【小升初】六年级下册数学试题-小升初专题练习:平面几何(一) 全国通用
六年级下册数学试题-小升初专题训练-几何专题题库含答案
【直线型面积】1.在图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。
已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。
解答:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边形ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50(厘米2)。
2.图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米,求CD的长。
解答:连结CB。
三角形DCB的面积为4×4÷2-2=6(厘米2), CD=6÷4×2=3(厘米)。
3.有红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合。
已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10,求正方形盒子底部的面积。
解答:把黄色正方形纸片向左移动并靠紧盒子的左边。
由于三个正方形纸片面积相等,所以原题图可以转化成下页右上图。
此时露出的黄、绿两部分的面积相等,都等于(14+10)÷2=12。
因为绿:红=A∶黄,所以绿×黄=红×A,A=绿×黄÷红=12×12÷20=7.2。
正方形盒子底部的面积是红+黄+绿+A=20+12+12+7.2=51.2。
【三角形的等积变换】:4.如左下图是两个相同的直角三角形叠在一起组成的,求阴影部分的面积。
(单位:分米)答案:32.5平方分米。
拓展:如图所示,已知正方形ABCD和正方形EFGC,且正方形EFGC的边长为6厘米,请问图中阴影部分面积是多少?答案:18平方厘米。
5.如图所示,在平行四边形ABCD中,DE=EF=FC,BG=GD.已知三角形GEF的面积是4平方厘米,求平行四边形的面积。
六年级下册数学试题-小升初分班考试数学之几何 人教版(含答案)
一、几何图形的相关概念及基本公式1、点、线、面、体;直线、射线、线段、角;长方形(体)、正方形(体)、平行四边形、三角形、题型、多边形、圆与扇形、圆柱、圆锥、轴对称图形2、平面图形的周长、面积公式,立体图形的侧面积、表面积、体积公式3、定理、结论:三角形内角和、三角形三边关系、勾股定理、一笔画、格点图形面积公式(毕克定理)4、几何计数二、巧求周长和面积1、通过平移、旋转、翻折(对称)、割补等手段将图形转化成比较好求的形状2、利用差不变原理将图形转化3、利用面积之比与边长之比的关系解题三、几何五大模型1、等高模型及变型(如一半模型、鸟头模型等)2、风筝模型(也叫蝴蝶模型)3、相似三角形(金字塔模型、沙漏模型)4、题型比例关系(题型蝴蝶模型)5、燕尾模型四、长方体正方体及侧面展开图、圆柱圆锥【例 1】如图,阴影部分是正方形,则最大长方形的周长是_ _____厘米.知识框架例题精讲3 几何10答案: 30【练习】 如图7-20,在直角梯形ABCD 中,三角形ABE 和三角形CDE 都是等腰直角三角形,且BC=20厘米,那么直角梯形ABCD 的面积是多少?答案: 200平方厘米【例 2】 如图,有一块长方形的草坪,长20米,宽10米,现要在草坪上铺设两条宽1米的小路,则剩下草坪的面积是________平方米.答案: 171【练习】 一块矩形场地被一条路隔成甲、乙两块,甲乙的面积之比为3:8,尺寸如图,甲的面积是____。
21122乙甲答案: 60【例 3】 如图,一个梯形,面积为45,AB=10,高为6,则△AOB 的面积是___________.OCDA答案: 20【练习】如图,梯形ABCD的上底AD长5厘米,下底BC长12厘米,腰CD的长为8厘米,过B点向CD作出的垂线BE的长为9厘米,那么梯形ABCD的面积是多少?答案: 51平方厘米【例 4】已知如图,求阴影部分的面积(π取3.14)44答案: 4.56【练习】求图中阴影部分的面积。
小升初专项复习:平面图形(试题)-六年级下册数学通用版
通用版小升初专项复习:平面图形一、填空题1.已知一个等腰三角形的一边是3cm ,一边是7cm ,这个三角形的周长是 cm 。
2.若a 和b 都是非0自然数,并且满足 a 3+b 7=1621,那么以a+b= 。
3.下图是由5个完全相同小长方形合成的大长方形,大长方形的周长是44厘米,这个大长方形的面积是 平方厘米。
4.要画一个周长是18.84厘米的圆,圆规两脚间的距离应为 厘米,这个圆的面积是 平方厘米。
5.如图,把圆分成若干等份,剪拼成了一个近似的长方形,周长比原来增加了6厘米,这个圆的面积是 平方厘米。
6.圆的 除以 的商是一个固定的数,我们把它叫作 ,用字母 表示,它是一个 小数,通常取 进行计算。
7.井盖做成圆的主要是为了 。
8.45 吨的 12 是 吨,合 千克。
9.在一个长是8厘米,宽是6厘米的长方形里剪一个最大的圆,这个圆的半径是 厘米,周长是 厘米,面积是 平方厘米。
10.一个圆锥的底面周长是18.84cm ,高是5cm ,从顶点沿高把它切成相等的两半,这两半的表面积之和比原来圆锥的表面积增加了 cm 2。
11.已知∠1、∠2是直角三角形中的两个锐角.(1)∠1=38°∠2= °(2)∠2=46°∠1= °12.一块梯形广告牌的下底是8米,上底是5米,高是下底的一半,它的面积是 平方米。
13.一个长方形花坛的面积是56平方米,扩建时长不变,宽由7米增加到12米,扩建后花坛的面积是平方米。
14.如果把一个圆的半径扩大到原来的3倍,那么直径扩大到原来的倍,周长扩大到原来的倍,面积扩大到原来的倍。
15.一个棋盒里有黑子和白子若干枚,若取出一枚黑子,则余下的黑子数与白子数之比为9:7;若放回黑子,再取出一枚白子,则余下的黑子数与白子数之比为7:5。
那么棋盒里原有的黑子比白子多枚。
二、单选题16.周长是80米的正方形,面积是()。
A.20平方米B.80平方米C.400平方米D.6400平方米17.如图,大圆内有一个最大的正方形,正方形内有一个最大的圆,那么大圆面积和小圆面积的比是()。
六年级下册小升初试题平面图形讲义及练习题通用版
90°)「垂线(直线外一点到直线的垂直线段最短)1平行线(平行线间的距离处处相等)由不在同一直线上的三条线段首尾顺次相接围成的图形叫三角形的等腰三角形)L 不等边三角形:三条边都不相等的三角形由不在同一直线上的四条线段首尾顺次相接围成的图形叫四边形 '平行四边形f 长方形f 正方形四边形的分类5忙等腰梯形第五讲三角形与四边形知识梳理广线段(有两个端点) 射线(只有一个端点)所组成的图形)f 锐角 (小于! 直角(900)钝角 (大于 平角 (1800) 、周角 (3600)角(有一点出发的两条射线900而小于1800)<直线(没有端点)名称 图形 正方形a-- 边长正方形三角形平行四边h-- 咼 a-- 底h-- 咼字母意义a--长b--宽a--底周长/面积2C=4a,S=a C=(a+b) X2 S=abS=ah特征四条边都相等, 四个角都是直角两组对边平行且相等,四 个角都是直角两边之和大于第三边,两边之差小于第三边,三个 内角的度数和是1800,具 有稳定性两组对边平行且相等广三角形的定义: 三角形I 三角形的分类"锐角三角形:「按角分5直角三角形:I 钝角三角形: 等腰三角形: 三个角都是锐角的三角形 有一个角是直角的三角形有一个角是钝角的三角形两条边相等的三角形(等边三角形是特殊四边形的定义:3.下图中有() 条线段、()条射线、 )条直线。
例2右图中有()个锐角,()个直角, 举一反三:1.判断题)个钝角,()角。
(1)角的两条边越长,角的度数就越大。
(2)小于1800的角叫钝角。
(3)从一点引出两条射线就组成一个角。
2.右图中有()个直角,()个锐角,例3如右图,直线 m 是送水管道,P 点是鸡舍,现要从送水管道向鸡舍引一条水管, 怎样安装引水管才最省?请在图中画出来。
若这幅图的比例尺是举一反三:1.如右图:(1 )过A 点作已知直线的平行线 I 1;(2)过B 点作已知直线的垂线 l 2;形梯形a--上底 b--下底 h--咼S=(a +b)h2只有一组对边平行第二部分精讲点拨举一反三:1.填空题关系是(2.判断题(1) 一条直线长5米。
六年级下册数学试题-小升初专题练习:平面几何(一) 全国通用(无答案)
平面几何(一)1.一张长为10厘米,宽为8厘米的长方形纸片,把它剪开成两张同样的长方形纸片,每个小长方形纸片的周长为多少厘米?2.一个正方形相邻两条边的长度,如果分别增加它的12和它的14,那么所得的新长方形的周长比原正方形的周长增加了百分之几?3.有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
4.如图,把正方形的土地分成如下四个长方形(它们的面积分别为10平方米、20平方米、30平方米、40平方米),阴影部分是正方形且它包含在40平方米的长方形之内。
求阴影部分的面积。
5.如图中阴影部分的面积是多少?(单位:cm)6.如图,求阴影部分的面积。
(单位:厘米)7.等腰三角形的面积为8平方厘米,求图中阴影部分的面积。
8.图中的两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
9.如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米)1、2、3、4、5、6、7,则图中阴影部分的面是多少平方米?(π取3)10.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。
求CD的长度。
21.求阴影部分的周长。
2.把一个长8厘米宽4厘米的长方形,如图所示折一折,得到右面图形,则阴影部分四个三角形的周长之和是多少厘米?3.一个长方形花坛面积是6平方米,如果长增加13,宽增加14,现在的面积比原来增加多少平方米?4.用两块长方形纸片和一块正方形纸片围成一个新的大正方形纸片,两块长方形纸片的面积分别是44平方厘米和28平方厘米。
那么正方形纸片的面积是多少平方厘米?课后练习5.小方桌的边长是1米,把它的四边撑开就成了一张圆桌(如图)求圆桌的面积。
6.在半径为10cm的圆内,C为AO的中点,则阴影的面积为多少?7.图中阴影部分的面积是57平方厘米,求这个正方形的面积。
8.如图:阴影三角形的面积是多少?9.下图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。
六年级下册数学-小升初平面图形组合专项试题-s1-人教版
-小升初平面图形组合专项试题-人教版一、解答题(题型注释)(1)(2)2.仔细数一数,填一填。
(1)右图是由个小三角形拼成的。
(2)右图有个三角形。
(3)右图共有个正方形。
3.根据游戏的需要,幼儿园阿姨用两个长8米、宽4米的长方形地垫先后拼成一个长方形游戏垫和一个正方形游戏垫(如图所示),拼成的长方形游戏垫和正方形游戏垫的周长分别是多少?4.如图,长方形中,,,三角形的面积为平方厘米,求长方形的面积.5.如图在中,,求的值.6.请你画出已学过的4种图形,使它们的面积相等,并计算出它们的面积.7.为了迎接“六•一”儿童节,学校做了一幅长方形的宣传画,长7米,宽50分米.这幅宣传画的周长和面积各是多少?8.如下图,在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
9.如下图,是一块长方形草地,长方形的长是14米,宽是12米。
中间有三条宽为2米的道路,两条是长方形,一条是平行四边形。
则草地的面积有多大?10.如图(1)(2)(3)(4)都是由9个边长为1厘米的正方形组成的3×3平方厘米的正方形,其中的阴影四边形的面积分别记为,,和,则,,ABCD:2:3BE EC=:1:2DF FC=DFG2ABCDAB CDEFGABC△12DC EA FBDB EC FA===GHIABC△的面积△的面积IHGFED CBA和中最小的与最大的和是多少平方厘米?参数答案1.(1)解:(2)解:【解析】1.根据题干的要求画图相应图形。
2.(1)4(2)3(3)5【解析】2.3.解:拼成长方形的周长是:(8+8+4)×2=20×2=40(米)答:拼成的长方形游戏垫的周长是40米.拼成后正方形的周长是:8×4=32(米)答:拼成的正方形游戏垫的周长是32米【解析】3.用两个长8米,宽4米的长方形,拼成一个大长方形,这个大长方形的长是(8+8)米,宽是4米;拼成正方形的边长是8米,然后根据长方形的周长公式:C=(a+b)×2,正方形的周长公式:C=4a,代入数据解答即可.4.72【解析】4.连接,.因为,,所以.因为,,所以平方厘米,所以平方厘米.因为,所以长方形的面积是平方厘米.5.17【解析】5.连接BG,设1份,根据燕尾定理,,得(份),(份),则(份),因此,同理连接AI、CH得,,所以如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.6.16平方厘米AE FEAB CDEFG:2:3BE EC=:1:2DF FC=3111()53210DEF ABCD ABCDS S S=⨯⨯=V长方形长方形12AED ABCDS S=V长方形11::5:1210AG GF==510AGD GDFS S==V V12AFDS=V16AFD ABCDS S=V长方形ABCD 72IHGFED CBABGCS△=::2:1AGC BGCS S AF FB==△△::2:1ABG AGCS S BD DC==△△2AGCS=△4ABGS=△7ABCS=△27AGCABCSS=△△27ABHABCSS=△△27BICABCSS=△△7222177GHIABCSS---==△△【解析】6.试题分析:此题没有具体数据,答案不唯一:把每个方格的长度看作1厘米,这里可以指定画面积为16平方厘米的正方形与长方形,则正方形的边长是4厘米,长方形的长可以是8厘米,则宽就是2厘米,梯形的上底是4厘米,下底是12厘米,高是2厘米,三角形的底是8厘米,高是4厘米,由此即可画图解:根据题干分析画图如下:答:它们的面积都是16平方厘米.7.24米,35平方米【解析】7.试题分析:根据长方形的周长=(长+宽)×2,长方形的面积=长×宽,代入数据即可解答.解:50分米=5米,(7+5)×2=24(米),7×5=35(平方米),答:这幅画的周长是24米,面积是35平方米.8.120平方厘米【解析】8.本题考查三角形面积和比的相关知识。
人教版六年级下册数学小升初专题训练:平面图形(含答案)
人教版六年级下册数学小升初专题训练:平面图形一、单选题1.用一块长12米、宽8米的长方形铁皮剪成半径是1.5米的小圆(不能剪拼),至多能做( )个。
A.11B.8C.10D.132.如果要搭成一个从正面、左面、上面看到的图形都是如图的几何体,需要( )个小正方体。
A.3B.4C.5D.63.下图是由一个圆分成若干等分后,拼成的一个近似长方形,这个圆的周长与长方形的周长相差约4厘米,这个圆的周长约是( )厘米。
A.6.28B.9.42C.12.56D.无法计算4.从12时到13时,钟的时针与分针可成直角的机会有( )A.1次B.2次C.3次D.4次5.下列时刻中,钟表中时针与分针不成直角的是( )。
A.3:00B.21:00C.9:00D.12:206.一个半径是5cm的半圆,它的周长是( )cm。
A.31.4B.15.7C.25.7D.20.7二、填空题7.已知一个等腰三角形的两条边分别是5厘米、10厘米,那么它的周长是 厘米。
8.一个花坛的直径是6m,花坛周围有一条宽1m的环形小路,小路的面积是 m2。
9.一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了 厘米,针尖扫的面积是 平方厘米。
10.把一个长、宽分别是15厘米和10厘米的长方形,拉成一个一条高为12厘米的平行四边形,它的面积是 平方厘米。
11.李大伯用5π米长的篱笆靠墙围了一个半圆形养鸡场,养鸡场的面积是 平方米。
12.如图。
∠1=30°,∠2= ,∠3= ,∠4= 。
13.从9:00到9:15,分针旋转了 度,若分针长6厘米,这根分针针尖走过的长度是 厘米,扫过的面积是 平方厘米。
14.一个三角形内角度数的比是2:3:5,其中最大的内角是 度,这是个 角三角形。
15.如图中正方形的面积是40cm2,那么涂色部分的面积是 cm2。
16.一辆自行车车轮直径是0.5米,脚踏板齿轮有48个齿,后齿轮有16个齿,脚踏一圈,自行车前进 米.17.把两个正方形拼成一个长方形,拼成的长方形周长是30厘米,这个长方形的面积是 平方厘米。
六年级下册数学试题-小升初专题: 几何专题(无答案PDF)全国通用
C
O
A
D
第 13 页 共 16 页
【例 3】三角形 ABC 是等腰直角三角形,DEFG 是正方形,线段 AB 与 CD 相交于点 K.已知正方形
DEFG 的面积为 48, AK : KB 1: 3 ,则三角形 BKD 的面积是________.
D
AG
K
BE
F
C
【例 4】如图,正方形 ABCD 的面积是 1,M 是 BC 中点,则图中阴影部分的面积为________.
第四讲 几何专题
本讲提纲
一、直线形:重点是三角形的底、高与面积之间比例关系(同底、高与面积;同高、底与面 积),特别是在梯形、平行四边形、正方形、长方形中的运用
二、圆与扇形:主要考察圆与扇形的周长、面积公式的应用,以及图形的割补 三、立体图形:考察空间想象能力,常考内容有立体图形的体积、表面积的计算问题以及三
【例 10】如图所示,现有一个棱长为 5 厘米的立方体木块,在它的每个角以及每条棱、每个面的中间 各挖去一个棱长为 1 厘米的小立方体(即图中画有阴影的那些小立方体),那么 余下部分的表面积是________平方厘米.
第 15 页 共 16 页
练习题
B
H
【作业 1】如图,AE=8,AF=7,则长方形 HIGC 的面积为________.
视图
题型荟萃 一、直线形计算
【例 1】如图,一个大长方形由一个小长方形和四个等腰直角三角形组成,已知图中两块的面积,则大 长方形的面积为________.
20 10
【例 2】如图,四边形 ABCD 的两条对角线交于点 O.如果三角形 AOB 和三角形 COD 的面积分别为 14 和 18,而三角形 BOC 的面积又比三角形 AOD 的面积大 9,那么四边形 ABCD 的面积等于________.
2023-2024学年人教版六年级下册数学小升初专题训练:平面图形(含答案)
2023-2024学年人教版六年级下册数学小升初专题训练:平面图形一、单选题1.在一个长6分米、宽5分米的长方形里剪下一个最大的正方形,剩下的面积是( )平方分米。
A.30B.25C.11D.52.过平行四边形的一个顶点最多可以画( )条高。
A.1B.2C.3D.03.下面哪一组中的三条线段可以围成一个三角形( )。
A.3厘米、5厘米、1厘米B.3厘米、4厘米、5厘米C.4厘米、4厘米、8厘米D.2厘米、3厘米、5厘米4.雷雷从七巧板中拿出了两个完全一样的直角三角形,拼成了一个大三角形,大三角形的内角和是( )。
A.90°B.180°C.270°D.360°5.一个三角形的底不变,要使面积扩大3 倍,高要扩大。
( )A.1.5 倍B.3 倍C.6 倍D.4倍6.甜甜在计算少先队中队旗的面积时,列出了算式“80×60-60×20÷2”,请你判断图( )可以表示甜甜的思路。
A.B.C.D.二、填空题7.直角三角形的一个锐角是35°,另一个锐角是 °。
直角三角形的两条直角边分别是5厘米和6厘米,它的面积是 平方厘米,与它等底等高的平行四边形的面积是 平方厘米。
8.把一个边长为25.12cm的正方形纸卷成一个最大的圆柱(接头处不计),再给这个圆柱配一个底面,底面的面积是 cm2。
9.画一个直径是8cm的圆,圆规两脚间的距离是 cm。
10.已知如图中长方形的面积是20cm2,图中半圆的面积是 cm2。
11.一个圆锥的底面周长是18.84cm,高是5cm,从顶点沿高把它切成相等的两半,这两半的表面积之和比原来圆锥的表面积增加了 cm2。
12.一个时钟的分针长8cm,分针走一圈,分针尖端“走了” cm,分针“扫过”的面积是 cm2。
13.用三根相同长度的铁丝分别做一个圆、正方形和长方形,面积分别是a、b、c,那么 > > 。
六年级下册数学试题-小升初综合测试题一(原卷+解析卷)全国通用
小升初综合测试题一一、填空题(每题5分,共40分)1. 计算:13.142-3.142=_______________。
2. 某公司因业务发展需要,今年员工总数比去年增加了10%,由于物价上涨,员工的平均工资比去年增加了10%,则该公司今年支付员工的工资总额比去年增加了____________%。
3. 如图,将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体,这个物体的表面积是_____________。
4. 如图,在△ABC 中,△AEO 的面积是1,△ABO 的面积是2,△BOD 的面积是3,则四边形DCEO 的面积是_______________。
5. 已知2012被一些正整数去除,得到的余数为10,则这样的正整数共有____________个。
6. 已知随机变量X 的分布列如下表: X1 2 3 4 P a b 0.2 0.15 数学期望为2.1,求a,b7. 有一组连续的三个正整数,从小到大依次排列,第一个数是5的倍数;第二个数是7的倍数;第三个数是9的倍数;则这组数中最小的正整数为_______________。
8. 有一列数:,,,,,,,,,,14233241132231122111……,按照此规律排下去,则65是数列中第___________个数。
二、填空题(每题7分,共56分)9. 定义新运算*:a*b=ab-a-b ,若(3*x )*3=11,则x=_____________。
10. 随机抛两枚立方体骰子,点数之差(大减小)大于2的概率为_____________。
11. 小明把1,3,5,7,……,这些奇数依次加起来,由于漏加了一个奇数,得到的和数为2012,则小明漏掉的奇数为______________。
12. 甲、乙、丙都在读同一本故事书,书中有100个故事,已知甲读了85个故事,乙读了70个故事,丙读了62个故事,那么甲、乙、丙3人共同读过的故事最少有___________个。
六年级下册数学试题 - 小升初专项训练 几何篇(一) 全国通用(含答案)
小升初专项训练几何篇(一)一、小升初考试热点及命题方向几何问题是小升初考试的重要内容,分值一般在12-14分(包含1道大题和2道左右的小题)。
尤其重要的就是平面图形中的面积计算,几何从内容方面,可以简单的分为直线形面积(三角形四边形为主),圆的面积以及二者的综合。
其中直线形面积近年来考的比较多,值得我们重点学习。
从解题方法上来看,有割补法,代数法等,有的题目还会用到有关包含与排除的知识。
二、2018年考点预测2018年的小升初考试将继续以大题形式考查几何,命题的热点在于等积变换和燕尾定理在求解三角形面积里的运用.同时还需要重点关注在长方形和平行四边形框架内运用边长比等于相似比的定理,请老师重点补充沙漏原理的讲解。
1 等积变换在三角形中的运用首先我们来讨论一下和三角形面积有关的问题,大家都知道,三角形的面积=1/2×底×高因此我们有【结论1】等底的三角形面积之比等于对应高的比【结论2】等高的三角形面积之比等于对应底的比这2个结论看起来很显然,可大家小看它们,在许多和三角形面积比有关的题目中它们都能发挥巨大的作用,因为它们把三角形的面积比转化为了线段的比,我们来看下面的例题。
【例1】(★★)如图,四边形ABCD中,AC和BD相交于O点,三角形ADO的面积=5,三角形DOC的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少?【解】:S△ADO=5,S△DOC=4根据结论2,△ADO与△DOC同高所以面积比等于底的比,即AO/OC=5:4同理S△AOB/S【总结】从这个题目我们可以发现,题目的条件和结论都是三角形的面积比,我们在解题过程中借助结论2,先把面积比转化成线段比,再把线段比用结论2转化成面积比,解决了问题。
事实上,这2次转化的过程就相当于在条件和结论中搭了一座“桥梁”,请同学们体会一下。
【拓展】S△AOD×S△BOC=S△COD×S△AOB,也适用于任意四边形。
六年级下册数学试题-小升初专题-平面图形 全国通用【精品】
小升初专题——长方体、正方体、圆柱、圆锥【精品】1、一个长方体,长增加2倍,宽和高不变,体积扩大______倍。
2、用8个棱长1厘米的立方体拼成一个长方体,其中表面积最大的与最小的相差平方厘米形。
3、用一个平面去截一个长方体,把长方体分为两个多面体,则截面最多会是边形。
4、一个长方体的长、宽、高恰好是3个连续的自然数,并且它的体积的数值等于它的所有棱长之和的数值的2倍,那么这个长方体的表面积是。
5、如图,有—个边长是5的立方体,如果在它的左上方截去一个棱长分别是5、3、2的长方体,那么它的表面积减少了%。
6、用一张长24厘米,宽23厘米的长方形铁皮,焊接成一个没有盖子的盒子,则焊接的盒子容积最大是______立方厘米。
7、—个棱长为5 米的正方体水箱,箱内盛有水,水深4 米,现把一个棱长为3 米的正方体沉入水箱底部,水面的高度将是米。
8、从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积最小是平方厘米。
9、将边长为13 cm的正方形铁片的四个角各剪去一个边长为3 cm的小正方形,如图所示,剩余部分折成—个无盖的长方体盒子,该盒子的容积是cm。
10、有底面积相等的圆锥体和圆柱体容器各一个,在空圆柱里装满水,然后倒入空圆锥里,倒三次正好装满,这个圆柱和圆锥高的比是。
盛有水,11、如图,是两个底面积相同的圆柱和圆锥形杯子,其中圆柱形杯子的25将水倒入圆锥形的杯子中刚好倒满,则圆柱的高与圆锥的高的比是。
12、一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,则圆柱的高是厘米。
13、一个圆柱的底面周长是一个圆锥的底面周长的2,而这个圆锥的高是圆柱高3,则圆锥的体积是圆柱体积的。
(填分数)的2514、有一种饮料的瓶身如图所示,容积是3 升。
现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空余部分高度为5厘米,则瓶内现有饮料升。
2024年北师大版六年级下册数学小升初分班考专题:平面图形(含答案)
2024年北师大版六年级下册数学小升初分班考专题:平面图形一、单选题1.一个等腰三角形的顶角是120°,它的一个底角是( )度.A.6B.30C.4D.452.一个三角形三个内角的度数比是4:6:11,按角分,这是一个( )三角形.A.锐角B.直角C.钝角D.无法确定3.小圆的半径等于大圆半径的1,则小圆面积与大圆面积的比是( )。
3A.1:3B.3:1C.1:9D.9:14.下图中,甲的周长( )乙的周长。
A.大于B.等于C.小于D.以上都不对5.将一个平行四边形沿高剪拼成一个长方形(如图),剪拼成的长方形和原来的平行四边形相比,( )A.周长不变,面积也不变B.周长不变,面积变了C.周长变了,面积不变D.周长变了,面积也变了6.已知半圆形所在圆的直径是6厘米,那么,这个半圆形的周长是( )厘米。
A.15.42B.9.42C.18.84D.14.13二、填空题7.一只挂钟的时针长5厘米,分针长8厘米,从上午8时到下午2时,分针尖端“走了” 厘米,时针“扫过”的面积是 平方厘米。
8.小正方形和大正方形边长的比是4:5小正方形和大正方形面积的比是 。
9.小梅想在一个长8cm、宽4cm的长方形纸上画一个最大的圆。
圆规两脚间的距离应是 cm,这个圆的周长是 cm。
10.一个直角三角形,两条直角边长度的和是35厘米,比是3;4。
这两条直角边长度分别是 和 厘米,这个三角形的面积是 平方厘米。
11.图中有 条对称轴;如果圆的直径是dcm,那么长方形的面积是 cm2。
12.把一个半径为10cm的圆形贴纸剪成大小相同的若干片,已经用掉了3片(如下图),剩下贴纸的面积为 cm²,周长为 cm。
13.如图:一个圆剪拼成一个近似梯形,得到的近似梯形的周长约为21.42厘米,则该圆的半径约是 厘米。
(π取3.14)14.将两个同样的长方形摆放如图,这个图形的周长是 。
15.一个三角形与一个长是12分米,宽是6分米的长方形面积相等,三角形底边长18分米,它的高是 分米。
人教版六年级下册数学小升初总复习平面图形试卷
2020小升初总复习平面图形一、计算、解方程。
12.5÷x=2.5 23×1324+132487.58-(7.58-3.8)3×(13+14)×4 333×322-111×666 12-27-17÷25二、填空题。
1. 一个等腰三角形,一条边是5cm,另一条边是12cm,这个等腰三角形的周长是()cm。
2. 等腰三角形的一个顶角和一个底角度数的比是2:5,它的顶角是()度,底角是()度。
按角分,这是一个()三角形。
3. 一个直角梯形的周长是55分米,两条腰分别长12分米和15分米。
这个直角梯形的面积是()平方分米。
4. 在同一个平面内直线a⊥c,b⊥c,那么a()b。
5. 从直线外一点到这条直线的所有连线中,()最短。
6. 一个直角三角形三条边的长度分别是10厘米、8厘米、6厘米,这个三角形的面积是()平方厘米,斜边上的高是()厘米。
7. 一个圆的半径扩大到原来的3倍,那么它的周长扩大到原来的()倍,面积扩大到原来的()倍。
⊥8. 在一个长8米,宽6米的长方形纸板上剪一个最大的半圆,剪得的半圆的周长是()米,面积是()平方米。
9.在一个长8分米、宽6分米的长方形中,剪去一个最大的正方形,剩下部分的周长是()分米,面积是()平方分米。
10. 一个长方形长10厘米,宽6厘米,如果把它的四角各剪去边长1厘米的正方形,剩下的图形周长是()厘米,面积是()平方厘米。
11. 把一个圆剪拼成一个近似的长方形,长方形的宽是6厘米,长方形的长是()厘米。
12. 李想拿了7厘米、15厘米的小棒各一根,她想围成一个每边长度是整厘米数的三角形,那么李想拿的第三根小棒最长是()厘米,最短是()厘米。
13. 用24米长的篱笆一面靠墙围一块长方形菜地,围成的菜地面积最大是()平方米。
14. 常见自行车车轮的直径如下表。
填出每种自行车车轮转动一圈所走的长度。
六年级下册数学-小升初平面图形专项练习及答案-l1-人教版
六年级下册数学-小升初平面图形专项练习及答案-人教版评卷人得分一、解答题(题型注释)1.请分别过三角形的顶点A B 画出三角形的三条高。
2.下图中,直角等腰三角形的面积是5平方厘米,求圆的面积。
3.在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.4.如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED ,则阴影部分的面积为 .5.小红量得一根古代建筑中的大圆柱子的周长是3.77米,这根大圆柱的半径是多少米?(得数保留一位小数)6.一张圆桌,周长是3.768米,它的面积是多少平方米?(得数保留两位小数)7.小明用5个长3厘米、宽2厘米的小长方形正好拼成如右图所示的大长方形.(1)这个大长方形的周长是 厘米.(2)如果用5个长3厘米、宽2厘米的小长方形能否拼接成如右图所示的大长方形?如果能,请在下面画出图形并标上数据:如果不能.请说明理由.(提示:也可以画图,标上数据来说明.)8.把周长为12.56厘米的圆平均分成两个半圆,每个半圆的周长是(_______)厘米9.已知一个三角形(每条边长都是整厘米数)的周长是20厘米,它的最长边的长度最大是多少厘米?参数答案1.【解析】1.三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此画图。
解:用三角板的一条直角边与底边重合,沿重合的底边平移三角板,使三角板的另一条直角边和底边对着的顶点重合,过顶点沿直角边向底画线段即可;画图如下:2.15.7平方厘米【解析】2.从图中可知:直角等腰三角形的底是圆的半径的2倍,即,高是圆的r 2半径,三角形的面积==。
知道=5平方厘米,即可求出圆的面积。
r 212⨯⨯r r 2r 2r 解:3.14×5=15.7(平方厘米)答:圆的面积是15.7平方厘米。
3.15【解析】3.(法1)特殊点法.由于P 是正方形内部任意一点,可采用特殊点法,假设P 点与A 点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的14和16,所以阴影部分的面积为2116(1546⨯+=平方厘米.(法2)连接PA 、PC .由于PAD ∆与PBC ∆的面积之和等于正方形ABCD 面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD 面积的14,同理可知左、右两个阴影三角形的面积之和等于正方形ABCD 面积的16,所以阴影部分的面积为2116(1546⨯+=平方厘米.4.2.7【解析】4.如图,连接OE .根据蝴蝶定理,1:::1:12COE CDE CAE CDE ON ND S S S S ∆∆∆∆===,所以12OEN OED S S ∆∆=;1:::1:42BOE BAEBDE BAE OM MA S S S S ∆∆∆∆===,所以15OEM OEA S S ∆∆=.又11334OED ABCD S S ∆=⨯=矩形,26OEA OED S S ∆∆==,所以阴影部分面积为:1136 2.725⨯+⨯=.5.这根大圆柱的半径是0.6平方米【解析】5.试题分析:由题意可知:圆的周长已知,依据圆的周长=2πr,即可求出这根大圆柱的半径.解:3.77÷(2×3.14),=3.77÷6.28,≈0.6(米);答:这根大圆柱的半径是0.6平方米.6.圆桌的面积约是1.13平方米【解析】6.试题分析:先根据圆桌的周长3.768米求出半径,即:3.768÷3.14÷2,然后再根据圆的面积等于圆周率乘以半径的平方,列式解答即可.解:这个圆桌的半径是:3.768÷3.14÷2,=0.6(米);圆桌的面积是:3.14×0.6×0.6,=1.1304(平方米),≈1.13平方米.答:圆桌的面积约是1.13平方米.7.(1)22厘米.(2)【解析】7.试题分析:(1)由图知,大长方形的长是3+3=6厘米,宽是3+2=5厘米,根据长方形的周长=(长+宽)×2解答即可;(2)由题1可知,能用5个长3厘米、宽2厘米的小长方形能否拼接成如右图所示的大长方形,据此画图即可.解:(1)3+3=6(厘米),3+2=5(厘米),(6+5)×2=22(厘米);答:这个大长方形的周长是22厘米.(2)由题1可知,能用5个长3厘米、宽2厘米的小长方形能拼接成如右图所示的大长方形,如下图:故答案为:22.8.10.28【解析】8.【解答】解:已知C=12.56厘米,d=C÷π圆的直径:12.56÷3.14=4(厘米);半圆的周长:12.56÷2+4,=6.28+4,=10.28(厘米);答:每个半圆的周长是10.28厘米.故填:10.28.9.20÷2-1=9(厘米)【解析】9.略。
2024年人教版六年级下册数学小升初专题训练:平面图形(含答案)
2024年人教版六年级下册数学小升初专题训练:平面图形一、单选题1.一个圆形草坪,按1:100缩小后画在图纸上,周长是18cm。
花坛实际占地面积是( )m2。
(π取近似值3)A.3B.6C.9D.272.已知一个三角形两边的长度分别是9厘米、12厘米,那么,这个三角形的周长可能是( )厘米。
A.24B.30C.42D.453.用三根同样长的铁丝分别围成平行四边形、正方形、长方形三个不同的图形,三个图形的面积相比,( )A.平行四边形面积最大B.正方形面积最大C.长方形面积最大D.三个图形的面积相等4.时针围绕钟面中心顺时针方向旋转()才能从1:00走到4:00。
A.30°B.60°C.90°D.120°5.用三根小棒围成三角形(小棒长度取整厘米数),其中两根小棒分别长5cm和7cm。
要使围成的三角形周长最长,第三根小棒应该为( )cm。
A.10B.11C.12D.13二、填空题6.已知等腰三角形的一个内角是95°,它的另外两个内角分别是 度。
7.一个直角三角形,三条边分别为3cm、4cm、5cm,这个三角形的面积为 cm2。
8.从9:00到9:15,分针旋转了 度,若分针长6厘米,这根分针针尖走过的长度是 厘米,扫过的面积是 平方厘米。
9.一个三角形内角度数的比是2:3:5,其中最大的内角是 度,这是个 角三角形。
10.如图中正方形的面积是40cm2,那么涂色部分的面积是 cm2。
11.一辆自行车车轮直径是0.5米,脚踏板齿轮有48个齿,后齿轮有16个齿,脚踏一圈,自行车前进 米.12.一个等腰三角形的顶角是60度,它的一个底角是 度,这样的三角形有 条对称轴。
13.如图,直角三角形的面积是4平方厘米,圆的面积是 平方厘米。
14.找规律,如图(单位:cm),30个等腰梯形拼出的图形是 ,周长是 厘米。
15.小明用圆规在纸上画一个周长是12.56厘米的圆。
人教版六年级下册数学 小升初分班考专题:平面图形(含答案)
人教版六年级下册数学小升初分班考专题:平面图形一、单选题1.一个正方形的边长为2a米,这个正方形的面积是()平方米。
A.4a B.4a2C.8a2D.2a22.在一个梯形纸片上剪一刀,不会得到()。
A.两个三角形B.两个平行四边形C.一个三角形和一个平行四边形D.梯形3.一个三角形的两条边长分别是5 cm 和9 cm,它的周长可能是()cm。
A.9B.21C.28D.304.下图中每个小方格的面积均为1个面积单位,阴影部分的面积是()。
A.2个面积单位B.3个面积单位C.4个面积单位D.5个面积单位5.把一个长方形拉成平行四边形(边长不变),这个平行四边形和原来长方形相比()。
A.周长不变,面积变了B.周长变了,面积不变C.周长和面积都变了D.周长和面积都不变6.笑笑家到公路有三条笔直的小路,长度分别是480米、420米、350米。
其中有一条小路与公路是垂直的,这条小路的长度是()A.350米B.420米C.480米D.无法确定二、填空题7.一个等腰三角形,如果一个底角是80°,它的顶角是°;如果顶角是80°,它的一个底角是°。
8.把一个等边三角形对折,再沿折痕剪开,得到两个相同的直角三角形,其中一个直角三角形的两个锐角的度数分别是°和°。
9.一个三角形指示牌既是钝角三角形。
又是等腰三角形,它的一个内角是40°,其余两个内角分别是°和°10.一个长方形池塘的长是8米,宽是5米。
这个池塘的周长是米。
11.一个梯形的面积是42平方厘米,上底5厘米,高6厘米,下底是厘米。
12.一个长方形广场,长250米,宽150米,王叔叔每天沿着广场跑5周。
王叔叔每天跑米,合千米。
13.一个三角形,底是8米,高是60分米,面积是平方米,与它等底等高的平行四边形的面积是平方米。
14.下图是两个相同的长方形,把它们拼成一个大长方形有两种拼法。
小升初真题特训:平面图形-小学数学六年级下册人教版(有答案 有解析)
小升初真题特训:平面图形-小学数学六年级下册人教版学校:___________姓名:___________班级:___________考号:___________一、选择题1.(2020·甘肃陇南·统考小升初真题)在一个边长为2厘米的正方形中,画一个最大的圆,圆的面积是正方形面积的()。
A.78.5%B.80%C.75%2.(2021春·安徽合肥·六年级统考小升初模拟)下列说法正确的是()。
A.1条射线长12厘米B.角的大小与边的长短有关系C.等腰三角形一定是锐角三角形D.圆的周长和它的直径成正比例3.(2021·贵州黔东南·小升初真题)用一个放大5倍的放大镜看一个30︒的角,所看到的角是()。
A.30︒B.35︒C.150︒4.(2020春·四川·六年级小升初模拟)一块正方形手帕,边长是20厘米,它的面积是()平方分米。
A.400B.40C.45.(2020春·全国·六年级统考小升初模拟)现有长度分别为1cm,3cm,5cm,7cm,11cm的5根肖邦,每次选取其中的任意三根,可摆成()个不同的三角形.A.2B.4C.106.(2022·甘肃金昌·统考小升初真题)手工课上同学们小组合作制作笔筒。
小亮准备了一张长方形的硬纸板作为笔筒的侧面(如图),请联系生活实际思考:下面最适合作为这个笔筒底面的是()(接头处忽略不计)。
A.B.C.二、填空题7.(2020·湖北武汉·统考小升初真题)一个等腰直角三角形两条直角边的长度和是36厘米,它的面积是三、判断题18.(2020·全国·小升初真题)一个正方形的边长是4厘米,它的周长和面积相等。
() 19.(2021春·全国·六年级统考小升初模拟)圆的周长和它的面积成正比例。
() 20.(2022·河北秦皇岛·统考小升初真题)两根同样长的铜丝围成一个三角形和一个平行四边形,平行四边形的周长比三角形的周长长。
六年级下册小升初试题 平面图形 讲义及练习题 通用版
第五讲 线与角、三角形与四边形第一部分 知识梳理锐角(小于 90°)线段(有两个端点)直角(90º)线 射线(只有一个端点) 角(有一点出发的两条射线 钝角(大于 90º而小于 180º)和所组成的图形)平角(180º)角周角(360º)垂线(直线外一点到直线的垂直线段最短)直线(没有端点)平行线(平行线间的距离处处相等)三角形的定义:由不在同一直线上的三条线段首尾顺次相接围成的图形叫三角形锐角三角形:三个角都是锐角的三角形三角形按角分 直角三角形:有一个角是直角的三角形三角形的分类钝角三角形:有一个角是钝角的第1页/共12页三角形等腰三角形:两条边相等的三角形(等边三角形是特殊按边分的等腰三角形)不等边三角形:三条边都不相等的三角形四边形的定义:由不在同一直线上的四条线段首尾顺次相接围成的图形叫四边形四边形平行四边形 长方形 正方形四边形的分类直角梯形梯形等腰梯形名称图形字母意义 周长/面特征积正方形a-- 边 C=4a,S=a 四条边都相等,长2四个角都是直角a--长 C=(a+b) 两组对边平行且相正方形b--宽 ×2等,四个角都是直S=ab角三角形a--底 h--高S= ah2两边之和大于第三 边,两边之差小于 第三边,三个内角第2页/共12页的度数和是 180º,具有稳定性平行四 边形a--底 h--高S=ah两组对边平行且相 等梯形a--上底 b--下底 h--高S= (a b)h2只有一组对边平行第二部分 精讲点拨例 1 下面图中共有()条线段,()条射线和()条直线。
举一反三:ABCD1.填空题(1)过两点可画( 直线。
)条直线,过一点可画()条(2)两条直线相交,有一个角是直角,其他三个角是( )度,这两条直线的位置关系是()。
2.判断题 (1)一条直线长 5 米。
(2)直线比射线长,射线比线段长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何(一)
1.一张长为10厘米,宽为8厘米的长方形纸片,把它剪开成两张同样的长方形纸片,每个小长方形纸片的周长为多少厘米?
2.一个正方形相邻两条边的长度,如果分别增加它的1
2
和它的
1
4
,那么所得的新长方形的
周长比原正方形的周长增加了百分之几?
3.有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
4.如图,把正方形的土地分成如下四个长方形(它们的面积分别为10平方米、20平方米、30平方米、40平方米),阴影部分是正方形且它包含在40平方米的长方形之内。
求阴影部分的面积。
5.如图中阴影部分的面积是多少?(单位:cm)
6.如图,求阴影部分的面积。
(单位:厘米)
7.等腰三角形的面积为8平方厘米,求图中阴影部分的面积。
8.图中的两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
9.如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米)1、2、3、4、5、6、7,则图中阴影部分的面是多少平方米?(π取3)
10.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。
求CD的长度。
1.求阴影部分的周长。
2.把一个长8厘米宽4厘米的长方形,如图所示折一折,得到右面图形,则阴影部分四个三角形的周长之和是多少厘米?
课后练习
3.一个长方形花坛面积是6平方米,如果长增加1
3
,宽增加
1
4
,现在的面积比原来增加多
少平方米?
4.用两块长方形纸片和一块正方形纸片围成一个新的大正方形纸片,两块长方形纸片的面积分别是44平方厘米和28平方厘米。
那么正方形纸片的面积是多少平方厘米?
5.小方桌的边长是1米,把它的四边撑开就成了一张圆桌(如图)求圆桌的面积。
6.在半径为10cm的圆内,C为AO的中点,则阴影的面积为多少?
7.图中阴影部分的面积是57平方厘米,求这个正方形的面积。
8.如图:阴影三角形的面积是多少?
9.下图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。
10.如图,直角△ABC的斜边AB=10,BC=5,∠ABC=60°,以点B为中心,将△ABC顺时针旋转120°,点A、C分别到达点E、D,则AC边扫过的面积(即图中阴影部分的面积)是多少?(取3)。