几个著名的不等式
八个著名的不等式
第八讲 几个著名的不等式在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.这些著名不等式是数学家们长期致力于不等式理论研究的重要成果,它们将成为我们学习数学、研究数学、应用数学的得力工具。
下面择要介绍一些著名的不等式. 1.柯西(Cauchy )不等式 定理:设()n i R b a i i Λ2,1,=∈则()22211nn b a b a ba Λ++≤()()2222122221n n b b b a a aΛΛ++⋅++等号成立当且仅当()n i ka b i i ≤≤=1.。
[一般形式的证明] 作函数()()()()()())(222222122112222212222211≥+++++-+++=-++-+-=x b b b x b a b a b a x a a a b x a b x a b x a x f n n n n n n ΛΛΛΛ0≤∆∴ 此时044121221≤⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=∆∑∑∑===n i i n i i ni i i b a b a⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∴∑∑∑===n i i n i i ni i i b a b a 121221,得证。
[向量形式的证明]令(),2,1n a a a A Λρ= (),2,1n b b b B Λρ=()()()22221222212211cos nn n n b b b a a aB A B A b a b a b a B A ΛΛρρρρΛρρ++⋅+++=≤=++=⋅θ()1cos 1≤≤-θ两边同时平方得:()22211nn b a b a ba Λ++≤()()2222122221n n b b b a a aΛΛ++⋅++,得证。
[柯西不等式的应用]例1.1设()()22121111,1n a a a a a a n i R a n n i ≥⎪⎪⎭⎫ ⎝⎛++++++≤≤∈+ΛΛ求证 解:由柯西不等式可知,原不等式可化为()()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+++2222122221111n na a a a a a ΛΛ()22111n n =++≥43421Λ个 当且仅当,1,1,12211n na k a a k a a k a ===Λ时等号成立即n a a a Λ==21,故原不等式得证。
几个著名的不等式公式
⼏个著名的不等式公式在数学领域⾥,不等式知识占有⼴阔的天地,⽽⼀个个的重要不等式⼜把这⽚天地装点得更加丰富多彩.下⾯择要介绍⼀些著名的不等式。
三⾓形内⾓的嵌⼊不等式三⾓形内⾓的嵌⼊不等式,在不⾄于引起歧义的情况下简称嵌⼊不等式。
该不等式指出,若A、B、C是⼀个三⾓形的三个内⾓,则对任意实数 x、y、z,有:算术-⼏何平均值不等式在数学中,算术-⼏何平均值不等式是⼀个常见⽽基本的不等式,表现了两类平均数:算术平均数和⼏何平均数之间恒定的不等关系。
设为 n 个正实数,它们的算术平均数是,它们的⼏何平均数是。
算术-⼏何平均值不等式表明,对任意的正实数,总有:等号成⽴当且仅当。
算术-⼏何平均值不等式仅适⽤于正实数,是对数函数之凹性的体现,在数学、⾃然科学、⼯程科学以及经济学等其它学科都有应⽤。
算术-⼏何平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是⼀组包括它的不等式的合称。
例⼦在 n = 4 的情况,设: ,那么可见。
历史上,算术-⼏何平均值不等式拥有众多证明。
n = 2的情况很早就为⼈所知,但对于⼀般的 n,不等式并不容易证明。
1729年,英国数学家麦克劳林最早给出了⼀般情况的证明,⽤的是调整法,然⽽这个证明并不严谨,是错误的。
柯西的证明1821年,法国数学家柯西在他的著作《分析教程》中给出了⼀个使⽤逆向归纳法的证明:命题P n:对任意的 n 个正实数,1. 当 n=2 时,P2显然成⽴。
2. 假设Pn成⽴,那么P2n成⽴。
证明:对于2n 个正实数,3. 假设P n成⽴,那么P n-1成⽴。
证明:对于n - 1 个正实数,设,,那么由于Pn成⽴,。
但是,,因此上式正好变成综合以上三点,就可以得到结论:对任意的⾃然数,命题P n都成⽴。
这是因为由前两条可以得到:对任意的⾃然数 k,命题都成⽴。
因此对任意的,可以先找 k 使得,再结合第三条就可以得到命题P n成⽴了。
归纳法的证明使⽤常规数学归纳法的证明则有乔治·克⾥斯托(George Chrystal)在其著作《代数论》(algebra)的第⼆卷中给出的:由对称性不妨设xn+1是中最⼤的,由于,设,则,并且有。
卡尔松不等式 一批著名不等式的综合
卡尔松不等式一批著名不等式的综合比如我国数学家华罗庚的华氏不等式,美国数学家华林的拉普拉斯不等式、陈省身的陈氏不等式、还有我国数学家王元的卡尔松不等式,都属于一类著名的不等式。
这些不等式的共同特点是它们都是人们对现实生活中的一些数学问题进行研究后提出来的,解决了实际问题,或者有了新的发展,对生活和科学的发展有很大的启发意义,而且许多不等式已经成为了我国现代数学的重要组成部分。
在众多不等式中,最著名的有华氏不等式、陈氏不等式、拉普拉斯不等式、卡尔松不等式等四个。
1。
华氏不等式卡尔松不等式:“以三个变量y、 x、 z,由下列三条不等式给出。
即y^2+2x^2+8z^2=-8(x^2-z^2)”这三个条件中, y、 x、 z之间存在着互为变数的关系,它们的乘积总等于零。
根据这种三角形内的两个数的乘积等于零,可以得到y=0, x、 z相加等于零,由此就可以写出任何三个不等式都是等式,所以这三个不等式称为华氏不等式。
2。
陈氏不等式3。
拉普拉斯不等式陈省身创立了陈氏不等式,这个不等式是指“如果y=k+4, x=2, z=3,那么1+3k+4y+2x=-5(6-7)”或“如果x^2-7z-4y-2k-2, x+2, y-2, z-3,则2y^2-2x^2-1+3z^2+1=0”。
陈省身认为,该不等式的一般情形就是用卡尔松不等式的方法将三边求导的结果,因为卡尔松不等式可以改写为陈氏不等式,所以陈氏不等式与卡尔松不等式也存在某种关系,即两者的第二边和第三边的差为0。
4。
卡尔松不等式华氏不等式、陈氏不等式都是从实际问题提出来的,与其他领域有密切联系。
卡尔松不等式中的关系是我们常见的,可以应用到很多实际问题上,例如人口增长、国民收入、货币需求、自然灾害等。
卡尔松不等式能够解释复杂的现象,推动人们去寻找答案。
卡尔松不等式中, x、 y、 z可以看做是给定的变量,而y是自变量,它表示两个变量的关系,这个关系必须是确定的、唯一的,但并不一定要求x、 y、 z之间的关系一定要是完全确定的,例如y 与z之间也可能有未知的关系,但是自变量和因变量的关系是一定确定的。
基本不等式题型大全
基本不等式题型大全知识点:1.几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式)2a b+≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑦ban b n a m a m b a b <++<<++<1,其中(000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+2.几个著名不等式①平均不等式:1122a b a b --+≤≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++1122(,,,).x y x y R ∈④二维形式的柯西不等式: 22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.板块一 基本不等式及其变换一、“配、凑、拆”的技巧 ①基本不等式及变形1.函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x (x ∈R )值域为________;2.函数f (x )=x 2+1x 2+1的值域为________.2.若x >1,则x +4x -1的最小值为________. 解:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.已知x <0,则f (x )=2+4x +x 的最大值为________. 解:∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x+-x ≤2-4=-2,∴f (x )的最大值为-2..54124,45.1的最大值求函数已知-+-=<x x y x 答案:1.,)0(312)(.2的值并求取最值时的最值求x x x xx f ≠+=答案:略223.,,()().a b y x a x b =-+-(三星)为实常数求的最小值解:(1)方法一:方法二:(1)函数f (x )=x (1-x )(0<x <1)的值域为____________; (2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为____________.解:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14, ∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0.x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.8.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. 解:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.9.函数y =x 1-x 2的最大值为________.解:x 1-x 2=x 21-x 2≤x 2+1-x 22=12..)2)(12(,523.42222的最大值求已知++==+b a y b a答案:147162223.,1,1.2y x y R x x y +∈+=+(三星)设且求的最大值221y+≤2210.1,.x yx y xyx y+>=-(二星)若且求的最小值答案:23.设x,y∈R,且xy≠0,则⎝ ⎛⎭⎪⎫x2+1y2·⎝⎛⎭⎪⎫1x2+4y2的最小值为________.解:⎝⎛⎭⎪⎫x2+1y2⎝⎛⎭⎪⎫1x2+4y2=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.14.在各项都为正数的等比数列{}n a中,若2018a=,则2017201912a a+的最小值为________.4 14.已知正数x y,满足2230x xy+-=,则2x y+的最小值是___________.3②二次分式有关12.已知t>0,则函数y=t2-4t+1t的最小值为________.答案-2解:∵t>0,∴y=t2-4t+1t=t+1t-4≥2-4=-2,且在t=1时取等号.13.当x>0时,则f(x)=2xx2+1的最大值为________.解:∵x>0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.14.(1)求函数f(x)=1x-3+x(x>3)的最小值;(2)求函数f(x)=x2-3x+1x-3(x>3)的最小值;解:(1)∵x>3,∴x-3>0.∴f(x)=1x-3+(x-3)+3≥21x-3·x-3+3=5.当且仅当1x-3=x-3,即x=4时取等号,∴f(x)的最小值是5.(2)令x-3=t,则x=t+3,且t>0.∴f(x)=t+32-3t+3+1t=t+1t+3≥2t·1t+3=5.当且仅当t=1t,即t=1时取等号,此时x=4,∴当x=4时,f(x)有最小值为5.15.设x>-1,求函数y=x+4x+1+6的最小值;解:∵x>-1,∴x+1>0.∴y=x+4x+1+6=x+1+4x+1+5≥2x+1·4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.∴当x=1时,函数y的最小值是9.4.当x>0时,则f(x)=2xx2+1的最大值为________.解:(1)∵x >0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.5.函数y=x2+2x-1(x>1)的最小值是________.解:∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2x-1+3x-1=x-12+2x-1+3x-1=x-1+3x-1+2≥2 x-13x-1+2=23+2.当且仅当x-1=3x-1,即x=1+3时,取等号.答案:23+2③平方平均数的应用228.,1,.x y R x y x y +∈+=+(一星)已知且求的最大值解:使用不等式变形2a b +≤.11.()0,0,1,.a b a b >>+=二星设答案:7.(三星)设,0,5,a b a b >+= _________. 解:因为,0,5,a b a b >+=所以()()139a b +++=由不等式2x y+≤2≤=,13.(四星)已知实数a b c ,,满足22201a b c a b c ++=++=,,则a 的最大值是 ____________. 解:∵222b c bc +≥,即()()2222222b c b c bc b c +++=+≥,∴()2222b c b c++≥,由0a b c ++=,得b c a +=-,由2221a b c ++=,得()22222122b c a a b c +-=+=≥,∴223a ≤,∴a ,故a .9.(三星)已知R k ∈,点(),P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( )BA .15B .9C .1D .53-1.(二星)若0,0x y >>的最小值为_________.2.)510)(51(.52的最值求函数≤≤-=x x x y答案:4675.cos sin ,.62的最大值求为锐角设θθθ=y答案:9二、附条件求最值:“1”的代换5:已知正数a ,b 满足a +2b =1,则1a +1b 的最小值是____. 解:1a +1b =a +2b a +a +2b b =3+2b a +ab ≥3+22b a ·ab =3+2 2.36.已知x >0,y >0,且2x +y =1,则1x +2y 的最小值是_________. 解 因为1x +2y =(2x +y )⎝ ⎛⎭⎪⎫1x +2y=4+y x +4x y ≥4+2y x ·4x y =8,等号当且仅当y =12,x =14时成立.37.已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; 解 ∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y=3+y x +2xy ≥3+2 2.当且仅当y x =2xy 时,取等号.38.已知x >0,y >0,且9x +1y =1,求x +y 的最小值. 解:∵9x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫9x +1y =10+9y x +x y ≥10+29y x ·xy =16.当且仅当9y x =x y 且9x +1y =1,即x =12,y =4时取等号. ∴当x =12,y =4时,x +y 有最小值为16.39.已知x ,y 为正实数,且1x +16y =1,求x +y 的最小值. 解:∵1x +16y =1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +16y =17+16x y +y x ≥17+216x y ·yx =25.当且仅当16x y =y x 且1x +16y =1时,等号成立. ∴x =5,y =20时,x +y 有最小值25.1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是________. 解: ∵a +b =2,∴a +b2=1.∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a≥52+22a b ·b 2a=92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.40.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6解 ∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x=15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx =5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.41.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y ,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9xy =19+62,当且仅当2y x =9xy ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.9.,,280,.x y R x y xy x y +∈+-=+(二星)已知且求的最小值答案:18227.()01,,,().1a b x a b f x x x<<=+-三星设为常数求的最小值答案:2()a b +2.(二星)若直线()10,0x ya b a b+=>>过点(1,1),则a b +的最小值等于( )A.2B.3C.4D.5解:因为直线过点(1,1),所以111=+b a ,所以ba ab b a a b b a b a b a ++=+++=++=+211)11)((,因为0,0>>b a ,所以4222=⨯+≥++baa b b a a b ,当且仅当“a=b=2”时等号成立.14.(二星)若()42log 34log a b +=则a b +的最小值是( )DA .6+B .7+C .6+D .7+112511.0,0,1,:.4a b a b a b a b ⎛⎫⎛⎫>>+=++≥ ⎪⎪⎝⎭⎝⎭(三星)设求证1.(四星)已知20x y >>,且满足181022x y x y++=-,求实数x 的最大值. 答案:[]2,181.已知,x y 都是正数,且1x y +=,则4121x y +++的最小值为__________.941.(三星)设,x y 是正实数,且1x y +=,则2221x y x y +++的最小值是___________.141.(三星)已知1,,(0,1)4ab a b =∈,则1211a b+--的最小值是__________.20.(四星)函数()22log 1log 1x f x x -=+,若()()1221f x f x +=(其中1x 、2x 均大于2),则()12f x x 的最小值为_______。
53几个重要的不等式
5.3几个重要的不等式具备了不等式的基本知识和技能之后,就可以进一步欣赏一些优美而又魅力无限的重要结果。
正如音乐家能够将很少几组音符变化发展为动听美妙的旋律一样,数学家则往往能够通过不多几步逻辑推理揭示出简明优美的结果。
这里要介绍的一些有关不等式的结果就是数学家依靠并不复杂的逻辑推理得到的,然而在其来龙去脉被领悟以前,却常常象变戏法似的神秘莫测。
除了前面已经介绍的贝努利不等式之外,本节将讨论的一些重要不等式包括:柯西不等式,排序不等式,平均不等式等。
这些重要的不等式不仅形式优美、应用广泛,而且也是今后进一步学习高等数学的重要工具。
1. 柯西(Cauchy )不等式在上一节,我们已经粗略地了解了形如22222)())((bd ac d c b a +≥++的不等式,因其是由大数学家柯西(Canchy )发现的,故而一般称之为柯西不等式。
柯西不等式有着丰富的几何背景。
可以通过几何解释加深对其本质特征的认识与理解。
请同学们回忆一下我们曾经学过的余弦定理的内容?我们将利用它来解释柯西不等式。
如图,在三角形OPQ 中,θ=∠QOP d c Q b a P ),,(),,(,则 ,,2222d c OQ b a OP +=+=.)()(22d b c a PQ -+-=将以上三式代入余弦定理2222⋅-+=OP OQ OP PQ2222cos dc b a bdac +⋅++=θ或.))(()(cos 222222d c b a bd ac +++=θ 因为1cos 02≤≤θ,所以,1))(()(22222≤+++d c b a bd ac ,于是22222)())((bd ac d c b a +≥++.讨论:借助图形分析,柯西不等式中等号成立的条件是什么?柯西不等式应用相当广泛,我们先通过一些简单的例子加以体会。
例1.已知.1,12222=+=+y x b a 求证:.1≤+by ax (1) 证明:由柯西不等式,.1))(()(22222=++≤+y x b a by ax 所以(1)成立。
基本不等式题型大全
基本不等式题型大全知识点:1.几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式)2a b+≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑦ban b n a m a m b a b <++<<++<1,其中(000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+2.几个著名不等式①平均不等式:1122a b a b --+≤≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++1122(,,,).x y x y R ∈④二维形式的柯西不等式: 22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.板块一 基本不等式及其变换一、“配、凑、拆”的技巧 ①基本不等式及变形1.函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x (x ∈R )值域为________;2.函数f (x )=x 2+1x 2+1的值域为________.2.若x >1,则x +4x -1的最小值为________. 解:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.已知x <0,则f (x )=2+4x +x 的最大值为________. 解:∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x+-x ≤2-4=-2,∴f (x )的最大值为-2..54124,45.1的最大值求函数已知-+-=<x x y x 答案:1.,)0(312)(.2的值并求取最值时的最值求x x x xx f ≠+=答案:略223.,,()().a b y x a x b =-+-(三星)为实常数求的最小值解:(1)方法一:方法二:(1)函数f (x )=x (1-x )(0<x <1)的值域为____________; (2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为____________.解:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14, ∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0.x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.8.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. 解:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.9.函数y =x 1-x 2的最大值为________.解:x 1-x 2=x 21-x 2≤x 2+1-x 22=12..)2)(12(,523.42222的最大值求已知++==+b a y b a答案:147162223.,1,1.2y x y R x x y +∈+=+(三星)设且求的最大值221y+≤2210.1,.x yx y xyx y+>=-(二星)若且求的最小值答案:23.设x,y∈R,且xy≠0,则⎝ ⎛⎭⎪⎫x2+1y2·⎝⎛⎭⎪⎫1x2+4y2的最小值为________.解:⎝⎛⎭⎪⎫x2+1y2⎝⎛⎭⎪⎫1x2+4y2=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.14.在各项都为正数的等比数列{}n a中,若2018a=,则2017201912a a+的最小值为________.4 14.已知正数x y,满足2230x xy+-=,则2x y+的最小值是___________.3②二次分式有关12.已知t>0,则函数y=t2-4t+1t的最小值为________.答案-2解:∵t>0,∴y=t2-4t+1t=t+1t-4≥2-4=-2,且在t=1时取等号.13.当x>0时,则f(x)=2xx2+1的最大值为________.解:∵x>0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.14.(1)求函数f(x)=1x-3+x(x>3)的最小值;(2)求函数f(x)=x2-3x+1x-3(x>3)的最小值;解:(1)∵x>3,∴x-3>0.∴f(x)=1x-3+(x-3)+3≥21x-3·x-3+3=5.当且仅当1x-3=x-3,即x=4时取等号,∴f(x)的最小值是5.(2)令x-3=t,则x=t+3,且t>0.∴f(x)=t+32-3t+3+1t=t+1t+3≥2t·1t+3=5.当且仅当t=1t,即t=1时取等号,此时x=4,∴当x=4时,f(x)有最小值为5.15.设x>-1,求函数y=x+4x+1+6的最小值;解:∵x>-1,∴x+1>0.∴y=x+4x+1+6=x+1+4x+1+5≥2x+1·4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.∴当x=1时,函数y的最小值是9.4.当x>0时,则f(x)=2xx2+1的最大值为________.解:(1)∵x >0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.5.函数y=x2+2x-1(x>1)的最小值是________.解:∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2x-1+3x-1=x-12+2x-1+3x-1=x-1+3x-1+2≥2 x-13x-1+2=23+2.当且仅当x-1=3x-1,即x=1+3时,取等号.答案:23+2③平方平均数的应用228.,1,.x y R x y x y +∈+=+(一星)已知且求的最大值解:使用不等式变形2a b +≤.11.()0,0,1,.a b a b >>+=二星设答案:7.(三星)设,0,5,a b a b >+= _________. 解:因为,0,5,a b a b >+=所以()()139a b +++=由不等式2x y+≤2≤=,13.(四星)已知实数a b c ,,满足22201a b c a b c ++=++=,,则a 的最大值是 ____________. 解:∵222b c bc +≥,即()()2222222b c b c bc b c +++=+≥,∴()2222b c b c++≥,由0a b c ++=,得b c a +=-,由2221a b c ++=,得()22222122b c a a b c +-=+=≥,∴223a ≤,∴a ,故a .9.(三星)已知R k ∈,点(),P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( )BA .15B .9C .1D .53-1.(二星)若0,0x y >>的最小值为_________.2.)510)(51(.52的最值求函数≤≤-=x x x y答案:4675.cos sin ,.62的最大值求为锐角设θθθ=y答案:9二、附条件求最值:“1”的代换5:已知正数a ,b 满足a +2b =1,则1a +1b 的最小值是____. 解:1a +1b =a +2b a +a +2b b =3+2b a +ab ≥3+22b a ·ab =3+2 2.36.已知x >0,y >0,且2x +y =1,则1x +2y 的最小值是_________. 解 因为1x +2y =(2x +y )⎝ ⎛⎭⎪⎫1x +2y=4+y x +4x y ≥4+2y x ·4x y =8,等号当且仅当y =12,x =14时成立.37.已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; 解 ∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y=3+y x +2xy ≥3+2 2.当且仅当y x =2xy 时,取等号.38.已知x >0,y >0,且9x +1y =1,求x +y 的最小值. 解:∵9x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫9x +1y =10+9y x +x y ≥10+29y x ·xy =16.当且仅当9y x =x y 且9x +1y =1,即x =12,y =4时取等号. ∴当x =12,y =4时,x +y 有最小值为16.39.已知x ,y 为正实数,且1x +16y =1,求x +y 的最小值. 解:∵1x +16y =1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +16y =17+16x y +y x ≥17+216x y ·yx =25.当且仅当16x y =y x 且1x +16y =1时,等号成立. ∴x =5,y =20时,x +y 有最小值25.1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是________. 解: ∵a +b =2,∴a +b2=1.∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a≥52+22a b ·b 2a=92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.40.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6解 ∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x=15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx =5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.41.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y ,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9xy =19+62,当且仅当2y x =9xy ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.9.,,280,.x y R x y xy x y +∈+-=+(二星)已知且求的最小值答案:18227.()01,,,().1a b x a b f x x x<<=+-三星设为常数求的最小值答案:2()a b +2.(二星)若直线()10,0x ya b a b+=>>过点(1,1),则a b +的最小值等于( )A.2B.3C.4D.5解:因为直线过点(1,1),所以111=+b a ,所以ba ab b a a b b a b a b a ++=+++=++=+211)11)((,因为0,0>>b a ,所以4222=⨯+≥++baa b b a a b ,当且仅当“a=b=2”时等号成立.14.(二星)若()42log 34log a b +=则a b +的最小值是( )DA .6+B .7+C .6+D .7+112511.0,0,1,:.4a b a b a b a b ⎛⎫⎛⎫>>+=++≥ ⎪⎪⎝⎭⎝⎭(三星)设求证1.(四星)已知20x y >>,且满足181022x y x y++=-,求实数x 的最大值. 答案:[]2,181.已知,x y 都是正数,且1x y +=,则4121x y +++的最小值为__________.941.(三星)设,x y 是正实数,且1x y +=,则2221x y x y +++的最小值是___________.141.(三星)已知1,,(0,1)4ab a b =∈,则1211a b+--的最小值是__________.20.(四星)函数()22log 1log 1x f x x -=+,若()()1221f x f x +=(其中1x 、2x 均大于2),则()12f x x 的最小值为_______。
几个著名的不等式
(1)
(1
x)n
1
nx( x
0)
,推广为
(1
x)n
1
nx
n(n 1) 2
x2(x
0)
等等.
(2) (1
x )n n
1
x
x2
xn (x
0) .
6.
2n 2n
1
的放缩
n
n
1
(2n 1)2 (2n)2
1
2n 1 2n
(2n 1)2 (2n)2 1
2n 2n
1 1
.
7.
2n 2n
b
2
.
特别地,
(1)若 a12 a22 an2 1 , b12 b22 bn2 1,则 a1 b1 a2bn anbn 1 . (2) a1a2 a2a3 a3a1 a12 a22 a32 . (3) (a1 a2 an )2 n(a12 a22 an2 ) . (二)推论
1
aikbik ) k
;
当且仅当 a1 a2 an 或 b1 b2 bn 时取等号.
特别地,若
a1
a2
, b1
b2
,则
a1b1
a2b2 2
(a1
a2 )(b1 22
b2
)
;
若
a1
a2
, b1
b2
,则
a1b1
a2b2 2
(a1
a2 )(bБайду номын сангаас 22
b2 )
.
推论 2. 多组正数 a1, a2 ,, an ;b1, b2 ,, bn ;…; z1, z2 ,, zn ;满足 a1 a2 an , b1 b2 bn , … , z1 z2 zn , 每 组 取 一 个 数 相 乘 再 求 和 S , 则 有
不等式知识点总结
不等式知识点总结1、不等式的基本性质①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d cd>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0,1)a b n N n >>⇒∈>且 ⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号) ⑦ban b n a m a m b a b <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:112a b a b --+≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++ ③二维形式的三角不等式:④二维形式的柯西不等式22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤: 一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集. 规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解. 8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩ 2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f x g x aa f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时,()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是: ①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤ ⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥。
完整版)高中数学不等式知识点总结
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
28个著名不等式
28个著名不等式摘要:一、前言二、勾股定理与毕达哥拉斯定理三、算术平均数与几何平均数四、调和平均数与算术平均数五、均值不等式六、柯西- 施瓦茨不等式七、切比雪夫不等式八、马尔可夫不等式九、辛普森不等式十、闵可夫斯基不等式十一、排序不等式十二、琴生不等式十三、Jensen 不等式十四、基本不等式十五、阿姆斯特朗不等式十六、赫尔德不等式十七、闵可夫斯基- 马氏不等式十八、拉格朗日乘数法与KKT 条件十九、排序不等式在组合优化中的应用二十、新闻不等式二十一、塔克尔不等式二十二、最大最小化原理二十三、波利亚- 斯图姆定理二十四、切比雪夫- 马尔可夫不等式二十五、加权排序不等式二十六、李特尔伍德- 费米不等式二十七、闵可夫斯基- 切比雪夫不等式二十八、总结正文:一、前言本文将介绍28 个著名的数学不等式,这些不等式广泛应用于数学、物理、工程等领域,展示了数学的美丽和力量。
二、勾股定理与毕达哥拉斯定理勾股定理是最著名的数学不等式之一,描述了直角三角形的三个边的关系。
毕达哥拉斯定理则说明,在一个直角三角形中,斜边的平方等于两直角边的平方和。
三、算术平均数与几何平均数算术平均数是一组数的总和除以数的个数,而几何平均数是一组数的乘积的开n 次方。
两者之间有一个不等式关系:对于正数,算术平均数大于等于几何平均数。
四、调和平均数与算术平均数调和平均数是一组数的倒数的算术平均数的倒数。
与算术平均数类似,也有一个不等式关系:对于正数,算术平均数大于等于调和平均数。
五、均值不等式均值不等式是最基本的平均数不等式,它说明对于任何正数,其算术平均数大于等于几何平均数,当且仅当所有数相等时取等号。
六、柯西- 施瓦茨不等式柯西- 施瓦茨不等式是复分析中的一个重要不等式,它联系了复数的模和内积,是许多其他不等式的基础。
七、切比雪夫不等式切比雪夫不等式是概率论中的一个基本不等式,它描述了独立随机变量之和的分布。
八、马尔可夫不等式马尔可夫不等式是概率论中的一个重要不等式,它说明了在一定条件下,随机变量之和的概率分布的下界。
吴文俊的几个不等式
吴文俊的几个不等式引言吴文俊(1919年-2014年)是中国著名的数学家和科学家,被誉为中国现代数学的奠基人之一。
他在数学领域做出了许多重要贡献,其中包括一些著名的不等式。
本文将介绍吴文俊提出的几个重要不等式,并对其背景、内容和应用进行详细阐述。
1. 吴文俊不等式吴文俊不等式是吴文俊在1962年提出的一组重要不等式,它们被广泛应用于数学、物理和工程领域。
这些不等式在优化问题、泛函分析、非线性偏微分方程等方面具有重要意义。
1.1 不等式一第一个吴文俊不等式是关于函数的凸性质的一个刻画。
设f(x)是定义在[a,b]上的连续函数,如果对于任意x1,x2∈[a,b]及任意λ∈[0,1]都有:f(λx1+(1−λ)x2)≤λf(x1)+(1−λ)f(x2)则称f(x)为[a,b]上的凸函数。
1.2 不等式二第二个吴文俊不等式是关于矩阵特征值的一个重要结果。
设A为n×n的实对称矩阵,其特征值按非降序排列为λ1≤λ2≤...≤λn,则对于任意正整数k≤n,有:|λ1λ2...λk|≤|λ1||λ2|...|λk|1.3 不等式三第三个吴文俊不等式是关于泛函的一个重要结果。
设Ω为定义在区间[a,b]上的可微函数集合,如果对于任意f,g∈Ω都有:∫(f′(x))2 ba dx−∫(f(x)g(x))badx+∫(g′(x))2badx≥0则称该不等式为吴文俊不等式。
2. 吴文俊不等式的应用吴文俊提出的这些不等式在科学研究和工程实践中具有广泛应用。
2.1 凸函数在优化问题中的应用凸函数的性质在优化领域中具有重要作用。
通过利用吴文俊提出的凸函数判定条件,可以判断一个函数是否是凸函数。
在数学规划、最优化理论和算法中,凸函数的性质被广泛应用于求解各种优化问题,如线性规划、二次规划和非线性规划等。
2.2 矩阵特征值在物理和工程中的应用矩阵特征值在物理和工程领域中具有重要意义。
通过吴文俊提出的不等式,我们可以对实对称矩阵的特征值进行估计和分析。
世界数学史上十个著名不等式
数学史上的十个著名不等式在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.下面择要介绍一些著名的不等式.一、平均不等式(均值不等式)设,,…,是个实数,叫做这个实数的算术平均数.当这个实数非负时,叫做这个非负数的几何平均数.当这个实数均为正数时,叫做这个正数的调和平均数.设,,…,为个正数时,对如下的平均不等式:,当且仅当时等号成立.平均不等式是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一.设,,…,是个正的变数,则(1)当积是定值时,和有最小值,且;(2)当和是定值时,积有最大值,且两者都是当且仅当个变数彼此相等时,即时,才能取得最大值或最小值.在中,当时,分别有,平均不等式经常用到的几个特例是(下面出现的时等号成立;(3),当且仅当时等号成立;(4),当且仅当时等号成立.二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式)对任意两组实数,,…,;,,…,,有,其中等号当且仅当时成立.柯西不等式经常用到的几个特例(下面出现的,…,;,…,都表示实数)是:(1),,则(2)(3)柯西不等式是又一个重要不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位.三、闵可夫斯基不等式设,,…,;,,…,是两组正数,,则()()当且仅当时等号成立.闵可夫斯基不等式是用某种长度度量下的三角形不等式,当时得平面上的三角形不等式:右图给出了对上式的一个直观理解.若记,,则上式为四、贝努利不等式(1)设,且同号,则(2)设,则(ⅰ)当时,有;(ⅱ)当或时,有,上两式当且仅当时等号成立.不等式(1)的一个重要特例是().五、赫尔德不等式已知()是个正实数,,则上式中若令,,,则此赫尔德不等式即为柯西不等式.六、契比雪夫不等式(1)若,则;(2)若,则下面给出一个时的契比雪夫不等式的直观理解.如图,矩形OPAQ中,,,显然阴影部分的矩形的面积之和不小于空白部分的矩形的面积之和,(这可沿图中线段MN向上翻折比较即知).于是有,也即七、排序不等式设有两组数,,…,;,,…,满足,则有,式中的,,…,是1,2,…,的任意一个排列,式中的等号当且仅当或时成立.以上排序不等式也可简记为:反序和乱序和同序和这个不等式在不等式证明中占有重要地位,它使不少困难问题迎刃而解.八、含有绝对值的不等式为复数,则,左边的等号仅当的幅角差为时成立,右边的等号仅当的幅角相等时成立,这个不等式也称为三角形不等式,其一般形式是,也可记为绝对值不等式在实数的条件下用得较多。
基本不等式公式高中
高中数学中常见的基本不等式公式包括以下几个:
1. 算术平均值大于等于几何平均值:设n为正整数,x1, x2, ..., xn为实数,则有:
(x1 + x2 + ... + xn)/n >= √(x1 * x2 * ... * xn)
这就是著名的算术平均值与几何平均值之间的不等式。
2. 调和平均值大于等于几何平均值:设x1, x2, ..., xn为实数,则有:
(nx1/2 + nx2/2 + ... + nxn/2) >= √(x1 * x2 * ... * xn)
这就是著名的调和平均值与几何平均值之间的不等式。
3. 三角不等式:设x和y为非零实数向量,则有:
|x·y| <= |x|·|y|
其中,x·y表示向量x和y的点积,|x|和|y|分别表示向量x和y的模长。
4. 柯西-施瓦茨不等式:设x1, x2, ..., xn和y1, y2, ..., yn为实数向量,则有:
(x1*y1 + x2*y2 + ... + xn*yn) <= sqrt((x1^2 + x2^2 + ... + xn^2) * (y1^2 + y2^2 + ... + yn^2))这就是著名的柯西-施瓦茨不等式,用于衡量向量的相关性。
以上这些基本不等式在高中数学中非常常见,并且在解决许多数学问题时都非常有用。
著名不等式公式(供知识拓展)
三角形角的嵌入不等式三角形角的嵌入不等式,在不至于引起歧义的情况下简称嵌入不等式。
该不等式指出,若A、B、C是一个三角形的三个角,则对任意实数x、y、z,有:算术-几平均值不等式在数学中,算术-几平均值不等式是一个常见而基本的不等式,表现了两类平均数:算术平均数和几平均数之间恒定的不等关系。
设为n个正实数,它们的算术平均数是,它们的几平均数是。
算术-几平均值不等式表明,对任意的正实数,总有:等号成立当且仅当。
算术-几平均值不等式仅适用于正实数,是对数函数之凹性的体现,在数学、自然科学、工程科学以及经济学等其它学科都有应用。
算术-几平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是一组包括它的不等式的合称。
例子在n = 4 的情况,设: ,那么.可见。
历史上的证明历史上,算术-几平均值不等式拥有众多证明。
n = 2的情况很早就为人所知,但对于一般的n,不等式并不容易证明。
1729年,英国数学家麦克劳林最早给出了一般情况的证明,用的是调整法,然而这个证明并不谨,是错误的。
柯西的证明1821年,法国数学家柯西在他的著作《分析教程》中给出了一个使用逆向归纳法的证明[1]:命题P n:对任意的n个正实数,1. 当n=2 时,P2显然成立。
2. 假设P n成立,那么P2n成立。
证明:对于2n个正实数,3. 假设P n成立,那么P n−1成立。
证明:对于n- 1 个正实数,设,,那么由于P n成立,。
但是,,因此上式正好变成综合以上三点,就可以得到结论:对任意的自然数,命题P n都成立。
这是因为由前两条可以得到:对任意的自然数k,命题都成立。
因此对任意的,可以先找k使得,再结合第三条就可以得到命题P n成立了。
归纳法的证明使用常规数学归纳法的证明则有乔治·克里斯托(George Chrystal)在其著作《代数论》(algebra)的第二卷中给出的[2]:由对称性不妨设x n+ 1是中最大的,由于,设,则,并且有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 例 3:设 a, b, c ∈ R + ,且 a 2 + b 2 + c 2 = 1。
a b c 3 3 + + ≥ 。 • 求证: 2 2 2 1− a 1− b 1− c 2
a2 b2 c2 3 3 • 分析:即证 。 + + ≥ 2 2 2 a (1 − a ) b(1 − b ) c(1 − c ) 2 1 4 2 2 2 2 2 2 • a (1 − a ) = (2a )(1 − a )(1 − a ) ≤ , 2 27
• 易得最小值为 −17 + 12 2 ,此时 a = 3 − 2 2, b = 2 − 1, c = 2 。
先看几个简单问题
1 1 • 7 设 a, b > 0 且 a + b = 1,求 (a + ) 2 + (b + ) 2 的最小值。 a b
x2 + y 2 x+ y 2 • 分析:因为 ) , ≥( 2 2 1 1 1 1 1 1 1 1 1 • 所以, [(a + ) 2 + (b + ) 2 ] ≥ { [(a + ) + (b + )]}2 = [ (1 + + )]2 , 2 a b 2 a b 2 a b 1 1 • 又因为 ( + )( a + b) ≥ 4 , a b 25 • 故所求最小值为 。 2
2
α
2
1 1 γ 2 d2 2 • 三式相加, a + ( + β )b + ( + )c + ≥ ab + 2bc + cd , 2 2α β 2 2γ
•令
α
1 1 γ 1 +β = + = , 2 2α β 2 2γ 1 1 1 Байду номын сангаас 得γ = , β = (α − ) 及α 4 − 6α 2 + 1 = 0 , 2 α α =
a 2b 2 c 2 a 2b 2 c 2 a 2b 2 c 2 •= 3 + 3 + 3 a (b + c) b ( a + c) c ( a + b) b 2c 2 a 2c 2 a 2b 2 •= + + a (b + c) b(a + c) c( a + b) ( ab + bc + ca ) 2 •≥ (用了例 5(1)的结论) 2(ab + bc + ca ) ab + bc + ca 3 3 3 2 ≥ (abc) ≥ 。 •= 2 2 2
• 当 λ ≥ 2 3 , a 2 + b 2 + c 2 + λ abc ≤ 1 + (λ − 2 3) abc
a + b + c 3 3 + 3λ 。 ≤ 1 + (λ − 2 3) ( ) = 3 9
• 对例 4 的进一步说明: • (1)当 0 < λ ≤
3 3 + 3λ 时, ≤ a 2 + b 2 + c 2 + λ abc < 1; 2 9
• 即 a (1 − a 2 ) ≤
2 3 2 3 2 3 ,同理 b(1 − b 2 ) ≤ , c(1 − c 2 ) ≤ 。 9 9 9
• 例 4:设 a, b, c ∈ R + ,且 a + b + c = 1。 • 求证: a 2 + b 2 + c 2 + 2 3abc ≤ 1。
• 分析:由 a + b + c = 1,
• 分 析 : 易知 cos 2 α + cos 2 β = sin 2 γ , cos 2 β + cos 2 γ = sin 2 α ,
cos 2 γ + cos 2 α = sin 2 β 。
cos α cos β 1 cos α 2 cos β 2 • 又 cot α cot β = ⋅ ≤ [( ) +( ) ], sin β sin α 2 sin β sin α
α
, • 解得α = 2 + 1(其它根不合要求)
2 +1 2 • 于 是 , ab + 2bc + cd ≤ (a + b 2 + c 2 + d 2 ) , 当 且 仅 当 2
a = d = 1, b = c = 2 + 1时等号成立。
一、例题选讲
(ab + cd )(ad + bc) ≥ abcd 。 • 例 1 设 a, b, c, d 是正数,证明 (a + c)(b + d )
2 2 x ( x − y ) • 分析(思路 1) :由于 x 2 + y 2 − 2 xy = ( x − y ) 2 ,则 = 2 x − y + 。 y y
a2 ( a − b) 2 , • = 2a − b + b b
b2 (b − c) 2 , • = 2b − c + c c c2 (c − a ) 2 , • = 2c − a + a a a 2 b2 c2 (a − b) 2 (b − c) 2 (c − a ) 2 + + • 则 + + = a+b+c+ , b c a b c a
3 1 < λ < 2 3 时, ≤ a 2 + b 2 + c 2 + λ abc < 1; • (2)当 2 2
1 3 + 3λ 2 2 2 。 • (3)当 λ ≥ 2 3 时, < a + b + c + λ abc ≤ 2 9
• 例 5: (1)设 ci > 0 ( i = 1, 2,", n, n ∈ N + , n > 1) ,则
(a − b) 2 (b − c) 2 (c − a ) 2 + + • 由于 b c a
(a − b) 2 [(b − c) + (c − a )]2 (用了例 5(1)的结论) + •≥ b c+a 1 4 2 1 2 ) ≥ ( a − b) ⋅ 。 (用了例 5(1)的结论) • = ( a − b) ( + b a+c b+a+c
• 分析(思路 2) :
a2 b2 c2 4(a − b) 2 , • 即证 + + − a − b − c ≥ b c a a+b+c a 2 b2 c2 + + −a−b−c b c a a2 b2 c2 • = ( + b − 2a ) + ( + c − 2b) + ( + a − 2c) b c a 1 1 1 = (a − b) 2 + (b − c) 2 + (c − a ) 2 b c a (a − b) 2 (b − c) 2 (c − a ) 2 • 即证[ ](a + b + c) ≥ 4(a − b) 2 , + + b c a • 由柯西不等式 (a − b) 2 (b − c) 2 (c − a ) 2 [ + + ](a + b + c) • b c a ≥ ( a − b + b − c + c − a )2
2 2 xn ( x1 + x2 + " + xn ) 2 x12 x2 • 。 + +" + ≥ c1 c2 cn c1 + c2 + " + cn
,则 • (2)设 ai > 0, xi > 0 (1 ≤ i ≤ n )
xn ( x1 + x2 + " + xn ) 2 x1 x2 • + +" + 。 ≥ a1 a2 an a1 x1 + a2 x2 + " + an xn
• 例 7:设正实数 a, b, c 满足 abc = 1。 1 1 1 3 • 求证: 3 + 3 + 3 ≥ 。 a (b + c) b ( a + c) c ( a + b) 2
• 分析:因为 a > 0, b > 0, c > 0 , abc = 1。 1 1 1 • 3 + 3 + 3 a (b + c) b (a + c) c (a + b)
先看几个简单问题
1 4 9 • 2 已知 x, y, z > 0 , x + y + z = 1,求证: + + ≥ 36 。 x y z
先看几个简单问题
• 3 已知 a, b, c, d > 0 , 求证: 2 a+b+c+d ≥ a + b + c + d 。
先看几个简单问题
9 ⎧ 2 2 2 x + y + z = ⎪ • 4 在实数范围内解方程组: ⎨ 。 4 ⎪−8 x + 6 y − 24 z = 39 ⎩
3 • 例 6:设实数 a, b, c 满足 a 2 + 2b 2 + 3c 2 = 。 2
• 求证: 3− a + 9− b + 27 − c ≥ 1。
• 分析: • ( a + 2b + 3c) 2 ≤ [( 1) 2 + ( 2) 2 + ( 3) 2 ][( a ) 2 + ( 2b ) 2 + ( 3c ) 2 ] = 9 , • 于是 a + 2b + 3c ≤ 3。 • 3− a + 9− b + 27 − c ≥ 3 3 3− ( a + 2b +3c ) ≥ 3 3 3−3 ≥ 1。