6.1.1 第1课时 平均数
大洼县第二中学七年级数学下册 第6章 数据的分析6.1 平均数、中位数、众数6.1.1 平均数第1课
6.1 平均数、中位数、众数6。
1。
1 平均数第1课时平均数【知识与技能】在现实的情景中理解平均数的意义,认识平均数的优、缺点.【过程与方法】通过探究,使学生掌握平均数的概念,利用平均数解决一些实际问题。
【情感态度】培养学生对数学的感悟能力。
【教学重点】平均数的意义及平均数的计算.【教学难点】正确运用平均数处理一些实际问题.一、情景导入,初步认知在小学我们已经学过平均数,你能用平均数的知识解决下面的问题吗?某校有24人参加了“希望杯〞数学课外活动小组,分成三组进行竞争,在一次“希望杯〞初赛前进行了摸底考试,成绩如下:甲:80、79、81、82、90、85、94、98乙:90、83、78、84、82、96、97、80丙:93、82、97、80、88、83、85、83怎样比拟这次考试三个小组的数学成绩呢?解决这个问题我们只需要用到平均数,在小学我们学过平均数,但非常浅显,现在我们继续学习平均数,希望通过这节课的学习,同学们能加深对平均数概念的理解。
【教学说明】通过实际问题的导入,使学生初步感知平均数。
二、思考探究,获取新知1.一个小组10名同学的身高(单位:cm〕如下表所示:(1〕计算10名同学身高的平均数.〔2〕在数轴上标出表示这些同学的身高及其平均数。
〔3〕观察表示平均数的点与其他的点的位置关系,你能得出什么结论?解:(1〕平均数为:x=〔151+156+153+158+154+161+155+157+154+157〕÷10=155。
6(cm〕。
〔2)在数轴上为:(3)这些点都位于x两侧,不会都在平均数的一侧;x可以作为这组同学的身高的代表值,它反映了这组同学的身高的平均水平。
【归纳结论】平均数是一组数据的数值的代表值,它刻画了这组数据整体的平均水平。
2.某农业技术员试种了三个品种的棉花各10株,秋收时他清点了这30株棉花的结桃数并记录在下表,哪个品种更好?分析:平均数可以作为一组数据的数值的代表值,要比拟哪个品种较好,只要确定这三种棉花的平均结桃数就可以了。
湘教版数学七年级下册6.1.1 第1课时 平均数 练习
第6章 数据的分析6.1 平均数、中位数、众数6.1.1 平均数第1课时 平均数基础题知识点 平均数1.(桂林中考)一组数据7,8,10,12,13的平均数是(C)A .7B .9C .10D .122.将20个数据各减去30后,得到的一组新数据的平均数是6,则这20个数据的平均数是(B)A .35B .36C .37D .383.在一次数学测验中,全班平均分为88分,某小组10名同学的成绩与全班平均分的差分别为3,0,-2,-4,-5,9,6,11,9,-7,那么这个小组的平均成绩是(A)A .90分B .89分C .88分D .86分4.若李老师六个月的手机上网流量(单位:M)分别为526,600,874,480,620,500,则李老师这六个月平均每个月的手机上网流量为600M.5.(赤峰中考)若样本数据3,2,5,a ,4的平均数是3,则a =1.6.某住宅小区六月份1日至5日每天的用水量变化情况如图所示,则这5天该住宅小区平均每天的用水量是32吨.中档题7.如果一组数据a 1,a 2,…,a n 的平均数是2,那么一组新数据3a 1+2,3a 2+2,…,3a n +2的平均数是(C)A .2B .6C .8D .188.某同学使用计算器求15个数据的平均数时,错将一个数据15输成105,那么由此求出的平均数与实际平均数的差是(B)A .6.5B .6C .0.5D .-69.(鄂州中考)小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a ,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为144.10.数据1,2,3,a 的平均数是3,数据4,5,a ,b 的平均数是5,则a +b =11,数据0,1,2,3,4,a ,b 的平均数是3.11.在全校学生才艺展示大赛中,经过几轮的淘汰剩下三位选手进行决赛,规定每位选手的最后得分是从所有评委给出的分数中去掉一个最低分和一个最高分,计算其余分数的平均分,现在三位选手的得分(单位:分)情况如下: 黄涛:9.2,9.5,9.6,10,9.3,9.7蒋伊:10,9.8,9.8,9.7,9.5,10李杰:10,9.0,9.0,9.6,9.5,9.5(1)三位选手最后得分分别是多少?(2)谁是冠军?解:(1)设黄涛、蒋伊、李杰的最后得分分别是x 黄,x 蒋,x 李,则x 黄=9.5+9.6+9.3+9.74=9.525(分), x 蒋=10+9.8+9.8+9.74=9.825(分),x 李=9.0+9.6+9.5+9.54=9.4(分). (2)因为x 黄<x 李<x 蒋,所以蒋伊会是冠军.综合题12.已知1~99中有49个偶数,从这49个偶数中取出48个数,其平均数为49512,则剩下没有取出的数字为(D) A .20 B .28 C .72 D .78。
新北师大版初中八年级数学上册6.1平均数1公开课优质课教学设计
6.1 平均数1.掌握算术平均数和加权平均数的概念,会求一组数据的算术平均数和加权平均数;(重点)2.会用算术平均数和加权平均数解决实际生活中的问题.(难点)一、情境导入某校有24人参加“希望杯”数学课外活动小组,分成三组进行竞争,在一次“希望杯”比赛前进行了摸底考试,成绩如下:甲:80、79、81、82、90、85、94、98乙:90、83、78、84、82、96、97、80丙:93、82、97、80、88、83、85、83怎样比较这次考试三个小组的数学成绩呢?你有金点子吗?二、合作探究探究点一:算术平均数某班10名学生为支援“希望工程”,将平时积攒下来的零花钱捐献给贫困地区的失学儿童,每人捐款金额如下(单位:元):10,12,13,21,40,16,17,18,19,20.那么这10名同学平均捐款多少元?解析:利用算术平均数公式x=1n(x1+x2+…+xn)计算即可.解:x=110×(10+12+13+21+40+16+17+18+19+20)=18.6(元).答:这10名同学平均捐款18.6元.方法总结:利用公式求算术平均数时,要数清数据的个数,求数据总和时不要漏加数据.探究点二:加权平均数【类型一】加权平均数的求法某学校在开展“节约每一滴水”的活动中,从八年级的200名同学中任选10名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:这10名同学家庭一个月平均节约用水量是( )A.0.9吨B.10吨C.1.2吨D.1.8吨解析:利用加权平均数公式计算.平均节约用水量为(0.5×2+1×3+1.5×4+2×1)÷10=1.2(吨),故选C.方法总结:在计算加权平均数时,一定要弄清,各数据的权.算术平均数实质上是各项权相等的加权平均数.【类型二】已知平均数求其中的未知数某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进n个球的人数分布情况:同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球.问投进了3个球和4个球的各有多少人?解析:本题是要求两个未知数,即3和4的权.所以应把平均数与方程组综合起来,利用平均数的定义来列方程,组成方程组求解.解:设投进3个球的有x人,投进4个球的有y人,由题意,得⎩⎪⎨⎪⎧3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得⎩⎪⎨⎪⎧x-y=6,x+3y=18.解得⎩⎪⎨⎪⎧x=9,y=3.答:投进3个球的有9人,投进4个球的有3人.方法总结:利用平均数的公式解题时,要弄清数据及相应的权,避免出错.三、板书设计平均数⎩⎨⎧算术平均数:x=1n(x1+x2+…+xn)加权平均数:x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通过探索算术平均数和加权平均数的联系与区别,培养学生的思维能力;通过有关平均数问题的解决,提升学生的数学应用能力.通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进学生对数学的理解和增加学好数学的信心.。
6.1.1算术平均数与加权平均数(课件)北师大版数学八年级上册
例6:某商场销售A,B,C,D四种商品,它们的单价依次是10 元,20元,30元,50元.某天这四种商品销售数量的百分比如图 所示,则这天销售的四种商品的平均单价是___3_0_.5_元.
【题型三】和平均数有关的其他计算
例7:已知一组正数a,b,c,d的平均数为2,则a+2,b+2,c+2,
d+2的平均数为( C )
权平均数.其中f1,f2,…,fk分别叫做x1,x2,…,xk的权.
注意:各个数据对应的权,表示这个数据的重要程度,权越大表示 越重要.
知识点3:求平均数的两种方法(难点)
平均数反映了一组数据的集中趋势.如果要了解一组数据的平均 水平,就需要计算这组数据的平均数,常用的方法有以下两种:
(1)定义法:当所给数据x1,x2,x3,…,xn比较分散时,一般选用
问题导入
中国男子篮球职业联赛 2022~2023赛季冠、亚军球 队队员身高、年龄如下: 上述两支篮球队中,哪支 球队队员的身高更高?哪 支球队的队员更为年轻? 你是8页并回答以下问题. 1.一般地,对于n个数x1,x2,…,xn,我们把_n1_(_x_1_+__x_2+__…__+_ xn)
注意:一组数据的平均数是唯一的,与数据的排列顺序无关;另外 平均数要带单位,它的单位与原数据单位一致.
知识点2:加权平均数(重点)
如果n个数中,x1出现f1次,x2出现f2次,…,xk出现fk次(这里f1+
f2+…+fk=n),那么,根据平均数的定义,这n个数的平均数可
以表示为x=
1 n
(x1f1+x2f2+…+xkfk),这样求得的平均数就是加
分.若把读、听、写的成绩按5∶3∶2的比例计入个人的总 分,则小聪的个人总分为__8_8___分.
6.1.1 平均数(1)(2)
三、认识加权平均数
例2:某广告公司欲招聘广告策划人员一名,对 A ,B,C 三名候选人进行了三项素质测试,他 们的各项测试成绩如下表所示:
测试项目
创
新
综合知识
语
言
测试成绩
A
B
C
72
85
67
50
74
70
88
45
67
(1) 如果根据三项测试的平均成绩决定录用 人选,那么谁将被录用?
测试项目
创
新
综合知识
年龄/岁 19 22 23 26 27 28 29 35 相应队员数 1 4 2 2 1 2 2 1
解:小明是这样想的:
平均年龄=
19×1+ 22×4 + 23×2 + 26×2 + 27×1+ 28×2 + 29×2 + 35×1 25.(4 岁) 1+ 4+ 2+ 2+1+ 2+ 2+1
你能说说小明这样做的道理吗?
当堂训练
2.某校规定学生的体育成绩由三部分组成: 早锻炼及体育课外活动占成绩的20%, 体育理论测试占30%,体育技能测试占50%。 小颖的上述三项成绩依次为 92分、80 分、84 分, 则小颖这学期的体育成绩是多少分?
解:小颖这学期的体育成绩是 (92×20+80×30+84×50)÷(20+30+50) = 84.4(分) 答:小颖这学期的体育成绩是84.4分。
当堂训练
3.从一批机器零件毛坯中取出10件, 称得它们的质量如下:(单位:千克)
2001 2007 2002 2006 2005 2006 2001 2009 2008 2010 (1) 求这批零件质量的平均数。 (2) 你能用新的简便方法计算它们的平均数吗? 解: (1)x =(2001×2+2006×2+2007+2002+2005 +2009+2008+2010)÷10 = 2005.5 (千克)
八年级数学上册6.1平均数第一课时教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件
1.对于 n 个数据 x1,x2,…,xn,它们的算术平均数是_____________,
集中趋势
记为______,平均数描述的是一组数据的__________.在分析数据
时,平均数占有很重要的地位.
2.一般地,在求 n 个数的算术平均数时,如果 x1 出现 f1 次,x2 出现 f2
次,…,xk 出现 fk 次(这里 f1+f2+…fk=n),那么这 n 个数的算术平均数
第六章
6.1
数据分析
平均数第1课时1/6• 1.能说出算术平均数、加权平均数概念;
• 2.能计算一组数据算术平均数和加权平均数,
能灵活利用
• 算术平均数和加权平均数处理实际问题。(重
点)
2/6
•
要了解某班50位同学每七天看电视时间,
班长对学生进行了调查,统计结果以下表:
•
时间/h
2
4
6
人数/人
14
(2)71.25分。
4/6
2.请归纳算术平均数与加权平均数联络与区分。
联络:若各个数据权相同,则加权平均数就是算术平均数。
区分:算术平均数是指一组数据和除以数据个数,加权平均数
是指在实际问题中,一组数据“主要程度”未必相同,即各个
数据权未必相同,所以在计算上与算术平均数有所不一样。
5/6
( x1+x2+…+xn)
26
10
请求出该班同学每七天看电视平均时间。
你会算吗?
3/6
1.有两个小组,第一组有2人,数学平均分为90分;第二组有30人,数
学平均分为70分。
(1)猜一猜:假如把这两个小组合在一起,每人平均分是靠近90分还
北师大版数学八年级上册6.1平均数(第一课时)优秀教学案例
(三)学生小组讨论
在学生小组讨论环节,我会让学生分成小组,共同探讨一些与平均数相关的问题。例如:如何求一组数据的平均数?平均数在实际生活中有哪些应用?学生在讨论过程中,可以互相交流自己的观点和想法,提高他们的合作能力和解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,让学生感受数学与生活的紧密联系,激发学生学习数学的内在动机。
2.培养学生积极思考、勇于探究的学习态度,让学生在解决实际问题的过程中,体验到数学的价值和乐趣。
3.通过对平均Байду номын сангаас的学习,培养学生公正、公平的价值观,让学生明白平均数是表示一组数据集中趋势的量,不应受到极端数据的影响。
北师大版数学八年级上册6.1平均数(第一课时)优秀教学案例
一、案例背景
北师大版数学八年级上册6.1平均数(第一课时)优秀教学案例,是基于学生已掌握小学阶段平均数概念的基础上,进一步深化对平均数性质和应用的理解。本节课的主要内容是引导学生通过现实生活中的实例,探究平均数的求法及其含义,培养学生解决实际问题的能力。
案例背景以一个班级学生的身高数据为例,让学生感受平均数在实际生活中的应用。教师可以设计一个身高统计表,展示班级中男女生各自的身高数据,并提出问题:“如果想知道这个班级学生的平均身高,应该如何计算?”引导学生思考并探讨求平均数的方法。
在学生探讨过程中,教师引导学生注意到,求平均数需要将所有数据加起来,然后除以数据的个数。通过对实际数据的处理,让学生体验到平均数的求法,并理解平均数是表示一组数据集中趋势的量。
八(上)6.1平均数(1)
6.1平均数(1)教案班级姓名学号学习目标:1.理解算术平均数的意义,会计算一组数据的算术平均数;2.能根据平均数的意义解决简单的实际问题,体会数据统计的意义与作用 .学习重点:算术平均数的计算.学习难点:平均数的概念的理解.教学过程一、预习与导学1.如何求一组数据的平均数?2.一组数据的平均数与这组数据中的每一个都有关吗?3.七位裁判给某体操运动员打的分数分别为:7.8,8.1,9.5,7.4,8.4,6.4,8.3,如果去掉一个最高分,去掉一个最低分,那么,这位运动员平均得分是多少?4.小亮买甲种练习本a本,每本m元,买乙种练习本b本,每本n元,两种练习本平均每本多少元?5.一组数据2,4,6,a,b的平均数是5,则a、b的平均数是多少?二、探索与实践1.创设情境小明和小丽所在的A,B两个小组同学身高如下:你怎样计算A组和B组的平均身高呢?与同学交流你的做法.定义:对于n个数x1,x2, …,x n,我们把叫做这n个数的算术平均数,简称平均数,记为x,读作“x拔”.2.合作交流小文家稻子喜获丰收,准备向国家交粮,把同样的口袋都装满了,小文帮助爸爸抽称了几袋粮并记录之后,他就告诉爸爸大概能卖多少钱了. 记录如下(kg):105、103、101、100、114、108、110、106、98、96.(粮价1.8元/kg)(1)抽称的10袋平均每袋的重量是多少?能卖多少钱?(2)小明家共收了50袋,请你猜猜小文说的是多少元呢?他是怎样计算的呢?练习11.一组数据为10,8,9,12,13,10,8,则这组数据的平均数是______________.2.已知的平均数为6,则______________.3.4个数的平均数是6,6个数的平均数是11,则这几个数的平均数是______________.4.一组数据中有m个x,n个y,p个z,q个u,则这组数据的平均数为______________.三、例题与练习例1.某班10位同学在汶川大地震的献爱心活动中,将平时积攒的零花钱捐献。
新北师大数学八上第6章 数据的分析 6.1.1 平均数【习题课件】
整合方法·提升练
所以 5+7+4x+6y=9×4,即 2x+3y=12 ②. 解由①②构成的二元一次方程组,可得xy==23., 所以 x2+y3=32+23=17.
整合方法·提升练
(2)如果 x1 与 x2 的平均数是 4,求 x1+1 与 x2+5 的平均数. 解:由题意知x1+2 x2=4,所以 x1+x2=8.所以x1+1+2 x2+5 =7,即 x1+1 与 x2+5 的平均数是 7.
解:a=20, m=960.
探究培优·拓展练
(2)分别求网购与视频软件的人均利润. 解:网购软件的人均利润为20×96300%=160(万元) 视频软件的人均利润为20×56200%=140(万元).
探究培优·拓展练
(3)在总人数和各款软件人均利润都保持不变的情况下,能否 只调整网购与视频软件的研发与维护人数,使总利润增 加 60 万元?如果能,写出调整方案;如果不能,请说明 理由.
球比赛,比赛分 4 节进行,该球
员每节得分如图所示,则该球员
平均每节得分为
D.10 分
夯实基础·逐点练
6.【2018·资阳】某单位定期对员工的专业知识、工作业绩、
出勤情况三个方面进行考核(考核的满分均为 100 分),三
个方面的重要性之比依次为 3∶5∶2.小王经过考核后所
探究培优·拓展练
解:设调整后网购的人数为 x 人,则视频的人数为(10-x) 人, 根据题意,得 1 200+280+160x+140(10-x)=3 000+60, 解得 x=9, 即安排 9 人负责网购、安排 1 人负责视频可以使总利润增加 60 万元.
探究培优·拓展练
14.【2018·成都】为了给游客提供更好的服务,某景区随机 对部分游客进行了关于“景区服务工作满意度”的调 查,并根据调查结果绘制成如下不完整的统计表和如图 不完整的统计图.
八年级数学上册6.1平均数说课稿 (新版北师大版)
八年级数学上册6.1平均数说课稿(新版北师大版)一. 教材分析《八年级数学上册6.1平均数》这一节的内容,主要介绍了平均数的定义、性质和计算方法。
通过这一节的学习,让学生理解和掌握平均数的含义,能够运用平均数解决实际问题,为后续学习其他统计量打下基础。
二. 学情分析八年级的学生已经初步掌握了实数运算和数据分析的基本方法,对于新的概念和知识有一定的接受能力。
但部分学生可能对平均数的实际意义理解不够深入,容易将其简单地看作是一个数字。
因此,在教学过程中需要引导学生从实际问题中抽象出平均数的概念,加深对平均数意义的理解。
三. 说教学目标1.知识与技能:理解平均数的定义,掌握平均数的计算方法,能够运用平均数解决实际问题。
2.过程与方法:通过实例分析和小组讨论,培养学生的抽象思维和数据分析能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,提高学生解决实际问题的能力。
四. 说教学重难点1.重点:平均数的定义和计算方法。
2.难点:平均数在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动、实例分析、小组讨论和教师讲解相结合的方法,引导学生主动探究和理解平均数的概念。
2.教学手段:利用多媒体课件和实物道具,生动形象地展示平均数的含义和应用。
六. 说教学过程1.导入新课:通过一个实际问题引入平均数的概念,激发学生的兴趣。
2.自主学习:让学生自主阅读教材,理解平均数的定义和性质。
3.实例分析:选取一些实际问题,让学生运用平均数进行计算和分析,巩固对平均数的理解。
4.小组讨论:让学生分组讨论,分享各自的解题方法和思路,培养学生的团队合作意识。
5.教师讲解:针对学生讨论中出现的问题和困惑,进行讲解和解答。
6.练习巩固:布置一些练习题,让学生独立完成,检验对平均数的掌握程度。
7.总结归纳:对本节课的内容进行总结,强调平均数的实际意义和应用。
8.拓展延伸:给出一些拓展问题,激发学生的思考和探究欲望。
北师大版八年级数学上册 第六章 6.1 平均数 课件(共18张PPT)
C、71
( C)
D、72
2、甲、乙、丙三种饼干售价分别为3元、4元、
5元,若将甲种10斤、乙种8斤、丙种7斤混到
一起,则售价应该定为每斤
( A)
A、3.88元 B、4.3元 C、8.7元 D、8.8元
3、某次考试A、B、C、D、E五名学生平均分
为62分,除A以外四人平均分为60分,则A得
分为
(C )
14 2 2 1 2 2 1
平均年龄=(19×1+22×4+23 × 2+ 26 × 2 +27 ×1 +28 × 2+29 ×2+35 ×1 ) ÷(1+4 +2+2 + 1+2 + 2 + 1)
= 25.4 (岁)
你能说说小明这样做的道理吗?
仿照小明的做法计算广东东莞银行队的 平均年龄:
年龄/岁 19 21 22 23 25 27 29 31
❖ You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
❖
例、某广告公司欲招聘广告策划人员一名, 对A,B,C三名候选人进行了三项素质测试,他 们的各项测 试成绩如下 表所示:
(1)如果根据三项测试的平均成绩决定录用人 选,那么谁将被录用?
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/82021/9/82021/9/82021/9/89/8/2021 ❖14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月8日星期三2021/9/82021/9/82021/9/8 ❖15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/82021/9/82021/9/89/8/2021 ❖16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/82021/9/8September 8, 2021 ❖17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/82021/9/82021/9/82021/9/8
6.1.1 平均数(第1课时)-八年级数学上册(北师大版)课件
加权平均数
探
索
新
知
某广告公司欲招聘广告策划人员一名,对A,B,C
三名候选人进行了三项素质测试,他们的各项测试成
绩如下表所示:
测试
项目
创新
综合知识
语言
A
72
50
88
测 试 成 绩
B
85
74
45
C
67
70
67
探
索
新
知
(1)如果根据三项测试的平均成绩决定录用人选,那么谁
将被录用?
7
6.已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,
x2+3,x3+3,x4+3的平均数是____.
8
当
堂
检
测
7.为了解某新品种黄瓜的生产情况,抽查了部分黄瓜
株上长出的黄瓜根数,得到了右图的条形统计图,观察
该图,估计该新品种黄瓜平均每株结____根黄瓜.
13
当
堂
检
测
8.教育局为了了解学生的体育锻炼情况,规定一个学校一周体育
=(8+13+12+11+9+12+7+7+9+11)÷10=9.9(cm),
因为10.6>9.9,
所以甲种农作物长得高一些.
探
索
新
知
总结归纳
在日常生活中,我们常用平均数描述一组数据的集中趋势.
算术平均数的概念:
一般地,对于n个数x1,x2,…,xn,我们把
1
(x1+x2+…+xn)叫做这n个数的算术平均数,
47,47,58,则这组数据的平均数是( C )
《平均数》PPT教学课文课件 (第1课时)
合作探究
在求n个数的平均数时,如果x1出现f1次,x2出现f2次,…,xk出现 fk次(这里f1+f2+…+fk=n),那么这n个数的平均数
别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则
小王的成绩是( D )
A.255分
B.84分
C.84.5分
D.86分
随堂练习
解析:把2,3,5分别看作是85分,80分和90分的权,按
加权平均数的计算公式计算即可.
∵
x=
85
2+80 3+90 2+3+5
5 =86,
∴小王的成绩为86分.
随堂练习
解:小菲去掉一个最高分89分,去掉一个最低分75分,最后得分为
80 77 82 83 78 =8(0 分). 5
小岚去掉一个最高分85分,去掉一个最低分76分,最后得分为
79 80 77 82 81 =79.8(分). 5
因为80分>79.8分,所以小菲的最后得分高.
随堂练习
选手 A B
演讲内容 85 95
演讲能力 精析
分析:这个问题可以看成是求两名选手三项成绩的加权平均数, 50%, 40%, 10%说明演讲内容、演讲能力、演讲效果三项成绩在 总成绩中的重要程度,是三项成绩的权.
典例精析 解:选手A的最后得分是
85 50% 95 40% 9510% =90, 50% 40% 10%
新知小结
特别提醒: 一组数据的平均数是唯一的,它不一定是数据中的某个数据; 平均数的大小与一组数据里的每个数据都有关,其中任何一
八年级数学6.1平均数、中位数、众数优秀教案
6.1平均数、中位数、众数学习目标:1、明确平均数与加权平均数的概念。
2、理解中位数与众数的意义。
3、能熟练的计算简单的实际问题的平均数和加权平均数。
4、会求一组数据的众数和中位数。
5、掌握两种平均数的联系与区别。
学习重点:1、平均数的计算,加权平均数中权对结果的影响。
2、掌握中位数、众数等数据代表的概念学习难点:1、探索算术平均数和加权平均数的联系和区别2、选择恰当的数据代表对数据做出判断。
教学过程:一、平均数1、一组数据25、17、18、20,那么他们的平均数是2、一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩〔百分制〕如下表所示。
(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩〔百分制〕,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2:1:3:4的比确定,计算两名应试者的平均成绩〔百分制〕,从他们的成绩看应该录取谁?由两个题引出平均数和加权平均数的概念:一般地,有n 个数12n x ,x ,x ,…,我们把12n 1(x x +x )n++…叫做这n 个数的算术平均数,简称平均数.记作x 〔读做“x 拔〞〕。
在一组数据中,数据重复出现的次数f 叫做这个数据的权.按照这种方法求出的平均数,叫做加权平均数。
加权平均数的计算公式为:假设数据1x 出现1f 次,2x 出现2f 次,3x 出现3f 次……k x 出现k f 次,这组数据的平均数为x ,则x =1n〔1f 1x +2f 2x +3f 3x +…+k f k x 〕〔其中n=1f +2f +3f +…+k f 〕“权〞。
要点诠释:〔1〕k f 越大,表示k x 的个数越多,“权〞就越重. 数据的权能够反映数据的相对“重要程度〞.〔2〕加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算。
加权平均数:要点诠释:〔1〕平均数表示一组数据的“平均水平〞,反映了一组数据的集中趋势.〔2〕平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会引起平均数的变动,所以平均数容易受到个别特殊值的影响.二、快乐闯关1、为考察甲乙两种农作物的长势,研究人员分别抽取了10株苗,测得它们的高度〔单位:cm〕如下:甲:9,14,11,12.9,13,10,8,12,8乙:8,13,12,11,9,12,7,7,9,11你认为哪种农作物长得高一些?说明理由。
辽宁省辽阳市第九中学八年级数学上册:6.1.1平均数(教案)
4.平均数在实际问题中的应用:举例说明平均数在生活中的应用,如计算班级学生的平均成绩等。
5.练习题目:设计相关练习题,巩固学生对平均数概念和计算方法的理解,提高学生运用平均数解决实际问题的能力。
二、核心素养目标
1.理解与运用:使学生理解平均数的定义,掌握计算方法,并能运用平均数分析解决实际问题,培养数据分析的核心素养。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如让学生测量自己的手指长度,然后计算平均值,这个操作将演示平均数的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平均数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
三、教学难点与重点
1.教学重点
-平均数的定义及其意义:使学生深刻理解平均数是一组数据集中趋势的量数,能代表一组数据的总体“平均水平”。
-平均数的计算方法:掌握将数据求和后除以数据个数的计算步骤,并能正确应用于实际问题。
-平均数在实际问题中的应用:通过实例分析,让学生学会将实际题转化为平均数的计算问题。
今天的学习,我们了解了平均数的基本概念、计算方法以及在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平均数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我重点关注了平均数的概念和计算方法,并通过实际案例让学生体会平均数在生活中的应用。整体来看,学生的参与度较高,能够积极投入到课堂讨论和实践中。但在教学过程中,我也发现了一些需要反思和改进的地方。
湘教版七年级下册数学精品教学课件 第6章 数据的分析 平均数 第1课时 平均数
乙
85,84,89,79,81,91,79,76,82,84
丙
83,85,87,78,80,75,82,83,81,86
哪个品种较好?
分析平均数可以作为一组数据的代表值, 它刻画了这组数据的平均水平.当我们要比 较棉花的品种时,可以计算出这些棉花结 桃数的平均数,再通过平均数来进行比较.
解:设甲、乙、丙三个品种的平均结桃数分别为
数学上,我们常借助平均数、中位数、众数、 方差等来对数据进行分析和刻画.
合作探究
问题1:2017年重庆7月中旬一周的每天最高气温如下:
星期
一二三四五六日
气温/ °C 38 36 38 36 38 36 37
你能快速计算这一周的平均最高气温吗?
38 36 38 36 38 36 37 =37
能力提升
1.已知:x1,x2,x3,…, x10的平均数是a,x11,x12,x13,… ,x30 的平均数是b,则x1,x2,x3,… ,x30的平均数( D ) A.(a+b) B.(a+b) C.(a+3b)/3 D.(a+2b)/3
2.若x1,x2,…, xn的平均数为a, (1)则数据x1+3,x2+3,…,xn+3的平均数为 a+3 . (2)则数据10x1,10x2,… ,10xn 的平均数 为 10a .
21
0
183
27
思考:哪 支球队队员 的身高更高? 哪支球队的 队员更为年 轻?你是怎 样判断的? 与同伴交流.
小明是这样计算北京金隅队队员的平均年龄的:
年龄/岁 19 22 23 26 27 28 29 35 相应队员数 1 4 2 2 1 2 2 1