立体几何证明平行的方法及专题训练
方法技巧专题05立体几何中平行与垂直证明
方法技巧专题05立体几何中平行与垂直证明平行与垂直证明是立体几何中的重要内容之一,本文将介绍一些方法和技巧用于解决平行与垂直的证明问题。
一、平行性的证明方法:1.公共光线法:如果两条直线分别与第三条直线相交,在相交点处的两个对应的内角相等,则这两条直线是平行的。
例如,如果直线AB和CD都与直线EF相交,在交点F处的∠AFC=∠DFB,则AB,CD。
2.反证法:假设AB和CD不平行,然后通过构造形式,证明得到矛盾。
例如,如果直线AB和CD不平行,则可以证明存在一条直线EF与这两条直线分别相交于F和G,且所形成的内角∠FAG=π/2-∠DAF≠π/2,则与直线EF平行,这是与已知条件矛盾的,所以AB,CD。
3.平行线性质法:利用平行线的性质来证明其他线段平行。
例如,根据平行线的交角性质可证明,如果一条直线与一对平行线之一形成等于直角的角,则与另一条平行线也形成等于直角的角。
二、垂直性的证明方法:1.垂直线性质法:利用垂直线的性质来证明其他线段垂直。
例如,如果直线AB与直线CD相交于点E,且∠AED=∠BEC=π/2,则直线AB垂直于直线CD。
2.垂直线段法:如果两条线段的斜率之积为-1,则这两条线段垂直。
例如,如果直线AB和直线CD的斜率之积为-1,则AB⊥CD。
3.反证法:假设AB和CD不垂直,然后通过构造形式,证明得到矛盾。
例如,如果直线AB和CD不垂直,则可以证明存在一条直线EF与这两条直线相交于点G,且所形成的两个内角∠GAC和∠GDB之和小于π/2,这与直线EF垂直的性质矛盾,所以AB⊥CD。
综上所述,平行与垂直证明可以通过公共光线法、反证法、平行线性质法、垂直线性质法、垂直线段法等方法和技巧来解决。
在实际问题中,可以根据已知条件选择合适的方法和技巧,灵活运用来解决平行与垂直的证明问题。
立体几何线面平行证明
立体几何线面平行证明要证明两个线面平行,一般可以通过以下几种方法来进行证明:方法一:使用平行线的性质假设我们有线面A和线面B,要证明A和B平行,可以通过以下步骤进行证明:1.假设线面A和线面B不平行,即存在一条线a与线面A不平行,又与线面B相交于一点P。
2.假设在线面A上存在一点Q,它与直线a上相交于一点R。
3.由于线a与线面B相交于P,所以线段PR必然属于线面B。
4.由于线a与线面A相交于R,所以线段PR必然属于线面A。
5.由于线面A和线面B都包含线段PR,所以它们必然相交。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
方法二:使用支撑面的性质假设我们有线面A和线面B,要证明A和B平行,可以通过以下步骤进行证明:1.假设在线面A上存在一条直线a,它与线面B相交于一点P。
2.过直线a作平行于线面B的平面,该平面与线面A相交于线段QR。
3.由于直线a与线面B相交于点P,所以线段PR必然属于线面B。
4.由于平面上的任意两点可以确定一条直线,所以线段QR也属于线面B。
5.因此,线段QR同时属于线面A和线面B,所以它们不是平行的。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
方法三:使用平行四边形的性质假设我们有线面A和线面B,要证明A和B平行1.假设在线面A上存在一条直线a,它与线面B相交于一点P。
2.在线面A上选择一点Q,并通过P点作一条平行于线面A的直线b。
3.连接直线a和直线b,得到平行四边形PQRD。
4.由于平行四边形的特性,相邻两边平行且长度相等,所以线段PD也是平行于线面A的,并且它必然属于线面B。
5.因此,线段PD同时属于线面A和线面B,所以它们不是平行的。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
以上三种方法是一些常用的证明线面平行的方法,根据实际问题的具体情况,可以选择适合的方法进行证明。
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)
立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
专题20立体几何中的平行与垂直问题(解析版)
专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
高中立体几何证明线面平行的常见方法
高中立体几何证明线面平行的常见方法1.通过“平移”再利用平行四边形的性质题目1:四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点。
证明AF∥平面PCE。
证明:将四棱锥P-ABCD平移,使其底面平移到平面PCE上,得到四棱锥P'-A'B'C'D',其中A'B'C'D'与ABCD平行,且P'、E'、F'分别为A'B'、C'D'、A'D'的中点。
因为AF∥PD,所以AF'=PD'=C'F',又因为AD'=C'D'/2=AB'/2=AF'/2,所以AD'∥B'C'。
因此,根据平行四边形的性质,AF'∥B'C',即AF∥CE。
题目3:四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点,证明EB∥平面PAD。
证明:连接PE,因为E为PC的中点,所以PE∥AD。
又因为CD⊥AD,所以CD∥PE。
又因为CD=2AB,所以AB∥PE。
因此,根据平行四边形的性质,EB∥PA,即EB∥平面PAD。
2.利用三角形中位线的性质题目4:四面体ABCD中,E、F、G、M分别是棱AD、CD、BD、BC的中点,证明AM∥平面EFG。
证明:连接EF、EG、FG,因为E、F、G分别为三角形BCD、ACD、ABD的中点,所以EF、EG、FG分别是这三个三角形的中位线。
因此,EF∥AD,EG∥BD,FG∥AC。
又因为M为BC的中点,所以AM∥FG。
因此,AM∥平面EFG。
3.利用平行四边形的性质题目7:正方体ABCD-A' B' C' D'中O为正方形ABCD的中心,M为B'B的中点,求证D'O∥平面A'BC'。
立体几何平行证明题常见模型及方法
立体几何平行证明题常见模型及方法 证明空间线面平行需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
平行转化:线线平行 线面平行 面面平行;类型一:线面平行证明(中位线法,构造平行四边形法,面面平行法)(1) 方法一:中位线法 以锥体为载体变式 3 如图,在直三棱柱ABC —A 1B 1C 1中,AA 1=5,AC=BC=2,∠C=90°,点D 是A 1C 1的中点. 求证:BC 1//平面AB 1D ;方法2:构造平行四边形法 例1如图,在四棱锥S ABCD -中,底面ABCD 为正方形, E 、F分别为AB SC ,的中点.证明○1EF ∥平面SAD ○2BF ∥平面SDEFS CD变式1:若E 、F 分别为AD SB ,的中点.证明EF ∥平面SCD变式2 若E 、F 分别为SD B ,A 的中点.证明EF ∥平面SCB例2 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1分别是棱AD 、AA 1的中点.设F 是棱AB 的中点,证明:直线EE 1//平面FCC 1 方法3:面面平行法 (略) 举一反三 1 如图,已知AB ⊥平面A C D ,DE ⊥平面ACD ,△ACD 为等边三角形,2AD DE AB ==,F 为CD 的中点.(1) 求证://AF 平面BCE ;(2) 求证:平面BCE ⊥平面CDE ; 2 如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,M 是BD 的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求出该几何体的体积;(2)若N 是BC 的中点,求证:AN ∥平面CME ;(3)求证:平面BDE ⊥平面BCD.3直四棱柱ABCD -A1B1C1D1中,底面ABCD 是等腰梯形,AB∥DC ,AB =2AD =2DC =2,E 为BD1的中点,F 为AB 中点.(1)求证EF ∥平面ADD1A1;(2)求几何体DD1AA1EF 的体积。
专题3:立体几何中平行关系的证明基础练习题
(1)连接 ,则 也为 的中点,由 可证 平面 ;
(2)存在, 为 的中点时,平面 平面 ,利用平面与平面平行的判定定理可证结论.
【详解】
(1)连接 ,则 也为 的中点,
因为 为 的中点,所以 为△ 的中位线,
所以 ,又 平面 , 平面 ,
所以 平
∴ 是 的中点,
又 是 的中点,
∴ ,
又 平面 , 平面 ,
∴ 平面 .
4.(1) 见解析;(2) 见解析;(3)见解析.
【分析】
(1)取BB1的中点M,连接HM、MC1,四边则HMC1D1是平行四边形,即可证明BF∥HD1;(2)取B1D1的中点O,易证四边形BEGO为平行四边形,故有OB∥GE,从而证明EG∥平面BB1D1D.(3)由正方体得BD∥B1D1,由四边形HBFD1是平行四边形,可得HD1∥BF,可证平面BDF∥平面B1D1H.
7.证明详见解析.
【解析】
【分析】
利用中位线,分别证明 ,由此证得平面内两条相交直线和另一个平面平行,从而证得两个平面平行.
【详解】
因为EF是△PAB的中位线,所以EF∥PA.
又EF 平面PAC,PA 平面PAC,所以EF∥平面PAC.
同理得EG∥平面PAC.
又EF 平面EFG,EG 平面EFG,EF∩EG=E,
5.(1)证明见解析;(2)
【分析】
(1)连接 ,通过证明 平面 与 平面 ,可得平面 平面 ;
(2)找到 为异面直线 和 所成角,求 即可.
【详解】
证明:(1)由题意可得,点 分别是 和 的中点,连接 ,
,
又 平面 平面 ,
平面 ,
同理: ,则 平面 ,
又 平面 平面 ,
立体几何平行问题练习题.
专题:平行问题主要考点:线面平行面面平行线面平行的判定定理:如果一个平面内的一条直线和另平面内的一条直线平行,那么这条直线和这个平面平行。
定理模式:, , ////a b a b a ααα⊄⊂⇒面面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。
定理的模式://////a b a b P a b ββαβαα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭1、如右图所示,已知P 、Q 是正方体的面11A B BA 和面ABCD 的中心.证明:PQ ∥平面11C B BC2、如图,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC.3、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2, AA 1=2,E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。
证明:直线EE 1//平面FCC 1;4、两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM =FN ,求证:MN ∥平面BCE 。
E E 1 A B 11D _ P5、已知在四棱锥P-ABCD 中,ABCD 为平行四边形,E 为PC 的中点,O 为BD 的中点. 求证:OE //平面ADP6、在四棱锥P-ABCD 中,底面四边形ABCD 是平行四边形,E,F 分别是AB ,PD 的中点. 求证://AF 平面PCE3、如图所示,ABC ∆为正三角形,EC ⊥平面ABC ,//BD CE ,且2CE CA BD ==,F 、M 是CE 、EA 的中点。
求证:(1)//DM 平面ABC ;(2)面//FDM 面ABC .10.P 是△ABC 所在平面外一点,A ′、B ′、C ′分别是△PBC 、△PCA 、△PAB 的重心。
(1)求证:平面A ′B ′C ′∥平面ABC ;(2)S △A′B′C′∶S △ABC 的值。
高中立体几何证明题
高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。
解析1. 连接AC。
- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。
2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。
- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。
- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。
- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。
题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。
解析1. 连接BC_{1},交B_{1}C于点E。
- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。
2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。
- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。
- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。
二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。
解析1. 连接AC,BD交于点O,连接PO。
- 因为底面ABCD是正方形,所以O为AC,BD中点。
- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。
- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。
- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。
- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。
高中立体几何最佳解题方法及考题详细解答
高中立体几何最佳解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。
(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。
(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。
7、夹在两个平行平面之间的平行线段相等。
二、线面平行的证明方法1、定义法:直线和平面没有公共点。
2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。
(线面平行的判定定理)3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。
4、反证法。
三、面面平行的证明方法1、定义法:两个平面没有公共点。
2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
(面面平行的判定定理)3、平行于同一个平面的两个平面平行。
4、经过平面外一点,有且只有一个平面与已知平面平行。
5、垂直于同一条直线的两个平面平行。
四、线线垂直的证明方法1、勾股定理;2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。
7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。
(三垂线定理)8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。
9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
五、线面垂直的证明方法:1、定义法:直线与平面内的任意直线都垂直;2、点在面内的射影;3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。
(线面垂直的判定定理)4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。
空间立体几何中的平行、垂直证明
∴DE∥平面 PAB.
精选ppt
H
构造平行四边行法
23
(2)证明 在直角梯形中,CB⊥AB, 又∵平面 PAB⊥平面 ABCD, 且平面 PAB∩平面 ABCD=AB, ∴CB⊥平面 PAB. ∵CB⊂平面 PBC, ∴平面 PBC⊥平面 PAB.
精选ppt
看到中点找中点
D1 A1
DE A
C1
B1
F
C B
精选ppt
7
定理应用
空间中的平行
方法一):构造平行四边形
D1 A1
DE A
M
C1
B1
F
C
N
B
精选ppt
8
定理应用
空间中的平行
方法二):构造平行平面
D1 A1
DE A
C1
B1
F
HC B
精选ppt
9
定理应用
空间中的平行
例 2.如图所示, P在 AB四 C 中D 棱 ,锥 已知 A四 BC 是 边 D 形 平行四M 边 ,N分 形别 ,是PA点 ,, BC的中 证明:MND //面PPC
精选ppt
25
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感 谢
感 谢
阅阅
读读
分析: (1)证明线面平行只需在平面内找一条和 该直线平行的直线即可,也可转化为经过这条直线 的平面和已知平面平行;(2)证明面面垂直,只需在 一个平面内找到另一个平面的垂线.
精选ppt
21
高中数学立体几何之线面平行的判定与性质讲义及练习
线面平行的判定与性质练习一、基本内容 1.线面平行的判定2.线面平行的性质二、练习题题型一:概念性习题1.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行D 一直线与平面平行,则平面内任意直线都与已知直线异面2.若直线l 与平面α的一条平行线平行,则l 和α的位置关系是 ( ) A. α⊂l B.α//l C.αα//l l 或⊂ D.相交和αl3.若直线a 在平面α内,直线a,b 是异面直线,则直线b 和α平面的位置关系是 ( ) A .相交 B.平行 C.相交或平行 D.相交且垂直4.下列各命题中假命题的个数为 ( )(1) 经过两条平行直线中一条直线的平面必平行于另一条直线; (2) 若一条直线平行于两相交平面,则这条直线和交线平行;(3) 空间四边形中三条边的中点所确定平面和这个空间四边形的两条对角线都平行。
A 0B 1C 2D 35.若直线上有两点P 、Q 到平面α的距离相等,则直线l 与平面α的位置关系是 ( ) A 平行 B 相交 C 平行或相交 D 或平行、或相交、或在内 6.a,b 为两异面直线,下列结论正确的是 ( ) A 过不在a,b 上的任何一点,可作一个平面与a,b 都平行 B 过不在a,b 上的任一点,可作一直线与a,b 都相交 C 过不在a,b 上任一点,可作一直线与a,b 都平行 D 过a 可以并且只可以作一个平面与b 平行 7.判断下列命题是否正确:(1)过平面外一点可作无数条直线与这个平面平行 ( )(2)若直线α⊄l ,则l 不可能与α内无数条直线相交 ( ) (3)若直线l 与平面α不平行,则l 与α内任一直线都不平行 ( ) (4)经过两条平行线中一条直线的平面平行于另一条直线 ( )(5)若平面α内有一条直线和直线l 异面,则α⊄l ( ) 题型二:证明题8.P 为平行四边形ABCD 外一点,E 是PA 的中点,O 是AC 和BD 的交点,求证:OE//平面PBC 。
专题08 立体几何垂直平行的证明(原卷版)
专题8 立体几何平行垂直的证明一、解答题1.(2022·全国·高考真题(理))如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.2.(2022·全国·高考真题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.3.(2022·全国·高考真题(理))在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.4.(2022·青海·海东市第一中学模拟预测(理))如图,在三棱柱111ABC A B C -中,11222AC AA AB AC BC ====,160BAA ∠=︒.原创精品资源学科网独家享有版权,侵权必究! 2(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 的中点,求AC 与平面11PA B 所成角的正弦值.5.(2022·青海·海东市第一中学模拟预测(文))如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,PCD 为等边三角形,22CD AB ==,AD 90BAD ADC ∠=∠=︒,M 是棱PC 上一点.(1)若2MC MP =,求证://AP 平面MBD .(2)若MC MP =,求点P 到平面BDM 的距离.6.(2021·上海市建平中学模拟预测)如图,三棱锥P ABC -,侧棱2PA =,底面三角形ABC 为正三角形,边长为2,顶点P 在平面ABC 上的射影为D ,有AD DB ⊥,且1DB =.(1)求证://AC 平面PDB ;(2)求二面角P AB C 的余弦值.7.(2022·内蒙古·赤峰红旗中学松山分校模拟预测(理))如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,PD ⊥底面ABCD ,M 为线段PC 的中点,PD AD =,N 为线段BC 上的动点.(1)证明:平面MND ⊥平面PBC(2)当点N 在线段BC 的何位置时,平面MND 与平面P AB 所成锐二面角的大小为30°?指出点N 的位置,并说明理由.8.(2022·四川·成都七中模拟预测(理))如图1,在边上为4的菱形ABCD 中,60DAB ∠=︒,点M ,N 分别是边BC ,CD 的中点,1AC BD O ⋂=,AC MN G ⋂=.沿MN 将CMN △翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P ABMND -.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)当四棱锥P MNDB -体积最大时,求直线PB 和平面MNDB 所成角的正弦值;(3)在(2)的条件下,在线段PA 上是否存在一点Q ,使得二面角Q MN P --存在,试确定点Q 的位置;若不存在,请说明理由.9.(2022·全国·模拟预测)在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,1,,2AB AP AD E F ==分别是AP BC ,的中点.原创精品资源学科网独家享有版权,侵权必究! 4(1)求证://EF 平面PCD ;(2)求二面角C EF D --的余弦值.10.(2022·内蒙古·乌兰浩特一中模拟预测(文))如图在梯形中,//BC AD ,22AB AD BC ===,23ABC π∠=,E 为AD 中点,以BE 为折痕将ABE △折起,使点A 到达点P 的位置,连接,PD PC ,(1)证明:平面PED ⊥平面BCDE ;(2)当2PC =时,求点D 到平面PEB 的距离.11.(2022·全国·南京外国语学校模拟预测)如图,在三棱台111ABC A B C -中,AB AC ⊥,4AB AC ==,1112A A A B ==,侧棱1A A ⊥平面ABC ,点D 是棱1CC 的中点.(1)证明:平面1BB C ⊥平面1AB C ;(2)求二面角C BD A --的正弦值.12.(2022·青海·模拟预测(理))如图,在四棱锥A -BCDE 中,底面BCDE 为矩形,M 为CD 中点,连接BM ,CE 交于点F ,G 为△ABE 的重心.(1)证明://GF 平面ABC(2)已知平面ABC △BCDE ,平面ACD △平面BCDE ,BC =3,CD =6,当平面GCE 与平面ADE 所成锐二面角为60°时,求G 到平面ADE 的距离.13.(2022·北京市第九中学模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,△P AB 为正三角形,且侧面P AB △底面ABCD ,M 为PD 的中点.(1)求证:PB //平面ACM ;(2)求直线BM 与平面P AD 所成角的正弦值;(3)求二面角C PA D --的余弦值.14.(2022·浙江·三模)如图,四面体ABCD 的棱AB 平面,CD α=,23,cos cos 3AB AC AD BAC BAD ===∠=∠=.(1)证明:平面ABC ⊥平面ABD ;(2)若平面ABC 与平面α所成锐二面角的正切值为12,线段CD 与平面α相交,求平面ACD 与平面α所成锐二面角的正切值.15.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知四棱锥S ABCD -中,四边形ABCD 为菱形,SAB SBA ∠=∠,.SD AB ⊥(1)求证:ABD △是等边三角形;(2)2SD AD ===,求SC 与平面SAD 所成角的正弦值.原创精品资源学科网独家享有版权,侵权必究!6 16.(2022·宁夏中卫·三模(理))如图1,菱形ABCD 中,60A ∠=︒,4AB =,DE AB ⊥于E ,将AED 沿DE 翻折到A ED ',使A E BE '⊥,如图2.(1)求三棱锥C A BD -'的体积;(2)在线段A D '上是否存在一点F ,使EF △平面A BC '?若存在,求DF FA '的值;若不存在,说明理由. 17.(2022·广东茂名·二模)如图,四棱锥P ﹣ABCD 的底面是等腰梯形,AD △BC ,BC =2AD ,60ABC ∠=︒ ,E 是棱PB 的中点,F 是棱PC 上的点,且A 、D 、E 、F 四点共面.(1)求证:F 为PC 的中点;(2)若△P AD 为等边三角形,二面角P AD B -- 的大小为120︒ ,求直线BD 与平面ADFE 所成角的正弦值. 18.(2022·安徽省舒城中学三模(理))在四棱锥P ABCD -中,PAB △为正三角形,四边形ABCD 为等腰梯形,M 为棱AP 的中点,且2224AB AD BC CD ====,DM =14AO AB =.(1)求证:平面ODM ⊥平面ABCD ;(2)求直线AP 与平面PBC 所成角的正弦值.19.(2022·广东·大埔县虎山中学模拟预测)如图,在四棱台1111ABCD A B C D -中,2AB =,111A B =,四边形ABCD 为平行四边形,点E 为棱BC 的中点.(1)求证:1//D E 平面11ABB A ;(2)若四边形ABCD 为正方形,1AA ⊥平面ABCD ,12A A AB ==,求二面角1A DE C --的余弦值. 20.(2022·全国·模拟预测)如图所示,四棱台1111ABCD A B C D -的上下底面均为正方形,侧面11ADD A 与底面垂直,11113BB CC B C BC ===.(1)求证:平面11ADD A ⊥平面11ABB A ;(2)已知四棱台1111ABCD A B C D -的体积为 △求异面直线BC 和1AA 的距离△求1A 到平面11CDD C 的距离.请从以上两个问题中选取一道进行求解.注:若两个问题均求解,则按第一个问题计分.。
立体几何中的平行性的证明.
立体几何中的平行性的证明
一、证明两直线平行的方法:
1、定义法:同一平面内无公共点的两条直线(用反证法证明)。
2、判定定理:如果一条直线与一个平面平行,则经过这条直线的平面与这个平
面相交,直线与交线平行。
3、平行与同一直线的两条直线平行。
4、面面平行的性质定理:如果两个平行平面同时和第三个平面相交,则交线平
行。
5、向量法:如果两个直线的方向向量共线,则两直线平行。
6、垂直于同一平面的两直线平行。
二、证明直线和平面平行的方法:
1、定义法:证明直线与平面无公共点(反证法)。
2、判定定理:如果平面外的一条直线和平面内的一条直线平行,则直线和平面
平行。
3、面面平行的性质:如果两个平面平行,那么一个平面内的任何一条直线都平
行于另一个平面。
4、如果平面外的一条直线和平面的一条垂线垂直,那么这条直线和这个平面平
行。
5、如果平面外的一条直线和这个平面都垂直于同一个平面,那么这条直线和这
个平面平行。
三、证明平面与平面平行的方法:
1、定义法:证明两个平面没有公共点(反证法)。
2、判定定理:如果一个平面内的两条相交直线分别和另一个平面平行,那么这
两个平面相互平行。
3、推论:如果一个平面内的两条相交直线分别和另一个平面内的两条直线(相
交)平行,那么这两个平面相互平行。
4、垂直于同一直线的两个平面相互平行。
5、如果两个平面的法向量平行,那么这两个平面平行。
6、。
立体几何中证明线线平行的方法
立体几何中证明线线平行的方法
在立体几何中,证明两条线平行的方法通常有以下几种:
1. 利用平行线的性质:如果可以证明两条线分别与同一条第三条线平行,则可以推断这两条线平行。
这可以通过使用平行线的定理或者平行线的判定条件来证明。
2. 利用等角定理:如果可以证明两条线与另一条线之间形成的对应角度相等,则可以推断这两条线平行。
这可以通过使用等角定理(如同位角、内错角等)来证明。
3. 利用平行四边形的性质:如果可以证明两条线分别是平行四边形的对角线,或者两条线分别平分平行四边形的两个对角线角度,则可以推断这两条线平行。
4.利用向量的性质:如果可以证明两条线的方向向量相等,则可以推断这两条线平行。
这可以通过计算两条线的方向向量并比较它们来证明。
需要注意的是,每种方法都需要根据具体问题的情况选择合适的方法,有时可能需要结合多种方法来证明两条线平行。
在证明过程中,也需要合理运用已知的几何定理和性质,并且注意推理的逻辑性和严密性。
立体几何线面平行-题型全归纳(解析版)
立体几何线面平行-题型全归纳题型一利用三角形中位线例题1、如图所示,在三棱柱ABC-111C B A 中,侧棱⊥1AA 底面ABC ,AB ⊥BC ,D 为AC 的中点。
求证:1AB //平面DBC 1证明:连接C B 1,交1BC 于点O,再连接OD,平面11B BCC 是平行四边形,∴O是1BC 的中点,又D是AC的中点,∴OD是1ACB ∆的中位线,1//AB OD ∴,⊂OD 平面D BC 1,⊄1AB 平面D BC 1,//OD ∴平面D BC 1。
解题步骤(1)把直线通过平移到平面上,得到线线平行的初步形状;(2)连接平行四边形的对角线,再连接两个中点,恰好为平移所得到的线段;(3)通过延长两条线段的端点,构成一个三角形,即可得到三角形的中位线。
变式训练1、如图,在直四棱柱ABCD-1111D C B A 中,底面ABCD 为菱形,E 为1DD 中点。
求证:1BD //平面ACE ;证明:连接BD,交AC于点O,再连接OE,在直四棱柱ABCD-1111D C B A 中,O为BD的中点,且E为1DD 的中点,∴OE是1BDD ∆的中位线,1//BD OE ∴,又OE⊂平面ACE,⊄1BD 平面ACE,∴1BD //平面ACE 。
变式训练2、如图,在斜三棱柱ABC-111C B A 中,CA=CB ,D 、E 分别是AB ,C B 1的中点,求证:DE//平面11A ACC ;证明:连接1BC ,连接1AC ,在斜三棱柱ABC-111C B A 中,∴点E在线段1BC 上,∴点E是1BC 的中点,又点D是AB的中点,∴DE是1ABC ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC 变式训练3、如图所示,正三棱柱ABC-111C B A 的高为2,点D 是B A 1的中点,点E 是11C B 的中点,求证:DE//平面11A ACC证明:连接1AB ,连接1AC ,在正三棱柱ABC-111C B A 中,∴点D在线段1AB 上,∴点D是1AB 的中点,又点E是11C B 的中点,∴DE是11C AB ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC题型二利用平行四边形的对边平行例题2、如图,在多面体ABCDE 中,AEB 为等边三角形,AD//BC ,BC AD 21=,F 为EB 的中点。
立体几何证明题目
立体几何证明题目一、直线与平面平行的证明题目1:在正方体ABCD - A_1B_1C_1D_1中,E为DD_1的中点,求证:BD_1∥平面AEC。
解析:1. 连接BD交AC于O点。
- 在正方体中,底面ABCD是正方形,根据正方形对角线的性质,对角线互相平分,所以O为BD的中点。
2. 连接OE。
- 因为E为DD_1的中点,在三角形BD_1D中,O是BD中点,E是DD_1中点,根据三角形中位线定理,中位线平行于第三边且等于第三边的一半,所以OE∥ BD_1。
3. 又因为OE⊂平面AEC,BD_1not⊂平面AEC。
- 根据直线与平面平行的判定定理,如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行,所以BD_1∥平面AEC。
二、平面与平面平行的证明题目2:已知四棱锥P - ABCD中,底面ABCD是平行四边形,点M,N分别在PA,BD上,且PM:MA = BN:ND。
求证:平面MNQ∥平面PBC(设AC∩ BD = Q,连接MQ、NQ)。
解析:1. 因为四边形ABCD是平行四边形,AC∩ BD = Q,所以AQ = QC,BQ=QD。
- 由于PM:MA = BN:ND,在三角形PAQ中,(PM)/(MA)=(BN)/(ND),可得MQ∥ PC。
- 理由是:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
2. 在三角形ABD中,(BN)/(ND)=(PM)/(MA),可得NQ∥ AD。
- 又因为底面ABCD是平行四边形,AD∥ BC,所以NQ∥ BC。
3. 因为MQ∥ PC,MQnot⊂平面PBC,PC⊂平面PBC,根据直线与平面平行的判定定理,可得MQ∥平面PBC。
- 同理,NQ∥ BC,NQnot⊂平面PBC,BC⊂平面PBC,可得NQ∥平面PBC。
4. 又因为MQ∩ NQ = Q,MQ⊂平面MNQ,NQ⊂平面MNQ。
- 根据平面与平面平行的判定定理,如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,所以平面MNQ∥平面PBC。
立体几何证明平行的方法及专题训练
立体几何证明平行的方法及专题训练罗虎胜立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行的性质,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P-ABCD的底面是平行四边Array形,点E、F 分别为棱AB、 PD的中点.求证:AF∥平面PCE;分析:取PC的中点G,连EG.,FG,则易证AEGFDBA 1AF是平行四边形2、如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3,过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面CDE ; (Ⅱ)求证:FG∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA1点,M 为BE 的中点, AC⊥BE . 求证:(Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM.E分析:连EA ,易证C 1EAD 是平行四边形,于是MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E FG M AD CD BD BC AM EFG AM EFG ///ABC A B C -90BAC ∠=2,AB AC ==/A B //B C MN //A ACC 1C 求证:AB 11C 明: BC 11C 证:AP ∥GH .分析:连结AC 交BD 于O 点,连结OM ,易证OM ∥PA从而PA ∥平面DBM,再根据直线与平面平行的性质得AP ∥GH .(.3) 利用平行四边形的性质10.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,求证: D 1O 21中点为PD E 求证:AE ∥平面PBC ;分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形12、在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.(I )证法一: 因为EF 90ACB ∠=︒90,EGF ABC ∠=︒∆.EFG ∆BC FG 21=ABCD BC AM 21=FA ⊂GM ⊄SM AM ND BN AM DNSM BN=ABC P -E PC M AB FPA 2AF FP = 求证://CM 平面BEF ;分析: 取AF 的中点N ,连CN 、MN ,(1) 易证平面CMN 111ABC A B C -3AC =4BC =5AB =14AA =D AB 1AC BC ⊥11CDB //平面ACNMB 1C 1D 1A 1DCBAP NMB 1C 1D 1A 1DCBA11C CDB -1C 11CDB //平面AC 1111ABCD A B C D -11,2AB BC AA ===M BCN 1AA 求证: //MN 平面1A CD ;(2) 过,,N C D 三点的平面把长方体1111ABCD A B C D -截成两部分几何体, 求所截成的两部分几何体的体积的比值.(1)证法1:设点P 为AD 的中点,连接,MP NP . ∵ 点M 是BC 的中点, ∴ //MP CD .∵ CD ⊂平面1A CD ,MP ⊄平面1A CD ,∴ //MP 平面1A CD . …2分 ∵ 点N 是1AA 的中点, ∴ 1//NP A D .∵ 1A D ⊂平面1A CD ,NP ⊄平面1A CD , ∴//NP 平面1A CD.PNMB 1C 1D 1A 1DCBA…4分∵ MP NP P =,MP ⊂平面MNP ,NP ⊂平面MNP , ∴ 平面//MNP 平面1A CD . ∵ MN ⊂平面MNP , ∴//MN 平面1A CD.…6分证法2: 连接AM 并延长AM 与DC 的延长线交于点P , 连接1A P , ∵ 点M 是BC 的中点, ∴ BM MC =.∵ BMA CMP ∠=∠, 90MBA MCP ︒∠=∠=,∴ Rt MBA ≅Rt MCP . …2分∴ AM MP =.∵ 点N 是1AA 的中点,QNMB 1C 1D 1A 1DCBA∴ 1MN //A P . …4分∵ 1A P ⊂平面1A CD ,MN ⊄平面1A CD ,∴ //MN 平面1A CD . …6分(2) 解: 取1BB 的中点Q , 连接NQ ,CQ , ∵ 点N 是1AA 的中点, ∴ //NQ AB . ∵ //AB CD , ∴ //NQ CD .∴ 过,,N C D 三点的平面NQCD 把长方体1111ABCD A B C D -截成两部分几何体,其中一部分几何体为直三棱柱QBC -NAD , 另一部分几何体为直四棱柱1111B QCC A NDD -. …8分 ∴ 11111222QBC S QB BC ∆==⨯⨯=, ∴直三棱柱QBC -NAD的体积112QBC V S AB ∆==, (10)分∵ 长方体1111ABCD A B C D -的体积112V =⨯⨯2=, ∴直四棱柱1111B QCC A NDD -体积2132V V V =-=. …12分 ∴ 12V V =1232=13.∴ 所截成的两部分几何体的体积的比值为13. …14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何证明平行的方法及专题训练罗虎胜----------szdsgz@立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。
(2) 利用三角形中位线的性质。
(3) 利用平行四边形的性质。
(4) 利用对应线段成比例。
(5) 利用面面平行的性质,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形(第1题图)DE B 1A 1C 1C AB FM 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:法一:连MD 交GF 于H ,易证EH 是△AMD 的中位线 法二:证平面EGF ∥平面ABC ,从而AM ∥平面EFG6、如图,直三棱柱///ABC A B C -,90BAC ∠=o ,2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。
ABCDEF G MA ACC;证明:MN∥平面//分析:连结AC1,,则MN是则△A1BC1的中位线,7.如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证:AB1//面BDC1;分析:连B1C交BC1于点E,易证ED是△B1AC的中位线8、如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.证明: BC1//平面A1CD;分析:此题与上面的是一样的,连结AC1与A1C交F,连结DF,则DF//BC1 Array9、如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.分析:连结AC交BD于O点,连结OM,易证OM∥PA从而PA∥平面DBM,再根据直线与平面平行的性质得AP∥GH.(.3)利用平行四边形的性质10.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,求证:D1O//平面A1BC1; 分析:连D1B1交A1C1于O1点,易证四边形OBB1O1是平行四边形.PEDCBA 11、在四棱锥P-ABCD 中,AB ∥CD ,AB=21DC ,中点为PD E . 求证:AE ∥平面PBC ;分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形12、在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF. (Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.(I )证法一:因为EF//AB ,FG//BC ,EG//AC ,90ACB ∠=︒, 所以90,EGF ABC ∠=︒∆∽.EFG ∆ 由于AB=2EF ,因此,BC=2FC , 连接AF ,由于FG//BC ,BC FG 21=在ABCD Y 中,M 是线段AD 的中点,则AM//BC ,且BC AM 21=因此FG//AM 且FG=AM ,所以四边形AFGM 为平行四边形,因此GM//FA 。
又FA ⊂平面ABFE ,GM ⊄平面ABFE ,所以GM//平面ABFE 。
(4)利用对应线段成比例13、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别 是SA 、BD 上的点,(1)SM AM =ND BN, 求证:MN ∥平面SDC (2)AM DNSM BN=, 求证:MN ∥平面SBC 分析:法一:过M 作ME//AD ,过N 作NF//AD利用相似比易证MNFE 是平行四边形法二:连接AN 并且延长交CD 或CD 的延长线于E 点,连结SE ,则易证MN ∥SE,于是MN ∥平面SDC ,同理连接AN 并且延长交BC 或BC 的延长线于F ,连结SF ,则易证MN ∥SF,于是MN ∥平面SBC14、如图正方形ABCD 与ABEF 交于AB ,M ,N 分别为AC 和BF 上的点且AM=FN 求证:MN ∥平面BEC分析:过M 作MG//AB ,过N 作NH/AB 利用相似比易证MNHG 是平行四边形(6) 利用面面平行15、如图,三棱锥ABC P -中, E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =. 求证://CM 平面BEF ;分析: 取AF 的中点N ,连CN 、MN ,易证平面CMN//平面EFB16、如图, 在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =,点D 是AB 的中点, (1)求证:1AC BC ⊥;(2)求证:11CDB //平面AC ; (3)求三棱锥11C CDB -的体积。
分析:取A 1B 1的中点E ,连结C 1E 和AE ,易证 C 1E ∥CD,AE ∥DB 1,则平面AC 1E ∥DB 1C,于是11CDB //平面ACAFEBC DMNNMB 1C 1D 1A 1D CBAP NMB 1C 1D 1A 1DCBAB 1C 1D 1A 117在长方体1111ABCD A B C D -中, 11,2AB BC AA ===, 点M 是BC 的中点,点N 是1AA 的中点. (1) 求证: //MN 平面1A CD ;(2) 过,,N C D 三点的平面把长方体1111ABCD A B C D -截成 两部分几何体, 求所截成的两部分几何体的体积的比值.(1)证法1:设点P 为AD 的中点,连接,MP NP .∵ 点M 是BC 的中点, ∴ //MP CD .∵ CD ⊂平面1A CD ,MP ⊄平面1A CD , ∴ //MP 平面1A CD . …2分 ∵ 点N 是1AA 的中点, ∴ 1//NP A D .∵ 1A D ⊂平面1A CD ,NP ⊄平面1A CD , ∴//NP 平面1A CD . …4分∵ MP NP P =I ,MP ⊂平面MNP ,NP ⊂平面MNP , ∴ 平面//MNP 平面1A CD . ∵ MN ⊂平面MNP ,∴//MN 平面1A CD . …6分证法2: 连接AM 并延长AM 与DC 的延长线交于点P , 连接1A P , ∵ 点M 是BC 的中点, ∴ BM MC =.QN MB 1C 1D 1A 1DCB A∵ BMA CMP ∠=∠, 90MBA MCP ︒∠=∠=, ∴ Rt MBA ≅Rt MCP . …2分∴ AM MP =. ∵ 点N 是1AA 的中点,∴ 1MN //A P . …4分∵ 1A P ⊂平面1A CD ,MN ⊄平面1A CD ,∴ //MN 平面1A CD . …6分(2) 解: 取1BB 的中点Q , 连接NQ ,CQ , ∵ 点N 是1AA 的中点, ∴ //NQ AB . ∵ //AB CD , ∴ //NQ CD .∴ 过,,N C D 三点的平面NQCD 把长方体1111ABCD A B C D -截成两部分几何体, 其中一部分几何体为直三棱柱QBC -NAD , 另一部分几何体为直四棱柱1111B QCC A NDD -. …8分∴ 11111222QBC S QB BC ∆==⨯⨯=g g , ∴直三棱柱QBC -NAD的体积112QBC V S AB ∆==g , …10分 ∵ 长方体1111ABCD A B C D -的体积112V =⨯⨯2=, ∴直四棱柱1111B QCC A NDD -体积2132V V V =-=. …12分∴ 12V V =1232=13.∴所截成的两部分几何体的体积的比值为13. …14分。