浮阀塔设计

合集下载

浮阀塔的设计3

浮阀塔的设计3

?
NT ET
可根据实验数据或用经验公式估算
塔高 Z ? ?NP ? 1?HT ? Z1 ? Z2
式中:Z1 —— 最上面一块塔板距塔顶的高度,m; Z2 —— 最下面一块塔板距塔底的高度,m。
? HT 对塔的生产能力、操作弹性以及塔板效率均有影响 HT? ,允许的操作气速? ,塔高? , 塔径? 。。
2
how
?
2.84 1000
E????
Lh lw
????3
进口堰: 保证液体均匀进入塔板,也起液封作 用。一般仅在较大塔中设置。进口堰高一般与 降液管底隙高度 h0 相等。
进口堰与降液管间的水平距离 w0 ≥ h0,以保证 液体由降液管流出时不致受到大的阻力。
降液管底隙高度及受液盘
降液管底隙高度应保证溢流液顺畅并防止沉淀
D ? 4 AT
?
A' 的计算
设适宜气速为 u,当体积流量为 Vs 时, A' =Vs / u 求, A' 的关键在于确定流通截面积上的 适宜气速 u
塔板的计算中,通常是以夹带液泛发生的气速( 泛 点气速 )作为上限。一般取
u ? ?0.6 ~ 0.85?u f
—— 索德尔斯和布朗(Souders and Brown )公式
单溢流弓形降液管结构尺寸的计算
降液管的宽度 Wd 和截面积 Af
计算塔径时已根据溢流形式 确定了堰长与塔径的比值
lw/D。
由 lw/D 查图可得 Wd /D 和 Af /AT,D 和 AT 已确定,故降 液管的宽度 Wd 和截面积 Af 也可求得。
液体在降液管中的停留时间 ? 为
? ? Af H T
常压塔 hL=50~100 mm ; 减压塔 hL=25~30 mm 。

浮阀塔设计

浮阀塔设计

mmax m01 m02 m03 m04 ma mw 126812
风载荷、风弯矩计算与地震弯矩计算
塔体因风压、地震会发生弯曲变形。按基本风压值 q0=300N/m2 、地震设防烈度为8度的设计条件,选取塔 设备薄弱部位截面0-0、1-1、2-2进行了计算。
二、各项应力校核 塔体圆筒稳定校核
塔设备质量载荷计算
将全塔分成6段,根据塔段长度、人孔与平台数、塔板数 等计算各质量载荷,得 m0 m01 m02 m03 m04 m05 ma 57096 全塔操作质量
全塔最小质量 水压试验时 最大质量
mmin m01 0.2m02 m03 m04 ma 35133
提馏段操作弹性=3.718
第三部分 塔设备的机械设计
设计条件
计算压力Pc=1.1MPa 基本风压值q0=300N/m2 地震设防烈度为8度 塔壳外表面保温层100mm 每隔十块塔板开设一个人孔,人孔数为4个
按计算压力计算塔体和封头厚度
经计算,塔体和封头厚度均取12mm,采用标准椭 圆形封头。
一、各项载荷计算
第二部分 塔板的流体力学计算
一、气相通过浮阀塔板的压降 二、淹塔 三、雾沫夹带验算 四、塔板负荷性能图 1、雾沫夹带线 2、液泛线 3、液相负荷上限 4、漏液线 5、液相负荷下限线
6、 操作性能负荷图
精馏段负荷性能图如下:
提馏段负荷性能图如下:
由图可以看出: ①操作点p(设计点)处 在适宜操作区内适中 位置; ②塔板的气相负荷上限完 全由雾沫夹带控制, 操作下限由漏液控制; ③ 精馏段操作弹性=3.224
hw how
H 0.45m, h 0.02m, h 0.04m, h 0.0566m h 0.052m, h 0.0134m, h 0.0180m

浮阀塔的机械设计

浮阀塔的机械设计

浮阀塔机械设计北京理工大学珠海学院课程设计任务书2012~2013学年第2 学期学生姓名:专业班级:指导教师:工作部门:一、课程设计题目浮阀塔的机械设计二、课程设计内容1.塔设备的结构设计包括:塔盘结构,塔底、塔顶空间,人孔数量及位置,仪表接管选择、工艺接管管径计算等。

2. 塔体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)计算危险截面的重量载荷、风载荷、地震载荷及偏心载荷;(3)计算危险截面的由各种载荷作用下的轴向应力;(4)计算危险截面的组合轴向拉应力和组合轴向压应力,并进行强度和稳定性校核。

3. 筒体和裙座水压试验应力校核4. 裙座结构设计及强度校核包括:裙座体、基础环、地脚螺栓5. 编写设计说明书一份6. 手工绘制2号装配图一张,Auto CAD绘3号图一张(换热器)。

三、设计条件1. 设备类型:自支承式塔设备(塔顶无偏心载荷);2. 设置地区环境:基本风压:q o=400N/㎡;设计地震烈度:7度(或8度);场地土:Ⅱ类。

地震加速度0.15g(或者0.3g),地震系数根据自己的需要任取一组;3. 塔体及裙座的机械设计条件:(1)塔体内径Di=2200mm,塔高近似取H=45000mm;(2)计算压力Pc=1.0MPa(每组中各人的计算压力根据安排表中数据),设计温度t=250℃;(3)塔体装有N=75层浮阀塔盘,每块塔盘上存留介质层高度为hw=100mm,介质密度为ρ1=800kg/m3;(4)沿塔高每5m左右开设一个人孔,人数为8个,相应在人孔处安装半圆形平台8-10个,平台宽度为B=900mm,高度为1000mm。

(5)塔外保温层厚度为δs=120mm,保温材料密度为ρ2=300kg/m3;(6)塔体与裙座间悬挂一台再沸器,其操作质量为me=4000kg,偏心距e=2000mm;(7)塔体与封头材料在低合金高强度刚中间选用,并查出其参数。

(8)裙座统一采用Q235-A(9)塔体与裙座对接焊接,塔体焊接接头系数Φ=0.85;(10)塔体与封头厚度附加量C=2mm,裙座厚度附加量C=2mm;(11)参考图为书中图8-25,尺寸及数据根据自己组的具体情况设计、标注。

化工机械设备课程设计浮阀塔的设计

化工机械设备课程设计浮阀塔的设计

摘要 (2)1 前言 (3)1.1 研究的现状及意义 (3)1.2 设计条件及依据 (6)1.3 设备结构形式概述 (7)2 设计参数及其要求 (9)2.1 设计参数 (9)2.2设计条件 (9)2.3设计简图 (10)3 材料选择 (11)3.1 概论 (11)3.2塔体材料选择 (11)3.3裙座材料的选择 (11)4 塔体结构设计及计算 (12)4.1塔体和封头厚度计算 (12)4.1.1 塔体厚度的计算 (12)4.1.2封头厚度计算 (12)4.2塔设备质量载荷计算 (12)4.3风载荷与风弯矩的计算 (14)4.4地震弯矩的计算 (17)4.4.1地震弯矩的计算 (17)4.4.2偏心弯矩的计算 (18)4.5各种载荷引起的轴向应力 (19)4.6塔体和裙座危险截面的强度与稳定校核 (20)4.6.1塔体的最大组合轴向拉应力校核 (20)4.6.2.塔体和裙座的稳定校核 (21)4.7塔体水压试验和吊装时的应力校核 (22)4.7.1水压试验时各种载荷引起的应力 (22)4.7.2水压试验时应力校核 (23)4.8基础环的设计 (24)4.8.1 基础环尺寸 (24)4.8.2基础环的应力校核 (24)4.8.3基础环的厚度 (25)4.9地脚螺栓计算 (25)4.9.1地脚螺栓承受的最大拉应力 (25)4.9.2地脚螺栓的螺纹小径 (26)符号说明 (27)小结 (30)参考文献 (30)谢辞....................................................................................................................................... 错误!未定义书签。

图纸....................................................................................................................................... 错误!未定义书签。

浮阀塔的设计示例

浮阀塔的设计示例

浮阀塔的设计示例浮阀塔是一种常见的化工设备,用于气体和液体之间的质量传递,尤其是在蒸馏和萃取过程中。

下面是一个浮阀塔的设计示例,重点介绍了它的结构和操作原理。

1.设计目标:本浮阀塔的设计目标是实现高效的质量传递,提高分离效果和产品纯度。

同时,保证设备的安全和可靠性,减少设备的能耗和维护成本。

2.结构设计:该浮阀塔采用垂直立式结构,内部分为多个塔板,每个塔板上安装有浮阀。

塔板之间通过气体和液体的穿孔连接。

在塔顶设置有进料口和出料口,而在塔底则设置有底流液收集器。

此外,还设计了塔壳和塔盖,用于保证设备的结构完整性。

3.操作原理:浮阀塔的操作原理基于浮阀的作用。

浮阀由一个密封球和一个杆连接组成。

当从塔底喷射的气体或液体经过塔板时,浮阀的球会被上升的气体或液体推起,从而打开通道,使气体或液体通过浮阀孔进入上方的塔板。

当上方的塔板上积聚足够的液体时,浮阀球会被液体推下,关闭通道,使液体停留在上方的塔板上。

通过不断重复这个过程,气体和液体之间的质量传递就得以实现。

4.浮阀的设计:浮阀的设计关键是选择合适的密封球和杆的材料,并确定其尺寸和重量。

一般来说,密封球和杆的材料要具有耐腐蚀和耐高温的特性,以满足不同工艺的要求。

此外,密封球的尺寸和重量需要根据气体和液体的流速和密度来确定,以保证浮阀的正常运行。

5.设备的操作与维护:为了确保浮阀塔的高效运行,需要进行定期的检查和维护工作。

首先,要检查浮阀是否正常工作,如有必要,需要更换损坏的浮阀。

其次,要及时清理塔板上的沉积物,以保证通道的畅通。

此外,还需要定期检查塔壳和塔盖的密封性,以防止气体或液体的泄漏。

6.设备的优化改进:针对该浮阀塔的优化改进措施主要包括以下几个方面:一是改善塔板的结构,增加塔板的布置密度,减小气液间的传质距离,从而提高质量传递效果。

二是采用节能技术,如加热和冷凝剂回收,减少能耗和环境污染。

三是引入自动控制系统,实现设备的自动化运行和监控,提高生产效率和安全性。

(完整版)浮阀塔的设计示例

(完整版)浮阀塔的设计示例

浮阀塔设计示例设计条件拟建一浮阀塔用以分离某种液体混合物,决定采用F1型浮阀(重阀),试按下述条件进行浮阀塔的设计计算.气相流量 Vs = 1.27m3/s;液相流量 Ls= 0。

01m3/s;气相密度ρV = 3.62kg/m3;液相密度ρL= 734kg/m3;混合液表面张力σ= 16.3mN/m,平均操作压强 p = 1.013×105Pa.设计计算过程(一)塔径欲求出塔径应先计算出适宜空塔速度.适宜空塔速度u一般为最大允许气速uF的0.6~0.8倍即: u=(0.6~0.8)uF式中C可由史密斯关联图查得,液气动能参数为:取板间距HT =0。

6m,板上液层高度hL=0。

083m,图中的参变量值HT-hL=0。

6-0。

083 =0.517m。

根据以上数值由图可得液相表面张力为20mN/m时的负荷系数C20=0.1。

由所给出的工艺条件校正得:最大允许气速:取安全系数为0。

7,则适宜空塔速度为:由下式计算塔径:按标准塔径尺寸圆整,取D = 1.4m;实际塔截面积:实际空塔速度:安全系数: 在0。

6~0。

8范围间,合适.(二) 溢流装置选用单流型降液管,不设进口堰。

1)降液管尺寸取溢流堰长lw =0.7D,即lw/D=0。

7,由弓形降液管的结构参数图查得:Af/AT=0。

09,Wd/D=0。

15因此:弓形降液管所占面积:Af=0.09×1.54=0.139(m2)弓形降液管宽度:Wd=0.15×1.4=0。

21(m2)验算液体在降液管的停留时间θ,由于停留时间θ>5s,合适。

2)溢流堰尺寸由以上设计数据可求出:溢流堰长 lw=0。

7×1。

4=0.98m采用平直堰,堰上液层高度可依下式计算,式中E近似取1,即溢流堰高:hw =hL-how=0。

083—0.033=0.05m液体由降液管流入塔板不设进口堰,并取降液管底隙处液体流速u′= 0。

228m/s;降液管底隙高度:浮阀数及排列方式:1)浮阀数初取阀孔动能因数F= 11,阀孔气速为:每层塔板上浮阀个数:(个)2)浮阀的排列按所设定的尺寸画出塔板,并在塔板的鼓泡区内依排列方式进行试排,确定出实际的阀孔数。

浮阀塔的设计方案(优秀)

浮阀塔的设计方案(优秀)

滨州学院课程设计任务书一、课题名称甲醇——水分离过程板式精馏塔设计二、课题条件(原始数据)原料:甲醇、水溶液处理量:3200Kg/h原料组成:33%(甲醇的质量分率)料液初温:20℃操作压力、回流比、单板压降:自选进料状态:冷液体进料塔顶产品浓度:98%(质量分率)塔底釜液含甲醇含量不高于1%(质量分率)塔顶:全凝器塔釜:饱和蒸汽间接加热塔板形式:筛板生产时间:300天/年,每天24h运行冷却水温度:20℃设备形式:筛板塔厂址:滨州市三、设计内容1、设计方案的选定2、精馏塔的物料衡算3、塔板数的确定4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数)5、精馏塔塔体工艺尺寸的计算6、塔板主要工艺尺寸的计算滨州学院化工原理课程设计说明书7、塔板的流体力学验算8、塔板负荷性能图(精馏段)9、换热器设计10、馏塔接管尺寸计算11、制生产工艺流程图(带控制点、机绘,A2图纸)12、绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸)13、撰写课程设计说明书一份设计说明书的基本内容⑴课程设计任务书⑵课程设计成绩评定表⑶中英文摘要⑷目录⑸设计计算与说明⑹设计结果汇总⑺小结⑻参考文献14、有关物性数据可查相关手册15、注意事项⑴写出详细计算步骤,并注明选用数据的来源⑵每项设计结束后列出计算结果明细表⑶设计最终需装订成册上交四、进度计划(列出完成项目设计内容、绘图等具体起始日期)1、设计动员,下达设计任务书0.5天2、收集资料,阅读教材,拟定设计进度1-2天3、初步确定设计方案及设计计算内容5-6天4、绘制总装置图2-3天5、整理设计资料,撰写设计说明书2天6、设计小结及答辩1天目录摘要 (1)绪论 (2)第一章设计方案的选择和论证 (3)1.1设计思路 (3)1.2设计方案的确定 (3)1.3设计步骤 (4)第二章塔的工艺设计 (4)2.1基础物性数据 (4)2.2精馏塔的物料衡算 (6)2.2.1原料液及塔顶、塔底产品的摩尔分数 (6)2.2.2进料热状况q的确定 (6)2.2.3操作回流比R的确定 (7)2.2.4求精馏塔的气液相负荷 (7)2.2.5操作线方程 (7)2.2.6用图解法求理论塔板数 (8)2.2.7实际板数的求取 (8)2.3 精馏塔的工艺条件及有关物性数据的计算 (9)2.3.1进料温度的计算 (9)2.3.2 操作压强 (9)2.3.3平均摩尔质量的计算 (10)2.3.4平均密度计算 (10)2.3.5液体平均表面张力计算 (11)2.3.6液体平均粘度计算 (12)2.4 精馏塔工艺尺寸的计算 (12)2.4.1塔径的计算 (12)2.4.2精馏塔有效高度的计算 (14)2.5 塔板主要工艺尺寸的计算 (15)2.5.1溢流装置计算 (15)2.6浮阀数目、浮阀排列及塔板布置 (16)2.7塔板流体力学验算 (17)2.7.1计算气相通过浮阀塔板的静压头降 (17)2.7.2淹塔 (17)2.8精馏段塔板负荷性能图 (19)2.8.1雾沫夹带线 (19)2.8.2液泛线 (19)2.8.3液相负荷上限线 (20)2.8.4气体负荷下限线(漏液线) (20)2.8.5液相负荷下限线 (20)2.9小结 (21)第三章辅助设备的计算 (21)3.1精馏塔的附属设备 (21)3.1.1再沸器(蒸馏釜) (22)3.1.2塔顶回流全凝器 (23)3.1.3原料贮罐 (24)3.1.4泵的计算及选型 (24)第四章塔附件设计 (24)4.1接管 (24)4.1.1进料 (24)4.1.2回流管 (25)4.1.3塔底出料管 (25)4.1.4塔顶蒸气出料管 (25)4.1.5塔底进气管 (25)4.2除沫器 (25)4.3裙座 (26)4.4人孔 (26)4.5塔总体高度的设计 (26)4.5.1塔的顶部空间高度 (26)4.5.2塔的底部空间高度 (26)4.5.3塔立体高度 (26)设计结果汇总 (28)致谢 (29)主要符号说明 (31)附录 (33)摘要化工生产常需进行二元液相混合物的分离以达到提纯或回收有用组分的目的馏是利用液体混合物中各组分挥发度的不同,并借助于多次部分汽化和多次部分冷凝达到轻重组分分离目的的方法。

化工原理课程设计---浮阀塔设计

化工原理课程设计---浮阀塔设计

化⼯原理课程设计---浮阀塔设计设计条件:常压:p=1atm处理量:50000t/y进料组成:馏出液组成:釜液组成:(以上均为质量分数)塔顶全凝器:泡点回流每年实际⽣产天数:330天(⼀年中有⼀个⽉检修)精馏塔塔顶压强:4kPa加热⽅式:间接加热第⼀章塔板⼯艺计算1.基础物性数据表1-1 苯、甲苯的粘度表1-2 苯、甲苯的密度表1-3 苯、甲苯的表⾯张⼒表1-4 苯、甲苯的摩尔定⽐热容表1-5 苯、甲苯的汽化潜热2物料衡算2.1 塔的物料衡算(1)苯的摩尔质量:78.11A M /kg kmol甲苯的摩尔质量:B M =92.13/kg kmol(2)原料液及塔顶、塔底产品的摩尔分数塔顶易挥发组分质量分数,摩尔分数釜底易挥发组分质量分数,,摩尔分数原料液易挥发组分质量分数,摩尔分数料液流量F=50000*1000/(330*24)=6313.13kg/h=80.82kmol/h 由公式:F=D+W ,F =D +W代⼊数值有:塔顶产品(馏出液)流量D=45.12 kmol/h ;釜底产品(釜液)流量W=35.70 kmol/h 。

2.2 分段物料衡算根据相平衡曲线,泡点进料时q=1有,1.38由梯形图可知,全回流下最少理论板8。

有理论板得捷算法有根据兰吉利图,选取不同的R值,计算值,吉利兰图找到对应点,⾃此引铅垂线与曲线相交,由于此交点相应的纵标值,可以做出以下图像:曲率变化最⼤的点是在R=2.15,N=14.4915处,即理论板是15块所以精馏段液相质量流量*45.12=97kmol/h,精馏段⽓相质量流量 3.15*45.12=142.13kmol/h,精馏段操作线⽅程,即=+0.307,因为泡点进料,所以进料热状态q=1,所以,提馏段液相质量流量L'=L+qF=177.8kmol/h,提馏段⽓相质量流量V'= V-(1-q)F=142.13kmol/h,所以,提馏段操作线⽅程,即=-0.006, 画出的梯形图如下:总板数=13-1=12,,进料板为第7块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计条件:常压:p=1atm处理量:50000t/y进料组成:馏出液组成:釜液组成:(以上均为质量分数)塔顶全凝器:泡点回流每年实际生产天数:330天(一年中有一个月检修)精馏塔塔顶压强:4kPa加热方式:间接加热第一章塔板工艺计算1.基础物性数据表1-1 苯、甲苯的粘度表1-2 苯、甲苯的密度表1-3 苯、甲苯的表面张力表1-4 苯、甲苯的摩尔定比热容表1-5 苯、甲苯的汽化潜热2物料衡算2.1 塔的物料衡算 (1)苯的摩尔质量:78.11AM/kg km ol甲苯的摩尔质量:B M =92.13/kg km ol(2)原料液及塔顶、塔底产品的摩尔分数 塔顶易挥发组分质量分数,摩尔分数 釜底易挥发组分质量分数,,摩尔分数原料液易挥发组分质量分数,摩尔分数料液流量F=50000*1000/(330*24)=6313.13kg/h=80.82kmol/h 由公式:F=D+W ,F =D +W代入数值有:塔顶产品(馏出液)流量D=45.12 kmol/h ; 釜底产品(釜液)流量W=35.70 kmol/h 。

2.2 分段物料衡算根据相平衡曲线,泡点进料时q=1有,1.38由梯形图可知,全回流下最少理论板8。

有理论板得捷算法有根据兰吉利图,选取不同的R值,计算值,吉利兰图找到对应点,自此引铅垂线与曲线相交,由于此交点相应的纵标值,可以做出以下图像:曲率变化最大的点是在R=2.15,N=14.4915处,即理论板是15块所以精馏段液相质量流量*45.12=97kmol/h,精馏段气相质量流量 3.15*45.12=142.13kmol/h,精馏段操作线方程,即=+0.307,因为泡点进料,所以进料热状态q=1,所以,提馏段液相质量流量L'=L+qF=177.8kmol/h,提馏段气相质量流量V'= V-(1-q)F=142.13kmol/h,所以,提馏段操作线方程,即=-0.006, 画出的梯形图如下:总板数=13-1=12,,进料板为第7块。

理论板计算用逐板法计算理论板塔板数由于泡点进料q=1,0.44,第一块板上升蒸汽组成,,从第一块板下降的液体组成=/(2.43-1.43)= 0.921211,依次反复计算有0.9454 0.87690.9147 0.81530.8720 0.73710.8178 0.64870.7566 0.56120.6959 0.48500.6431 0.42580.44,则从第九块板起,用提馏段操作方程计算0.2892 0.14340.0935 0.04070.0224 0.009348,因为釜底间接加热,所以总共需要理论板数是11-1=10块,第8块进料,精馏段是7块,提馏段是3块。

2.3实际塔板数计算根据内插法,可查得:苯在泡点时的黏度μa(mPa.s)=0.2854,甲苯在泡点是的黏度μb(mPa.s)=0.2629,平均粘度μa*+μb*(1-)=0.2728 mPa.s,塔顶及塔底平均温度72.3+98.6)/2=85.45,此温度对应的粘度是苯1=0.3112 mPa.s,2=0.2556mPa.s,平均相对挥发度=1+2)/2=0.2834 mPa.s,根据《化学化工理课程设计》柴诚敬P8的公式有:总板效率0.17-0.616㏒=0.5175,实际板数=12/0.5175=23.224,精馏板实际板数,提馏板实际板数3精馏塔的工艺条件及有关物性数据的计算平均摩尔质量的计算3.1平均摩尔质量塔顶X D=Y1=0.966,通过上图拟合处理相平衡曲线,得出0.922=,,进料板,塔釜=0.0064,=0.0267,,,精馏段平均摩尔质量=80.98,,提馏段平均摩尔质量,89.26。

3.2操作压强操作压强=101.3+4=105.3kPa,取每层塔板压降105.3+12113.7 kPa,塔底压强105.3+24122.1 kPa,精馏段平均操作压力:kPa,提馏段平均操作压力:kPa,3.3操作温度lgPa*=6.02232-1206.350/(t+220.237) 安托尼方程lgPb*=6.07826-1343.943/(t+219.377) 安托尼方程=(P-)/(-)由安托尼方程试差得出:当时,假设t=92.6℃, =58.9431kPa,=164.4639kPa;当=0.966时,假设t=78.5℃, =36.8572kPa, =108.1595Pa;当=0.024时,假设t=110.63℃, =101.3426kPa,=266.8118 kPa,t=92.6℃是进料口的温度,t=78.5℃是塔顶蒸汽需被冷凝到的温度,t=110.63℃是釜液需被加热的温度。

精馏段平均温度=(92.6+78.5)⁄2=85.55℃,提馏段平均温度=(92.6+110.63)⁄2=101.62℃,3.4平均密度计算计算a)气相平均密度Vm精馏段气相密度:kg/ m3kg/m3b)液相平均密度依据下式计算:=塔顶液相平均温度:78.5℃,由内差法得出 3 ,3,对于进料板,℃,由图解法求理论板可得=0.4009 用内差法得出33 ,=3,对于塔底,℃,由内差法得出 3 ,3,,=779.753,精馏段平均密度=3,提馏段平均密度=3。

3.5液体表面张力计算液体表面张力由78.5℃查表得,,,由℃查表得,,,由℃查表得,,,精馏段平均表面张力:,提馏段平均表面张力:4.精馏塔工艺尺寸计算4.1塔径计算精馏段气液相体积流率为=V M VM1/3600VM1=,精馏段V=V M LM1/3600LM1=,L提馏段V=V M VM2/3600VM2=,=L M LM2/3600LM2=,L1)精馏塔塔径计算根据《化学化工理课程设计》柴诚敬P83得到以下公式:,,负荷系数C值可由smith关联图求取,依据下式校正查出负荷系数,即0.2,其中由smith关联图求取,图的横坐标0.5=0.0439,选板间距,取板上液层高度=0.06m ,故查表得=0.083,0.2=0.083*0.2=0.0836,=0.0836*=1.376m/s,取安全系数0.7,空塔气速=0.6*=0.7*1.376=0.963m/s,塔径D==按标准圆整为D=1.2m2)提馏段塔径计算0.5=*0.5=0.045m/s,选板间距,取板上液层高度=0.06m ,故查表得=0.083,0.2=0.083*0.2=0.0836,=0.0836*=1.077m/s,取安全系数0.7,空塔气速=0.7*=0.7*1.077=0.754m/s,塔径D==按标准圆整为D=1.4m。

按上述精馏段和提馏段塔径计算,可知全塔塔径为D=1.4m,塔截面积为=2/4=1.539m2。

4.2精馏塔有效高度计算精馏段有效高度为=(12-1)*0.45=4.95m,有效高度为=(12-1)*0.45=4.95m,在进料板上方开一人孔,其高度取0.8m,故精馏塔有效高度为:Z= 4.95+4.95+0.8=10.7m 。

5. 塔板主要工艺尺寸计算5.1 溢流装置计算因塔径D=1.4, 可采用单溢流、弓形降液管、凹形受液盘及平直堰,不设进口堰。

各项计算如下:5.1.1 溢流堰长w l取堰长w l 为0.66D,即w l =0.66*1.4=0.924m , 5.1.2 溢流堰堰高h wow L w h h h -=根据《化学化工理课程设计》 柴诚敬P87,平直堰ow h 按下式计算 ow h =由上图,取E=1.0时,则ow h =2.84*10-3*1*=0.0143m,取板上清液层高度L h =0.06m,则ow L w h h h -==0.06-0.0143=0.0457m 5.1.3 降液管宽度和降液管面积由=0.66,查下图=0.124,/=0.0722,=0.124D=0.1736m=0.0722=0.0722*1.539=0.1111m计算液体在降液管中停留时间=3600/ L h1=/ L s1=3600*0.1111*0.45/3600*0.0028=17.855s,1故降液管底隙高度设计合理。

5.1.4降液管底隙高度取液体通过降液管底隙流速u'为0.11m/s,依据《化工原理课程设计》柴诚敬P88 有公式计算降液管底隙高度h0,=0.0028*3600/(0.924*0.11*3600)=0.0275m,=0.0457-0.0275=0.01820.006m,故降液管底隙高度设计合理>选用凹形受液盘,深度=0.005m。

6.浮阀数目、浮阀排列及塔板布置6.1塔板分块本设计塔径为D=1.4m,因D800mm,故塔板采用分块式,由依据《化工原理课程设计》柴诚敬P88可知,塔板板面分为4部分。

6.2边缘区宽度确定取=0.035m。

6.3开孔区面积计算+):X=D/2-0.4614m,r=D/2-=1.4/2-0.035=0.665m则+)=1.12m25.4浮阀数计算及其排列预先选取阀孔动能因子,由=可求阀孔气速。

==10/=5.80m/s孔径取=0.04m每层塔板上浮阀个数为:N===147.7,取整为148浮阀的排列,考虑到各分块的支承与衔接要占去一部分鼓泡面积,阀孔排列采用等腰三角形叉排方式排列,中心距取为75mm,固定底边尺寸为65mm。

则设计条件下的阀孔气速为===5.80 m/s,阀孔动能因数为==5.80*10.55所以阀孔动能因子变化不大,仍在9~12的合理范围内,故此阀孔实排数适用。

开孔率=N()2=147.7*)2=0.121此开孔率在5%~15%范围内,符合要求。

所以这样开孔是合理的。

7.塔板流体力学验算6.1计算气相通过浮阀塔板的静压头降每层塔板静压头降可按式=计算,6.1.1计算干板静压头降由可以计算临界阀孔气速,即=m/s,可用=算干板静压头降,即=5.34**0.035m6.1.2计算塔板上含气液层静压头降由于所分离的苯和甲苯混合液为碳氢化合物,可取充气系数,已知板上液层高度0.06m,所以依式,则有=0.5*0.06=0.03m6.1.3计算液体表面张力所造成的静压力降由于采用浮阀塔板,克服鼓泡时液体表面张力的阻力很小,所以可忽略不计。

这样,气流经一层,浮阀塔板的静压头降=0.035+0.03=0.065m换算成单板压降=0.065*807.42*9.8=514.33Pa0.7kPa(设计允许值)6.2降液管中清液层高度式=6.2.1计算气相通过一层塔板的静压头降前已计算0.065m6.2.2计算溢流堰(外堰)高度=0.0457m6.2.3液体通过降液管的静压头降因不设进口堰,所以可用式=式中=0.0028m2/s,=0.924m,=0.0275m==0.00186m,6.2.4塔板上液面落差由于浮阀塔板上液面落差h很小,所以可忽略6.2.5堰上液流高度前以求出=0.0143m,因此==0.065+0.0457+0.00186+0.0143=0.127m为了防止液泛,根据《化工原理课程设计》柴诚敬P92有式,取校正系数=0.5,选定板间距=0.5*(0.45+0.0457)=0.248m从而知=0.127m=0.248m,符合防止液泛的要求。

相关文档
最新文档