分式运算的几种技巧(专题复习)超好的整理资料

分式运算的几种技巧(专题复习)超好的整理资料
分式运算的几种技巧(专题复习)超好的整理资料

分式运算的几种技巧

分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。

一、 整体通分法

例1 计算:2

11

---a a a 【分析】本题是一个分式与整式的加减运算.如能把(-a -1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式. 【解】2222(1)(1)(1)(1)11(1)111111

+--+---=-+=-==------a a a a a a a a a a a a a a a a 二、 先约分后通分法

例2 计算2221

2324+-++-+x x x x x x

分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多。

解:原式=)2)(1(1+++x x x +)2)(2()2(+--x x x x =21+x +2+x x =21++x x

三、 分组加减法

例3计算21-a +12+a -12-a -21+a

分析:本题项数较多,分母不相同.因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便。

解:原式=(21-a -21+a )+(12+a -12-a ) =44

2-a +142--a =)1)(4(1222--a a

四、 分离整数法

例4 计算3

x 4x 4x 5x 2x 3x 1x 2x -----+++-++ 方法:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。

解:原式=

(1)1(2)1(4)1(3)11243

++++-----+-++--x x x x x x x x =1111(1)(1)(1)(1)1243

+-++---++--x x x x =11111243--+++--x x x x =。。。

五、 逐项通分法

例5 计算:4

43

22x a x 4x a x 2x a 1x a 1--+-+-- 分析:若一次通分,计算量太大,注意到相邻分母之间,依次通分构成平方差公式,采用分段分步法,则可使问题简单化。 同类方法练习题:计算

1x 21x 11x 12+-+--1x 81x 484+-+-

六、 裂项相消法

例6 计算:1111...(1)(1)(2)(2)(3)(9)(10)

a a a a a a a a +++++++++++. 分析:本题的10个分式相加,无法通分,而式子的特点是:每个分式的分母都是两个连续整数的积(若a 是整数),联想到111(1)1

=-++a a a a ,这样可抵消一些项. 解:原式=1

1111111()()()...()11223910

a a a a a a a a -+-+-++-+++++++ =111010(10)

-=++a a a a 七、 整体代入法

例7.已知1x +1y =5求2522x xy y x xy y

-+++的值 解法1:∵1x +1y =5∴x y ≠0,.所以2522x xy y x xy y -+++=225112y x y x -+++=112()5112x y x y

+-++=25552?-+=57 解法2:由1x +1y =5得,x y xy

+=5, x+y=5xy ∴2522x xy y x xy y -+++=2()5()2x y xy x y xy +-++=25552xy xy xy xy ?-+=57xy xy =57

练习:若11x y -=5,求3533x xy y x xy y

+---的值.

八、 公式变形法

例8.已知a 2-5a+1=0,计算a 4+

4

1a

解:由已知条件可得a ≠0,∴a+

1a =5 ∴a 4+41a =(a 2+21a

)2-2=[(a+1a )2-2]2-2=(52-2)2-2=527 练习:(1)已知x 2+3x+1=0,求x 2+21x

的值. 九、 设中间参数法

例9.已知b c a += a c b += a b c +,计算:()()()a b b c c a abc

+++ 解:设b c a += a c b += a b c

+=k ,则b+c=ak ;a+c=bk ;a+b=ck ; 把这3个等式相加得2(a+b+c)= (a+b+c)k

若a+b+c=0,a+b= -c,则k= -1

若a+b+c ≠0,则k=2

()()()a b b c c a abc +++=ak bk ck abc

??=k 3 当k=-1时,原式= -1

当k=2时,原式= 8

练习:(1)已知实数x 、y 满足x:y=1:2,则

=+-y x y x 3__________。 (2)已知6z 5y 4x ==,则z

3z 4y 3x 2+-=_____________。 十、先取倒数后拆项法(尤其分子单项,分母多项)

例10.已知21a a a -+=7,求2

421

a a a ++的值 解:由条件知a ≠0,∴21a a a

-+=17,即a+1a =87 ∴4221a a a

++=a 2+21a +1=(a+1a )2-1=1549 ∴2

421a a a ++=4915

练习:已知a+1a =5.则2

421

a a a ++=__________. 十一、 特殊值法(选填题)

例11. 已知abc=1,则1a ab a +++1b bc b +++1

c ca c ++=_________. 分析:由已知条件无法求出a 、b 、c 的值,可根据已知条件取字母的一组特殊值,然后代入求值. 解:令a=1,b=1,c=1,则

原式=11111?+++11111?+++11111?++=13+13+13

=1. 说明:在已知条件的取值范围内取一些特殊值代入求值,可准确、迅速地求出结果.

练习:(1)已知:xy z ≠0,x+y+z=0,计算y z x ++x z y

++x y z + (2)已知

6z 5y 4x ==,则z

3z 4y 3x 2+-=________ 十二、 主元法 例12. 已知xyz ≠0,且3x -4y -z=0,2x +y -8z=0,求222

2x y z xy yz zx

++++的值. 解:将z 看作已知数,把3x -4y -z=0与2x +y -8z=0联立,

得 3x -4y -z=0,

2x +y -8z=0.

解得 x=3z,

y=2z.

所以,原式=222

(3)(2)(3)(2)(2)2(3)z z z z z z z z z ++?+?+?=2214 1.14z z

= 练习:已知3a-4b-c=0,2a+b-8c=0,计算: 222

a b c ab bc ac ++++

混合运算练习题

(1)2

222223223x y y x y x y x y x y x ----+--+ (2)1111322+-+--+a a a a . (3) 21x x --x -1 (4)

3a a --263a a a +-+3a (5)x

y y y x x y x xy --++-222 (6)293261623x x x -+--+ (7)xy y x y x y x 2211-????

? ??+-- (8)a a a a a a 4)22(2-?+-- (9)232224x x x x x x ??-÷ ?+--?? (10))1x 3x 1(1

x 1x 2x 22+-+÷-+- (11) )252(23--+÷--x x x x (12) (ab b a 22++2)÷b a b a --22 (13)22321113x x x x x x x +++-?--+ (14)x

x x x x x x x x 416)44122(2222+-÷+----+

(15)计算:x x x x x x x x -÷+----+4)4

4122(

22,并求当3-=x 时原式的值.

【错题警示】

一、错用分式的基本性质

例1化简

错解:原式

分析:分式的基本性质是“分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变”,而此题分子乘以3,分母乘以2,违反了分式的基本性质.

正解:原式

二、错在颠倒运算顺序

例2计算

错解:原式

分析:乘除是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误.

正解:原式

三、错在约分

例1 当为何值时,分式有意义?

[错解]原式.

由得.

∴时,分式有意义.

[解析]上述解法错在约分这一步,由于约去了分子、分母的公因式,扩大了未知数的取值范围,而导致错误.

[正解]由得且.

∴当且,分式有意义.

四、错在以偏概全

例2 为何值时,分式有意义?

[错解]当,得.

∴当,原分式有意义.

[解析]上述解法中只考虑的分母,没有注意整个分母,犯了以偏概全的错误.

[正解] ,得,

由,得.

∴当且时,原分式有意义.

五、错在计算去分母

例3 计算.

[错解]原式

=.

[解析]上述解法把分式通分与解方程混淆了,分式计算是等值代换,不能去分母,.

[正解]原式

.

六、错在只考虑分子没有顾及分母

例4 当为何值时,分式的值为零.

[错解]由,得.

∴当或时,原分式的值为零.

[解析]当时,分式的分母,分式无意义,谈不上有值存在,出错的原因是忽视了分母不能为零的条件.

[正解]由,得.

由,得且.

∴当时,原分式的值为零.

七、错在“且”与“或”的用法

例7 为何值时,分式有意义

错解:要使分式有意义,须满足,即.

由得,或由得.

当或时原分式有意义.

分析:上述解法由得或是错误的.因为与中的一个

式子成立并不能保证一定成立,只有与同时成立,才能保证

一定成立.

故本题的正确答案是且.

八、错在忽视特殊情况

例8解关于的方程.

错解:方程两边同时乘以,得,即.

当时,,

当时,原方程无解.

分析:当时,原方程变为取任何值都不能满足这个方程,错解只注意了对的讨论,而忽视了的特殊情况的讨论.

正解:方程两边同时乘以,得,即

当且时,,当或时,原方程无解.

分式运算的几种技巧

分式运算的几种技巧 分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。 一、 整体通分法 例1 计算: 2 11 a a a 【分析】本题是一个分式与整式的加减运算.如能把(-a -1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式. 【解】 22 22(1)(1) (1)(1) 11(1)11 111 1 a a a a a a a a a a a a a a a a 二、 先约分后通分法 例2 计算2221 232 4x x x x x x 分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多。 解:原式=)2)(1(1+++x x x +)2)(2()2(+--x x x x =21 +x +2+x x =21++x x 三、 分组加减法 例3计算21-a +12 +a -12-a -21+a 分析:本题项数较多,分母不相同.因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便。 解:原式=(21-a -21+a )+(12 +a -12-a ) =44 2-a +142--a =)1)(4(1222--a a 四、 分离整数法 例4 计算 3 x 4 x 4x 5x 2x 3x 1x 2x --- --+++-++ 方法:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。 解:原式=(1)1(2)1(4)1(3)1 1243x x x x x x x x =1111(1 )(1)(1)(1)1243x x x x =1111 1243 x x x x =。。。

培优专题7_分式的运算(含问题详解)

10、分式的运算 【知识精读】 1. 分式的乘除法法则 ; 当分子、分母是多项式时,先进行因式分解再约分。 2. 分式的加减法 (1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。 求最简公分母是通分的关键,它的法则是: ①取各分母系数的最小公倍数; ②凡出现的字母(或含有字母的式子)为底的幂的因式都要取; ③相同字母(或含有字母的式子)的幂的因式取指数最高的。 (2)同分母的分式加减法法则 (3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。 3. 分式乘方的法则 (n为正整数) 4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。学习时应注意以下几个问题: (1)注意运算顺序及解题步骤,把好符号关; (2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式; (3)运算中及时约分、化简; (4)注意运算律的正确使用; (5)结果应为最简分式或整式。 下面我们一起来学习分式的四则运算。 【分类解析】

例1:计算的结果是() A. B. C. D. 分析:原式 故选C 说明:先将分子、分母分解因式,再约分。 例2:已知,求的值。 分析:若先通分,计算就复杂了,我们可以用替换待求式中的“1”,将三个分式化成同分母,运算就简单了。 解:原式 例3:已知:,求下式的值: 分析:本题先化简,然后代入求值。化简时在每个括号内通分,除号改乘号,除式的分子、分母颠倒过来,再约分、整理。最后将条件等式变形,用一个字母的代数式来表示另一个字母,带入化简后的式子求值。这是解决条件求值问题的一般方法。 解:

分式运算中的常用技巧与方法

分式运算中的常用技巧与方法1 在分式运算中,若能认真观察题目结构特征,灵活运用解题技巧,选择恰当的运算方法,常常收到事半功倍的效果。现就分式运算中的技巧与方法举例说明。 一、 整体通分法 例1.化简: 21 a a --a-1 分析 将后两项看作一个整体,则可以整体通分,简捷求解。 解: 21 a a --a-1= 21 a a --(a+1)= 21a a --(1)(1)1 a a a -+-= 22(1) 1a a a ---=11 a - 二、 逐项通分法 例2.计算 1 a b --1a b +- 22 2b a b +- 344 4b a b - 分析:注意到各分母的特征,联想乘法公式,适合采用逐项通分法 解:1a b -- 1a b +- 22 2b a b +- 344 4b a b -= 22 ()() a b a b a b +---- 22 2b a b +- 344 4b a b - =222b a b --222b a b +- 344 4b a b -= 222244 2()2() b a b b a b a b +---- 344 4b a b - = 344 4b a b -- 344 4b a b -=0 三、 先约分,后通分 例3.计算: 2262a a a a +++ 22444 a a a -++

分析:分子、分母先分解因式,约分后再通分求值计算 解: 2262a a a a +++ 22444a a a -++=(6)(2)a a a a +++2 (2)(2)(2)a a a +-+=62a a +++22a a -+=242 a a ++=2 四、 整体代入法 例4.已知1x +1y =5求2522x xy y x xy y -+++的值 解法1:∵ 1x + 1y =5∴xy ≠0,.所以 2522x xy y x xy y -+++= 225112y x y x -+++= 11 2()5112x y x y +-++=25552 ?-+=57 解法2:由1x +1y =5得,x y xy +=5, x+y=5xy ∴2522x xy y x xy y -+++=2()5()2x y xy x y xy +-++=25552xy xy xy xy ?-+=57xy xy =57 五、运用公式变形法 例5.已知a 2-5a+1=0,计算a 4+4 1a 解:由已知条件可得a ≠0,∴a+1a =5 ∴a 4+4 1a =(a 2+2 1a )2-2=[(a+1a )2-2]2-2=(52-2)2 -2=527 六、设辅助参数法 例6.已知b c a += a c b += a b c +,计算:()()() a b b c c a abc +++ 解:设b c a += a c b += a b c +=k ,则b+c=ak ;a+c=bk ;

八年级数学分式培优练习题完整复习资料

分式培优练习题 分式 (一) 一 选择 1 下列运算正确的是( ) A -40=1 B (-3)-1=3 1 C (-2)2=4 D ()-111 2 分式2 8,9,12z y x xy z x x z y -+-的最简公分母是( ) A 722 B 108 C 72 D 962 3 用科学计数法表示的树-3.6×10-4写成小数是( ) A 0.00036 B -0.0036 C -0.00036 D -36000 4 若分式652 2+--x x x 的值为0,则x 的值为( ) A 2 B -2 C 2或-2 D 2或3 5计算?? ? ??-+÷??? ?? -+1111112x x 的结果是( ) A 1 B 1 C x x 1+ D 1 1-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②723x ③372 ④372=-x x 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 4 7 在m a y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 5 8 若分式方程x a x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 2 9 若3,111--+=-b a a b b a b a 则的值是( ) A -2 B 2 C 3 D -3 10 已知 k b a c c a b c b a =+=+=+,则直线2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限 二 填空 1 一组按规律排列的式子:()0,,,,4 11 38252≠--ab a b a b a b a b ,其中第7个式子是

初中数学分式化解求值解题技巧大全

化简求值常用技巧 在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质 例1 如果12x x + =,则 24 2 1 x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2x ,得 原式=. 2 2 2 2 11111121 3 1()1 x x x x == = -++ + -. 2、倒数法 例2 如果12x x + =,则 24 2 1 x x x ++的值是多少? 解:将待求分式取倒数,得 4 2 2 22 2 2 1 111()1213x x x x x x x ++=+ +=+ -=-= ∴原式=13 . 3、平方法 例3 已知12x x + =,则2 2 1x x + 的值是多少? 解:两边同时平方,得 2 2 2 2 1124,42 2.x x x x ++ =∴+ =-= 4、设参数法 例4 已知 0235 a b c ==≠,求分式 2 2 2 2323ab bc ac a b c +-+-的值. 解:设 235a b c k ===,则 2,3,5a k b k c k ===. ∴原式= 22 2 2 2 2323532566.(2)2(3)3(5) 5353 k k k k k k k k k k k ?+??-??= =- +-- 例5 已知 ,a b c b c a ==求 a b c a b c +--+的值. 解:设 a b c k b c a = ==,则 ,,.a bk b ck c ak ===

分式方程培优讲义

分式方程培优讲义-CAL-FENGHAI.-(YICAI)-Company One1

分式方程拔高讲练 一、含有参数方程 1.若关于x的分式方程的解为非负数,则a的取值范围是 2.分式方程=1﹣的根为 3.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组 的解集为y<﹣2,则符合条件的所有整数a的和为 二、方程无解 1.若关于x的方程﹣=﹣1无解,则m的值是 2.若=0无解,则m的值是 3.若关于x的分式方程﹣=无解,求a=.

三、有增根 1、如果解关于x的分式方程﹣=1时出现增根,那么m的值为 2、关于x的分式方程有增根,则增根为. 3、若关于x的方程有增根,则m的值是. 4、解关于x的方程+=产生增根,则常数a= 四、整体代入解方程 1.已知在方程x2+2x+=3中,如果设y=x2+2x,那么原方程可化为关于y 的整式方程是. 2、用换元法解方程﹣2?+1=0时应设y=. 3.如果实数x满足(x+)2﹣(x+)﹣2=0,那么x+的值是. 四、实际问题 1.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫设第一批购进x件衬衫,则所列方程为() A.﹣10= B.+10= C.﹣10= D.+10=

2.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行 120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为() A.= B.=C.= D.= 3.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是() A. B. C. D. 4.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5 天完成任务,设原计划每天植树x万棵,可列方程是() A.﹣=5 B.﹣=5 C.+5= D.﹣=5 5.西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据题意可列出方程为() A.+=1 B.+= C.+= D.+=1 【同步训练】 1.如果关于x的不等式组的解集为x>1,且关于x的分式方程 +=3有非负整数解,则符合条件的m的所有值的和是()A.﹣2 B.﹣4 C.﹣7 D.﹣8 2.从﹣2、﹣1、0、2、5这一个数中,随机抽取一个数记为m,若数m使关于x的不等式组无解,且使关于x的分式方程+=﹣1有 非负整数解,那么这一个数中所有满足条件的m的个数是() A.1 B.2 C.3 D.4

专题:分式运算中的常用技巧

初中数学专题:分式运算中的常用技巧 编稿老师徐文涛一校雪二校黄楠审核敏 知识点考纲要求命题角度备注分式的性质掌握利用分式的基本性质进行约分和通分 分式的运算综合运用 1. 利用设k的方法进行分式化简与计算 2. 利用公式进行分式化简与计算 3. 利用整体通分的思想对分式进行化简 与计算 常考 二、重难点提示 重点: 1. 掌握设参数法进行分式运算; 2. 利用公式变形进行分式运算; 3. 掌握整体通分的思想方法。 难点: 会选用恰当的方法解决与分式有关的问题。 微课程1:设k求值 【考点精讲】 运用已知条件,求代数式的值是数学学习的重要容之一。除了常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的。 如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数,以便沟通数量关系,设k求值,也叫做设参数法。通常是用含有字母的代数式来表示变量,这个代数式叫作参数式,其中的字母叫做参数。参数法,是许多解题技巧的源泉。 【典例精析】 例题1 已知0 345 a b c ==≠,求 32 2 a b c a b c -+ -- 的值。 思路导航:首先设 345 a b c k ===,则可得a=3k,b=4k,c=5k,然后将其代入32 2 a b c a b c -+ -- ,即可求得答案。

答案:解:设 345 a b c k ===(k≠0) ,则a =3k ,b =4k ,c =5k , 所以322a b c a b c -+--=332453245k k k k k k ?-?+-?-=610k k -=35 - 点评:本题考查了运用设k 值的方法求分式的值,用“设k 法”表示出a 、b 、c 可以使运算更加简便。 例题2 已知a ,b ,c 均不为0,且232537a b b c c a +--== ,求223c b b a -+的值。 思路导航:仔细观察 223c b b a -+,只要a 、b 、c 用同一个未知数表示,就可以约去分式中 的未知数。所以,设232537 a b b c c a +--== =k ,用k 来表示a 、b 、c ,然后将其代入所求的分式即可。 答案:解:设 232537 a b b c c a +--== =k , 则a +2b =5k ,① 3b -c =3k ,② 2c -a =7k ,③ 由①+③得,2b +2c =12k , ∴b +c =6k ,④ 由②+④,得4b =9k , ∴b =9 4 k ,分别代入①、④得, a = 1 2k , c =154 k , ∴223c b b a -+=159 4 29322 k k k k -+=346k k -=18- 例题3 已知 b c a c a b a b c +++== ,计算()()() a b b c c a abc +++。 思路导航:设b c a c a b a b c +++===k ,得b +c =ak ,a +c =bk ,a +b =ck ;然后将三式相加即可求出k 的值,代入即可求值。 答案:解:设 b c a c a b a b c +++===k ,得b +c =ak ,a +c =bk ,a +b =ck ;把这3个式子相加得2(a +b +c )=(a +b +c )k 若a +b +c =0,a +b =-c ,则k =-1 若a +b +c≠0,则k =2

分式的运算技巧

分式 概念 形如(A、B是整式,B中含有字母)的式子叫做分式。其中A叫做分式的分子,B 叫做分式的分母。且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式; 当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。 注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。无需考虑该分式是否有意义,即分母是否为零。 由于字母可以表示不同的数,所以分式比分数更具有一般性。 方法:数看结果,式看形。 分式条件: 1.分式有意义条件:分母不为0。 2.分式值为0条件:分子为0且分母不为0。 3.分式值为正(负)数条件:分子分母同号得正,异号得负。 4.分式值为1的条件:分子=分母≠0。 5.分式值为-1的条件:分子分母互为相反数,且都不为0。 代数式分类 整式和分式统称为有理式。 带有根号且根号下含有字母的式子叫做无理式。 无理式和有理式统称代数式。 分式的基本性质 分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:

(A,B,C为整式,且B、C≠0) 运算法则 约分 根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。约分的关键是确定分式中分子与分母的公因式。 约分步骤: 1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约 去。 2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。 公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。 最简分式:一个分式不能约分时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。 通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。 分式的乘法法则: (1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。 (2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。 用字母表示为: 分式的加减法法则:

分式培优讲义教学文案

讲义 ———分式 姓名: 分式 知识点一:分式的定义

一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。 知识点二:与分式有关的条件 ①分式有意义:分母不为0(B ≠0) ②分式无意义:分母为0(B=0) ③分式值为0:分子为0且分母不为0(A=0且B ≠0) ④分式值为正或大于0:分子分母同号(或 )

⑤分式值为负或小于0:分子分母异号(或 ) ⑥分式值为1:分子分母值相等(A=B) ⑦分式值为-1:分子分母值互为相反数(A+B=0) 知识点三:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:,,其中 A、B、C是整式,C0。 拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即

注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含 条件B0。 知识点四:分式的约分 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。 步骤:把分式分子分母因式分解,然后约去分子与分母的公因。 注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。 ②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。 最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。 知识点五:分式的通分 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。分式的通分最主要的步骤是最简公分母的确定。 最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

分式的运算技巧

分式 概念 形如(A、B就是整式,B中含有字母)的式子叫做分式。其中A叫做分式的分子,B叫做分式的分母。且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。 注意:判断一个式子就是否就是分式,不要瞧式子就是否就是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。无需考虑该分式就是否有意义,即分母就是否为零。 由于字母可以表示不同的数,所以分式比分数更具有一般性。 方法:数瞧结果,式瞧形。 分式条件: 1、分式有意义条件:分母不为0。 2、分式值为0条件:分子为0且分母不为0。 3、分式值为正(负)数条件:分子分母同号得正,异号得负。 4、分式值为1的条件:分子=分母≠0。 5、分式值为-1的条件:分子分母互为相反数,且都不为0。 代数式分类 整式与分式统称为有理式。 带有根号且根号下含有字母的式子叫做无理式。 无理式与有理式统称代数式。 分式的基本性质 分式的分子与分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:

(A,B,C为整式,且B、C≠0) 运算法则 约分 根据分式基本性质,可以把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。约分的关键就是确定分式中分子与分母的公因式。 约分步骤: 1、如果分式的分子与分母都就是单项式或者就是几个因式乘积的形式,将它们的公因式 约去。 2、分式的分子与分母都就是多项式,将分子与分母分别分解因式,再将公因式约去。 公因式的提取方法:系数取分子与分母系数的最大公约数,字母取分子与分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。 最简分式:一个分式不能约分时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。 通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。 分式的乘法法则: (1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。 (2)两个分式相除,把除式的分子与分母颠倒位置后再与被除式相乘。 用字母表示为: 分式的加减法法则: 同分母分式的加减法法则:同分母的分式相加减,分母不变,把分子相加减。 用字母表示为:

分式计算及方法

分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。 一. 分段分步法 例1. 计算: 解:原式 说明:若一次通分,计算量太大,注意到相邻分母之间,依次通分构成平方差公式,采用分段分步法,则可使问题简单化。 同类方法练习题:计算 (答案:) 二. 分裂整数法 例2. 计算: 解:原式=

说明:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。 同类方法练习题:有一些“幸福”牌的卡片(卡片数目不为零),团团的卡片比这些多6,圆圆的卡片比这些多2,且知团团的卡片是圆圆的整数倍,求团团和圆圆各多少卡片?(答案:团团8,圆圆4) 三. 拆项法 例3. 计算: 解:原式 说明:对形如上面的算式,分母要先因式分解,再逆用公式,各个分式拆项,正负抵消一部分,再通分。在解某些分式方程中,也可使用拆项法。 同类方法练习题:计算: (答案:) 四. 活用乘法公式 例4. 计算: 解:当时,

原式 说明:在本题中,原式乘以同一代数式,之后再除以同一代数式还原,就可连续使用平方差公式,分式运算中若恰当使用乘法公式,可使计算简便。 同类方法练习题:计算: (答案:) 五. 巧选运算顺序 例5. 计算: 解:原式 说明:此题若按两数和(差)的平方公式展开前后两个括号,计算将很麻烦,一般两个分式的和(差)的平方或立方不能按公式展开,只能先算括号的。 同类方法练习题:解方程

(答案:) 六. 见繁化简 例6. 计算: 解:原式 说明:若运算中的分式不是最简分式,可先约分,再选用适当方法通分,可使运算简便。 同类方法练习题:解方程 (答案:) 在分式运算中,应根据分式的具体特点,灵活机动,活用方法。方能起到事半功倍的效率。

分式培优训练(含答案)

13、分式总复习 【知识精要】 分式定义:(、为整式,中含有字母)性质通分:约分:分式方程定义:分母含有未知数的方程。如解法思想:把分式方程转化为整式方程方法:两边同乘以最简公分母依据:等式的基本性质 注意:必须验根应用:列分式方程解应用题及在其它学科中的应用A B A B A M B M M A B A M B M M x x A B B =??≠=÷÷≠???????-=+???????????????????????????????????????????()()005113 【分类解析】 1. 分式有意义的应用 例1. 若ab a b +--=10,试判断 1111a b -+,是否有意义。 分析:要判断1111 a b -+,是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断a b -+11,与零的关系。 解: ab a b +--=10 ∴+-+=a b b ()()110 即()()b a +-=110 ∴+=b 10或a -=10 ∴-+1111 a b ,中至少有一个无意义。 2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。 例2. 计算:a a a a a a 2211313 +-+--+- 分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分

离分式法”简化计算。 解:原式=+-+--+-a a a a a a ()()111313 =-+-+-=-+--=--+++-=- -+-a a a a a a a a a a a a a 1113 1113 311322 13()()() ()() ()() 例3. 解方程:11765556 222-++=-+-+x x x x x x 分析:因为x x x x 27616++=++()(),x x x x 25623-+=--()(),所以最简公分母为:()()()()x x x x ++--1623,若采用去分母的通常方法,运算量较大。由于x x x x x x x x x x 222225556561561156 -+-+=-+--+=--+故可得如下解法。 解: x x x x x x 222561561156 -+--+=--+ 原方程变为11761156 22-++=--+x x x x ∴++=-+∴++=-+∴=176156 76560 2222x x x x x x x x x 经检验,x =0是原方程的根。 3. 在代数求值中的应用 例4. 已知a a 2 69-+与||b -1互为相反数,求代数式 ()42222222222a b a b ab a b a ab b a b ab b a -++-÷+-++的值。 分析:要求代数式的值,则需通过已知条件求出a 、b 的值,又因为a a a 226930-+=-≥(),||b -≥10,利用非负数及相反数的性质可求出a 、b 的值。

分式的运算技巧

分式的运算技巧 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分式 概念 形如(A、B是整式,B中含有字母)的式子叫做分式。其中A叫做分式的分子,B叫做分式的分母。且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式; 当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。 注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。无需考虑该分式是否有意义,即分母是否为零。 由于字母可以表示不同的数,所以分式比分数更具有一般性。 方法:数看结果,式看形。 分式条件: 1.分式有意义条件:分母不为0。 2.分式值为0条件:分子为0且分母不为0。 3.分式值为正(负)数条件:分子分母同号得正,异号得负。 4.分式值为1的条件:分子=分母≠0。 5.分式值为-1的条件:分子分母互为相反数,且都不为0。 代数式分类 整式和分式统称为有理式。 带有根号且根号下含有字母的式子叫做无理式。 无理式和有理式统称代数式。 分式的基本性质 分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:

(A,B,C为整式,且B、C≠0) 运算法则 约分 根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。约分的关键是确定分式中分子与分母的公因式。 约分步骤: 1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约 去。 2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。 公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。 最简分式:一个分式不能约分时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。 通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。 分式的乘法法则: (1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。 (2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。 用字母表示为: 分式的加减法法则: 同分母分式的加减法法则:同分母的分式相加减,分母不变,把分子相加减。 用字母表示为:

分式化简求值几大常用技巧

分式化简求值几大常用技巧 在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质 例1 如果1 2x x +=,则242 1x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2 x ,得 原式=. 2222 1111 1 1 213 1()1x x x x = ==-++ +-. 2、倒数法 例2 如果1 2x x +=,则2421x x x ++的值是多少? 解:将待求分式取倒数,得 42222 22 1111()1213x x x x x x x ++=++=+-=-= ∴原式=1 3 . 3、平方法 例3 已知12x x + =,则221 x x +的值是多少? 解:两边同时平方,得 2222 1124,42 2.x x x x ++ =∴+=-= 4、设参数法 例4 已知 0235a b c ==≠,求分式2 22 2323ab bc ac a b c +-+-的值. 解:设235 a b c k ===,则 2,3,5a k b k c k ===. ∴原式=22222 2323532566 .(2)2(3)3(5)5353 k k k k k k k k k k k ?+??-??==-+-- 例5 已知 ,a b c b c a ==求a b c a b c +--+的值. 解:设a b c k b c a ===,则 ,,.a bk b ck c ak ===

∴3 c ak bk k ck k k ck ==?=??=, ∴3 1,1k k == ∴a b c == ∴原式= 1.a b c a b c +-=-+ 5、整体代换法 例6 已知 113,x y -=求2322x xy y x xy y +---的值. 解:将已知变形,得 3,y x xy -=即3x y xy -=- ∴原式= 2()32(3)333 .()23255 x y xy xy xy xy x y xy xy xy xy -+?-+-===----- 例: 例5. 已知a b +<0 ,且满足a a b ba b 2 2 22++--=,求a b a b 33 13+-的值。 解:因为a a b ba b 2 2 22++--= 所以()()a b a b +-+-=220 所以()()a b a b +-++=210 所以a b +=2或a b +=-1 由a b +<0 故有a b +=-1 所以a b a b a ba a b b a b 3322 1313+-= +-+-()() = -?-+-= -+-11331 2222() a a b b ab a a b b ab = +--=---= --()()a b a b a b a b a b a b a b 2233113311331 =-1 评注:本题应先对已知条件a a b ba b 22 22++--=进行变换和因式分解,并由a b +<0确定出a b +=-1,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。 6、消元代换法 例7 已知1,abc =则 111a b c ab a bc b ac c ++=++++++ . 解:∵1,abc =∴1,c ab = ∴原式=1 11111a b ab ab a b ab b a ab ab ++ ++?++?++

浙教版数学七年级下册第五章《分式》培优题

浙教版数学七年级下册第五章《分式》培优题 一.选择题(共6小题) 1.若分式,则分式的值等于() A.﹣ B.C.﹣ D. 2.对于正数x,规定f(x)=,例如:f(3)==,f()==,则f()+f()+…+f()+f(1)+f(2)+…+f(2014)+f(2015)的值为 () A.2016 B.2015 C.2015.5 D.2014.5 3.分式方程有增根,则m的值为() A.0和2 B.1 C.1和﹣2 D.2 4.已知:a,b,c三个数满足,则的值为() A.B.C.D. 5.甲瓶盐水含盐量为,乙瓶盐水含盐量为,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为() A. B. C.D.随所取盐水重量而变化 6.已知x2﹣5x﹣1991=0,则代数式的值为() A.1996 B.1997 C.1998 D.1999 二.填空题(共6小题) 7.有一个计算程序,每次运算这种运算的过程如下:

则第n次运算的结果y n.(用含有x和n的式子表示) 8.已知分式=,则=. 9.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由 于式子比较长,书写不方便,为了简便起见,我们将其表示为n,这里“∑”是 求和符号,通过以上材料的阅读,计算=. 10.如表:方程1、方程2、方程3…是按照一定规律排列的一列方程: ﹣ =1 ﹣ =1 ﹣ =1 (1)若方程﹣=1(a>b)的解是x1=6,x2=10,则a=b=. (2)请写出这列方程中第n个方程:方程的解:. 11.已知a、b、c为整数,a2+b2+c2+49﹣4a﹣6b﹣12c<1,则(++)abc=.12.若xyz≠0,并且满足3x=7y=63z,则=. 三.解答题(共6小题)

昆明数学分式解答题单元培优测试卷

一、八年级数学分式解答题压轴题(难) 1.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工. (1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米. (2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造,后12 S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由. 【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米; (2)方案二所用的时间少 【解析】 【分析】 (1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解; (2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论. 【详解】 (1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x =+, 解得:150x =, 检验,当150x =时,()300x x +≠, ∴原分式方程的解为:150x =, 30180x +=, 答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米; (2)设方案一所用时间为:111()222s s a b s t a b ab +=+=, 方案二所用时间为2t ,则221122t a t b s +=,22s t a b =+, ∴2 2()22() a b a b S S S ab a b ab a b +--=++, ∵a b ,00a b >>,, ∴()20a b ->,

(完整版)分式的运算及题型讲解

§17.2分式的运算 一、分式的乘除法 1、法则: (1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。(意思就是,分式相乘,分子与分子相乘,分母与分母相乘)。 用式子表示:bd ac d c b a =? (2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘。 用式子表示: 2、应用法则时要注意:(1)分式中的符号法则与有理数乘除法中的符号法则相同,即“同号得正,异号得负,多个负号出现看个数,奇负偶正”;(2)当分子分母是多项式时,应先进行因式分解,以便约分;(3)分式乘除法的结果要化简到最简的形式。 二、分式的乘方 1、法则:根据乘方的意义和分式乘法法则,分式的乘方就是把将分子、分母分别乘方,然后再相除。 用式子表示:(其中n 为正整数,a ≠0) 2、注意事项:(1)乘方时,一定要把分式加上括号;(2)在一个算式中同时含有乘方、乘法、除法时,应先算乘方,再算乘除,有bc ad c d b a d c b a =?=÷n n n b a b a =??? ??

多项式时应先因式分解,再约分;(3)最后结果要化到最简。 三、分式的加减法 (一)同分母分式的加减法 1、法则:同分母分式相加减,分母不变,把分子相加减。 用式子表示: 2、注意事项:(1)“分子相加减”是所有的“分子的整体”相加减,各个分子都应有括号;当分子是单项式时括号可以省略,但分母是多项式时,括号不能省略;(2)分式加减运算的结果必须化成最简分式或整式。 (二)异分母分式的加减法 1、法则:异分母分式相加减,先通分,转化为同分母分式后,再加减。用式子表示:bd bc ad bd bc bd ad d c b a ±=±=±。 2、注意事项:(1)在异分母分式加减法中,要先通分,这是关键,把异分母分式的加减法变成同分母分式的加减法。(2)若分式加减运算中含有整式,应视其分母为1,然后进行通分。(3)当分子的次数高于或等于分母的次数时,应将其分离为整式与真分式之和的形式参与运算,可使运算简便。 四、分式的混合运算 1、运算规则:分式的加、减、乘、除、乘方混合运算,先乘方,再乘除,最后算加减。遇到括号时,要先算括号里面的。 2、注意事项:(1)分式的混合运算关键是弄清运算顺序;(2)b c a b c b a ±=±

3-2-2 (10年秋)分式的运算技巧.讲义学生版

内容 基本要求 略高要求 较高要求 分式的概念 了解分式的概念,能确定分式有意义的条件 能确定使分式的值为零的条件 分式的性质 理解分式的基本性质,并能进行简单的变型 能用分式的性质进行通分和约分 分式的运算 理解分式的加、减、乘、除运算法则 会进行简单的分式加、减、乘、除运算,会运用适当的方法解决与分式有关的问题 一、比例的性质: ⑴ 比例的基本性质:a c ad bc b d =?=,比例的两外项之积等于两内项之积. ⑵ 更比性(交换比例的内项或外项): ( ) ( ) ( )a b c d a c d c b d b a d b c a ?=???=?=???=?? 交换内项 交换外项 同时交换内外项 ⑶ 反比性(把比例的前项、后项交换):a c b d b d a c =?= ⑷ 合比性:a c a b c d b d b d ±±=?=,推广:a c a kb c kd b d b d ±±=?=(k 为任意实数) ⑸ 等比性:如果....a c m b d n ===,那么......a c m a b d n b +++=+++(...0b d n +++≠) 二、基本运算 分式的乘法:a c a c b d b d ??=? 分式的除法:a c a d a d b d b c b c ?÷=?=? 乘方:()n n n n n a a a a a a a a b b b b b b b b ?=?=?个 个n 个=(n 为正整数) 整数指数幂运算性质: ⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数) 知识点睛 中考要求 分式的运算技巧

分式培优练习题(完整答案)

分式 (一) 一 选择 1 下列运算正确的是( ) A -40=1 B (-3)-1=3 1 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -1 2 分式28,9,12z y x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 2 3 用科学计数法表示的树×10-4写成小数是( ) A B C D -36000 4 若分式652 2+--x x x 的值为0,则x 的值为( ) A 2 B -2 C 2或-2 D 2或3 5计算?? ? ??-+÷??? ?? -+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 1 1-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-x x 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 4 7 在m a y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 5 8 若分式方程x a x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 2 9 若3,111--+=-b a a b b a b a 则的值是( ) A -2 B 2 C 3 D -3 10 已知 k b a c c a b c b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限 二 填空 1 一组按规律排列的式子:()0,,,,4 11 38252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是

相关文档
最新文档