccv/Y ↓
例如我们根据试验得出如下结果:
人的 标记 基因 人的 染色 体
α β γ ε 1 2 3
A + — + + — + —
B — + — + + — —