北大版高等数学第5章习题解答

合集下载

北大版高等数学第五章 向量代数与空间解析几何答案 习题5.1

北大版高等数学第五章 向量代数与空间解析几何答案 习题5.1

习题5.11.,,,,,().11,,().22ABCDAB AD AC DB MA M AC DB MA AM AC ===+=-=-=-=-+ 设为一平行四边形试用表示为平行四边形对角线的交点解a b.a b a b a b a b()2.,1().211221().2M AB O OM OA OB OM OA AM OA AB OA OB OA OA OB =+=+=+=+-=+设为线段的中点,为空间中的任意一点证明证3.,,1().3221()3321(),31(),3M ABC O OM OA OB OC OM OA AM OA AD OA AB AC OA AB AC OM OB BA BC OM OC =++=+=+=+⨯+=++=++=设为三角形的重心为空间中任意一点证明证1().313,().3CA CB OM OA OB OC OM OA OB OC ++=++=++4.,1,().41(),211(),(),221().24ABCD M O OM OA OB OC OD OM OA AM OA AB AD OM OB BA AD OM OC BA DA OM OD AB DA OM OA OB OC OD =+++=+=++=++=++=++=+++ 设平行四边形的对角线交点为为空间中的任意一点证明证1,().4OM OA OB OC OD =+++2222225.?(1)()();(2)();(3)()().(1).:()().(2).:()0, 1.(3),6.==⨯=⨯======0 对于任意三个向量与判断下列各式是否成立不成立例如,不成立例如,成立都是与组成的平行六面体的有向体积利用向量证明三角形两边中点的连线平行解a,b c,a b c b c a a b a b a b c c a b a b i c =j.a b c =j,b c a =a i b j,a b a b a,b c .,112211().22DE DA AE BA ACBA AC BC =+=+=+=于第三边并且等于第三边长度之半.证2227.:(1),;(2).(1)()()()()||||0.()cos |||||||||||||AC BD AB BC BC CD AB BC BC CD BC CD AB AC AB AB AD AB AB AB AD a AB ADAB AC AB AC AB AC α=++=+-=-=+++===利用向量证明菱形的对角线互相垂直且平分顶角勾股弦定理证2,||()cos cos .|||||||||||,.a AC AD AB AD AD AB AD AD a AB ADAB AC AB AC a AC βααβαβ+++===== 与都是锐角故 22222(2)||()()||||2||||.ACAC AC AB BC AB BC AB BC AB BC AB BC ==++=++=+2222222222222222228.()()||||.()()||||cos ||||sin ||||(cos sin )||||.9..||.AB AC ABC ABC ABDC AB AC αααα⨯+=⨯+=+=+=∆=⨯证明恒等式试用向量与表示三角形的面积11的面积=的面积22证解a b a b a b a b a b a b a b a b a b222222222210.,,,()()2().()()()()()()222().=++-=+++-=+++--=-+ 给定向量记为即现设为任意向量证明证a a a a a a a.a b , :a b a b a b a b a b a b a b a b a b a a +b b +a b +a a +b b a b =a b2222222222211.,,:().:()||(||sin )||sin ||.,αα⨯≤⨯=⨯==≤=对于任意向量证明问等号成立的充分必要条件是什么?等号成立的充分必要条件是正交证22a b a b a b a b a b a ||b a ||b a ||b a b a b .。

2019届高考数学(北师大版文)大一轮复习讲义第五章 平面向量 高考专题突破二 Word版含答案

2019届高考数学(北师大版文)大一轮复习讲义第五章 平面向量 高考专题突破二 Word版含答案

高考专题突破二高考中的三角函数与平面向量问题【考点自测】.(·全国Ⅱ)若将函数=的图像向左平移个单位长度,则平移后图像的对称轴为().=-(∈) .=+(∈).=-(∈) .=+(∈)答案解析由题意将函数=的图像向左平移个单位长度后得到函数的解析式为=,由+=π+(∈)得函数的对称轴为=+(∈),故选..(·全国Ⅲ)在△中,=,边上的高等于,则等于().-.-答案解析设边上的高交于点,由题意=,可知=,=,∠=,∠=,=(∠+∠)==-,所以=-..在直角三角形中,点是斜边的中点,点为线段的中点,则等于()....答案解析将△的各边均赋予向量,则======-=-=..(·全国Ⅱ)△的内角,,的对边分别为,,,若=,=,=,则=.答案解析在△中,由=,=,可得=,=,=(+)=+·=,由正弦定理得=)=..若函数=(ω+φ)在一个周期内的图像如图所示,,分别是这段图像的最高点和最低点,且·=(为坐标原点),则=.答案π解析由题意知,,又∵·=×-=,∴=π.题型一三角函数的图像和性质例(·山东)设()=(π-) -( - ).()求()的递增区间;()把=()的图像上所有点的横坐标伸长到原来的倍(纵坐标不变),再把得到的图像向左平移个单位长度,得到函数=()的图像,求的值.解()由()=(π-) -( -)=-(-)=(-)+-=-+-=+-.由π-≤-≤π+(∈),得π-≤≤π+(∈).所以()的递增区间是(∈).()由()知()=+-,把=()的图像上所有点的横坐标伸长到原来的倍(纵坐标不变),得到=+-的图像,再把得到的图像向左平移个单位长度,得到=+-的图像,即()=+-.所以=+-=.思维升华三角函数的图像与性质是高考考查的重点,通常先将三角函数化为=(ω+φ)+的形式,然后将=ω+φ视为一个整体,结合=的图像求解.跟踪训练已知函数()=-+(其中∈),求:()函数()的最小正周期;()函数()的单调区间;()函数()图像的对称轴和对称中心.解()因为()=-(+)+=-(()) ))=,所以函数的最小正周期==π.()由π-≤-≤π+(∈),得π-≤≤π+(∈),。

2021年高中数学第五章函数5.2.1实际问题的函数刻画练测评含解析北师大版必修一.doc

2021年高中数学第五章函数5.2.1实际问题的函数刻画练测评含解析北师大版必修一.doc

2.1 实际问题的函数刻画必备知识基础练进阶训练第一层知识点一由已知变量关系刻画函数1.辆一次0.3元,自行车存车费是每辆一次0.2元.若自行车存车量为x辆次,存车总收入为y 元,则y关于x的函数关系式是( )A.y=0.1x+800(0≤x≤4 000)B.y=0.1x+1 200(0≤x≤4 000)C.y=-0.1x+800(0≤x≤4 000)D.y=-0.1x+1 200(0≤x≤4 000)2.目前我国一些高耗能产业的产能过剩,严重影响生态文明建设,“去产能”将是一项重大任务.某行业计划从2019年开始,每年的年产能比上一年的年产能减少的百分比为x(0<x<1).(1)设第n(n∈N*)年(2019年记为第1年)的年产能为2018年的a倍,请用a,n表示x;(2)若x=10%,则至少要到哪一年才能使年产能不超过2018年的年产能的25%?参考数据:lg 2≈0.301,lg 3≈0.477知识点二由图表信息刻画函数3.图所示,则杯子的形状可能是( )4身高/cm体重/kg60 6.13707.90809.999012.1510015.0211017.5012020.9213026.8614031.1115038.8516047.2517055.05(1)根据表中提供的数据,能否建立恰当的函数关系,使它能比较近似地反映这个地区未成年男性体重y kg与身高x cm的关系?试写出这个函数的解析式;(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175 cm,体重为78 kg的在校男生的体重是否正常?关键能力综合练进阶训练第二层1.某公司市场营销人员的个人月收入y(元)与其每月的销售量x(万件)成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售量时的月收入是( ) A.3 100元 B.3 000元C.2 900元 D.2 800元2.下列函数关系中,可以看作是指数型函数y=ka x(k∈R,a>0且a≠1)的是( ) A.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.如果某人t s内骑车行进了1 km,那么此人骑车的平均速度v与时间t的函数关系D.信件的邮资与其重量间的函数关系3.下表是某次测量中两个变量x,y的一组数据,若将y表示为关于x的函数,则最可x 23456789y 0.63 1.01 1.26 1.46 1.63 1.77 1.89 1.99C.指数函数关系 D.对数函数关系4.某公司生产一批产品的总成本y(万元)与产量x(台)之间的函数关系式是y=0.1x2-11x+3 000,若每台产品的售价为25万元,则利润取最大值时,产量x为( ) A.55台 B.120台C.150台 D.180台5.小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用20分钟返回家里,下面图形中能表示小明的父亲离开家的时间与距离之间的关系的是( )6.如图,开始时桶(1)中有a 升水,t 分钟后剩余的水符合指数衰减曲线y 1=a e -nt,那么桶(2)中水就是y 2=a -a e -nt,假设过5分钟时桶(1)和桶(2)中的水相等,则再过________桶(1)中的水只有a8.( )A .7分钟B .8分钟C .9分钟D .10分钟7.某化工厂2019年的年产量是2016年年产量的n 倍,则该化工厂这几年的年平均增长率是________.8.已知某工厂生产某种产品的月产量y 与月份x 满足关系y =a ·(0.5)x+b ,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件.9.(探究题)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.10.某地上年度电的价格为0.8元/度,年用电量为1亿度.本年度计划将电的价格调至0.55元/度~0.75元/度(包含0.55元/度和0.75元/度),经测算,若电的价格调至x 元/度,则本年度新增用电量y (亿度)与(x -0.4)(元/度)成反比,且当x =0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若电的成本价为0.3元/度,则电的价格调至多少时,电力部门本年度的收益将比上一年增加20%?(收益=用电量×(实际电的价格-成本价))学科素养升级练 进阶训练第三层 1度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h 和时间t 之间的关系,其中正确的有( )2.已知A ,B 两地相距150千米,某人开汽车以每小时60千米的速度由A 地到达B 地,在B 地停留一小时后再以每小时50千米的速度返回A 地,把汽车离开A 地的距离x 表示为时间t 的函数,表达式是______________.3.(情境命题—生活情境)某种商品进价为每个80元,零售价为每个100元,为了促销,采用买一个这种商品赠送一个小礼品的办法.实践表明:礼品的价格为1元时,销售量增加10%,且在一定范围内,礼品价格为(n +1)元时,比礼品价格为n (n ∈N +)元时的销售量增加10%.设未赠送礼品时的销售量为m 件.(1)写出礼品价格为n 元时,利润y n (单位:元)与n (单位:元)的函数关系式; (2)请你设计礼品的价格,以使商店获得最大利润. §2 实际问题中的函数模型2.1 实际问题的函数刻画必备知识基础练1.解析:根据题意可知,存车总收入y (元)与x 的函数关系式是y =0.2x +(4000-x )×0.3=-0.1x +1200(0≤x ≤4000),故选D.答案:D2.解析:(1)依题意得(1-x )n=a ,则1-x =na ,所以x =1-na (n ∈N *).(2)设第n 年的年产能不超过2018年的年产能的25%,则(1-10%)n≤25%,即⎝ ⎛⎭⎪⎫910n ≤14,n lg 910≤lg 14,n (2lg 3-1)≤-2lg 2,n ≥2lg 21-2lg 3.因为2lg 21-2lg 3≈2×0.3011-2×0.477=30123,所以n ≥30123.因为13<30123<14,且n ∈N *,所以n 的最小值为14.所以至少要到2032年才能使年产能不超过2018年的年产能的25%.3.解析:从题图看出,在时间段[0,t 1],[t 1,t 2]内水面高度是匀速上升的,因此几何体应为两柱体组合,在[0,t 1]时间段内上升慢,在[t 1,t 2]时间段内上升快,所以得下面的柱体横截面面积大,上面的柱体横截面面积小,故选A.答案:A4.解析:(1)以身高为横坐标,体重为纵坐标,画出已知数据对应的点,根据点的分布特征,可考虑以y =a ·b x刻画这个地区未成年男性的体重与身高关系.不妨取其中的两组数据(70,7.90),(160,47.25),代入y =a ·b x,得⎩⎪⎨⎪⎧7.9=a ·b 70,47.25=a ·b 160,用计算器算得a ≈2,b ≈1.02.这样,我们就得到一个函数模型:y =2×1.02x.将其他数据代入上述函数解析式,或作出上述函数的图象,可以发现,这个函数模型能较好地反映这个地区未成年男性体重与身高的关系.(2)将x =175代入y =2×1.02x ,得y =2×1.02175, 由计算器算得y ≈63.98,由于78÷63.98≈1.22>1.2,所以,这个男生偏胖. 关键能力综合练1.解析:设函数解析式为y =kx +b (k ≠0), ∵函数图象过点(1,8 000),(2,13 000),∴⎩⎪⎨⎪⎧k +b =8 000,2k +b =13 000,解得⎩⎪⎨⎪⎧k =5 000,b =3 000,∴y =5 000x +3 000,当x =0时,y =3 000,∴营销人员没有销售量时的月收入是3 000元. 答案:B2.解析:A :竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系是二次函数关系;B :我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系是指数型函数关系;C :如果某人t s 内骑车行进了1 km ,那么此人骑车的平均速度v 与时间t 的函数关系是反比例函数关系;D :信件的邮资与其重量间的函数关系是一次函数关系.故选B. 答案:B3.解析:观察图表中函数值y 随自变量x 变化的规律可知,随着自变量x 增大,函数值也在增大,但是增加的幅度越来越小,因此它最可能的函数模型为对数函数.故选D.答案:D4.解析:设利润为z 万元,则z =25x -y =25x -(0.1x 2-11x +3 000)=-0.1x 2+36x-3 000=-0.1·(x -180)2+240.当x =180时,利润z 取最大值,选D.答案:D5.解析:20至30分钟时距离没有变化,故选D. 答案:D6.解析:由题意得a e -5n=a -a e -5n,e -n=⎝ ⎛⎭⎪⎫1215.设再经过t 分钟,桶(1)中的水只有a 8,得a e-n (t +5)=a 8,则t +55=3,解得t =10. 答案:D7.解析:设2016年年产量是a ,则2019年年产量是na ,设年平均增长率为x ,则na=a (1+x )3,解得x =3n -1.答案:3n -18.解析:∵y =a ·(0.5)x+b ,且当x =1时,y =1,当x =2时,y =1.5,则有⎩⎪⎨⎪⎧ 1=a ×0.5+b ,1.5=a ×0.25+b ,解得⎩⎪⎨⎪⎧a =-2,b =2. ∴y =-2×(0.5)x+2.当x =3时,y =-2×0.125+2=1.75(万件). 答案:1.759.解析:(1)顾客一次购买草莓和西瓜各1盒时, 总价为60+80=140(元),达到120元,又∵x =10,∴顾客需要支付140-10=130(元).(2)解法一:当单笔订单的总价达不到120元时,顾客不少付,则李明得到总价的80%; 当单笔订单的总价达到120元时,顾客少付x 元,设总价为a 元(a ≥120),则李明每笔订单得到的金额与总价的比为0.8a -x a =0.8⎝ ⎛⎭⎪⎫1-x a ,∴当a 越小时,此比值越小.又a 最小为120元(即买两盒草莓), ∴0.8(120-x )≥120×0.7,解得x ≤15. ∴x 的最大值为15.解法二:购买水果总价刚好达到120元时,顾客少付x 元,这时x 占全部付款的比例最高,此时如果满足李明所得金额是促销前总价的70%,那么其x 值最大.由此列式得(120-x )×0.8=120×0.7,解得x =15.∴x 的最大值为15.答案:(1)130 (2)1510.解析:(1)因为y 与(x -0.4)成反比,所以可设y =kx -0.4(k ≠0),把x =0.65,y=0.8代入上式,得0.8=k0.65-0.4,解得k =0.2,所以y =0.2x -0.4=15x -2,所以y 与x 之间的函数关系式为y =15x -2(0.55≤x ≤0.75).(2)根据题意,得⎝ ⎛⎭⎪⎫1+15x -2(x -0.3)=1×(0.8-0.3)×(1+20%), 整理得x 2-1.1x +0.3=0,解得x 1=0.5(舍去)或x 2=0.6,所以当电的价格调至0.6元/度时,电力部门本年度的收益将比上一年增加20%. 学科素养升级练1.解析:因为正方体的底面积是定值,故水面高度的增加是均匀的,即图象是直线型的.故A 错误;因几何体下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加得快,上面的高度增加得慢,即图象应越来越缓.故B 正确;球是对称的几何体,下半球因下面窄上面宽,所以水的高度增加得越来越慢;上半球恰好相反,所以水的高度增加得越来越快,即图象先平缓再变陡.故C 正确;图中几何体两头宽,中间窄,所以水的高度增加,下半体越来越快,上半体越来越慢,即图象先变陡再变平缓.故D 正确.故选B 、C 、D.答案:BCD2.解析:由题意可得该函数为分段函数,由A 地到B 地需2.5小时,在B 地停留一小时时,汽车离开A 地的距离x 不变,为150千米,之后以每小时50千米的速度返回A 地需3小时,故所求表达式为x =⎩⎪⎨⎪⎧60t 0≤t ≤2.5,150 2.5<t ≤3.5,150-50t -3.5 3.5<t ≤6.5.即x =⎩⎪⎨⎪⎧ 60t 0≤t ≤2.5,150 2.5<t ≤3.5,-50t +325 3.5<t ≤6.5.答案:x =⎩⎪⎨⎪⎧60t 0≤t ≤2.5,150 2.5<t ≤3.5,-50t +325 3.5<t ≤6.5.3.解析:(1)当礼品价格为n 元时,销售量为m (1+10%)n件,故利润y n =(100-80-n )·m ·(1+10%)n =(20-n )·m ·1.1n (0<n <20,n ∈N +).(2)令y n +1-y n ≥0,即(19-n )·m ·1.1n +1-(20-n )·m ·1.1n≥0,解得n ≤9. 所以y 1<y 2<y 3<…<y 9=y 10.令y n +1-y n +2≥0,即(19-n )·m ·1.1n +1-(18-n )·m ·1.1n +2≥0,解得n ≥8. 所以y 9=y 10>y 11>y 12>y 13>…>y 19.所以礼品价格为9元或10元时,商店获得最大利润.。

[专题]北大版高等数学第五章向量代数与空间解析几何答案习题53.docx

[专题]北大版高等数学第五章向量代数与空间解析几何答案习题53.docx

习题5・31•指出下列平面位置的特点:(1)5x - 3z +1 = 0(2)x + 2y - 7z = 0(3)y + 5 = 0(4)2),- 9z = 0(5)x-y-5 = 0(6)x = 0. 解⑴平行于屛由.⑵过原点.⑶平行于平面.⑷ 过兀轴.(5)平行于z轴•⑹0〃平面.2.求下列各平面的方程:⑴平行于y轴且通过点(1,-5,1)和(3,2,-2);(2)平行于O私平面且通过点(5,2,-8);(3)垂直于平面兀-4y + 5z = 1且通过点(-2,7,3)及(0,0,0);⑷垂直于Oyz平面且通过点(5,-4,3)及(-2,1,8).1j k解⑴—(0 ,l,0),* = (2,7,-3),n= 0 1 0 =(-3,0,-2).27-3_3O_1)_2(Z_1)=0,3JC +2Z_5=0.⑵y = 2.i j k(3)a = (1,-4,5), 6 = (-2,7,3),n = 1 -4 5 = (-47,-13,-1).-2 7 347x+13y+ 1 = 0.i j k(4)“ = (1,0,0),〃 = (-7,5,5),〃= 1 0 0 =(0,-5,5) = 5(0, -1,1).-7 5 5_(y + 4) + (z_3) = 0,y_z + 7 = 0.3.求通过点A(2,4,8), B(-3,1,5)及C(6,—2,7)的平面方程.解 a = (一5, —3,—3),〃 = (4,-6,-1).i j kn= -5 -3 -3 =(-15,-17,42),4 -6 -1一15(兀一2) —17(y — 4) + 42(z — 8) = 0,15x + 17y —42z + 238 = 0.4.设一平而在各坐标轴上的截距都不等于零并相等,且过点(5, -7, 4),求此平而的方程.解—+ —+ — = 1, —H—+ — = l,a = 2, x + y + z — 2 = 0.a, a a a a a5已知两点4(2,-1,-2)及〃(8,7,5),求过B且与线段AB垂直的平面.解〃 =(6, & 7).6(x-8) + 8(y-7) + 7(z-5) = 0,6x + 8y + 7z-139 = 0.6.求过点(2,0, -3)且与2兀-2y + 4z + 7 = 0,3x+y-2z + 5二0垂直的平面方程.i j k解 n= 2 -24 =(0,16,8) = 8(0,2,l).2y + (z + 3) = 0,y + z + 3 = 0. 3 1 -27.求通过兀轴且与平面9兀-4y-2z + 3 = 0垂直的平面方程. 解 By + Cz=0,—4B —2C = 0,取B = 1,C = —2,y —2z = 0.8•求通过直纟划:{;;工:二5地:仁鳥平行的平面方程. i j ki j k 解a = 1 0 2 = (-6,1,3), 6 = 1 -1 0= (1,1,1), 0 3-10 1 -1 i j kn - -6 13 =(-2,9,-7).用z ()= 0代入厶的方程,得x° =4,>\} =-8/3.1 1 1 -2(x-4) + 9(^ + 8/3)-7(z) = 0,-2x + 9y-7z + 32 = 0.x = 3r + 89.求直线厶:* +彳=•' +1 = __与直线/ :< y = f + l 的交点坐标,3 24 _ 小, z = + 6并求通过此两直线的平面方程.解求两条直线交点坐标:3r + 8 + 3 / + 1 + 1 2/ + 6 —2 \\ t t A 163 24 3 2 23 i j kn= 3 2 4 = (0,6, -3) = 3(0,2, -l).2(y +1) - (z - 2) = 0,2y - z + 4 = 0.3 1 2 10•求通过两直线厶=^ = 凹和厶:土 = □=三的平面方程. 1 2 -1 1 -4 2 -2i j k解 两直线平行•平面过点(1,-1,-1)和(-2,2,0).川=2 — 1 1 = (—4,—5,3).-33 1一4(兀一 l)-5(y + l) + 3(z + l) = 0,-4x — 5y + 3z + 2 = 0.11证明两直线厶:口和是异面直线*-121 - 0 1 -2证首先,两直线的方向向量(-1,2,1)和(0,1,-2)不平行.x 二 _2l 2< y 二1+t —―二匕〜 力+ 3J = 5』= 0,矛盾.故两直线无公共点.-1 2 1 X Q = 一& 儿=一一牛交点(一8占弓)两-直线不平行,又无交点,故是异面直线. 12.将下列直线方程化为标准方程及参数方程:[2x+y-z + l = 0 [x-3z + 5 = 0(1* ⑵彳[3x - y + 2z - 8 = 0; [y - 2z + 8 = 0.i j k解(1)〃= 2 1 -1 =(1,-7,-5).3-12V — 7 + 1 = 0⑴中令兀0=0,{ 解Z得儿=6,Zo=7・-y+ 2z-8 = 0;标准方程—q・1 -7 -5x = t参数方程:< y = 6-lt,-oo <t < +oo.z = l-5ti j k(2)(1加=1 0 -3 =(3,2,1).0 1 -2⑵中令z° = 0,直接得x° = -5, y Q = -8.标准方程出二凹二工3 2 1x ——5 + 3t参数方程:* >' = -8 + 2r,-co<t < +oo.z = t13•求通过点(32-5)及乂轴的平面与平面3x-y-7z + 9 = 0的交线方程・ ■I j k解地第一个平面的法向量〃二1 0 0 =(0,5,2), 3 2 -5平面方程5y + 2z = 0.直线方程严+ 2*°[3 兀-y-7z + 9 = 0.i j k直线的方向向量a =0 5 2 =(一336-15) = 3(-112-5)・3 -1 -7直线方程:r 匕14 •当D 为何值时,直线产? £弓与0z 轴相交?[x + 4y-z + D = 0解直线F :y + 2z-6弓与Oz 轴相交O 存在(0,0,勺)在此直线上,[x + 4y-z + £> = 0f2z o -6 = O <=> < u> £> =知=3. Ho+o=o15.试求通过直线人:£一2":弓并与直线Z. = 2平行的平面方程.[3y — z + 8 = 0 *•匕 _y + 6 = 0i J k解厶的方向向&a = 1 0 -2 =(6丄3).0 3-1i J 平面的法向量/i =6 1 1 1 Q 在的方程中令z ()二0得X 。

微积分 北京大学出版社 第5章 定积分--答案

微积分 北京大学出版社 第5章 定积分--答案
第 5 章 定积分练习补充与答案 一填空选择 1. (03)
1
−1
∫ ( x + x )e
−1
−x
dx =
1 1 1 −x 1 0 1 1
解法 1:原式=
0

1
xe dx + ∫ xe dx = 2∫ xe dx + 0 = −2∫ xde = −2 x e
−x −x −x −x −1 0 0
+ 2∫ e− x dx = −2e−1 − 2 e− x = 2 −
1 1 8(07) ∫ 3 e x dx = x 1
1 1 1 1 1 1 1 1 1 1 1 x x x x 2 = e2 解原式= − ∫ de = − e + ∫ e d = − e + 1 + e x x x 2 2 1 1 1 1 2 2 2 2
2
9(02)设 F ( x) =
x2 f ( t )dt ,其中 f ( x) 为连续函数,则 lim F ( x) = ( x →a x−a ∫ a
2
π
2
; x = 0, t = 0
π
2
π
2
1 + cos 2t ⎛1 1 ⎞2 π 原式= ∫ cos t cos tdt = ∫ dt = ⎜ t + sin 2t ⎟ = 4 2 ⎝2 4 ⎠0 0 0
(注:该题利用几何意义积分比变量替换积分简单)
+∞
π
7(00)
∫e
1
x
1 dx = + e 2− x
6.(00)
⎛1⎞ f⎜ ⎟ ⎝ x⎠

0
1
2 x − x 2 dx =

高等数学第五章课后习题答案

高等数学第五章课后习题答案

班级姓名学号1 第五章定积分1.证明定积分性质:òò=b abadxx f kdx x kf )()((k 是常数). 证:òåòå=D =D ==®=®banii ban ii x kf x kf x f k x f k)()(lim )(lim )(1010x x l l 2.估计下列积分值:(1)dxx )sin 1(4542ò+p p解:令x x f 2sin 1)(+=,则02sin cos sin 2)(===x x x x f ‘得驻点:,,221p p==x x 由23)4(,23)4(,1)(,2)2(====p p p pf f f f ,得2)(max ,1)(min ==x f x f 由性质,得pp p p2)(454££òdx x f (2)ò333arctan xdxx 解:令x x x f arctan )(=,01arctan )(2>++=xxx x f ‘,所以)(x f 在]333[,上单调增加,p p33)(max ,36)(min ==\x f x f ,)()(33333arctan 33336333-££-\òp pxdx x ,即pp32a r c t a n 9333££òx d x x班级班级 姓名姓名 学号学号3.比较下列积分值的大小:.比较下列积分值的大小: (1)dx x ò12与dxx ò13解:当10££x 时,有23x x £,且23x x -不恒等于0,0312>-\òdx x x )(,即,即 dxx dxx òò>1212。

(2)ò6pxdx 与ò6sin pxdx解:当60p££x 时,有x x £sin ,且x x sin -不恒等于0,0sin 10>-\òdx x x )(,即,即 dx x dx x òò>1010sin 。

北大高数(上)第5章习题

北大高数(上)第5章习题

习题5-21. 求下列各曲线所围图形的面积: 定积分 定积分的应用 平面图形的面积 (1) y =12x 2 与x 2+y 2=8(两部分都要计算);解:如图D 1=D 2解方程组⎩⎪⎨⎪⎧y =12x 2x 2+y 2=8得交点A (2,2)(1)D 1=⎠⎛02⎝⎛⎭⎫8-x 2-12x 2d x =π+23∴ D 1+D 2=2π+43,D 3+D 4=8π-⎝⎛⎭⎫2π+43=6π-43.(2) y =1x与直线y =x 及x =2;解: D 1=⎠⎛12⎝⎛⎭⎫x -1x d x =⎣⎡⎦⎤12x 2-ln x 21=32-ln2.(2)(3) y =e x ,y =e -x 与直线x =1;解:D =⎠⎛01()e x -e -x d x =e+1e-2.(3)(4) y =ln x ,y 轴与直线y =ln a ,y =ln b .(b>a>0); 解:D =⎠⎛l n al n b e y d y =b -a .(4)(5) 抛物线y =x 2和y =-x 2+2;解:解方程组⎩⎨⎧y =x 2y =-x 2+2得交点 (1,1),(-1,1)D =⎠⎛-11()-x 2+2-x 2d x =4⎠⎛01()-x 2+1d x =83.(5)(6) y =sin x ,y =cos x 及直线x =π4,x =94π;解:D =2⎠⎜⎜⎛π45π4(sin x -cos x )d x =2[]-cos x -sin x 5π4π4=42.(6)(7) 抛物线y =-x 2+4x -3及其在(0,-3)和(3,0)处的切线; 解:y′=-2x +4. ∴y ′(0)=4,y ′(3)=-2. ∵抛物线在点(0,-3)处切线方程是y =4x -3 在(3,0)处的切线是y =-2x +6 两切线交点是(32,3).故所求面积为(7)()()()()()33222302332223024343d 2643d d 69d 9.4D x x x x x x x x x x x x x⎡⎤⎡⎤=---+-+-+--+-⎣⎦⎣⎦=+-+=⎰⎰⎰⎰(8) 摆线x =a (t -sin t ),y =a (1-cos t )的一拱 (0≤t ≤2π)与x 轴,这里a 为正常数; 解:当t =0时,x =0, 当t =2π时,x =2πa .所以()()()2π2π2π2202d 1cos d sin 1cos d 3π.aS y x a t a t t a t t a ==--=-=⎰⎰⎰(8)(9) 极坐标曲线 ρ=a sin3φ,这里a 为正常数; 解:D =3D 1=3·a 22⎠⎜⎛0π3sin 23φd φ=3a 22 ·⎠⎜⎛0π3 1-cos6φ2d φ=3a 24 ·⎣⎡⎦⎤φ-16sin6φπ30=πa 24. (9) (10) 极坐标曲线ρ=2a cos φ,这里a 为正常数;解:D =2D 1=2⎠⎜⎛0π212·4a 2·cos 2φd φ=4a 2⎠⎜⎛0π21+cos2φ2d φ=4a 2·12⎣⎡⎦⎤φ+12sin2φπ20=4a 2·12·π2=πa 2.(10)2. 2. 求下列各曲线所围成图形的公共部分的面积: 定积分 定积分的应用 平面图形的面积 (1) r =a (1+cos θ)及r =2a cos θ;解:由图11知,两曲线围成图形的公共部分为半径为a 的圆,故D =πa 2.(11)(2) r =2cos θ及r 2=3sin2θ.解:如图12,解方程组⎩⎪⎨⎪⎧r =2cos θr 2=3sin2θ得cos θ=0或tan θ=33, 即θ=π2或θ=π6.(12)D =⎠⎜⎛0π612·3sin2θd θ+⎠⎜⎜⎛π6π212·()2cos θ2d θ=⎣⎢⎡⎦⎥⎤-34cos2θπ60+θ2+ ⎣⎡⎦⎤14sin4θπ2π6=π6.3. 3. 已知曲线f (x )=x -x 2与g (x )=ax 围成的图形面积等于92,求常数a .定积分 定积分的应用 平面图形的面积解:如图13,解方程组⎩⎨⎧f (x )=x -x 2g (x )=ax得交点坐标为(0,0),(1-a ,a (1-a ))∴D =⎠⎛01-a ()x -x 2-ax d x=⎣⎡⎦⎤12()1-a ·x 2-13x 31-a=16()1-a 3依题意得 16()1-a 3=92得a =-2.(13)习题5-31. 设有一截锥体,其高为h ,上、下底均为椭圆,椭圆的轴长分别为2a ,2b 和2A ,2B ,求这截锥体的体积。

2018版高考数学文北师大版大一轮复习讲义教师版文档

2018版高考数学文北师大版大一轮复习讲义教师版文档

1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫作表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.【知识拓展】1.若a 与b 不共线,λa +μb =0,则λ=μ=0.2.设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么( ) A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对 答案 A2.(教材改编)已知a 1+a 2+…+a n =0,且a n =(3,4),则a 1+a 2+…+a n -1的坐标为( ) A .(4,3) B .(-4,-3) C .(-3,-4) D .(-3,4)答案 C解析 a 1+a 2+…+a n -1=-a n =(-3,-4).3.(2015·课标全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →等于( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 答案 A解析 AB →=(3,1),AC →=(-4,-3),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).4.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案 -12解析 由已知条件可得m a +n b =(2m,3m )+(-n,2n )=(2m -n,3m +2n ),a -2b =(2,3)-(-2,4)=(4,-1).∵m a +n b 与a -2b 共线,∴2m -n 4=3m +2n -1,即n -2m =12m +8n ,∴m n =-12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.12a +14b C.23a +13b D.13a +23b 答案 C解析 ∵AC →=a ,BD →=b , ∴AD →=AO →+OD → =12AC →+12BD →=12a +12b .∵E 是OD 的中点,∴DE EB =13,∴DF =13AB .∴DF →=13AB →=13(OB →-OA →)=13×[-12BD →-(-12AC →)] =16AC →-16BD →=16a -16b , ∴AF →=AD →+DF →=12a +12b +16a -16b=23a +13b , 故选C.思维升华 平面向量基本定理应用的实质和一般思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案311解析 设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( ) A.⎝⎛⎭⎫1,83 B.⎝⎛⎭⎫-133,83 C.⎝⎛⎭⎫133,43D.⎝⎛⎭⎫-133,-43 (2)已知向量a =(1,-2),b =(m,4),且a ∥b ,则2a -b 等于( ) A .(4,0) B .(0,4) C .(4,-8) D .(-4,8)答案 (1)D (2)C解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4). 所以c =⎝⎛⎭⎫-133,-43. (2)因为向量a =(1,-2),b =(m,4),且a ∥b , 所以1×4+2m =0,即m =-2,所以2a -b =2×(1,-2)-(-2,4)=(4,-8).思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)(2016·北京东城区模拟)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.(2)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A .(2,72)B .(2,-12)C .(3,2)D .(1,3)答案 (1)4 (2)A解析 (1)以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),即⎩⎪⎨⎪⎧-λ+6μ=-1,λ+2μ=-3, 解得λ=-2,μ=-12,∴λμ=4.(2)设D (x ,y ),AD →=(x ,y -2),BC →=(4,3), 又BC →=2AD →,∴⎩⎪⎨⎪⎧4=2x ,3=2(y -2),∴⎩⎪⎨⎪⎧x =2,y =72,故选A.题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3). 命题点2 利用向量共线求参数例4 (2016·郑州模拟)已知向量a =(1-sin θ,1),b =(12,1+sin θ),若a ∥b ,则锐角θ=________.答案 45°解析 由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,∴cos θ=22或cos θ=-22,又θ为锐角,∴θ=45°.思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.(2)设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案 (1)(2,4) (2)3+222解析 (1)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). (2)由已知得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+ 222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (12分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思想方法指导 建立平面直角坐标系,将向量坐标化,将向量问题转化为函数问题更加凸显向量的代数特征. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[10分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[12分]1.(2016·江西玉山一中期考)如图,在平行四边形ABCD 中,M 为CD 的中点,若AC →=λAM →+μAB →,则μ的值为( ) A.14 B.13 C.12D .1答案 C解析 ∵在平行四边形ABCD 中,M 为CD 的中点, ∴AM →=AD →+DM → =AD →+12AB →,∵AC →=λAM →+μAB →,∴AC →=λ(AD →+12AB →)+μAB →=λAD →+(12λ+μ)AB →,∵AC →=AD →+AB →,∴λ=1,12λ+μ=1,∴μ=12.2.已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为( ) A .(2,0) B .(-3,6) C .(6,2) D .(-2,0)答案 A解析 设N (x ,y ),则(x -5,y +6)=(-3,6), ∴x =2,y =0.3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) A.14 B.12 C .1 D .2 答案 B解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12,故选B.4.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) A .-12a +32bB.12a -32b C .-32a -12bD .-32a +12b答案 B解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .5.(2016·淮南一模)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO →的坐标为( ) A .(-12,5)B .(12,5)C .(12,-5)D .(-12,-5)答案 D解析 ∵AC →=AB →+AD →=(-2,3)+(3,7)=(1,10), ∴OC →=12AC →=(12,5),∴CO →=(-12,-5).6.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 等于( ) A.23 B.43 C .-3 D .0 答案 D解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0,故选D.7.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).8.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2θ=0, ∴2sin θcos θ-cos 2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.9.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________. 答案 43解析 选择AB →,AD →作为平面向量的一组基底, 则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=(12λ+μ)AB →+(λ+12μ)AD →,于是得⎩⎨⎧ 12λ+μ=1,λ+12μ=1,解得⎩⎨⎧ λ=23,μ=23,所以λ+μ=43. 10.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).11.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3. ∴点C 的坐标为(5,-3).12.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 (1)由已知得a =(5,-5),b =(-6,-3),c =(1,8).3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n )=(5,-5),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,∵CM →=OM →-OC →=3c ,∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20),∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18). 13.如图所示,G 是△OAB 的重心,P ,Q 分别是边OA 、OB 上的动点,且P ,G ,Q 三点共线.(1)设PG →=λPQ →,将OG →用λ,OP →,OQ →表示;(2)设OP →=xOA →,OQ →=yOB →,证明:1x +1y是定值. (1)解 OG →=OP →+PG →=OP →+λPQ →=OP →+λ(OQ →-OP →)=(1-λ)OP →+λOQ →.(2)证明 一方面,由(1),得OG →=(1-λ)OP →+λOQ →=(1-λ)xOA →+λy OB →;①另一方面,∵G 是△OAB 的重心,∴OG →=23OM →=23×12(OA →+OB →) =13OA →+13OB →.② 由①②得⎩⎨⎧ (1-λ)x =13,λy =13.∴1x +1y=3(1-λ)+3λ=3(定值).。

高等数学课后习题及参考答案(第五章)

高等数学课后习题及参考答案(第五章)

高等数学课后习题及参考答案(第五章)习题5-11. 利用定积分定义计算由抛物线y =x 2+1, 两直线x =a 、x =b (b >a )及横轴所围成的图形的面积.解 第一步: 在区间[a , b ]内插入n -1个分点i nab a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 把区间[a , b ]分成n 个长度相等的小区间, 各个小区间的长度为: nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 第二步: 在第i 个小区间[x i -1, x i ] (i =1, 2, ⋅ ⋅ ⋅, n )上取右端点i nab a x i i -+==ξ, 作和 nab i n a b a x f S ni i i ni n -⋅+-+=∆=∑∑==]1)[()(211ξ ∑=+-+-+-=n i i na b i n a b a a n a b 12222]1)()(2[ ]6)12)(1()(2)1()(2[)(222n n n n n a b n n n a b a na n a b +++⋅-++⋅-+-= ]16)12)(1()()1)(()[(222+++-++-+-=n n n a b n n a b a a a b . 第三步: 令λ=max{∆x 1, ∆x 2, ⋅ ⋅ ⋅ , ∆x n }nab -=, 取极限得所求面积 ∑⎰=→∆==ni i i ba x f dx x f S 10)(lim )(ξλ]16)12)(1()()1)(()[(lim 222+++-++-+-=∞→n n n a b n n a b a a a b n a b a b a b a b a a a b -+-=+-+-+-=)(31]1)(31)()[(3322.2. 利用定积分定义计算下列积分:(1)xdx ba ⎰(a <b ); (2)dx e x ⎰10.解 (1)取分点为i n a b a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点i nab a x i i -+==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是 ∑∑⎰=∞→=∞→-⋅-+=∆=ni n ni i i n ba nab i n a b a x xdx 11)(lim lim ξ )(21]2)1()()([lim )(22222a b n n n a b a b a a b n -=+-+--=∞→. (2)取分点为n i x i =(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nx i 1=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点nix i i ==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是) (1lim 1lim 21110n n n n n n i n i n xe e e nn e dx e +⋅⋅⋅++==∞→=∞→∑⎰1)1(]1[lim1])(1[1lim 11111-=--=--⋅=∞→∞→e e n e e e e e nnn n nn n n n .3. 利用定积分的几何意义 说明下列等式: (1)1210=⎰xdx ; (2)41102π=-⎰dx x ;(3)⎰-=ππ0sin xdx ;(4)⎰⎰=-2022cos 2cos πππxdx xdx .解 (1)⎰102xdx 表示由直线y =2x 、x 轴及直线x =1所围成的面积, 显然面积为1.(2)⎰-1021dx x 表示由曲线21x y -=、x 轴及y 轴所围成的四分之一圆的面积, 即圆x 2+y 2=1的面积的41:41411212ππ=⋅⋅=-⎰dx x .(3)由于y =sin x 为奇函数, 在关于原点的对称区间[-π, π]上与x 轴所夹的面积的代数和为零, 即⎰-=ππ0sin xdx .(4)⎰-22cos ππxdx 表示由曲线y =cos x 与x 轴上]2,2[ππ-一段所围成的图形的面积. 因为cos x为偶函数, 所以此图形关于y 轴对称. 因此图形面积的一半为⎰20cos πxdx , 即⎰⎰=-2022cos 2cos πππxdx xdx .4. 水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p (单位面积上的压力大小)是水深h 的函数, 且有p =9⋅8h (kN/m 2). 若闸门高H =3m , 宽L =2m , 求水面与闸门顶相齐时闸门所受的水压力P .解 建立坐标系如图. 用分点i nHx i =(i =1, 2, ⋅ ⋅ ⋅, n -1)将区间[0, H ]分为n 分个小区间, 各小区间的长为nHx i =∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间[x i -1, x i ]上, 闸门相应部分所受的水压力近似为 ∆P i =9.8x i l ⋅∆x i . 闸门所受的水压力为22118.42)1(lim 8.9lim 8.98.9lim H L nn n H L n Hi n H L x L x P n ni n ni i i n ⋅=+⋅=⋅=∆⋅⋅=∞→=∞→=∞→∑∑.将L =2, H =3代入上式得P =88.2(千牛).5. 证明定积分性质: (1)⎰⎰=ba b a dx x f k dx x kf )()(; (2)a b dx dx ba b a -==⋅⎰⎰1.证明 (1)⎰∑∑⎰=∆=∆==→=→ba ni i i ni i i ba dx x f k x f k x kf dx x kf )()(lim )(lim )(1010ξξλλ.(2)a b a b x x dx ni i ni i ba -=-=∆=∆⋅=⋅→=→=→∑∑⎰)(lim lim 1lim 101010λλλ.6. 估计下列各积分的值: (1)⎰+412)1(dx x ; (2)⎰+ππ4542)sin 1(dx x ;(3)⎰331arctan xdx x ;(4)⎰-022dx e xx.解 (1)因为当1≤x ≤4时, 2≤x 2+1≤17, 所以 )14(17)1()14(2412-⋅≤+≤-⋅⎰dx x , 即 51)1(6412≤+≤⎰dx x . (2)因为当ππ454≤≤x 时, 1≤1+sin 2x ≤2, 所以 )445(2)sin 1()445(14542ππππππ-⋅≤+≤-⋅⎰dx x ,即 ππππ2)sin 1(4542≤+≤⎰dx x .(3)先求函数f (x )=x arctan x 在区间]3 ,31[上的最大值M 与最小值m .21arctan )(xx x x f ++='. 因为当331≤≤x 时, f '(x )>0, 所以函数f (x )=x arctan x 在区间]3 ,31[上单调增加. 于是3631arctan31)31(π===f m , 33arctan 3)3(π===f M .因此)313(3arctan )313(36331-≤≤-⎰ππxdx x ,即32arctan 9331ππ≤≤⎰xdx x . (4)先求函数xx e x f -=2)(在区间[0, 2]上的最大值M 与最小值m .)12()(2-='-x e x f xx , 驻点为21=x .比较f (0)=1, f (2)=e 2,41)21(-=e f ,得41-=e m , M =e 2. 于是)02()02(220412-⋅≤≤-⎰--e dx e e xx,即 41022222---≤≤-⎰e dx dx e e xx .7. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上 f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[ab ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f . (3)令F (x )=g (x )-f (x ), 则在[a ,b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).4. 根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大: (1)⎰102dx x 还是⎰103dx x ?(2)⎰212dx x 还是⎰213dx x ? (3)⎰21ln xdx 还是⎰212)(ln dx x ? (4)⎰10xdx 还是⎰+10)1ln(dx x ? (5)⎰10dx e x 还是⎰+10)1(dx x ?解 (1)因为当0≤x ≤1时, x 2≥x 3, 所以⎰⎰≥103102dx x dx x . 又当0<x <1时, x 2>x 3, 所以⎰⎰>103102dx x dx x . (2)因为当1≤x ≤2时, x 2≤x 3, 所以⎰⎰≤213212dx x dx x . 又因为当1<x ≤2时, x 2<x 3, 所以⎰⎰<213212dx x dx x .(3)因为当1≤x ≤2时, 0≤ln x <1, ln x ≥(ln x )2, 所以⎰⎰≥21221)(ln ln dx x xdx . 又因为当1<x ≤2时, 0<ln x <1, ln x >(ln x )2, 所以⎰⎰>21221)(ln ln dx x xdx . (4)因为当0≤x ≤1时, x ≥ln(1+x ), 所以⎰⎰+≥1010)1ln(dx x xdx . 又因为当0<x ≤1时, x >ln(1+x ), 所以⎰⎰+>1010)1ln(dx x xdx .(5)设f (x )=e x -1-x , 则当0≤x ≤1时f '(x ) =e x -1>0, f (x )=e x -1-x 是单调增加的. 因此当0≤x ≤1时, f (x )≥f (0)=0, 即e x ≥1+x , 所以⎰⎰+≥1010)1(dx x dx e x .又因为当0<x ≤1时, e x >1+x , 所以⎰⎰+>1010)1(dx x dx e x .习题5-21. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数.解 x tdt dx dy x sin sin 0=='⎰, 当x =0时, y '=sin0=0;当4π=x 时, 224sin =='πy .2. 求由参数表示式⎰=tudu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x的导数.解 x '(t )=sin t , y '(t )=cos t ,t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+xy ttdt dt e 00cos 所决定的隐函数y 对x 的导数dxdy. 解 方程两对x 求导得 0cos =+'x y e y , 于是ye x dx dy cos -=. 4. 当x 为何值时, 函数⎰-=xt dt te x I 02)(有极值?解 2)(x xe x I -=', 令I '(x )=0, 得x =0.因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0, 所以x =0是函数I (x )的极小值点. 5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x x dtt dxd cos sin 2)cos(π.解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt t dx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ )cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-= )sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-= )sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-= )sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分: (1)⎰+-adx x x 02)13(;解a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(.(2)⎰+2142)1(dx xx ;解852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ;解94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰6145)421432()921932(223223=+-+=.(4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+ax a dx 3022;解aa a ax a x a dx a a30arctan 13arctan 1arctan 1303022π=-==+⎰.(7)⎰-1024x dx ;解60arcsin 21arcsin 2arcsin 41012π=-==-⎰x x dx .(8)dx x x x ⎰-+++012241133; 解 01301221224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=.(9)⎰---+211e xdx ; 解1ln 1ln ||1|ln 12121-=-=+=+------⎰e x xdx e e .(10)⎰402tan πθθd ;解4144tan )(tan )1(sec tan 4040242πππθθθθθθπππ-=-=-=-=⎰⎰d d .(11)dx x ⎰π20|sin |;解⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx xπππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4. (12)⎰2)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 2111)(2x x x x x f . 解38|)61(|)21(21)1()(213102212102=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ;(2)⎰-=ππ0sin kxdx ;(3)⎰-=πππkxdx 2cos ;(4)⎰-=πππkxdx 2sin .证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k kk k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k kk k x k k kxdxcos 1cos 1=+-=ππk kk k(3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题: (1)⎰-=ππ0sin cos lxdx kx ;(2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx .证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k .(2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k .(3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k .9. 求下列极限: (1)xdt t xx ⎰→020cos lim ; (2)⎰⎰→xt xt x dttedt e 0220022)(lim.解 (1)11cos lim cos lim20020==→→⎰x xdt t x xx . (2)22222200022)(2lim)(limx xt x t x xt xt x xedt e dt e dttedt e '⋅=⎰⎰⎰⎰→→222220202lim2limx xt x x x xt x xedte xeedt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式,并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx===⎰⎰ϕ;当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xxϕ.因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ.因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ,316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ,所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(0===⎰⎰xxdt dt t f x ϕ;当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x xxxϕ;当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x-=+==⎰⎰⎰10cos 21cos 21=+-=π.因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(.12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x a dt t f ax x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f xa -=⎰ξ.于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=.由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内)]()([1)(≤--='ξf x f a x x F .习题5-31. 计算下列定积分:(1)⎰+πππ2)3sin(dx x ;解 0212132cos 34cos)3cos()3sin(22=-=+-=+-=+⎰ππππππππx dx x . (2)⎰-+123)511(x dx;解51251110116101)511(2151)511(22122123=⋅+⋅-=+-⋅=+-----⎰x x dx. (3)⎰203cos sin πϕϕϕd ;解⎰⎰-=20323sin cos cos sin ππϕϕϕϕϕd s d410cos 412cos 41cos 4144204=+-=-=πϕπ.(4)⎰-πθθ03)sin 1(d ; 解⎰⎰⎰⎰-+=+=-πππππθθθθθθθθ02002003cos )cos 1(cos sin )sin 1(d d d d34)cos 31(cos 03-=-+=πθθππ.(5)⎰262cos ππudu ;解2626262622sin 4121)2cos 1(21cos ππππππππu u du u udu +=+=⎰⎰836)3sin (sin 41)62(21-=-+-=πππππ.(6)dx x ⎰-2022;解dt t tdt t t x dx x ⎰⎰⎰+=⋅=-202022)2cos 1(cos 2cos 2sin 22ππ令2)2sin 21(20ππ=+=t t .(7)dy y ⎰--22228;解⎰⎰⎰---⋅=-=-44222222cos 2cos 22sin 24228ππxdx x xy dy y dy y 令)2(2)2sin 21(22)2cos 1(224444+=+=+=--⎰πππππy x dx x .(8)⎰-121221dx xx ;解41)cot ()1sin 1(cos sin cos sin 12424224212122πππππππ-=--=-=⋅=-⎰⎰⎰t t dt t tdt t t t x dx x x 令.(9)⎰-adx x a x 0222; 解⎰⎰⎰=⋅⋅=-2024202202222sin4cos cos sin sin ππtdt a tdt a t a t a t a x dx x a xa令164sin 328)4cos 1(84204204204ππππa t a t a dt t a =-=-=⎰. (10)⎰+31221xxdx ;解⎰⎰⋅⋅=+34223122secsec tan 1tan 1ππtdt t t tx xxdx 令3322sin 1sin cos 34342-=-==⎰ππππt dt tt. (11)⎰--1145xxdx ;解61)315(81)5(81454513133211=--=-=--⎰⎰-u u du u u x x xdx 令. (12)⎰+411xdx ;解)32ln 1(2|)1|ln (2)111(2211121212141+=+-=+-=⋅+=+⎰⎰⎰u u du u udu u u x x dx 令.(13)⎰--14311x dx ;解2ln 21|)1|ln (2)111(2)2(11111210210021143-=-+=-+=-⋅-=---⎰⎰⎰u u du u du u u ux x dx 令.(14)⎰-axa xdx 20223;解)13(3)3(3121320202222222022-=--=---=-⎰⎰a x a x a d x a xa xdx a a a.(15)dt te t ⎰-1022;解2110102221021)2(222-----=-=--=⎰⎰e etd e dt tet t t .(16)⎰+21ln 1e x x dx; 解)13(2ln 12ln ln 11ln 1222111-=+=+=+⎰⎰e e e xx d xxx dx .(17)⎰-++02222x x dx;解 2)1arctan(1arctan )1arctan()1(112202022022π=--=+=++=++---⎰⎰x dx x x x dx .(18)⎰-222cos cos ππxdx x ;解32)sin 32(sin sin )sin 21(2cos cos 22322222=-=-=---⎰⎰ππππππx x x d x xdx x . (19)⎰--223cos cos ππdx x x ;解⎰⎰---=-222223cos 1cos cos cos ππππdx x x dx x x34cos 32cos 32sin cos )sin (cos 20230223202=-=+-=--⎰⎰ππππx xxdx x dx x x (20)⎰+π02cos 1dx x .解22cos 2sin 22cos 1000=-==+⎰⎰πππxxdx dx x .2. 利用函数的奇偶性计算下列积分: (1)⎰-ππxdx x sin 4;解 因为x 4sin x 在区间[-π, π]上是奇函数, 所以0sin 4=⎰-ππxdx x . (2)⎰-224cos 4ππθθd ;解⎰⎰⎰+==-202204224)22cos 1(8cos 42cos 4ππππθθθθθd x d d ⎰⎰++=++=20202)4cos 212cos 223(2)2cos 2cos 21(2ππθθd x x d x x23)4sin 412sin 23(20πθπ=++=x x . (3)⎰--2121221)(arcsin dx xx ;解⎰⎰⎰=-=--21221022212122)(arcsin )(arcsin 21)(arcsin 21)(arcsin x d x dx xx dx xx324)(arcsin 3232103π==x .(4)⎰-++55242312sin dx x x xx . 解 因为函数12sin 2423++x x x x 是奇函数, 所以012sin 552423=++⎰-dx x x x x .3. 证明:⎰⎰-=aa adx x dx x 022)(2)(ϕϕ, 其中ϕ(u )为连续函数.证明 因为被积函数ϕ(x 2)是x 的偶函数, 且积分区间[-a , a ]关于原点对称, 所以有⎰⎰-=aa adx x dx x022)(2)(ϕϕ.4. 设f (x )在[-b , b ]上连续, 证明⎰⎰---=bb bb dx x f dx x f )()(. 证明 令x =-t , 则dx =-dt , 当x =-b 时t =b , 当x =b 时t =-b , 于是⎰⎰⎰----=--=b b bb bbdt t f dt t f dx x f )()1)(()(,而 ⎰⎰---=-bb bb dx x f dt t f )()(, 所以⎰⎰---=bb bb dx x f dx x f )()(.5. 设f (x )在[a , b ]上连续., 证明⎰⎰-+=ba ba dx xb a f dx x f )()(. 证明 令x =a +b -t , 则dx =d t , 当x =a 时t =b , 当x =b 时t =a , 于是 ⎰⎰⎰-+=--+=b a ba ab dt t b a f dt t b a f dx x f )()1)(()(, 而 ⎰⎰-+=-+ba badx x b a f dt t b a f )()(,所以⎰⎰-+=ba ba dx xb a f dx x f )()(.6. 证明:⎰⎰>+=+11122)0(11x x x x dxx dx. 证明 令t x 1=, 则dt tdx 21-=, 当x =x 时x t 1=, 当x =1时t =1, 于是⎰⎰⎰+=-⋅+=+11121122211)1(1111xx xdt t dt t tx dx , 而 ⎰⎰+=+x x dx x dt t 1121121111,所以 ⎰⎰+=+1112211x xxdx x dx.7. 证明:⎰⎰-=-1010)1()1(dx x x dx x xm n n m.证明 令1-x =t , 则⎰⎰⎰⎰-=-=--=-10100110)1()1()1()1(dx x x dt t t dt t t dx x x m n n m n m n m , 即⎰⎰-=-1010)1()1(dx x x dx x x m n n m . 8. 证明: ⎰⎰=ππ020sin 2sinxdx xdx n n.证明 ⎰⎰⎰+=ππππ2020sin sin sin xdx xdx xdx nn n,而⎰⎰⎰⎰==---=2020202sin sin ))((sin sinπππππππxdx tdt dt t t x xdx n n nn 令,所以⎰⎰=ππ020sin 2sinxdx xdx n n.9. 设f (x )是以l 为周期的连续函数, 证明⎰+1)(a a dx x f 的值与a 无关.证明 已知f (x +l )=f (x ). ⎰⎰⎰⎰⎰⎰⎰-+=++=+++ala ll la ll a a adx x f dx x f dx x f dx x f dx x f dx x f dx x f 00001)()()()()()()(,而 ⎰⎰⎰⎰=+=++=+a a ala ldx x f dx l x f dt l t f l t x dx x f 000)()()()(令,所以 ⎰⎰=+la adx x f dx x f 01)()(.因此⎰+1)(a adx x f 的值与a 无关.10. 若f (t )是连续函数且为奇函数, 证明⎰xdt t f 0)(是偶函数; 若f (t )是连续函数且为偶函数, 证明⎰xdt t f 0)(是奇函数. 证明 设⎰=xdt t f x F 0)()(.若f (t )是连续函数且为奇函数, 则f (-t )=-f (t ), 从而)()()()1)(()()(0000x F dx x f dx u f du u f u t dt t f x F x x xx ===---==-⎰⎰⎰⎰-令,即⎰=xdt t f x F 0)()(是偶函数.若f (t )是连续函数且为偶函数, 则f (-t )=f (t ), 从而)()()()1)(()()(0000x F dx x f dx u f du u f u t dt t f x F x x x x -=-=-=---==-⎰⎰⎰⎰-令,即⎰=xdt t f x F 0)()(是奇函数.11. 计算下列定积分: (1)⎰-10dx xe x ; 解11011010101021--------=--=+-=-=⎰⎰⎰e e e dx e xe xde dx xe xx x x x .(2)⎰e xdx x 1ln ; 解)1(414121121ln 21ln 21ln 21220212121+=-=⋅-==⎰⎰⎰e x e dx x x x x xdx xdx x ee e e e.(3)⎰ωπω20sin tdt t (ω为常数); 解⎰⎰⎰+-=-=ωπωπωπωπωωωωωωω20202020cos 1cos 1cos 1sin tdt tt t td tdt t 220222sin 12ωπωωωπωπ-=+-=t.(4)⎰342sin ππdx xx;解34343434342sin ln 4313cot cot cot sin ππππππππππππxxdx xx x xd dx x x++⋅-=+-=-=⎰⎰⎰23ln 21)9341(+-=π.(5)⎰41ln dx x x; 解 ⎰⎰⎰⋅-==4141414112ln 2ln 2ln dx xx x x x xd dx xx )12ln 2(442ln 8122ln 84141-=-=-=⎰x dx x.(6)⎰10arctan xdx x ;解x d x x x x xdx xdx x ⎰⎰⎰+⋅-==1022102102101121arctan 21arctan 21arctan214)41(218)arctan (218)111(21810102-=--=--=+--=⎰πππππx x x d x. (7)⎰202cos πxdx e x ; 解⎰⎰⎰-==202202202202sin 2sin sin cos ππππxdx e xe x d e xdx e x x x x⎰⎰⎰-+=-+=+=202202202202cos 42cos 4cos 2cos 2πππππππxdx e e xdx e xe e x d e e x x xx所以)2(51cos 202-=⎰ππe xdx e x ,于是(8)⎰212log xdx x ; 解⎰⎰⎰⋅-==212212221222122ln 121log 21log 21log dx x x x x xdx xdx x2ln 432212ln 212212-=⋅-=x . (9)⎰π02)sin (dx x x ; 解⎰⎰⎰-=-=ππππ02302022sin 4161)2cos 1(21)sin (x d x x dx x x dx x x πππππππ03000332cos 41622sin 412sin 416⎰⎰-=⋅+-=xxd xdx x xx 462sin 81462cos 412cos 416303003ππππππππ-=+-=+-=⎰x xdx x x .(10)⎰edx x 1)sin(ln ; 解法一 ⎰⎰⋅=101sin ln )sin(ln dt e t tx dxx te令.因为⎰⎰⎰-==⋅10101010cos sin sin sin tdt e te tde dt e t t tt t⎰⎰--⋅=-⋅=101010sin cos 1sin cos 1sin tdt e t e e tde e t t t⎰-+⋅-⋅=10sin 11cos 1sin tdt e e e t , 所以 )11cos 1sin (21sin 10+⋅-⋅=⎰e e tdt e t .因此)11cos 1sin (21)sin(ln 1+⋅-⋅=⎰e e dx x e. 解法二⎰⎰⎰-⋅=⋅⋅-⋅=e e eedx x e dx x x x x x dx x 1111)cos(ln 1sin 1)cos(ln )sin(ln )sin(ln ⎰⋅⋅-⋅-⋅=e edx x x x x x e 111)sin(ln )cos(ln 1sin ⎰-+⋅-⋅=edx x e e 0)sin(ln 11cos 1sin , 故)11cos 1sin (21)sin(ln 1+⋅-⋅=⎰e e dx x e . (11)dx x e e⎰1|ln |; 解⎰⎰⎰⎰⎰-++-=+-=eee eee e e dx dx xx x x dx x dx x dx x 1111111111ln ln ln ln |ln |)11(2)1()11(1ee e e e -=---++-=.(12)⎰-1022)1(dx xm (m 为自然数); 解⎰⎰+=-2011022cos sin )1(πtdt t x dx xm m 令.根据递推公式⎰⎰--=20220cos 1cos ππxdx n n xdx n n ,⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅--⋅--⋅+⋅⋅⋅⋅⋅⋅--⋅--⋅+=-⎰为偶数为奇数m m m m m m m m m m m m m m dx x m325476 34121 2214365 34121)1(1022π. (13)⎰=π0sin xdx x J m m (m 为自然数). 解 因为⎰⎰⎰⎰-=----=ππππππππ0000sin sin )1)((sin )(sin tdt t tdt dt t t t x xdx x mm m m 令,所以 ⎰⎰⎰⎰=⋅===20200sin sin 22sin 2sin πππππππxdx xdx xdx xdx x J m m mmm (用第8题结果).根据递推公式⎰⎰--=20220sin 1sin ππxdx n n xdx n n , ⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅--⋅--⋅-⋅⋅⋅⋅⋅⋅--⋅--⋅-=为奇数为偶数m m m m m m m m m m m m m m J m 325476 45231 2214365 452312ππ.习题5-71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1)⎰+∞14xdx; 解 因为3131)31(lim 3131314=+-=-=-+∞→+∞-+∞⎰x x x dx x , 所以反常积分⎰+∞14x dx收敛, 且3114=⎰∞+x dx . (2)⎰+∞1xdx ;解 因为+∞=-==+∞→+∞∞+⎰22lim 211x xxdx x , 所以反常积分⎰+∞1xdx 发散.(3)dx e ax ⎰+∞-0(a >0); 解 因为aa e a e adx e ax x ax ax 11)1(lim 100=+-=-=-+∞→+∞-+∞-⎰, 所以反常积分dx e ax ⎰+∞-0收敛, 且adx e ax 10=⎰+∞-.(4)⎰+∞-0ch tdt e pt (p >1); 解 因为1]1111[21][21ch 2)1()1(0)1()1(0-=+--=+=+∞+--∞++--∞+-⎰⎰p p e pe p dt e e tdt e tp t p t p tp pt ,所以反常积分⎰+∞-0ch tdt e pt 收敛, 且1ch 20-=⎰∞+-p p tdt e pt .(5)⎰+∞-0sin tdt e pt ω(p >0, ω>0); 解⎰⎰+∞-+∞--=0cos 1sin t d e tdt e pt pt ωωω⎰⎰+∞-+∞-+∞--=-⋅+-=020sin 1)(cos 1cos 1t d e pdt pe t te pt pt pt ωωωωωωω⎰+∞-+∞--⋅+-=0202)(sin sin 1dt pe t pte p ptpt ωωωωω⎰+∞--=022sin 1tdt e p pt ωωω,所以 22sin w p tdt e pt +=⎰+∞-ωω.(6)⎰+∞∞-++222x x dx;解 πππ=--=+=++=++⎰⎰+∞∞-+∞∞-+∞∞-)2(2)1arctan()1(12222x x dxx x dx .(7)dx xx ⎰-121;解 这是无界函数的反常积分, x =1是被积函数的瑕点.11)1(lim 112110212=+--=--=--→⎰x x dx x x x . (8)⎰-22)1(x dx;解 这是无界函数的反常积分, x =1是被积函数的瑕点. 因为⎰⎰⎰-+-=-212102202)1()1()1(x dxx dx x dx , 而 +∞=--=-=--→⎰111lim 11)1(110102xx x dx x ,所以反常积分⎰-202)1(x dx发散. (9)⎰-211x xdx ;解 这是无界函数的反常积分, x =1是被积函数的瑕点.21232121]12)1(32[)111(1-+-=-+-=-⎰⎰x x dx x x x xdx322]12)1(32[lim 38231=-+--=+→x x x . (10)⎰-ex x dx 12)(ln 1.解 这是无界函数的反常积分, x =e 是被积函数的瑕点.2)arcsin(ln lim )arcsin(ln ln )(ln 11)(ln 111212π===-=--→⎰⎰x x x d x x x dx ex e ee.2. 当k 为何值时, 反常积分⎰+∞)(ln kx x dx收敛? 当k 为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解 当k <1时, +∞=-==+∞+-+∞+∞⎰⎰2122)(ln 11ln )(ln 1)(ln k k k x k x d x x x dx ;当k =1时, +∞===+∞+∞+∞⎰⎰222)ln(ln ln ln 1)(ln x x d x x x dxk ; 当k >1时,k k kkk x kx d x x x dx -+∞+-+∞+∞-=-==⎰⎰12122)2(ln 11)(ln 11ln )(ln 1)(ln . 因此当k >1时, 反常积分⎰+∞0)(ln k x x dx 收敛; 当k ≤1时, 反常积分⎰+∞0)(ln k x x dx发散. 当k >1时, 令k kk x x dx k f -∞+-==⎰10)2(ln 11)(ln )(, 则 )2ln ln 11()1(2ln ln )2(ln 2ln ln )2(ln 11)2(ln )1(1)(21112+---=----='---k k k k k f k kk. 令f '(k )=0得唯一驻点2ln ln 11-=k . 因为当2ln ln 111-<<k 时f '(k )<0, 当2ln ln 11->k 时f '(k )>0, 所以2ln ln 11-=k 为极小值点,同时也是最小值点, 即当2ln ln 11-=k 时, 这反常积分取得最小值 3. 利用递推公式计算反常积分⎰+∞-=0dx e x I x n n . 解 因为101000-+∞--+∞-+∞-+∞-=+-=-==⎰⎰⎰n x n x n x n x n n nI dx e x n e x de x dx e x I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1. 又因为 1000001=-=+-=-==+∞-+∞-+∞-+∞-+∞-⎰⎰⎰xx xx x e dx e xe xde dx xe I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1=n !.总习题五1. 填空:(1)函数f (x )在[a , b ]上(常义)有界是f (x )在[a , b ]上可积的______条件, 而f (x )在[a , b ]上连续是f (x )在[a , b ]上可积______的条件;解 函数f (x )在[a , b ]上(常义)有界是f (x )在[a , b ]上可积的___必要___条件, 而f (x )在[a , b ]上连续是f (x )在[a , b ]上可积___充分___的条件;(2)对[a , +∞)上非负、连续的函数f (x ), 它的变上限积分⎰xa dx x f )(在[a , +∞)上有界是反常积分⎰+∞a dx x f )(收敛的______条件;解 对[a , +∞)上非负、连续的函数f (x ), 它的变上限积分⎰xa dx x f )(在[a , +∞)上有界是反常积分⎰+∞a dx x f )(收敛的___充分___条件;(3)绝对收敛的反常积分⎰+∞a dx x f )(一定______; 解 绝对收敛的反常积分⎰+∞a dx x f )(一定___收敛___;(4)函数f (x )在[a , b ]上有定义且|f (x )|在[a , b ]上可积, 此时积分⎰ba dx x f )(______存在. 解 函数f (x )在[a ,b ]上有定义且|f (x )|在[a , b ]上可积, 此时积分⎰b a dx x f )(___不一定___存在.2. 计算下列极限:(1)∑=∞→+n i n nin 111lim ;解 )122(32)1(32111lim 103101-=+=+=+⎰∑=∞→x dx x n i n n i n . (2)121lim+∞→+⋅⋅⋅++p pp p n nn (p >0);解 11111])( )2()1[(lim 21lim 101101+=+==⋅⋅⋅⋅++=+⋅⋅⋅+++∞→+∞→⎰p x p dx x n n n n n n n p p p p p n p p p p n . (3)nn nn !lnlim ∞→; 解 ]ln 1)ln 2ln 1(ln 1[lim !lnlim n n nn n n n n nn ⋅-+⋅⋅⋅++=∞→∞→nn n n n n 1)]ln (ln )ln 2(ln )ln 1[(ln lim ⋅-+⋅⋅⋅+-+-=∞→⎰=⋅+⋅⋅⋅++=∞→10ln 1)ln 2ln 1(ln lim xdx n n n n n n1)ln ()ln (10101010-=-=-=⎰xx x dx x x .(4)⎰-→xaa x dt t f a x x )(lim, 其中f (x )连续; 解法一 )()(lim )(lima af xf dt t f ax x axa ax ==-→→⎰ξξ (用的是积分中值定理). 解法二 )(1)()(lim )(lim )(lim a af x xf dt t f a x dt t f x dt t f a x x xaa x xa a x x a a x =+=-=-⎰⎰⎰→→→ (用的是洛必达法则). (5)1)(arctan lim 22+⎰+∞→x dtt xx .解4)(arctan 1lim 1)(arctan lim 1)(arctan lim 22222202π=+=+=+∞→+∞→+∞→⎰x x x x x x x dtt x x xx . 3. 下列计算是否正确, 试说明理由:(1)⎰⎰----=-=+-=+111111222)1arctan ()1(1)1(1πx xx d x dx ;解 计算不正确, 因为x 1在[-1, 1]上不连续. (2)因为⎰⎰--++-=++111122111t t dt tx x x dx , 所以⎰-=++11201x x dx .解 计算不正确, 因为t1在[-1, 1]上不连续.(3)01lim 122=+=+⎰⎰-∞→+∞∞-A A A dx x xdx x x . 解 不正确, 因为⎰⎰⎰⎰-+∞→+∞→+∞∞--∞→+≠+++=+A A A b b a a dx xxdx x x dx x x dx x x 2020221lim 1lim 1lim 1. 4. 设p >0, 证明⎰<+<+10111p x dx p p. 证明 p pp p p p px x x x x x x ->+-=+-+=+>11111111. 因为⎰⎰⎰<+<-1010101)1(dx x dxdx x pp,而 110=⎰dx , pp p x x dx x p p+=+-=-+⎰1)1()1(10110, 所以⎰<+<+10111pxdx p p. 5. 设f (x )、g (x )在区间[a , b ]上均连续, 证明: (1)⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x f )()(])()([222;证明 因为[f (x )-λg (x )]2≥0, 所以λ2g 2(x )-2λ f (x )g (x )+f 2(x )≥0, 从而 0)()()(2)(222≥+-⎰⎰⎰ba ba ba dx x f dx x g x f dx x g λλ.上式的左端可视为关于λ的二次三项式, 因为此二次三项式大于等于0, 所以其判别式小于等于0, 即0)()(4])()([4222≤⋅-⎰⎰⎰ba ba ba dx x g dx x f dx x g x f ,亦即 ⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x f )()(])()([222. (2)()()()212212212)()()]()([⎰⎰⎰+≤+b ab a b a dx x g dx x f dx x g x f , 证明⎰⎰⎰⎰++=+ba ba ba ba dx x g x f dx x g dx x f dx x g x f )()(2)()()]()([222。

高等数学第五章习题附答案

高等数学第五章习题附答案

利用定积分定义计算由抛物线y=x 2 , 两直线x =a,x =b (b >a )及横轴所围成的图形的面积. 题型:计算题答案:第一步: 在区间[a,b ]内插入n -1个分点i nab a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 把区间[a, b]分成n 个长度相等的小区间, 各个小区间的长度为: nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 第二步: 在第i 个小区间[xi -1, xi] (i =1, 2, ⋅ ⋅ ⋅, n )上取右端点i n a b a x i i -+==ξ, 作和 n ab i n a b a x f S n i i i n i n -⋅+-+=∆=∑∑==]1)[()(211ξ ∑=+-+-+-=n i i n a b i n a b a a n a b 12222]1)()(2[ ]6)12)(1()(2)1()(2[)(222n n n n n a b n n n a b a na n a b +++⋅-++⋅-+-=]16)12)(1()()1)(()[(222+++-++-+-=nn n a b n n a b a a a b . 第三步: 令l =max {∆x 1, ∆x 2, ⋅ ⋅ ⋅ , ∆x n }nab -=, 取极限得所求面积 ∑⎰=→∆==n i i i b a x f dx x f S 10)(lim )(ξl]16)12)(1()()1)(()[(lim 222+++-++-+-=∞→n n n a b n n a b a a a b na b a b a b a b a a a b -+-=+-+-+-=)(31]1)(31)()[(3322.分数:10所属所属知识点:定积分的计算 难度:7利用定积分定义计算下列积分: (1)xdx ba ⎰(a <b);题型:计算题 答案:取分点为i n a b a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点i nab a x i i -+==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是 ∑∑⎰=∞→=∞→-⋅-+=∆=ni n n i i i n ba nab i n a b a x xdx 11)(lim lim ξ)(21]2)1()()([lim )(22222a b n n n a b a b a a b n -=+-+--=∞→. 分数:10所属所属知识点:定积分的计算 难度:6利用定积分定义计算下列积分: dx e x ⎰10. 题型:计算题答案:取分点为ni x i =(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nx i 1=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点ni x i i ==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是) (1lim 1lim 21110n n n n n n i n i n xe e e nn e dx e +⋅⋅⋅++==∞→=∞→∑⎰1)1(]1[lim1])(1[1lim 11111-=--=--⋅=∞→∞→e e n e e e e e nnn n nn n n n .分数:10所属所属知识点:定积分的计算 难度:6利用定积分的几何意义 说明下列等式 1210=⎰xdx ;题型:证明题答案:⎰102xdx 表示由直线y =2x 、x 轴及直线x =1所围成的面积, 显然面积为1. 分数:12所属所属知识点:定积分的计算 难度:5利用定积分的几何意义 说明下列等式41102π=-⎰dx x ;题型:证明题答案:⎰-1021dx x )表示由曲线21x y -=、x 轴及y 轴所围成的四分之一圆的面积, 即圆x2+y2=1的面积的41: 414112102ππ=⋅⋅=-⎰dx x .分数:12所属所属知识点:定积分的计算 难度:5利用定积分的几何意义说明下列等式 ⎰-=ππ0sin xdx ;.题型:证明题答案:由于y =sin x 为奇函数, 在关于原点的对称区间[-π, π]上与x 轴所夹的面积的代数和为零, 即 ⎰-=ππ0sin xdx . 分数:12难度:5利用定积分的几何意义 说明下列等式 ⎰⎰=-2022cos 2cos πππxdx xdx .题型:证明题答案: ⎰-22cos ππxdx 表示由曲线y =cos x 与x 轴上]2,2[ππ-一段所围成的图形的面积.因为cos x 为偶函数, 所以此图形关于y 轴对称. 因此图形面积的一半为⎰20cos πxdx , 即 ⎰⎰=-2022cos 2cos πππxdx xdx .分数:12所属所属知识点:定积分的计算 难度:5水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p (单位面积上的压力大小)是水深h 的函数, 且有p =9×8h (kN/m2). 若闸门高H =3m , 宽L =2m , 求水面与闸门顶相齐时闸门所受的水压力P. 题型:计算题答案:建立坐标系如图. 用分点i nHx i =(i =1, 2, ⋅ ⋅ ⋅, n -1)将区间[0, H ]分为n 分个小区间, 各小区间的长为nHx i =∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间[x i -1, x i ]上, 闸门相应部分所受的水压力近似为 ∆Pi =9.8x il ×∆x i . 闸门所受的水压力为22118.42)1(lim 8.9lim 8.98.9lim H L nn n H L n Hi n H L x L x P n ni n ni i i n ⋅=+⋅=⋅=∆⋅⋅=∞→=∞→=∞→∑∑.将L =2, H =3代入上式得P =88.2(千牛). 分数:10所属所属知识点:定积分的计算 难度:7证明定积分性质 (1)⎰⎰=b a b a dx x f k dx x kf )()(; (2)a b dx dx ba b a -==⋅⎰⎰1. 题型:证明题 答案:(1)⎰∑∑⎰=∆=∆==→=→ba ni i i n i i i ba dxx f k x f k x kf dx x kf )()(lim )(lim )(1010ξξl l (2)a b a b x x dx n i i ni i ba -=-=∆=∆⋅=⋅→=→=→∑∑⎰)(lim lim 1lim 101010l l l 分数:8难度:5估计下列各积分的值: ⎰+412)1(dx x 1); 题型:计算题答案:因为当1£x £4时, 2£x2+1£17, 所以 )14(17)1()14(2412-⋅£+£-⋅⎰dx x ,即51)1(6412£+£⎰dx x .分数:5所属所属知识点:定积分的计算 难度:6估计下列各积分的值 ⎰+ππ4542)sin 1(dx x题型:计算题 答案:因为当ππ454££x 时, 1£1+sin2x £2, 所以)445(2)sin 1()445(14542ππππππ-⋅£+£-⋅⎰dx x ,即 ππππ2)sin 1(4542£+£⎰dx x .分数:5所属所属知识点:定积分的计算 难度:6估计下列各积分的值 ⎰331arctan xdx x ;题型:计算题答案:先求函数f(x)=x arctan x 在区间]3 ,31[上的最大值M 与最小值m.21arctan )(xx x x f ++='. 因为当331££x 时, f '(x)>0, 所以函数f(x)=x arctan x在区间]3 ,31[上单调增加. 于是 3631arctan31)31(π===f m ,33arctan 3)3(π===f M .因此)313(3arctan )313(36331-££-⎰ππxdx x ,即32arctan 9331ππ££⎰xdx x . 分数:5所属所属知识点:定积分的计算难度:6估计下列各积分的值 ⎰-022dx e xx .题型:计算题答案:先求函数xxe xf -=2)(在区间[0, 2]上的最大值M 与最小值m.)12()(2-='-x e x f xx, 驻点为21=x . 比较f(0)=1, f(2)=e 2, 41)21(-=e f ,得41-=e m , M =e 2. 于是)02()02(220412-⋅££-⎰--e dx e e x x ,即 41022222---££-⎰e dx dx e e xx .分数:5所属所属知识点:定积分的计算 难度:6设f(x)及g(x)在[a, b]上连续, 证明: (1)若在[a, b]上f(x)³0, 且0)(=⎰ba dx x f ,则在[a, b]上f(x)º0; (2)若在[a, b]上, f(x)³0, 且f(x)≢0, 则0)(>⎰ba dx x f ; (3)若在[a, b]上, f(x)£g(x), 且⎰⎰=ba ba dx x g dx x f )()(, 则在[a b]上f(x)ºg(x). 题型:证明题答案:(1)假如f(x)≢0, 则必有f(x)>0. 根据f(x)在[a , b]上的连续性, 在[a , b]上存在一点x0, 使f(x0)>0, 且f(x0)为f(x)在[a , b]上的最大值. 再由连续性,存在[c, d]Ì[a, b], 且x0Î[c, d], 使当x Î[c, d]时,2)()(0x f x f >. 于是0)(2)()()()()()(0>-³³++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a .这与条件0)(=⎰badx x f 相矛盾. 因此在[a, b]上f(x)º0. (2)证法一 因为f(x)在[a, b]上连续, 所以在[a, b]上存在一点x0, 使f(x0)>0, 且f(x0)为f(x)在[a, b]上的最大值. 再由连续性, 存在[c, d]Ì[a, b], 且x0Î[c, d], 使当x Î[c, d]时,2)()(0x f x f >. 于是⎰⎰>-³³badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f(x)³0, 所以0)(³⎰b a dx x f .假如)(>⎰ba dx x f 不成立. 则只有0)(=⎰badx x f ,根据结论(1), f(x)º0, 矛盾. 因此0)(>⎰ba dx x f . (3)令F(x)=g(x)-f(x), 则在[a, b]上F(x)³0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba ba ba ba dx x f dx x g dx x f x g dx x F , 由结论(1), 在[a, b]上F(x)º0, 即f(x)ºg(x).分数:12所属所属知识点:定积分的计算 难度:7根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大: (1)⎰102dx x 还是⎰103dx x ? (2)⎰212dx x 还是⎰213dx x ? (3)⎰21ln xdx 还是⎰212)(ln dx x ?(4)⎰10xdx 还是⎰+10)1ln(dx x ?(5)⎰10dx e x 还是⎰+10)1(dx x ? 题型:计算题答案:(1)因为当0£x £1时, x2³x3, 所以⎰⎰³103102dx x dx x . 又当0<x <1时, x2>x3, 所以⎰⎰>103102dx x dx x . (2)因为当1£x £2时, x2£x3, 所以⎰⎰£213212dx x dx x . 又因为当1<x £2时, x2<x3, 所以⎰⎰<213212dx x dx x . (3)因为当1£x £2时, 0£ln x <1, ln x ³(ln x)2, 所以⎰⎰³21221)(ln ln dx x xdx . 又因为当1<x £2时, 0<ln x <1, ln x >(ln x)2, 所以⎰⎰>21221)(ln ln dx x xdx . (4)因为当0£x £1时, x ³ln(1+x), 所以⎰⎰+³1010)1ln(dx x xdx . 又因为当0<x £1时, x >ln(1+x), 所以⎰⎰+>1010)1ln(dx x xdx . (5)设f(x)=ex -1-x , 则当0£x £1时f '(x) =ex -1>0, f(x)=ex -1-x 是单调增加的. 因此当0£x £1时, f(x)³f(0)=0, 即ex ³1+x , 所以⎰⎰+³1010)1(dx x dx e x .又因为当0<x £1时, ex >1+x , 所以⎰⎰+>1010)1(dx x dx e x .分数:10所属所属知识点:定积分的计算 难度:6 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数.题型:计算题答案:x tdt dx d y x sin sin 0=='⎰, 当x =0时, y '=sin0=0; 当4π=x 时, 224sin =='πy . 分数:6所属所属知识点:微积分的计算 难度:5求由参数表示式⎰=tudu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x 的导数.题型:计算题答案:x '(t)=sin t , y '(t)=cos t , t t x t y dx dy cot )()(=''=. 分数:5所属所属知识点:微积分的计算 难度:5 求由⎰⎰=+xyttdt dt e 00cos 所决定的隐函数y 对x 的导数dxdy . 题型:计算题答案:方程两对x 求导得 0cos =+'x y e y, 于是y ex dx dy cos -=. 分数:6所属所属知识点:微积分的计算 难度:5当x 为何值时, 函数⎰-=xt dt te x I 02)(有极值?题型:计算题答案:2)(x xe x I -=', 令I '(x)=0, 得x =0. 因为当x <0时, I '(x)<0; 当x >0时, I '(x)>0, 所以x =0是函数I(x)的极小值点. 分数:6所属所属知识点:微积分的计算 难度:5计算下列各导数: (1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt t dx d ; (3)⎰x xdt t dx d cos sin 2)cos(π.题型:计算题 答案:(1)dxdudt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令421221x x x u +=⋅+=. (2)⎰⎰⎰+++=+323204044111111x x x x dt t dx d dt t dx d dt t dx d⎰⎰+++-=3204041111x x dt t dx d dt t dx d)()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ分数:15所属所属知识点:微积分的计算 难度:6⎰+-adx x x 02)13(;题型:计算题 答案:a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(. 分数:5所属所属知识点:微积分的计算 难度:5⎰+2142)1(dx x x ; 题型:计算题 答案:852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . 分数:5所属所属知识点:微积分的计算 难度:5⎰+94)1(dx x x ;题型:计算题答案:94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰6145)421432()921932(223223=+-+= 分数:5所属所属知识点:微积分的计算 难度:5⎰+33121x dx ; 题型:计算题答案:66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx .分数:5所属所属知识点:微积分的计算 难度:4⎰--212121x dx ; 题型:计算题 答案:3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .分数:5所属所属知识点:微积分的计算 难度:4⎰+ax a dx 3022; 题型:计算题 答案:aa a ax a x a dx a a30arctan 13arctan 1arctan 1303022π=-==+⎰.分数:5所属所属知识点:微积分的计算 难度:5⎰-124x dx ; 题型:计算题 答案:60arcsin 21arcsin 2arcsin 41012π=-==-⎰x x dx分数:5所属所属知识点:微积分的计算 难度:5dx x x x ⎰-+++012241133; 题型:计算题 答案:13012201224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=分数:5所属所属知识点:微积分的计算 . 难度:5⎰---+211e xdx ; 题型:计算题 答案:1ln 1ln ||1|ln 12121-=-=+=+------⎰e x xdx e e .分数:5所属所属知识点:微积分的计算 难度:4⎰42tan πθθd ;题型:计算题 答案:4144tan )(tan )1(sec tan 4040242πππθθθθθθπππ-=-=-=-=⎰⎰d d .分数:5所属所属知识点:微积分的计算 难度:5dx x ⎰π20|sin |;题型:计算题 答案:⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx x πππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4. 分数:5所属所属知识点:微积分的计算 难度:5⎰2)(dx x f , 其中⎪⎩⎪⎨⎧>£+=1 2111)(2x x x x x f . 题型:计算题 答案:38|)61(|)21(21)1()(213102212102=++=++=⎰⎰⎰x x x dx x dx x dx x f . 分数:5所属所属知识点:微积分的计算 难度:6设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ; (2)⎰-=ππ0sin kxdx ;(3)⎰-=πππkxdx 2cos ; (4)⎰-=πππkxdx 2sin .题型:证明题 答案:(1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k kk k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k k k k x k k kxdxcos 1cos 1=+-=ππk kk k . (3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx .(4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx 分数:20所属所属知识点:微积分的计算设k 及l 为正整数, 且k ¹l . 试证下列各题: (1)⎰-=ππ0sin cos lxdx kx ; (2)⎰-=ππ0cos cos lxdx kx ; (3)⎰-=ππ0sin sin lxdx kx .题型:证明题 答案:(1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k . (2)⎰⎰---++=ππππdxx l k x l k lxdx kx ])cos()[cos(21cos cos])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k . (3)⎰⎰----+-=ππππdxx l k x l k lxdx kx ])cos()[cos(21sin sin .])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k 分数:15所属知识点:微积分的计算 难度:6求下列极限: (1)xdtt xx ⎰→02cos lim ; (2)⎰⎰→xt xt x dttedt e 0220022)(lim.题型:计算题 答案:(1)11cos lim cos lim20020==→→⎰x xdt t x xx . (2)222222022)(2lim)(limx xt x t x xt x t x xedt e dt e dttedt e '⋅=⎰⎰⎰⎰→→22222202lim2limxxt x x x xt x xe dte xeedt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x .所属知识点:变上限积分函数 难度:6设⎩⎨⎧ÎÎ=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论(x)在(0, 2)内的连续性.题型:计算题 答案:当0£x £1时,302031)()(x dt t dt t f x xx===⎰⎰ϕ; 当1<x £2时,6121212131)()(221102-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xxϕ. 因此⎪⎩⎪⎨⎧£<-££=21 612110 31)(23x x x x x ϕ. 因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ, 316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ, 所以(x)在x =1处连续, 从而在(0, 2)内连续. 分数:10所属所属知识点:微积分的计算 难度:7设⎪⎩⎪⎨⎧><££=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.题型:计算题答案:当x <0时, 00)()(0===⎰⎰xxdt dt t f x ϕ; 当0£x £π时,21cos 21|cos 21sin 21)()(00+-=-===⎰⎰x t tdt dt t f x xxxϕ; 当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x xx -=+==⎰⎰⎰10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧³££-<=ππϕx x x x x 10 )cos 1(210 0)(.分数:12所属所属知识点:微积分的计算 难度:7设f(x)在[a, b]上连续, 在(a, b)内可导且f '(x)£0, ⎰-=x adt t f a x x F )(1)(. 证明在(a, b)内有F '(x)£0. 题型:证明题答案:根据积分中值定理, 存在ξÎ[a, x], 使))(()(a x f dt t f xa-=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f a x --=. 由f '(x)£0可知f(x)在[a, b]上是单调减少的, 而a £ξ£x , 所以f(x)-f(ξ)£0. 又在(a, b)内, x -a >0, 所以在(a, b)内 0)]()([1)(£--='ξf x f ax x F . 分数:10所属所属知识点:微积分的计算 难度:8试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数.题型:计算题 答案:x tdt dx d y x sin sin 0=='⎰, 当x =0时, y '=sin0=0; 当4π=x 时, 224sin =='πy 分数:5所属所属知识点:微积分的计算 难度:4求由参数表示式⎰=tudu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x 的导数. 题型:计算题答案:x '(t)=sin t , y '(t)=cos t , t t x t y dx dy cot )()(=''=. 分数:5所属所属知识点:微积分的计算 难度:4求由⎰⎰=+xyt tdt dt e 000cos 所决定的隐函数y 对x 的导数dxdy . 题型:计算题答案:方程两对x 求导得 e y y ' +cos x =0, 于是 y exdx dy cos -=. 分数:6所属所属知识点:微积分的计算 难度:5当x 为何值时, 函数⎰-=xt dt te x I 02)(有极值? 题型:计算题答案:2)(x xe x I -=', 令I '(x)=0, 得x =0. 因为当x <0时, I '(x)<0; 当x >0时, I '(x)>0, 所以x =0是函数I(x)的极小值点.分数:6所属所属知识点:微积分的计算 难度:5计算下列各导数: (1)⎰+2021x dt t dxd ;题型:计算题答案:(1)42022021221112x x x u dxdu dt t du d u x dt t dx d u x +=⋅+=⋅+=+⎰⎰令. 分数:5所属所属知识点:微积分的计算 难度:5计算下列各导数: ⎰+32411x x dt tdx d ;题型:计算题 答案:⎰⎰⎰+++=+323204044111111x x x x dt t dx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx xx +++-=.分数:5所属所属知识点:微积分的计算 难度:5计算下列各导数:⎰xx dt t dxd cos sin 2)cos(π题型:计算题 答案:⎰⎰⎰+-=x x x x dt t dxd dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ =-cos(πsin 2x)(sin x)'+ cos(πcos 2x)( cos x)' =-cos x ×cos(πsin 2x)-sin x ×cos(πcos 2x) =-cos x ×cos(πsin2x)- sin x ×cos(π-πsin2x) =-cos x ×cos(πsin2x)+ sin x ×cos(πsin2x) =(sin x -cos x)cos(πsin2x) 分数:5所属所属知识点:微积分的计算 难度:5⎰+-adx x x02)13(;题型:计算题答案: a a a x x x dx x x aa+-=+-=+-⎰230230221|)21()13(分数:5所属所属知识点:微积分的计算 难度:5⎰+2142)1(dx x x ;题型:计算题 答案: 852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx xx 分数:5所属所属知识点:微积分的计算 难度:5⎰+94)1(dx x x ;题型:计算题 答案: 6145)421432()921932(|)2132()()1(22322394223942194=+-+=+=+=+⎰⎰x x dx x x dx x x 分数:5所属所属知识点:微积分的计算 难度:5⎰+33121x dx ; 题型:计算题 答案: 66331arctan3arctan arctan 13313312πππ=-=-==+⎰xxdx分数:5所属所属知识点:微积分的计算 难度:5⎰--212121xdx ;题型:计算题 答案:3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰xx dx分数:5所属所属知识点:微积分的计算 难度:5⎰+axa dx 3022;题型:计算题 答案:aa a a x a x a dxa a30arctan 13arctan 1arctan1303022π=-==+⎰. 分数:5所属所属知识点:微积分的计算 难度:5⎰-124xdx ;题型:计算题 答案:60arcsin 21arcsin 2arcsin41012π=-==-⎰x x dx . 分数:5所属所属知识点:微积分的计算 难度:5dx x x x ⎰-+++012241133;题型:计算题答案:41)1arctan()1(|)arctan ()113(11333013012201224π+=----=+=++=+++---⎰⎰x x dx x x dx x x x . 分数:5所属所属知识点:微积分的计算 难度:5⎰---+211e x dx ;题型:计算题 答案:1ln 1ln ||1|ln 12121-=-=+=+------⎰e x xdx e e . 分数:5所属所属知识点:微积分的计算 难度:5⎰402tanπθθd ;题型:计算题 答案:4144tan )(tan )1(sec tan 40402402πππθθθθθθπππ-=-=-=-=⎰⎰d d .分数:5所属所属知识点:微积分的计算 难度:5dx x ⎰π20|sin |;题型:计算题答案:⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx x =-cos x|π0+cos x|ππ2=-cos π +cos0+cos2π-cos π=4. 分数:5所属所属知识点:微积分的计算 难度:5⎰20)(dx x f , 其中⎪⎩⎪⎨⎧>£+=1 211 1)(2x x x x x f .题型:计算题答案:38|)61(|)21(21)1()(2131022121020=++=++=⎰⎰⎰x x x dx x dx x dx x f . 分数:6所属所属知识点:微积分的计算 难度:5设k 为正整数. 试证下列各题:(1)⎰-=ππ0cos kxdx ; (2)⎰-=ππ0sin kxdx ; (3)⎰-=πππkxdx 2cos ; (4)⎰-=πππkxdx 2sin .题型:证明题答案:(1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k kk k kx k kxdx . (2). (3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 分数:20所属所属知识点:微积分的计算 难度:6设k 及l 为正整数, 且k ¹l . 试证下列各题: (1)⎰-=ππ0sin cos lxdx kx ; (2)⎰-=ππ0cos cos lxdx kx ; (3)⎰-=ππ0sin sin lxdx kx .题型:证明题 答案:(1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k .(2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k . (3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin .0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k . 分数:15所属所属知识点:微积分的计算 难度:6求下列极限: (1)xdt t x x ⎰→02cos lim ; (2)⎰⎰→xt xt x dttedt e 0220022)(lim.题型:计算题 答案:(1)11cos lim cos lim 2002==→→⎰x xdtt x xx .(2)2222222222002002000022002lim2lim)(2lim)(limx xt x x xxt x x xt xt x xt xt x xedt e xee dt e xedt e dt e dttedt e ⎰⎰⎰⎰⎰⎰→→→→=⋅='⋅=⎰--=+-=-+-=-=ππππππππ0cos 1cos 1)(cos 1cos 1|cos 1sin k k k k k k k k kx k kxdx2212lim22lim2020222=+=+=→→x ex ee x x x x x .分数:10所属所属知识点:微积分的计算 难度:7设⎩⎨⎧ÎÎ=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=xdt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论(x)在(0, 2)内的连续性. 题型:计算题答案:当0£x £1时, 302031)()(x dt t dt t f x xx===⎰⎰ϕ; 当1<x £2时,6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x x x ϕ. 因此 ⎪⎩⎪⎨⎧£<-££=21 612110 31)(23x x x x x ϕ. 因为31)1(=ϕ, 3131lim)(lim 30101==-→-→x x x x ϕ, 316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ, 所以(x )在x =1处连续, 从而在(0, 2)内连续.分数:10所属所属知识点:微积分的计算 难度:8设⎪⎩⎪⎨⎧><££=ππx x x x x f 或0 00 sin 21)(. 求⎰=xdt t f x 0)()(ϕ在(-∞, +∞)内的表达式. 题型:计算题答案:当x <0时, 00)()(00===⎰⎰xx dt dt t f x ϕ; 当0£x £π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x xx xϕ; 当x >π时,10cos 21cos 21|cos 210sin 21)()(000=+-=-=+==⎰⎰⎰πϕπππt dt tdt dt t f x xx . 因此⎪⎪⎩⎪⎪⎨⎧³££-<=ππϕx x x x x 10 )cos 1(210 0)(.分数:12所属所属知识点:微积分的计算 难度:8设f(x)在[a, b]上连续, 在(a, b)内可导且f '(x)£0, ⎰-=xa dt t f ax x F )(1)(. 证明在(a, b)内有F '(x)£0. 题型:证明题答案:根据积分中值定理, 存在ξÎ[a, x], 使))(()(a x f dt t f xa -=⎰ξ. 于是有))(()(1)(1)(1)()(1)(22a x f a x x f a x x f a x dt t f a x x F xa----=-+--='⎰ξ)]()([1ξf x f ax --=. 由f '(x)£0可知f(x)在[a, b]上是单调减少的, 而a £ξ£x , 所以f(x)-f(ξ)£0. 又在(a, b)内, x -a >0, 所以在(a, b)内0)]()([1)(£--='ξf x f ax x F . 分数:8所属所属知识点:微积分的计算 难度:8⎰+πππ2)3sin(dx x ;题型:计算题答案:0212132cos 34cos)3cos()3sin(22=-=+-=+-=+⎰ππππππππx dx x . 分数:5所属所属知识点:定积分的计算 难度:5⎰-+123)511(x dx;题型:计算题 答案:51251110116101)511(2151)511(22122123=⋅+⋅-=+-⋅=+-----⎰x x dx. 分数:5所属所属知识点:定积分的计算 难度:5⎰203cossin πϕϕϕd ;题型:计算题 答案:⎰⎰-=20323sin cos cos sin ππϕϕϕϕϕd s d410cos 412cos 41cos 4144204=+-=-=πϕπ.分数:5所属所属知识点:定积分的计算 难度:5⎰-πθθ03)sin1(d ;题型:计算题答案:⎰⎰⎰⎰-+=+=-πππππθθθθθθθθ02002003cos )cos 1(cos sin )sin 1(d d d d34)cos 31(cos 03-=-+=πθθππ分数:5所属所属知识点:定积分的计算 难度:5⎰262cosππudu ;题型:计算题 答案:2626262622sin 4121)2cos 1(21cos ππππππππu u du u udu +=+=⎰⎰836)3sin (sin 41)62(21-=-+-=πππππ. 分数:5所属所属知识点:定积分的计算 难度:5dx x ⎰-222;题型:计算题 答案:dt t tdt t t x dx x ⎰⎰⎰+=⋅=-202022)2cos 1(cos 2cos 2sin 22ππ令2)2sin 21(20ππ=+=t t .分数:5所属所属知识点:定积分的计算 难度:5dy y ⎰--22228;题型:计算题 答案:⎰⎰⎰---⋅=-=-44222222cos 2cos 22sin 24228ππxdx x xy dyy dy y 令)2(2)2sin 21(22)2cos 1(224444+=+=+=--⎰πππππy x dx x .分数:5所属所属知识点:定积分的计算 难度:5⎰-121221dx x x ;题型:计算题 答案:41)cot ()1sin 1(cos sin cos sin 12424224212122πππππππ-=--=-=⋅=-⎰⎰⎰t t dt t tdt t t t x dx xx 令.分数:5所属所属知识点:定积分的计算 难度:5⎰+31221xxdx ;题型:计算题 答案:⎰⎰⋅⋅=+34223122secsec tan 1tan 1ππtdt t t tx xxdx 令3322sin 1sin cos 34342-=-==⎰ππππt dt tt. 分数:5所属所属知识点:定积分的计算 难度:6⎰--1145xxdx ;题型:计算题 答案:61)315(81)5(81454513133211=--=-=--⎰⎰-u u du u u x xxdx 令. 分数:5所属所属知识点:定积分的计算 难度:6⎰+411xdx ;题型:计算题 答案:)32ln 1(2|)1|ln (2)111(2211121212141+=+-=+-=⋅+=+⎰⎰⎰u u du u udu u u x xdx 令.分数:5所属所属知识点:定积分的计算 难度:6⎰--14311x dx ;题型:计算题 答案:2ln 21|)1|ln (2)111(2)2(11111210210021143-=-+=-+=-⋅-=---⎰⎰⎰u u du u du u u ux x dx 令.分数:5所属所属知识点:定积分的计算 难度:6⎰-axa xdx 20223;题型:计算题 答案:)13(3)3(3121320202222222022-=--=---=-⎰⎰a x a x a d x a xa xdx a a a.分数:5所属所属知识点:定积分的计算 难度:6dt tet ⎰-1022;题型:计算题 答案:2110102221021)2(222-----=-=--=⎰⎰e e t d edt tet t t .分数:5所属所属知识点:定积分的计算 难度:6⎰+21ln 1e xx dx ;题型:计算题 答案:)13(2ln 12ln ln 11ln 1222111-=+=+=+⎰⎰e e e xx d xxx dx.分数:5所属所属知识点:定积分的计算 难度:6⎰-++02222x x dx;题型:计算题 答案:2)1arctan(1arctan )1arctan()1(1122022222π=--=+=++=++---⎰⎰x dx x x x dx .分数:5所属所属知识点:定积分的计算 难度:6⎰-222cos cos ππxdx x ;题型:计算题答案:32)sin 32(sin sin )sin 21(2cos cos 22322222=-=-=---⎰⎰ππππππx x x d x xdx x . 分数:5所属所属知识点:定积分的计算 难度:6⎰--223cos cos ππdx x x ;题型:计算题 答案:⎰⎰---=-222223cos 1cos cos cos ππππdx x x dx x x34cos 32cos 32sin cos )sin (cos 2023223202=-=+-=--⎰⎰ππππx xxdx x dx x x 分数:5所属所属知识点:定积分的计算 难度:6⎰+π2cos 1dx x .题型:计算题答案:22cos 2sin 22cos 1000=-==+⎰⎰πππx xdx dx x .分数:5所属所属知识点:定积分的计算 难度:5利用函数的奇偶性计算下列积分: (1)⎰-ππxdx x sin 4;(2)⎰-224cos 4ππθθd ;(3)⎰--2121221)(arcsin dx x x ;(4)⎰-++55242312sin dx x x xx . 题型:计算题答案:(1) 因为x 4sin x 在区间[-π, π]上是奇函数, 所以0sin 4=⎰-ππxdx x . (2)⎰⎰⎰+==-202204224)22cos 1(8cos 42cos 4ππππθθθθθd x d d ⎰⎰++=++=20202)4cos 212cos 223(2)2cos 2cos 21(2ππθθd x x d x x23)4sin 412sin 23(2πθπ=++=x x .(3) ⎰⎰⎰=-=--21221022212122)(arcsin )(arcsin 21)(arcsin 21)(arcsin x d x dx xx dx xx324)(arcsin 3232103π==x .因为函数12sin 2423++x x x x 是奇函数, 所以012sin 552423=++⎰-dx x x x x .分数:20所属所属知识点:定积分的计算 难度:6证明: ⎰⎰-=aa adx x dx x 022)(2)(ϕϕ, 其中(u)为连续函数.题型:证明题答案:因为被积函数(x2)是x 的偶函数, 且积分区间[-a, a]关于原点对称, 所以有 ⎰⎰-=aa adx x dx x 022)(2)(ϕϕ. 分数:6所属所属知识点:定积分的计算 难度:5设f(x)在[-b, b]上连续, 证明⎰⎰---=bb bb dx x f dx x f )()(.题型:证明题答案:令x =-t, 则dx =-dt, 当x =-b 时t =b , 当x =b 时t =-b , 于是⎰⎰⎰----=--=b b bb b b dt t f dt t f dx x f )()1)(()(, 而⎰⎰---=-bb b b dx x f dt t f )()(, 所以⎰⎰---=b b bb dx x f dx x f )()(.分数:8所属所属知识点:定积分的计算 难度:6设f(x)在[a, b]上连续., 证明⎰⎰-+=ba ba dx xb a f dx x f )()(.题型:证明题答案:令x =a +b -t , 则dx =dt , 当x =a 时t =b, 当x =b 时t =a , 于是⎰⎰⎰-+=--+=b a b a abdt t b a f dt t b a f dx x f )()1)(()(, 而 ⎰⎰-+=-+ba b a dx x b a f dt t b a f )()(, 所以 ⎰⎰-+=ba ba dx xb a f dx x f )()(. 分数:8所属所属知识点:定积分的计算 难度:7 证明: ⎰⎰>+=+11122)0(11xx x x dx x dx .题型:证明题答案:令tx 1=, 则dt t dx 21-=, 当x =x 时xt 1=, 当x =1时t =1, 于是 ⎰⎰⎰+=-⋅+=+11121122211)1(1111x x xdt t dt t tx dx , 而 ⎰⎰+=+x x dx x dt t 1121121111, 所以⎰⎰+=+1112211x x x dx x dx.分数:10所属所属知识点:定积分的计算 难度:7证明: ⎰⎰-=-1010)1()1(dx x x dx x x m n n m . 题型:证明题答案:令1-x =t , 则⎰⎰⎰⎰-=-=--=-10100110)1()1()1()1(dx x x dt t t dt t t dx x x m n n m n m n m , 即⎰⎰-=-1010)1()1(dx x x dx x xm n n m.分数:8所属所属知识点:定积分的计算 难度:6证明: ⎰⎰=ππ020sin 2sin xdx xdx n n . 题型:证明题 答案:⎰⎰⎰+=ππππ2020sin sin sinxdxxdx xdx n n n, 而 ⎰⎰⎰⎰==---=202022sin sin ))((sin sinπππππππxdxtdt dt t tx xdx n n nn 令,所以⎰⎰=ππ020sin 2sin xdx xdx nn .分数:8所属所属知识点:定积分的计算 难度:8设f(x)是以l 为周期的连续函数, 证明⎰+1)(a a dx x f 的值与a 无关. 题型:证明题 答案:已知f(x +l)=f(x).⎰⎰⎰⎰⎰⎰⎰-+=++=+++ala llla lla a adxx f dx x f dx x f dx x f dx x f dx x f dx x f 00001)()()()()()()(,而⎰⎰⎰⎰=+=++=+a a ala ldx x f dx l x f dt l t f l t x dx x f 000)()()()(令, 所以 ⎰⎰=+l a adx x f dx x f 01)()(. 因此⎰+1)(a a dx x f 的值与a 无关. 分数:10所属所属知识点:定积分的计算 难度:8若f(t)是连续函数且为奇函数, 证明⎰xdt t f 0)(是偶函数; 若f(t)是连续函数且为偶函数, 证明⎰xdt t f 0)(是奇函数. 题型:证明题答案:设⎰=xdt t f x F 0)()(. 若f (t )是连续函数且为奇函数, 则f (-t )=-f (t ), 从而 )()()()1)(()()(0000x F dx x f dx u f du u f ut dtt f x F xx xx===---==-⎰⎰⎰⎰-令, 即⎰=xdt t f x F 0)()(是偶函数. 若f (t )是连续函数且为偶函数, 则f (-t )=f (t ), 从而 )()()()1)(()()(0000x F dx x f dx u f du u f ut dtt f x F xx xx-=-=-=---==-⎰⎰⎰⎰-令, 即⎰=xdt t f x F 0)()(是奇函数.分数:12所属所属知识点:定积分的计算。

《高等数学教程》第五章 定积分 习题参考答案-推荐下载

《高等数学教程》第五章 定积分 习题参考答案-推荐下载

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

北大版高等数学课后习题答案_完整版

北大版高等数学课后习题答案_完整版

3. 解下列不等式 : (1) | x | | x 1| 3.\;(2) | x 2 3 | 2. 解 (1)若x 0, 则 x 1 x 3, 2 x 2, x 1, (1, 0); 若0 x 1, 则x 1 x 3,1 3, (0,1); 若x 1, 则x x 1 3, x 3 / 2, (1,3 / 2). X (1, 0) (0,1) (1,3 / 2). (2) 2 x 2 3 2,1 x 2 5,1 | x |2 5,1 | x | 5, x (1, 5) ( 5, 1). 4. 设a, b为任意实数,(1)证明 | a b || a | | b |;(2)设 | a b | 1, 证明 | a || b | 1. 证(1) | a || a b (b) || a b | | b || a b | | b |,| a b || a | | b | . (2) | a || b (a b) || b | | a b || b | 1. 5. 解下列不等式 : (1) | x 6 | 0.1;(2) | x a | l. 解(1)x 6 0.1或x 6 0.1.x 5.9或x 6.1. X (, 6.1) (5.9, ). (2)若l 0, X (a l , ) (, a l ); 若l 0, x a; 若l 0, X (, ). 6. 若a 1, 证明0 n a 1 a 1 , 其中n为自然数. n
x4
1 2x 3 ( 1 2 x 3)( x 2)( 1 2 x 3) lim x 4 x 2 ( x 2)( x 2)( 1 2 x 3)
lim

2018版高考数学文北师大版大一轮复习讲义教师版文档

2018版高考数学文北师大版大一轮复习讲义教师版文档

1.向量的有关概念2.向量的线性运算3.向量共线的判定定理a 是一个非零向量,若存在一个实数λ.,使得b =λa ,则向量b 与非零向量a 共线.【知识拓展】1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n ——→=A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).3.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × ) (2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ )1.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( ) A .① B .③ C .①③ D .①② 答案 A解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误.2.(教材改编)D 是△ABC 的边AB 上的中点,则向量CD →等于( ) A .-BC →+12BA →B .-BC →-12BA →C.BC →-12BA →D.BC →+12BA →答案 A 解析 如图,CD →=CB →+BD →=CB →+12BA →=-BC →+12BA →.3.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 当a +b =0时,a =-b ,∴a ∥b ;当a ∥b 时,不一定有a =-b ,∴“a +b =0”是“a ∥b ”的充分不必要条件.4.已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R ),那么A ,B ,C 三点共线的充要条件是( ) A .λ+μ=2 B .λ-μ=1 C .λμ=-1 D .λμ=1答案 D解析 由AB →=λa +b ,AC →=a +μb (λ,μ∈R )及A ,B ,C 三点共线得AB →=tAC →, 所以λa +b =t (a +μb )=t a +tμb ,即可得⎩⎪⎨⎪⎧λ=t ,1=tμ,所以λμ=1,故选D.5.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________. 答案 2解析 由向量加法的平行四边形法则, 得AB →+AD →=AC →.又O 是AC 的中点,∴AC =2AO ,∴AC →=2AO →,∴AB →+AD →=2AO →.又AB →+AD →=λAO →,∴λ=2.题型一 平面向量的概念例1 给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )A .②③B .①②C .③④D .②④ 答案 A解析 ①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB →∥DC →且|AB →|=|DC →|,∴AB →=DC →. ③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. 综上所述,正确命题的序号是②③.故选A. 思维升华 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等.(4)单位向量的关键是方向没有限制,但长度都是一个单位长度.(5)零向量的关键是方向没有限制,长度是0,规定零向量与任何向量共线.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( ) A .0 B .1 C .2 D .3 答案 D解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3. 题型二 平面向量的线性运算命题点1 向量的线性运算例2 (1)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c (2)(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,若BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 (1)A (2)A解析 (1)∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →), ∴3AD →=2AC →+A B →, ∴AD →=23AC →+13AB →=23b +13c .(2)∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.命题点2 根据向量线性运算求参数例3 (1)设D 、E 分别是△ABC 的边AB 、BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC→(λ1、λ2为实数),则λ1+λ2的值为________.(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫0,13C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 答案 (1)12(2)D解析 (1)DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.(2)设CO →=yBC →, ∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →) =-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝⎛⎭⎫0,13, ∵AO →=xAB →+(1-x )AC →, ∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 思维升华 平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且交对角线AC 于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为( )A.29B.27C.25D.23答案 A解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知, AC →=AB →+AD →, ∴AK →=λAC →=λ(AB →+AD →) =λ⎝⎛⎭⎫52AE →+2AF → =52λAE →+2λAF →, 由E ,F ,K 三点共线,可得λ=29,故选A.题型三 共线定理的应用例4 设两个非零向量a 与b 不共线. (1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →, ∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)解 假设k a +b 与a +k b 共线, 则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量, ∴k -λ=λk -1=0.消去λ,得k 2-1=0,∴k =±1.思维升华 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a 、b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a 、b 不共线.(1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( )A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线(2)如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△ABC 与△AOC 的面积之比为________.答案 (1)B (2)2 解析 (1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →、AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B. (2)取AC 的中点D ,连接OD ,则OA →+OC →=2OD →, ∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点, ∴S △ABC =2S △OAC ,∴△ABC 与△AOC 面积之比为2.4.容易忽视的零向量典例 下列叙述错误的是________. ①若a ∥b ,b ∥c ,则a ∥c .②若非零向量a 与b 方向相同或相反,则a +b 与a ,b 之一的方向相同. ③|a |+|b |=|a +b |⇔a 与b 方向相同.④向量b 与向量a 共线的充要条件是有且只有一个实数λ,使得b =λa . ⑤AB →+BA →=0. ⑥若λa =λb ,则a =b . 错解展示解析 ⑤中两个向量的和仍是一个向量,∴AB →+BA →=0. 答案 ⑤ 现场纠错解析 对于①,当b =0时,a 不一定与c 平行.对于②,当a +b =0时,其方向任意,它与a ,b 的方向都 不相同. 对于③,当a ,b 之一为零向量时结论不成立.对于④,当a =0且b =0时,λ有无数个值;当a =0但b ≠0或a ≠0但b =0时,λ不存在. 对于⑤,由于两个向量之和仍是一个向量, 所以AB →+BA →=0.对于⑥,当λ=0时,不管a 与b 的大小与方向如何,都有λa =λb ,此时不一定有a =b . 故①②③④⑤⑥均错. 答案 ①②③④⑤⑥纠错心得 在考虑向量共线问题时,要注意考虑零向量.1.已知a ,b 是两个非零向量,且|a +b |=|a |+|b |,则下列说法正确的是( ) A .a +b =0 B .a =bC .a 与b 共线反向D .存在正实数λ,使a =λb 答案 D解析 因为a ,b 是两个非零向量,且|a +b |=|a |+|b |,则a 与b 共线同向,故D 正确. 2.已知向量a ,b ,c 中任意两个都不共线,但a +b 与c 共线,且b +c 与a 共线,则向量a +b +c 等于( ) A .a B .b C .c D .0 答案 D解析 依题意,设a +b =m c ,b +c =n a ,则有(a +b )-(b +c )=m c -n a ,即a -c =m c -n a .又a 与c 不共线,于是有m =-1,n =-1,a +b =-c ,a +b +c =0,选D.3.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( ) A .A ,B ,C B .A ,B ,D C .B ,C ,D D .A ,C ,D答案 B解析 因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线.4.已知平面内一点P 及△ABC ,若P A →+PB →+PC →=AB →,则点P 与△ABC 的位置关系是( ) A .点P 在线段AB 上 B .点P 在线段BC 上 C .点P 在线段AC 上 D .点P 在△ABC 外部 答案 C解析 由P A →+PB →+PC →=AB →得P A →+PC →=AB →-PB →=AP →,即PC →=AP →-P A →=2AP →,所以点P 在线段AC 上.5.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A .1B .2C .3D .4 答案 B解析 ∵O 为BC 的中点, ∴AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线,∴m 2+n2=1,∴m +n =2.6.设P 为锐角△ABC 的外心(三角形外接圆的圆心),AP →=k (AB →+AC →)(k ∈R ),若cos ∠BAC =25,则k 等于( )A.514B.214C.57D.37 答案 A解析 取BC 的中点D ,连接PD ,AD , 则PD ⊥BC ,AB →+AC →=2AD →, ∵AP →=k (AB →+AC →)(k ∈R ),∴AP →=2kAD →,∴A ,P ,D 三点共线, ∴AB =AC ,∴cos ∠BAC =cos ∠DPC =DP PC =DP P A =25,∴AP =57AD ,∴2k =57,解得k =514,故选A.7.(2015·课标全国Ⅱ)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则得⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.8.(2016·滨州一模)如图,网格纸上小正方形的边长为1,若起点和终点均在格点的向量a ,b ,c 满足c =x a +y b (x ,y ∈R ),则x +y =________.答案135解析 如图,取单位向量i ,j ,则a =i +2j ,b =2i -j ,c =3i +4j .∴c =x a +y b =x (i +2j )+y (2i -j )=(x +2y )i +(2x -y )j ,∴⎩⎪⎨⎪⎧x +2y =3,2x -y =4, ∴⎩⎨⎧x =115,y =25,∴x +y =135.9.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值是________. 答案 -1解析 ∵BC →=a +b ,CD →=a -2b , ∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD →共线. 设AB →=λBD →, ∴2a +p b =λ(2a -b ), ∵a ,b 不共线,∴2=2λ,p =-λ,∴λ=1,p =-1.10.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =______. 答案 3解析 ∵MA →+MB →+MC →=0, ∴M 为△ABC 的重心.如图所示,连接AM 并延长交BC 于点D ,则D 为BC 的中点.∴AM →=23AD →.又AD →=12(AB →+AC →),∴AM →=13(AB →+AC →),即AB →+AC →=3AM →,∴m =3.11.如图,在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.解 AD →=12(AB →+AC →)=12a +12b .AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →) =13AB →+13AC → =13a +13b . 12.设a ,b 是不共线的两个非零向量.(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A ,B ,C 三点共线; (2)若AB →=a +b ,BC →=2a -3b ,CD →=2a -k b ,且A ,C ,D 三点共线,求k 的值. (1)证明 由已知得,AB →=OB →-OA →=3a +b -2a +b =a +2b , BC →=OC →-OB →=a -3b -3a -b =-2a -4b , 故BC →=-2AB →,又BC →与AB →有公共点B ,所以A ,B ,C 三点共线. (2)解 AC →=AB →+BC →=3a -2b ,CD →=2a -k b . 因为A 、C 、D 三点共线,所以AC →=λCD →, 即3a -2b =2λa -kλb ,所以⎩⎪⎨⎪⎧3=2λ,2=kλ, 所以⎩⎨⎧λ=32,k =43.综上,k 的值为43.13.如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN的延长线与CD 交于点E ,若AE →=mAB →+AD →,求实数m 的值.解 由N 是OD 的中点得AN →=12AD →+12AO →=12AD →+14(AD →+AB →)=34AD →+14AB →, 又因为A ,N ,E 三点共线, 故AE →=λAN →,即mAB →+AD →=λ(34AD →+14AB →),所以⎩⎨⎧m =14λ,1=34λ,解得⎩⎨⎧m =13,λ=43,故实数m =13.。

北师大版高中数学课件必修第1册第五章 函数应用

北师大版高中数学课件必修第1册第五章 函数应用

4
2
1.1 利用函数性质判定方程解的存在性 刷易错
18.若函数
y=ax2-x-1
只有一个零点,则实数
1 a=0_或___-__.
4
解析
当 a=0 时,y=-x-1=0⇒x=-1,符合题意;当 a≠0 时,函数 y=ax2-x-1 为二次函数,
因为函数
y=ax2-x-1
1 只有一个零点,所以Δ=1+4a=0⇒a=- ,符合题意.故实数
易错点1 不能正确理解函数零点的概念而致错
14.[江苏淮安高中校协作体 2021 高一期中]函数 f(x)=x2-2x-8 的零点是( B )
A.2 和-4
B.-2 和 4
C.(2,0)和(-4,0)
D.(-2,0)和(4,0)
解析
解方程 f(x)=x2-2x-8=0,得 x=-2 或 x=4.因此,函数 f(x)=x2-2x-8 的零点是-2 和 4.故选 B.
A.至少有一实根
B.至多有一实根
C.没有实根
D.必有唯一实根
解析
由函数零点存在定理知,函数 f(x)的图象在[a,b]内与 x 轴只有一个交点,即方程 f(x)=0 在[a,b]内只有一 个实根.
1.1 利用函数性质判定方程解的存在性 刷易错
易错点3 忽略含参函数的分类讨论而致错
17.[湖南长沙长郡中学 2022 高一期末]已知函数 f(x)=ax2-x+a,“函数 f(x)在(0,2)上有两个不相等的零
x
x
由 f(x)=x2+x=0 解得 x=-1 或 x=0,即函数 f(x)=x2+x 有零点.故选 C.
1.1 利用函数性质判定方程解的存在性 刷基础
4.函数 f(x)= 2x-3的零点是__lo__g_2_3__.

高等代数(北大版)第5章习题参考答案

高等代数(北大版)第5章习题参考答案

第五章 二次型1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。

1)323121224x x x x x x ++-;2)23322221214422x x x x x x x ++++; 3)32312122216223x x x x x x x x -+--;4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++;6)4342324131212422212222442x x x x x x x x x x x x x x x ++++++++; 7)43322124232221222x x x x x x x x x x ++++++。

解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x (1)则()312221321444,,y y y y x x x f ++-=2223233121444y y y y y y ++-+-=()222333142y y y y ++--=, 再作非退化线性替换⎪⎪⎩⎪⎪⎨⎧==+=33223112121zy z y z z y (2)则原二次型的标准形为()2322213214,,z z z x x x f ++-=,最后将(2)代入(1),可得非退化线性替换为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=++=333212321121212121z x z z z x z z z x (3)于是相应的替换矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=100211212102110001021021100011011T , 且有⎪⎪⎪⎭⎫ ⎝⎛-='100040001AT T 。

2)已知()=321,,x x x f 23322221214422x x x x x x x ++++,由配方法可得()()()233222222121321442,,x x x x x x x x x x x f +++++=()()2322212x x x x +++=,于是可令⎪⎩⎪⎨⎧=+=+=333222112xy x x y x x y ,则原二次型的标准形为()2221321,,y y x x x f +=,且非退化线性替换为⎪⎩⎪⎨⎧=-=+-=33322321122yx y y x y y y x ,相应的替换矩阵为⎪⎪⎪⎭⎫⎝⎛--=100210211T ,且有⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--='000010001100210211420221011122011001AT T 。

2019届高考数学北师大版理大一轮复习讲义:第五章 平

2019届高考数学北师大版理大一轮复习讲义:第五章 平

§5.2 平面向量基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x2-x 1,y 2-y 1),|AB →|3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. 知识拓展1.若a 与b 不共线,λa +μb =0,则λ=μ=0.2.设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可用这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ ) (6)平面向量不论经过怎样的平移变换之后其坐标不变.( √ ) 题组二 教材改编2.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.3.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案 -12解析 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1). 由m a +n b 与a -2b 共线, 得2m -n 4=3m +2n -1,所以m n =-12.题组三 易错自纠4.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 答案 05.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=________. 答案 (-7,-4)解析 根据题意得AB →=(3,1),∴BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).6.(2016·全国Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 答案 -6解析 因为a ∥b ,所以(-2)×m -4×3=0,解得m =-6.题型一 平面向量基本定理的应用1.在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3) 答案 B解析 方法一 设a =k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴⎩⎪⎨⎪⎧k 2=3,2k 2=2,无解;B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2),∴⎩⎪⎨⎪⎧ -k 1+5k 2=3,2k 1-2k 2=2,解得⎩⎪⎨⎪⎧k 1=2,k 2=1.故B 中的e 1,e 2可以把a 表示出来; 同理,C ,D 选项同A 选项,无解.方法二 只需判断e 1与e 2是否共线即可,不共线的就符合要求.2.(2017·济南模拟)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案311解析 ∵AN →=13NC →,∴AC →=4AN →,∵AD →=mAB →+211AC →=mAB →+811AN →,又P ,B ,N 三点共线,∴m +811=1,即m =311.思维升华平面向量基本定理应用的实质和一般思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二 平面向量的坐标运算典例(1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( ) A.⎝⎛⎭⎫1,83 B.⎝⎛⎭⎫-133,83 C.⎝⎛⎭⎫133,43 D.⎝⎛⎭⎫-133,-43 答案 D解析 由已知3c =-a +2b=(-5,2)+(-8,-6)=(-13,-4). 所以c =⎝⎛⎭⎫-133,-43. (2)(2017·北京西城区模拟)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ等于( )A .1B .2C .3D .4 答案 D解析 以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),即⎩⎪⎨⎪⎧-λ+6μ=-1,λ+2μ=-3, 解得λ=-2,μ=-12,∴λμ=4.引申探究在本例(2)中,试用a ,c 表示b .解 建立本例(2)解答中的平面直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),设 b =x a +y c ,则(6,2)=x (-1,1)+y (-1,-3).即⎩⎪⎨⎪⎧ -x -y =6,x -3y =2,解得⎩⎪⎨⎪⎧x =-4,y =-2, 故b =-4a -2c .思维升华向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 跟踪训练 (1)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A.⎝⎛⎭⎫2,72 B.⎝⎛⎭⎫2,-12 C .(3,2) D .(1,3)答案 A解析 设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,∴⎩⎪⎨⎪⎧4=2x ,3=2(y -2),∴⎩⎪⎨⎪⎧x =2,y =72,故选A.(2)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)答案 D解析 12a =⎝⎛⎭⎫12,12,32b =⎝⎛⎭⎫32,-32, 故12a -32b =(-1,2).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标典例已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →= (4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x=y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3). 命题点2 利用向量共线求参数典例(2017·郑州模拟)已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角θ=________. 答案 45°解析 由a ∥b ,得(1-sin θ)(1+sin θ)=12,∴cos 2θ=12,∴cos θ=22或cos θ=-22,又θ为锐角,∴θ=45°.思维升华平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.跟踪训练 (1)(2017·北京海淀区模拟)已知向量a =(1,1),点A (3,0),点B 为直线y =2x 上的一个动点.若AB →∥a ,则点B 的坐标为________. 答案 (-3,-6)解析 设B (x,2x ),则AB →=(x -3,2x ). ∵AB →∥a ,∴x -3-2x =0,解得x =-3, ∴B (-3,-6).(2)若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4), 根据题意AB →∥AC →,∴4(a -1)-3×(-3)=0,即4a =-5,∴a =-54.解析法(坐标法)在向量中的应用典例(12分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思想方法指导建立平面直角坐标系,将向量坐标化,将向量问题转化为函数问题更加凸显向量的代数特征. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B ⎝⎛⎭⎫-12,32.[4分]设∠AOC =α⎝⎛⎭⎫α∈⎣⎡⎦⎤0,2π3,则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6,[10分] 又α∈⎣⎡⎦⎤0,2π3, 所以当α=π3时,x +y 取得最大值2.[12分]1.如果e 1,e 2是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( ) A .e 1与e 1+e 2 B .e 1-2e 2与e 1+2e 2 C .e 1+e 2与e 1-e 2 D .e 1-2e 2与-e 1+2e 2答案 D2.(2018·郑州质检)设平面向量a =(-1,0),b =(0,2),则2a -3b 等于( ) A .(6,3) B .(-2,-6) C .(2,1) D .(7,2)答案 B解析 2a -3b =(-2,0)-(0,6)=(-2,-6).3.(2018·河南中原名校联考)如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A.58B.14 C .1 D.516 答案 A解析 DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A.4.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) A .-12a +32bB.12a -32b C .-32a -12bD .-32a +12b答案 B解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .5.已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ,μ为实数),则实数m 的取值范围是( ) A .(-∞,2) B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)答案 D解析 由题意知向量a ,b 不共线,故2m ≠3m -2,即m ≠2.6.(2018·厦门调研)已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为( )A .2 B.52 C .3 D .4答案 C解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA →所在直线为x 轴,OB →所在直线为y 轴建立平面直角坐标系(图略), OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ). ∵tan 30°=3n m =33,∴m =3n ,即mn=3,故选C. 7.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).8.(2018·雅安模拟)已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. 答案 1解析 ∵a -2b =(3,3),且a -2b ∥c , ∴3×3-3k =0,解得k =1.9.(2017·福建四地六校联考)已知A (1,0),B (4,0),C (3,4),O 为坐标原点,且OD →=12(OA →+OB→-CB →),则|BD →|=________. 答案 2 2解析 由OD →=12(OA →+OB →-CB →)=12(OA →+OC →)知,点D 是线段AC 的中点,故D (2,2),所以BD→=(-2,2),故|BD →|=(-2)2+22=2 2.10.(2018·洛阳质检)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=__________.(用e 1,e 2表示) 答案 -23e 1+512e 2解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.11.已知A (1,1),B (3,-1),C (a ,b ),若A ,B ,C 三点共线,则a ,b 的关系式为________. 答案 a +b =2解析 由已知得AB →=(2,-2),AC →=(a -1,b -1), ∵A ,B ,C 三点共线,∴AB →∥AC →. ∴2(b -1)+2(a -1)=0,即a +b =2.12.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 (1)由已知得a =(5,-5),b =(-6,-3),c =(1,8).∴3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n )=(5,-5),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,∵CM →=OM →-OC →=3c ,∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20),∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).13.(2018·河南三市联考)已知点A (1,3),B (4,-1),则与AB →同方向的单位向量是__________.答案 ⎝⎛⎭⎫35,-45 解析 AB →=OB →-OA →=(4,-1)-(1,3)=(3,-4),∴与AB →同方向的单位向量为AB →|AB →|=⎝⎛⎭⎫35,-45. 14.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______.答案 102 解析 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵AP =52,∴x 2+y 2=54. 点P 满足的约束条件为⎩⎪⎨⎪⎧ 0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧ x =5λ,y =3μ, ∴x +y =5λ+3μ. ∵x +y ≤2(x 2+y 2)=2×54=102, 当且仅当x =y 时取等号, ∴5λ+3μ的最大值为102.15.(2018·河北石家庄一模)如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).16.(2018·开封调研)已知正三角形ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.答案 494解析 建立平面直角坐标系如图所示,则易知B (-3,0),C (3,0),A (0,3).设M (x ,y ),P (a ,b ),∵PM →=MC →,∴⎩⎨⎧ x -a =3-x ,y -b =0-y , 解得⎩⎨⎧ a =2x -3,b =2y ,即P (2x -3,2y ),又∵|AP →|=1.∴P 点在圆①x 2+(y -3)2=1上,即(2x -3)2+(2y -3)2=1,整理得⎝⎛⎭⎫x -322+⎝⎛⎭⎫y -322=14(记为圆②), 即M 点在该圆上,求|BM →|的最大值转化为B 点到该圆②上的一点的最大距离,即B 到圆心的距离再加上该圆的半径:BM →|2=⎝⎛⎭⎪⎫⎝⎛⎭⎫32+32+⎝⎛⎭⎫322+122=494.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题5.11.,,,,,().11,,().22ABCD AB AD AC DB MA M AC DB MA AM AC ===+=-=-=-=-+设为一平行四边形试用表示为平行四边形对角线的交点解a b.a b a b a b a b()2.,1().211221().2M AB O OM OA OB OM OA AM OA AB OA OB OAOA OB =+=+=+=+-=+设为线段的中点,为空间中的任意一点证明证 3.,,1().3221()3321(),31(),3M ABC O OM OA OB OC OM OA AM OA AD OA AB AC OA AB AC OM OB BA BC OM OC =++=+=+=+⨯+=++=++=设为三角形的重心为空间中任意一点证明证1().313,().3CA CB OM OA OB OC OM OA OB OC ++=++=++ 4.,1,().41(),211(),(),221().24ABCD M O OM OA OB OC OD OM OA AM OA AB AD OM OB BA AD OM OC BA DA OM OD AB DA OM OA OB OC OD =+++=+=++=++=++=++=+++设平行四边形的对角线交点为为空间中的任意一点证明证1,().4OM OA OB OC OD =+++2222225.?(1)()();(2)();(3)()().(1).:()().(2).:()0, 1.(3),6.==⨯=⨯======0对于任意三个向量与判断下列各式是否成立不成立例如,不成立例如,成立都是与组成的平行六面体的有向体积利用向量证明三角形两边中点的连线平行解a,b c,a b c b c a a b a b a b c c a b a b i c =j.a b c =j,b c a =a i b j,a b a b a,b c .,112211().22DE DA AE BA AC BA AC BC =+=+=+=于第三边并且等于第三边长度之半.证2227.:(1),;(2).(1)()()()()||||0.()cos |||||||||||||AC BD AB BC BC CD AB BC BC CD BC CD AB AC AB AB AD AB AB AB AD a AB ADAB AC AB AC AB AC α=++=+-=-=+++===利用向量证明菱形的对角线互相垂直且平分顶角勾股弦定理证2,||()cos cos .|||||||||||,.a AC AD AB AD AD AB AD AD a AB ADAB AC AB AC a AC βααβαβ+++=====与都是锐角故22222(2)||()()||||2||||.AC AC AC AB BC AB BC AB BC AB BC AB BC ==++=++=+2222222222222222228.()()||||.()()||||cos ||||sin ||||(cos sin )||||.9..||.AB AC ABC ABC ABDC AB AC αααα⨯+=⨯+=+=+=∆=⨯证明恒等式试用向量与表示三角形的面积11的面积=的面积22证解a b a b a b a b a b a b a b a b a b222222222210.,,,()()2().()()()()()()222().=++-=+++-=+++--=-+给定向量记为即现设为任意向量证明证a a a a a a a.a b , :a b a b a b a b a b a b a b a b a b a a +b b +a b +a a +b b a b =a b2222222222211.,,:().:()||(||sin )||sin ||.,αα⨯≤⨯=⨯==≤=对于任意向量证明问等号成立的充分必要条件是什么?等号成立的充分必要条件是正交证22a b a b a b a b a b a ||b a ||b a ||b a b a b .习题5.21.(,,),,,,.||,||,2.(1,2,1),(3,0,1),(2,1,2),,,,(3,0,1)(1,2,1)(4,2xy z xy yz O x y z x y z Oxy Oyz d d d d z d x d x A B C AB BA AC BC AB =======-===--=-写出点分别到轴轴轴平面平面以及原点的距离已知三点求的坐标与模.解解,0),||20|(4,2,0)(4,2,0)25,(2,1,2)(1,2,1)(3,1,1),||11,(2,1,2)(3,0,1)(1,1,1),|| 3.3.(3,2,2),(1,3,2),(8,6,2),132(9,6,6)2AB BA AB AC AC BC BC ===-=--=-=-=--=-==--=-==-==---+a b c a b +c =1112(2,6,4)(4,3,1)(11,9,1).4.(2,5,1),(1,2,7),,.2,7).(2,5,)(1,2,7)(21,5,2,7),70,7.5.,(,,)(k k xy k k k k k k k k k A B x y z x ︒︒---+-=-==-+=-+=+-=+-++==-设分别求出沿和方向的单位向量并求常数使与平面平行1设两点的坐标分别为和解a b a b ,a b a b a b 22111222121212,,),,.111()((,,)(,,))(,,).2226.(1,2,3),(5,2,1),(1)23(2)(3)cos ,.(1)2366(2)12.(2)1(3)cos y zA B C OC OA OB x y z x yz x x y yz z =+=+=+++=-=-<>⨯-=-求连线中点的坐标设求解解a b a b a i a b a b =a b =a i = .2222,|||7.||1,||3,||2,|/3,?17|()()||||||2()11942(3),23333,cos ||||322π<>======+⊥+=+=++=++++==+++⨯+==⨯设求解a b a b |a b a b c a b +c |=a c <a,b >=<b,c >=a b +c |a b +c a b +c a b c a b +b c a c b c b c b c =<b,c >=b c .6π<b,c >=22228.||2,||6,,()()||||4360,1/3.k k k k k k k k ==⊥--=-=-==±设试求常数使解a b a +b a b.a +b a b a b 9.(1,2,1),(1,1,3),(2,5,3)(1)(2)(3)()(4)()(5)().(1)121(5,2,1),113(2)253(3,0,2).01121(3)()11323.(4)()5212532=-=-=-⨯⨯⨯⨯⨯⨯⨯⨯-=---⨯-=-⨯-=-⨯⨯---解a b c a b c j a b c a b c a b c ijka b =i j kc j =ijka b c =a b c =(1,13,21).53(5)113(12,9,7),()121(23,19,15).2531297=---⨯-=-⨯⨯=-=-----i jk i j kb c =a b c10.,(2,1,0)(0,1,2),,.(2,1,0)(0,1,2)(2,0,2),(0,1,2)(2,1,0)(2,2,2).cos ,|ABCD AB AD AC BD AC AB AD BD AD AB AC BD AC BD AC ==-<>=+=+-==-=--=--<>=在平行四边形中求两对角线的夹角解00,,.2||||||||||5,,,.2AC BD BD AC BD AB AD ABCD AC BD ππ==<>===<>=平行四边形为菱形故两对角线的夹角解二|11.(3,4,1),(2,3,0),(3,5,1),.(1,1,1)(1,1,1),(0,1,0),111(1,0,1),01012A B C ABC AB AC AB AC ABC =---=-=⨯==-=已知三点求三角形的面积三角形的面积解i j k12.(3,4,5),(1,2,2)(9,14,16).345(,,)1220,,9141613.|1,||5,3,|.344cos ,,sin ,,|||||sin ,15 4.||||555======-⨯-<>==<>=⨯=<>=⨯⨯=证明向量和是共面的因为故和是共面的.已知|求||证解a b c a b c a b c a =b a b =a b a b a b a b a b a b a b a b14.cos ,cos ,cos ,,(1)cos 0,cos 0,cos 0;(2)cos cos 0,cos 0;(3)cos cos cos .(1)(2)115.||,2x z αβγαβγαβγαβγπαβγ=≠≠==≠==-===设向量的方向余弦在下列各情况下指出的方向特征与轴垂直是沿轴的的向量.(3)与三个轴的夹角相等,都是设的三个方向角满足求的坐标解a a .a .a a a aa 22222222cos 21,(2cos 1) 1.1cos ,2(21)1,4211,2(21)0,0,.2cos 0,,(0,0,213cos ,cos ,.(1,1,0).24416.,(75)(3),(4)(72),co x x x x x x x x x αααααπααππααα+=+-==+-=-+=-=========-⊥+-⊥-设为两非零向量且求22解2cos 2cos .a a =ab ,a b a b a b a b 2222222222s ,.(75)(3)0,7||15||16||||cos ,0,(4)(72)0,7||8||30||||cos ,0.||||1516cos ,7,||||||||830cos ,7.||||716730||1516||83<>-+=-+<--=+-<⎧-+<-⎪⎪⎨⎪-<-⎪⎩---=--解a b a b a b a b a b a b >=a b a b a b a b a b >=b b a b >=a a b b a b >=a a b a ||1,1||157871cos ,.15162830==---<==--b a a b >习题5.31.:(1)5310(2)270(3)50(4)290(5)50(6)0.(1).(2).(3).(4).(5).(6).2.:(1)(1,5,1)(3,2,2);(2)(5,2,8);(3)x z x y z y y z x y x y Oxz x z Oyz y Oxz -+=+-=+=-=--==---指出下列平面位置的特点平行于轴过原点平行于平面过轴平行于轴平面求下列各平面的方程平行于轴且通过点和平行于平面且通过点垂直于平解451(2,7,3)(0,0,0);(4)(5,4,3)(2,1,8).(1)(0,1,0),(2,7,3),010(3,0,2).2733(1)2(1)0,3250.(2) 2.(3)(1,4,5),(2,7,3),145(47,13,1).27347x y z Oyz x z x z y -+=---==-==-------=+-===-=-=-=----面且通过点及垂直于平面且通过点及解i jka b n i j ka b n 1310.(4)(1,0,0),(7,5,5),100(0,5,5)5(0,1,1).755(4)(3)0,70.x y y z y z ++===-==-=---++-=-+=ij ka b n3.(2,4,8),(3,1,5)(6,2,7).(5,3,3)(4,6,1).533(15,17,42),46115(2)17(4)42(8)0,1517422380.4.1,A B C x y z x y z y z a a --=---=-----=--------+-=+-+=++=求通过点及的平面方程设一平面在各坐标轴上的截距都不等于零并相等,且过点(5,-7,4),求此平面的方程.x 5 a 解解a ,b i jkn =741,2,20.5.(2,1,2)(8,7,5),.(6,8,7).6(8)8(7)7(5)0,6871390.a x y z a aA B B AB x y z x y z -++==++-=--=-+-+-=++-=a 已知两点及求过且与线段垂直的平面解n126.(2,0,3)22470,3250.224(0,16,8)8(0,2,1).2(3)0,30.3127.94230.0,420,1,2,20.2408.:380x y z x y z y z y z x x y z By Cz B C B C y z x z l l y z --++=+-+=-==++=++=---+=+=--===--=+-=⎧⎨-+=⎩求过点且与垂直的平面方程求通过轴且与平面垂直的平面方程取求通过直线且与直线解解ijkn =0101240:.60102(6,1,3),110(1,1,1),03111613(2,9,7).0,4,8/3.1112(4)9(8/3)7()0,297320.383129.::1324x y y z z l y x y z x y z x t x y z l l y t z --=⎧⎨--=⎩==--=--=-=--===---++-=-+-+==+++-===+0平行的平面方程用代入的方程得x 求直线与直线解ij ki j ka b =i j k n 000,26383112621116,11,,3243223131413148,,,(8,,3333324(0,6,3)3(0,2,1).2(1)(2)0,240.312t t t t t t t t x y z y z y z ⎧⎪⎨⎪=+⎩+++++-==+=+=+=-=-=-=----==-=-+--=-+=的交点坐标并求通过此两直线的平面方程.求两条直线交点坐标:交点).解i j kn121112210.::.211422(1,1,1)(2,2,0).211(4,5,3).3314(1)5(1)3(1)0,45320.x y z x y zl l x y z x y z -+++-====-------=------+++=--++=求通过两直线和的平面方程两直线平行.平面过点和解 i j kn =1221121211.::.121012,(1,2,1)(0,1,2)21123,5,0,.121210(1)3x y z x y z l l t t l t t x y z -++--====----⎧--+-+⎪====⎨-⎪⎩+-+=证明两直线和是异面直线证首先两直线的方向向量 和 不平行.x=-2y=1+t 矛盾故两直线无公共点.z=2-2t两直线不平行,又无交点,故是异面直线.12.将下列直线方程化为标准方程及参数方程:0000350(2)280;280.(1)211(1,7,5).31210(1)0,6,7.280;67.7567,.75(2)(1)103(3,2,1).012(2)0,x z x y z y z y z x y z y z y z x t y t t z t -+=⎧⎧⎨⎨-+-=-+=⎩⎩=-=----+=⎧===⎨-+-=⎩--==--=⎧⎪=--∞<<+∞⎨⎪=-⎩=-=-=解中令解之得x 标准方程1参数方程:中令z 直i j kn i j kn 005,8.58.3215382,.y x y zx t y t t z t =-=-++===-+⎧⎪=-+-∞<<+∞⎨⎪=⎩接得x 标准方程参数方程:00013.(3,2,5)3790.100(0,5,2),325520.5203790.052(33,6,15)3(11,2,5).317500,0, 3.390.3:11x y z y z y z x y z y z y x x y x ---+===-+=+=⎧⎨--+=⎩==--=----=⎧===-⎨-+=⎩+=-求通过点及x 轴的平面与平面的交线方程解地第一个平面的法向量平面方程直线方程直线的方向向量直线方程i j kn i j ka .25y z=-0000121326014.,403260(0,0,),40260 3.02404015.::.380601020x y z D Oz x y z D x y z Oz z x y z D z D z z D x z x y l l y z z y l -+-=⎧⎨+-+=⎩-+-=⎧⇔⎨+-+=⎩-=⎧⇔⇔==⎨-+=⎩--=--=⎧⎧⎨⎨-+=-+=⎩⎩=-当为何值时直线与轴相交?解直线与轴相交存在在此直线上试求通过直线并与直线平行的平面方程解的方向向量ij ka 2000(6,1,3).31110(1,1,1)(1,1,1).011613(2,3,5).111804,.38:2(4)3()50,2350.3l z x y x y z x y z =-=-=---=--==--===----++=+-=的方向向量平面的法向量在的方程中令得所求平面方程即i j kb ij kn04316.(1,2,3).132(1,2,3):(1)3(2)2(3)0.43.32:1(1)3(432)2(323)0,,215(,,2).222x y z x y z x t y t z t t t t t d --==-------==⎧⎪=-⎨⎪=-⎩-------====求点到直线的距离解过点垂直于直线的平面直线参数方程:代入平面方程得对应交点的参数直线与平面交点为所求距离000017.(2,1,3)2230.(2,1,3)2230:2212,.322(22)2(12)(3)30..9141325,,.999141325(2,1,3)2230,,999x y z x y z x ty t t z t t t t t x y z x y z -+-=-+-==+⎧⎪=--∞<<+∞⎨⎪=+⎩+--++-==-===⎛-+-=求点到平面的距离与投影解过点垂直于平面的直线方程的参数方程代入平面方程点在平面上的投影为.(2,1,3)22302.3x y z ⎫ ⎪⎝⎭-+-==点在平面的距离为0111118..12312311(1,1,0)12311(1,1,0)123(1)2(1)30.12,131(1)2(2)3(13)0,7x y z x y z x y z x y z x y z x t y t z t t t t t -++-====--+--==-+--==---++==⎧⎪=--⎨⎪=+⎩---++==-求两平行直线与的距离解所求的就是点到直线的距离.作法与16题雷同.过点垂直于直线的平面:直线的参数方程代入平面方程111.154(,,).7771119.(2,1,3):3213(2)2(1)(3)0.1312:3(33)2(2d x y zA l A l x y z x t l y tz t t t t --==+-==--+---==-+⎧⎪=+⎨⎪=-⎩-++直线与平面交点所求距离求过点并与直线垂直且相交的直线方程.解过点垂直于直线的平面方程直线的参数方程代入平面方程求交点对应的参数他03)(3)0,.72133(,,).777,2133126246(2,1,3)(,,)(2,1,4).7777777213:.214t t B A B AB x y z ---==-=----=--=-----==-交点连结点 的直线的方向向量所求直线方程020.36270362140.7(0,0,)2367/227/22)140,391837,(,,).77714 3.x y z x y z A x t A y tz t t t +--=+-+=-=⎧⎪=⎨⎪=--⎩--+==----==求两平行平面与之间的距离解点在第一张平面上.过垂直于第二张平面的直线的参数方程:求直线与第二张平面的交点:3(3t)+6(6t)-2(所求距离 习题5.422222222222222222221.23446161602344616160,2344616172(1)23(1)34(2)16162(1)3(1)4(2)50.(1)(1)(2)1,x y z x y z x y z x y z x y z x y z x y z x y z x y z ++--++=++--++=++--++=--+--++-+=-+-++-=--+++=⎝⎭求椭球面的中心的坐标及三个半轴之长度.解:(1,1,2),-中心坐标半轴22222222222222.,:(1)811241;.(2)491425;.(3)29169;(4)2;(5)2;(6).x y z x y z x y z x y x y z x z xy ++=--=-+-=--=+==说出下列曲面的名称并画出略图椭球面单叶双曲面双叶双曲面.双曲柱面.椭圆抛物面.双曲抛物面.2222222222222222223.:(1)(1)(1)(3);(2)1;(3)1;944916(4);(5).x y z R y z x y z x x y z y z z a b a b-+++-=++=+-==-=+求下列曲面的参数方程1sin cos (1)1sin sin 0,02;3cos x R y R z R ϕθϕθϕπθπϕ=+⎧⎪=-+≤≤≤<⎨⎪=+⎩解sin cos (2)3sin sin 0,02;2cos x y z ϕθϕθϕπθπϕ=⎧⎪=≤≤≤<⎨⎪=⎩习题5.5023********(1),,,(1,1,1);(2),(2,2,4);(3)(0)(,0,).11111,2,3,(1,2,3),,123:(1)2(1)3(1)0P x t y t z t P z x y x P x y R R z x y P R R x y z x y t z t x y z =======+=>=+=---'''======-+-+-=1.求下列曲线在指定点的切线方程和法平面方程:曲面与的交线柱面与平面的交线()切线方程:法平面方程解t 211,2360.224(2),,,1,1,2,(1,1,4).,114:(2)(2)4(4)0,4200.(3)(2,2,0)(2,0,0),(1,1,1),200(0,2,2)2(0,1,1),11101x y z x y z x x y x z x x y z x x y z x y z x y R R R R R x R y z ++-=---'''=========-+-+-=++-====-===---==切线方程:法平面方程切线方程:t ij kn n a ,:0.1Ry z R +-=法平面方程2cos (5)sin 0,02x ar y br r z r θθθπ⎧=⎪=≤<+∞≤≤⎨⎪=⎩2cos 4sin 0,02cos x r y r r z r θθθπθ⎧=⎪=≤<+∞≤≤⎨⎪=⎩()cos 2.sin (0,0,02)(,,)(sin ,cos ,),(cos ,cos ,cos )sin ,cos ,),cos .0x R t y R t R b t z bt z x y z R t R t b R t R t b παβγπ=⎧⎪=>>≤≤⎨⎪=⎩'''=-==-==<求出螺旋线在任意一点处的切线的方向余弦,并证明切线与轴之夹角为常数.常数常数.解t <t,k ><t,k ><,<t,k >=12312311223311223.()(),.()()()()()().()((),(),()),()((),(),()),()()()()()()()(),()()[()()()t t t dt t t t t t dtt a t a t a t t b t b t b t t t a t b t a t b t a t b t d dt t a t b t a t b dt dtαβ==<<''=+===++=+设与是两个可导的向量函数证明设证a a b b a b a b a b a b a b a b 33111122223333112233112233()()()]()()()()()()()()()()()()[()()()()()()][()()()()()()]()()()().t a t b t a t b t a t b t a t b t a t b t a t b t a t b t a t b t a t b t a t b t a t b t a t b t a t b t t t t t +''''''=+++++''''''=+++++''=+a b a b224.()(),|()|().(),()()0.()(),()(),()()()()0,2()()0,()()0.t t t C t t t d d t t C t t C t t t t t t dt dtt t αβ=<<='='''==+=='=设是一条光滑曲线切常数证明与切线垂直即证r r r r r r r r r r r r r r r r r r第五章总练习题2222222222,,:(1)||||;(2)|||||;(3)(1)||||||||||||2||||20,(2)|||||||(|||)||||2|=-=--=-⇔=-⇔++=++⇔⇔=-⇔=-⇔++⇔1.设 为两个非零向量指出下列等式成立的充分必要条件与共线正交.a b a +b a b a +b a |b a +b a b .a +b a b a +b a b a b a b a b a b a b =a b a +b a |b a +b a |b a b a b a 解22|||2||||||||||||cos ||||cos 1,(3)()()000,+-⇔=⇔<>=-⇔<>=-⇔-⇔⨯-=⇔⨯-⨯=⇔⨯⇔共线且方向相反与共线共线.b a b a b a b a b a,b a b a,b a b .a +b a b a +b a b b a a b a b =a b2222222.,:(1)()();(2)();(3)()()(1)()().(2).:()0 1.(3).()(),=⨯=⨯=≠=≠=⨯⨯0设为非零向量判断下列等式是否成立不成立.例如:不成立例如成立和都是的有向体积且定向相同a,b,c a b c a b c a b =a b a b c a b c.i i j j i i j i j =i j a b c a b c a,b,c .解3.5342.5)(3)0,(4)(72)0.715160 (1)78300 (2)(1)15(2)8161()0,0.4.,:.,ABC A -+----+=--=⎧-+=⎪⎨-=⎪⎩⨯+⨯-=-=∠设为非零向量,且7与正交,与与7正交,求7利用向量运算证明下列几何命题射影定理考虑直角三角形其中2222222222a,b a b a b a b a b a b a b a b a b a b a b a b a +b a b a b a b 解(22222,,,,.,,0()(),AD AD BD CD AB BD BC AC CD CB AB AD DB AC AD DC AB AC AD DB AD DC AD AD DC DB AD DB DC AD DB DC A ====+=+==++=+++=+为直角是斜边上的高则证222222222(,).()).().D DB DC BD DC BD DC BD DC AB AD BD BD CD BD BD CD BD BD BC AC AD CD BD CD CD CD BD CD CD BC =-==⨯=+=+=+==+=+=+=同向5.,,(1,0,0),(1,1,0),(1,1,1)..(1,0,0),(1,1,0),(1,1,1).(0,1,1),(0,1,0),(0,2,1),(1,0,0)(0,2,1)(1,2,1).A B C ACDBD D A B C AC AB AD AB AC OD OA AD D ======+==+=+=已知三点的坐标分别为若是一平行四边形,求点的坐标点的解(1,2,1).坐标22222222222222212126.,()().()|||sin ,|||(1cos ,)||||||||cos ,().112127.:,:,,121012.121012x y z x y z L L L L ⨯-⨯=<>=-<>=-<>=--++--====--=-=-设为非零向量,证明设有两直线求平行于且与它们等距的平面方程2222a b a b =a b a b a b a |b a b a |b a b a b a b a b a b a b i jkn 证解(5,2,1),(1/2,1/2,1/2),5(1/2)2(1/2)(1/2)0,5210.A x y z x y z ---=-+----=+++=所求平面过点所求平面:-001101018.,||.||||||||.L P L P P P L d d P P AB d P P ⨯==⨯=⨯设直线通过点且其方向向量为证明外一点到的距离可表为平行四边形的面积v v v v v 证112121212121212121212121212121212129.,,.()0.,,()0.10.,,,.min ||Q L Q LL L PP L L PP L L PP PP L L P P L L d Q Q ∈∈⨯=⇔⇔⨯==设两直线分别通过点且它们的方向向量为证明与共面的充分必要条件为与共面共面设两直线分别通过点且它们的方向向量为与之间的距离定义为证明:,v v v v v v v v ,v v 证1211211212121212121211121212112(1),|||()|(2).||(1),8,.||()(2)(||PP L L d PP L L d L L L L PP d PP PP ⨯=⨯=⨯⨯=⨯=⨯当与平行时它们之间的距离可表示为当与为异面直线时,它们之间的距离可表示为当与平行时,它们之间的距离为上任意一点到的距离由第题v v v v v v v v v v v v v 证21212121212121212)|()|()||PP L L PP PP L L ︒︒⨯⨯⨯=⨯是在与的公垂线方向的单位向量上的投影,故其长度||是异面直线与之间的距离.v v v v v v v111122221211111222221211111222011.0:(1),()()0;(2),,()(A x B y C z D L A x B y C z D A x B y C z D A x B y C z D L L A x B y C z D A x B λλλλπλλπλλ+++=⎧⎨+++=⎩+++++++=+++++设直线L的方程为:证明对于任意两个不全为零的常数,方程表示一个通过直线的平面任意给定一个通过直线的平面必存在两个不全为零的实数,使平面的方程为22111222121111122222111122211112222)0.(1)(,,)(,,),,,()()0(,,)(,,)(0,0,0),0(,,)0y C z D A B C A B C A x B y C z D A x B y C z D A B C A B C L A x B y C z D x y z A x B y C z D λλλλλλ++=+++++++=≠+++=⎧⎨+++=2向量与不共线故对于两个不全为零的常数的主系数+是一个平面的方程,并且 上点的坐标 满足证1111122222000000111222111222,()()0.(2),()()()0.(,,).(,,)(,,)(,,),,(,,)(,,),A x B y C z D A x B y C z D L A x x B y y C z z Ax By Cz D x y z L A B C A B C A B C L A B C A B C λλπ⎩+++++++=-+-+-=+++=故满足设平面通过直线其方程为在上三个向量 与均垂直于的方向向量故共面又与都是非零向量故存在两个不全为零的121111222200012201220112201101010220202011221111122222,,(,,)(,,)(,,).()()()()().()()0.A B C A B C A B C D Ax By Cz A A x B B y C C z A x B y C z A x B y C z D D A x B y C z D A x B y C z D λλλλλλλλλλλλλλπλλ==---=---+=-++-++=++++++++=11常数使得+++故表示为121212121221212121212124012.::113380(24)(38)0,3(2)480.,(,3,2)(1,1,1)0,320,20.2,x z L L x y z y z x z y z x y z L λλλλλλλλλλλλλλλλλλλλ--=⎧-=+=-⎨-+=⎩--+-+=++---+=--=+--=-+==试求通过直线且与直线平行的平面方程.根据题的结论所求平面方程有形式由于平面与平行令解11,21,250.x y z =+-=得所求平面方程3 22213.:1,:2260.42(1);(2),.(1)(2,,).420.222()()()02y z S x x y z S S y yS x z x z yx X x Y y z Z z ππππ++=+++=++=-+-+-=已知曲面S的方程为平面的方程为求曲面的平行于的切平面方程在曲面上求到平面距离为最短及最长的点并求最短及最长的距离的法向量解22222213.:1,:2260.42(1);(2),.(1)(,,).(2,,).22/2.2,.212:21,y z S x x y z S S yS x y z S x z xy zz x y z x x x x πππππ++=+++=====++==±已知曲面S的方程为平面的方程为求曲面的平行于的切平面方程在曲面上求到平面距离为最短及最长的点并求最短及最长的距离上的点记为的法向量切平面与平行,则法向量对应坐标成比例:与曲面方程联立解 111111221,1, 1.22()()()0212 2. 2.22(3,0,0).17(,1,1),(,1,1),227(,1,1)(2,1,2)102.||331(,1,1),2y z yx X x Y y z Z z yxX Y zZ X Y Z A P A P P A P A P d P P ππ=±=±-+-+-=++=±±±==-===------====---切平面方程:,利用曲面方程得平面过点点到平面的距离点n n 2225(,1,1),25(,1,1)(2,1,2)22.||3311(,1,1)(,1,1),22210.33A P A P d S ππ=--===---到平面的距离在曲面上到平面距离为最短及最长的点分别是和并求最短及最长的距离分别是和n n114.,1011.1101,02.x y z z x z y z z z x y z z x y z z z θθθπ-===⎧⎪=-∞<<+∞⎨⎪=⎩-==⎧=⎪⎪=-∞<<+∞≤≤⎨⎪=⎪⎩直线绕轴旋转一周求所得旋转曲面的方程.直线参数方程直线绕轴旋转,对于固定的z,故旋转曲面的方程解2222222221(,0),15.01.y z b c z b c x x y z b c⎧-=>⎪⎨⎪=⎩+-=求双曲线绕轴旋转一周所得曲面的方程.解22222222116.2.21,(1) 2.x y z Oxy z yx y y x y ⎧++=⎪⎨=⎪⎩++=++=求曲线在平面上的投影曲线的方程解。

相关文档
最新文档