最短路径问题专项练习题
中考数学复习《勾股定理求最短路径》专项检测卷-附带答案
中考数学复习《勾股定理求最短路径》专项检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.如图,一牧童在A处牧马,牧童家在B处,A、B处距河岸的距离AC、BD的长分别为500m和700m,且C、D两地的距离为500m,天黑前牧童从A点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走()A.2900m B.1200m C.1300m D.1700m2.如图,圆柱体盒子放在水平地面上,该圆柱体的高为9cm,点M离盒底的距离为3cm,cm,一只蚂蚁沿着该圆柱体盒子的表面从点M爬行到点N,则该蚂蚁爬行的最底面半径为8π短路程为()cm.A.6B.10C.2√73D.6+16π3.如图是一个三级台阶,它的每一级的长,宽,高分别是20dm,3dm,2dm,A和B是这个台阶相对的端点,点A处有一只蚂蚁,想到B处去吃食物,则这只蚂蚁爬行的最短距离为()A.25dm B.26dm C.24dm D.27dm4.如图是放在地面上的一个长方体盒子,其中AB=7,BC=4,BF=6点M在棱AB上,且AM=1,点N是FG的中点,一只蚂蚁要沿着长方形盒子的外表面从点M爬行到点N,它需要爬行的最短路程为()A.10B.4√5C.6√2D.2√135.如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为()m.(π取3)A.30B.28C.25D.226.如图,在等腰直角△ABC中AB=BC=4,点D在边BC上且CD=1,点E,F分别为边AB,AC上的动点,连接DE,EF,DF得到△DEF,则△DEF周长的最小值为()A.5√2B.2√13C.3√7D.√6+2√27.如图,在RtΔABC中∠ACB=90°,AC=10,BC=12点D是ΔABC内的一点,连接AD,CD,BD满足∠ADC=90°,则BD的最小值是()A.5B.6C.8D.13S矩形ABCD则点P 8.如图,在矩形ABCD中AB=5 AD=3.动点P满足S△PAB=13到A B两点的距离之和P A+PB的最小值为()A.√29B.√34C.√41D.√529.已知圆锥底面半径为1 母线长为4 地面圆周上有一点A一只蚂蚁从点A出发沿圆锥侧面运动一周后到达母线P A中点B则蚂蚁爬行的最短路程为()A.πB.√5πC.2√5D.2π10.如图△ABC为边长3的等边三角形AD△BC于点D点E在AB边上且AE=1 P为线段AD上的一个动点则PB+PE的最小值是()√3 A.3B.√7C.√3D.3211.如图在一个长为9m宽为6m的长方形草地上放着一根长方体木块它较长的边和草地的宽AD平行且长大于AD木块从正面看是边长为1m的正方形一只蚂蚁从点A出发到达点C处需要走的最短路程为()A.12m B.√157m C.6√5m D.13m12.如图矩形ABCD中AB=4BC=6以A为圆心2为半径画圆A E是圆A 上一动点P是BC上一动点则PE+PD最小值是()A.4√2B.2√10C.8D.1213.如图正方形ABCD中AB=4点E F分别在边AB BC上点P在对角线AC上EF∥AC PE+PF=m.下列结论错误..的是()A.若BE=2则m的最小值为4B.若m的最小值为4 则BE=2C.若BE=0.5则m的最小值为5D.若m的最小值为5 则BE=0.5 14.数形结合是数学的重要思想和解题方法如:“当0<x<12时求代数式√x2+4+√(12−x)2+9的最小值” 其中√x2+4可看作两直角边分别为x和2的Rt△ACP的斜边长√(12−x)2+9可看作两直角边分别是12−x和3的Rt△BDP的斜边长.于是将问题转化为求AP+BP的最小值如图所示当AP与BP共线时AP+BP为最小.请你解决问题:当0<x<4时则代数式√x2+1+√(4−x)2+4的最小值是()A.4B.5C.6D.715.如图有一条直角弯道河流河宽为2 A B两地到河岸边的距离均为1 AH= BF=1AD=7BE=9现欲在河道上架两座桥MN PQ使AM+MN+NP+PQ+QB最小则最小值为()A.√130B.√145+2C.14D.1216.如图平行四边形ABCD中AB=12AD=10∠A=60°E是边AD上一点且AE=6F是边AB上的一个动点将线段EF绕点E顺时针旋转60°得到EN连接BN CN则BN+CN的最小值是()A.3√21B.4√14C.14D.4√1317.如图在平面直角坐标系xoy中点A C分别在坐标轴上且四边形OABC是边长(x>0)的图像与BC,AB边分别交于E,D两点△DOE 为3的正方形反比例函数y=kx的面积为4 点P为y轴上一点则PD+PE的最小值为()A.3B.2√5C.3√2D.518.如图在平面直角坐标系中点A(3,a)是直线y=2x与直线y=x+b的交点点B 是直线y=x+b与y轴的交点点P是x轴上的一个动点连接P A PB则PA+PB 的最小值是()A.6B.3√5C.9D.3√1019.如图已知正方形ABCD的边长是4 点E是AB边上一动点连接CE过点B 作BG△CE于点G点P是AB边上另一动点则PD+PG的最小值是()A.2√10−2B.4√3−2C.2√13−2D.2√14−220.如图① 在正方形ABCD中点E是AB的中点点P是对角线AC上一动点设PC=x PE+PB=y图②是y关于x的函数图象且图象上最低点Q的坐标为(m,2√5)则正方形ABCD的边长为()A .2√2B .2√5C .4D .5参考答案1.解:如图 由题意得:DB ⊥CD AC ⊥CD A ′C =AC =500m BD =700m CD =500m作A 点关于河岸的对称点A ′ 连接BA ′交河岸与P 则PB +P A =PB +P A ′=BA ′时最短 过点A ′ 作A ′B ′⊥BD 交BD 延长线于点B ′△四边形A ′B ′DC 是矩形△A ′B ′=CD =500m DB ′=A ′C =500m△BB ′=BD +DB ′=1200m在Rt △A ′B ′B 中 BA ′=√BB ′2+A ′B ′2=√12002+500=1300m .故选:C2.解:把圆柱侧面展开 展开图如图所示 点M N 的最短距离为线段MN 的长 △AM =9﹣3=6(cm ) AN 为底面半圆弧长 AN =2×12•8π•π=8(cm )在Rt△AMN 中MN =√AM 2+AN 2=√62+82=10(cm ).故选:B .3.解:三级台阶平面展开图为长方形长为20dm 宽为(2+3)×3dm则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x dm由勾股定理得:x2=202+[(2+3)×3]2=252解得x=25.故选:A.4.解:如图1中把面ABFE与面EFGH沿EF展开∵AM=1,AB=7,BC=4,BF=6,点N是FG的中点∴MB=6,FN=2,BN=BF+FN=8,∴MN=√MB2+BN2=10,如图2 把面ABFE与面BCGF沿BF展开同理可得:MP=8,PN=BF=6,∴MN=√MP2+PN2=10,如图3 把面ABCD与面BCGF沿BC展开同理:MF=MB+BF=12,FN=2,∴MN=√122+22=√148=2√37,∵10=√100<√148=2√37,所以一只蚂蚁要沿着长方形盒子的外表面从点M爬行到点N它需要爬行的最短路程为10.故选:A.5.解:其侧面展开图如图:作点C关于AB的对称点F连接DF△中间可供滑行的部分的截面是半径为2.5cm的半圆△BC=πR=2.5π=7.5cm AB=CD=20cm△CF=2BC=15cm在R t△CDF中DF=√CF2+CD2=√152+202=25cm故他滑行的最短距离约为25cm.故选C.6.解:如图作点D关于AB的对称点G作点D关于AC的对称点H连接BG CH DH FH GH∵∠ABC=90°点D与点G关于AB对称∴∠GBE=∠ABC=90°∴G B D C在同一条直线上△在等腰直角△ABC中AB=BC△∠A=∠ACB=45°△BC=4CD=1△由对称性可知:GB=DB=3CH=CD=1∠FCH=∠FCD=45°FH=FD EG=ED∴∠HCG=90°GC=GB+BD+DC=3+3+1=7∴GH=√GC2+CH2=√72+12=5√2∴DE+EF+FD=GE+EF+FH⩾GH=5√2∴△DEF的周长的最小值5√2.故选:A.7.解:如图取AC中点O连接DO.∵∠ADC=90°∴点D在以点O为圆心AC长为直径的圆周上运动且DO=12AC=12×10=5当O D B在同一直线上时OB最短此时BD=OB−OD=OB−5为最短.在RtΔOCB中OC=5BC=12则OB=√122+52=13∴BD=OB−OD=OB−5=13−5=8即BD的最小值是8.故选:C.8.解:设ΔABP中AB边上的高是ℎ.∵SΔPAB=13S矩形ABCD∴12AB⋅ℎ=13AB⋅AD∴ℎ=23AD=2∴动点P在与AB平行且与AB的距离是2的直线l上如图作A关于直线l的对称点E连接AE连接BE则BE的长就是所求的最短距离.在RtΔABE中∵AB=5AE=2+2=4∴BE=√AB2+AE2=√52+42=√41即PA+PB的最小值为√41.故选:C.9.解:根据题意将该圆锥展开如下图所示的扇形则线段AB就是蚂蚁爬行的最短距离.△点B是母线P A的中点PA=4△PB=2△圆锥的底面圆的周长=扇形的弧长又△圆锥底面半径为1△扇形的弧长=圆锥底面周长即l=2πr=2π扇形的半径=圆锥的母线=P A=4由弧长公式可得:l=nπR180=nπ×4180=2π△扇形的圆心角n=90°在Rt△APB中由勾股定理可得:AB=√PA2+PB2=√42+22=2√5所以蚂蚁爬行的最短路程为2√5故选:C.10.解:作E关于AD的对称点E′连接BE′交AD于P则此时PE + PB有最小值PE+ PB的最小值=BE′△AE′= AE= 1△ CE'=3-1=2作E'F△BC于F△△ABC为等边三角形△C= 60°△∠CE′F=30°△CF=12CE′=1 E′F=√CE′2−CF2=√22−12=√3△AC= BC= 3△BF=3-1= 2BE′=√BF2+E′F2=√22+(√3)2=√7△PE+ PB的最小值=√7故选:B11.解:由题意可知将木块展开如图长相当于是AB+2个正方形的宽△长为9+2×1=11(m);宽为6 m.于是最短路径为:√62+112=√157(m).故选B.12.解:如图作点D关于直线BC的对称点F连接AF交BC于点P交⊙A于点E此时PE+PD最小等于AF−AE△四边形ABCD是矩形AB=4BC=6△AB=CD=4AD=BC=6△DF=8∠ADF=90°△AF=√AD2+DF2=√62+82=10△AE+EF=10△EF=10−2=8△PE+PD的最小值为8故选C.13.解:如图根据正方形的对称性在AD上取点E关于AC的对称点G连接FG交AC 于点P则PE=PG△PE+PF=PG+PF=FG为m的最小值△AG=AE=4−BE∠BAD=90°△EG2=AE2+AG2=2AE2=2(4−BE)2△EF∥AC△∠BEF=∠BAC=45°∠BFE=∠BCA=45°△BF=BE△EF2=BE2+BF2=2BE2△FG⊥AC△EG⊥EF△∠FEG=90°△FG=√EF2+EG2=2√(BE−2)2+4当BE=2时FG=2√(2−2)2+4=4△A正确;当FG=4时2√(BE−2)2+4=4△√(BE−2)2+4=2△(BE−2)2+4=4△(BE−2)2=0△BE=2△B正确;当BE=0.5时FG=2√(0.5−2)2+4=5△C正确;当FG=2√(BE−2)2+4=5时(BE−2)2+4=254△(BE−2)2=94△BE−2=±32△BE=0.5,或BE=3.5△D不正确.故选:D.14.解:如图所示√x2+1可看作两直角边分别为x和1的Rt△ACP的斜边长√(4−x)2+4可看作两直角边分别是4−x和2的Rt△BDP的斜边长.△求√x2+1+√(4−x)2+4的最小值即求AP+BP的最小值当AP与BP共线时AP+BP为最小即AB的长.连接AB△∠E=90°AE=AC+CE=AC+DB=3△AB=√AC2+BE2=5△代数式√x2+1+√(4−x)2+4的最小值是5.故选:B.15.解:延长AH到J使得AJ=MN=2延长BF到K使得BK=PQ=2连接JK交河道于点N′P′得到两座桥N′M′P′Q′此时AM′+M′N′+N′P′+P′Q′+BQ′的值最小.△四边形AJN′M′是平行四边形△AM′=JN′同理:BQ′=P′K延长AH交BK的延长线于点W.△WH=BE=9WF=AD=7△WJ=WH+AH−AJ=9+1−2=8WK=AD+BF−BK=7+1−2=6在Rt△JWK中JK=√KW2+WJ2=√62+82=10∴AM′+M′N′+N′P′+P′Q′+BQ′=HN′+2+N′P′+2+P′K=4+JK=14∴AM+MN+NP+PQ+QB的最小值为14.故选:C.16.解:取AB的中点G连接CE EG.由已知得AG=AE=6∠A=60°△△AEG是等边三角形△∠AGE=∠AEG=60°.△∠AEF+∠GEF=∠GEF+NEG=60°△∠AEF=∠NEG.△AE=EG NE=FE△△AEF△△GEN△∠A=∠NGE=60°△∠BGN=60°.△BG=EG∠BGN=∠NGE NG=NG△△BNG△△ENG△BN=EN.要求BN+CN最小就是求CN+NE最小即BN+CN=NE+CN≥CE.作EH⊥CD交延长线于点H△AB∥CD△∠EDH=∠A=60°.在Rt△DEH中DE=4∠DEH=30°△DH=2EH=2√3△CH=CD+DH=12+2=14.在Rt△CEH中CE=√CH2+EH2=√142+(2√3)2=4√13.所以BN+CN的最小值是4√13.故选:D.17.解:∵正方形OABC的边长是3∴点D的横坐标和点E的纵坐标为3∴D(3,k3)E(k33)∴BE=3−k3BD=3−k3∵△ODE的面积为4∴3×3−12×3×k3−12×3×k3−12×(3−k3)2=4∴k=3或−3(舍去)∴D(3,1)E(1,3)作E关于y轴的对称点E′连接DE′交y轴于P则DE′的长=PD+PE的最小值∵CE=CE′=1=AD∴BE′=4BD=2∴DE′=√BE′2+BD2=√42+22=2√5即PD+PE的最小值为2√5故选:B.18.解:作点A关于x轴的对称点A′连接A′B如图所示:则P A+PB的最小值即为A′B的长将点A(3 a)代入y=2x得a=2×3=6△点A坐标为(3 6)将点A(3 6)代入y=x+b得3+b=6解得b=3△点B坐标为(0 3)根据轴对称的性质可得点A'坐标为(3 -6)△A′B=√32+(−6−3)2=3√10△P A+PB的最小值为3√10.故选:D.19.解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心OB为半径画半圆.连接OD′交AB于点P交半圆O于点G连BG.连CG并延长交AB于点E.由以上作图可知BG△EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知当点D′ G O三点共线时PD+PG最小.△D′C′=4 OC′=6△D′O=√42+62=2√13△D′G=2√13−2△PD+PG的最小值为2√13−2故选C.20.解:如图点D是点B关于直线AC的对称点连接DE交AC于点P根据点的对称性PB=PD则y=PE+PB=PD+PE=DE为最小故ED=2√5设正方形的边长为a则AE=12a在Rt△ADE中由勾股定理得:DE2=AD2+AE2即a2+(12a)2=(2√5)2解得:a=4(负值已舍去)故选:C.。
(完整版)最短路径习题
13.4课题学习最短路径问题1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B 处,则它爬行的最短路径是。
BA②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。
DCA B2.①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。
李庄张村②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。
请在图中找出点P的位置,并计算PA+PB的最小值。
BAL③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度为。
3.如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是 。
4.现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。
5.如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。
6.正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 。
7.在菱形ABCD 中,AB=2,∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。
张村李庄ABCDABAB图(2)8.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值为____ ___。
13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册
13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册题型一、两定点一动点作图问题1.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使P A+PB最短.下面四种选址方案符合要求的是()A.B.C.D.2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.3.如图,直线l是一条公路,A、B是两个村庄.欲在l上的某点处修建一个车站,直接向A、B两地提供乘车服务.现有如下四种建设方案,图中实线表示铺设的行走道路,则铺设道路最短的方案是()A.B.C.D.4.为了促进A,B两小区居民的阅读交流,区政府准备在街道l上设立一个读书亭C,使其分别到A,B两小区的距离之和最小,则下列作法正确的是()A.B.C.D.5.如图,在正方形网格中有M,N两点,在直线l上求一点P使PM+PN最短,则点P应选在()A.A点B.B点C.C点D.D点题型二、两定点一动点求线段和最小值1.如图,在△ABC中,∠ABC=60°,AD⊥BC于D点,AB=12,.若点E、F分别是线段AD、线段AB上的动点,则BE+EF的最小值是()A.6B.12C.D.2.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E、F点.若点D为BC边的中点,点M为线段EF上一动点,则CM+DM的最小值为()A.21B.7C.6D.3.53.如图,在△ABC中,∠A=90°,AB=6,AC=8,BC=10,CD平分∠BCA交AB于点D,点P,Q分别是CD,AC上的动点,连接AP,PQ,则AP+PQ的最小值是()A.6B.5C.4.8D.44.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值()A.2.4B.4C.5D.4.85.如图,点N在等边△ABC的边BC上,CN=6,射线BD⊥BC,垂足为点B,点P是射线BD上一动点,点M是线段AC上一动点,当MP+NP的值最小时,CM=7,则AC的长为()A.8B.9C.10D.126.如图,已知等边△ABC的边长为4,点D,E分别在边AB,AC上,AE=2BD.以DE为边向右作等边△DEF,则AF+BF的最小值为()A.4B.4C.4D.47.数形结合是重要的数学思想,借助图形,求解的最小值为.8.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.9.如图,A,B两个小镇在河流CD的同侧,到河的距离分别为AC=6千米,BD=14千米,且CD=15千米,现要在河边建一自来水厂,同时向A,B两镇供水,铺设水管的费用为每千米3万元,请你在河流CD上选择水厂的位置M,使铺设水管的费用最省,并求出总费用是多少?题型三、两定点一动点求周长最小值1.如图,在△ABC中,直线m是线段BC的垂直平分线,点P是直线m上的一个动点.若AB=7,AC=4,BC=5,则△APC周长的最小值是()A.12B.11C.9D.72.如图,在△ABC中,AB=AC,BC=4,面积是12,AC的垂直平分线EF分别交AB,AC边于点E,F.若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.8B.3C.6D.43.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)4.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5,D、E、F分别是AB、BC、AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.65.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC 外作等腰△ACD,过点D作∠ADC的平分线分别交AB,AC于点E,F.若BC=5,∠CAB=30°,点P是直线DE 上的一个动点,则△PBC周长的最小值为()A.15B.17C.18D.206.如图,在平面直角坐标系中,点P的坐标为(2,3),P A⊥x轴,PB⊥y轴,C是OA的中点,D是OB上的一点,当△PCD的周长最小时,点D的坐标是()A.(0,1)B.C.D.(0,2)7.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为______8.如图,点A(1,﹣1),B(2,﹣3)(1)点A关于x轴的对称点的坐标为.(2)若点P为坐标轴上一点,当△APB的周长最小时,点P的坐标为.三、一定点二动点线段或周长问题1.如图,在五边形中,∠BAE=140°,∠B=∠E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当△AMN的周长最小时,求∠AMN+∠ANM的值是()A.100°B.140°C.120°D.80°2.如图,∠AOB=30°,P是∠AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则△CPD周长的最小值为.3.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,则MQ+PQ+PN的最小值为.四、一定点二动点角度问题1.如图,在四边形ABCD中,∠C=40°,∠B=∠D =90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.100°B.90°C.70°D.80°2,如图,∠MON=45°,P为∠MON内一点,A 为OM上一点,B为ON上一点,当△P AB的周长取最小值时,∠APB的度数为()A.45°B.90°C.100°D.135°3.如图,点P为∠AOB内一点,点M,N分别是射线OA,OB上一点,当△PMN的周长最小时,∠OPM=50°,则∠AOB的度数是()A.55°B.50°C.40°D.45°4.已知点P在∠MON内.如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.(1)若∠MON=50°,求∠GOH的度数;(2)如图2,若OP=6,当△P AB的周长最小值为6时,求∠MON的度数.五、二定点二动点1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°2.如图,在四边形ABCD中,∠B=90°,AB∥CD,BC=3,DC=4,点E在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE的周长的最小值为.3.如图,锐角∠MON内有一定点A,连结AO,点B、C分别为OM、ON边上的动点,连结AB、BC、CA,设∠MON=α(0°<α<90°),当AB+BC+CA取得最小值时,则∠BAC=.(用含α的代数式表示)4.如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)5.已知B,C是平面直角坐标系中与x轴平行且距离x轴1个单位长度的直线上的两个动点(点B在点C左侧),且BC=2,若有点A(0,5)和点D(3,3),则当AB+BC+CD的值最小时,点C的坐标为.6.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.7.如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°8.如图,∠MON=α,α<30°,点A为ON上一定点,点C为ON上一动点,B,D为OM上两动点,当AB+BC+CD最小时,∠BCD+∠ABC=()A.5αB.6αC.90°﹣αD.180°﹣α9.如图,直线l 1,l 2表示一条河的两岸,且l 1∥l 2.现要在这条河上建一座桥(桥与河的两岸相互垂直),使得从村庄A 经桥过河到村庄B 的路程最短,应该选择路线( )A .B .C .D .10.如图,直线l 1、l 2表示一条河的两岸,且l 1∥l 2,现要在这条河上建一座桥,使得村庄A 经桥过河到村庄B 的路程最短,现两位同学提供了两种设计方案,下列说法正确的是( )方案一:①将点A 向上平移d 得到A ';②连接A 'B 交l 1于点M ;③过点M 作MN ⊥l 1,交l 2于点N ,MN 即桥的位置.方案二:①连接AB 交l 1于点M ;②过点M 作MN ⊥l 1,交l 2于点N .MN 即桥的位置.A .唯方案一可行B .唯方案二可行C .方案一、二均可行D .方案一、二均不可行六、线段差的最大值1.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P为对角线BD上一点,则PM﹣PN的最大值为()A.2B.3C.D.2.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.七、多条线段和的最小值1.如图所示,已知A、B、C、D,请在图中找出一点P,使P A+PB+PC+PD最小.2.如图,在平面直角坐标系中,点E在原点,点D(0,2),点F(1,0),线段DE和EF构成一个“L”形,另有点A(﹣1,5),点B(﹣1,﹣1),点C(6,﹣1),连AD,BE,CF.若将这个“L”形沿y轴上下平移,当AD+DE+BE 的值最小时,E点坐标为;若将这个“L”形沿x轴左右平移,当AD+DE+EF+CF的值最小时,E点坐标为.。
专题—最短路径问题(含解答)
专题—最短路径问题一.选择题(共7小题)1.如图所示,四边形OABC为正方形,边长为3,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(1,0),P是OB上的一动点,则“求PD+PA和的最小值”要用到的数理依据是()A.“两点之间,线段最短”B.“轴对称的性质”C.“两点之间,线段最短”以及“轴对称的性质”D.以上答案都不正确解:∵四边形OABC为正方形,∴A、C两点关于直线OB对称(轴对称的性质),∴连接CD,则CD即为PD+PA和的最小值(两点之间,线段最短),∴用到的数理依据是“两点之间,线段最短”以及“轴对称的性质”.故选:C.2.点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得|PA﹣PB|的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OP•OQ=()A.5B.4C.3D.2解:连接AB并延长交x轴于点P,由三角形的三边关系可知,点P即为x轴上使得|PA﹣PB|的值最大的点,∵点B是矩形ACPD的中心,∴点P即为AB延长线上的点,此时P(3,0)即OP=3;作A点关于y轴的对称点A′连接A′B交y轴于点Q,则A′B即为QA+QB的最小值,∵A′(﹣1,2),B(2,1),设过A′B的直线为:y=kx+b,则,解得,∴Q(0,),即OQ=,∴OP•OQ=3×=5.故选:A.3.已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A.40°B.100°C.140°D.50°解:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×40°=80°,∴∠OP′P″=∠OP″P′=(180°﹣80°)÷2=50°,又∵∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,∴∠APB=∠APO+∠BPO=100°.故选:B.4.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.5.如图,点P是∠AOB内的一点,且OP=5,且∠AOB=30°,点M、N分别是射线OA、OB上的动点,则△PMN周长的最小值为()A.5B.6C.8D.10解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=5,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=5.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=5,故选:A.6.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B 的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.解:根据垂线段最短,得出MN是河的宽时,MN最短,即MN⊥直线a(或直线b),只要AM+BN最短就行,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求.故选:D.二.填空题(共9小题)7.如图所示,点A在直线a外,点B在直线a上,在直线a上找一点P,使AP+BP 最小的点P有1个,其位置是B点.解:由题意得使AP+BP最小的点P有1个,其位置是B点,故答案为:1,B点.8.如图,∠AOB=45°,OC平分∠AOB,点M为OB上一定点,P为OC上的一动点,N为OB上一动点,当PM+PN最小,∠PMO=45°.解:∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M与点M′关于OC对称,OC平分∠AOB,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.9.四边形ABCD中,∠BAD=136°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为88度.解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD 分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB,∠A″=∠NAD,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=136°,∴∠A′+∠A″=180°﹣∠BAD=44°∴∠AMN+∠ANM=2×44°=88°.故答案为:8810.如图,∠AOB=30°,点P是它内部一点,OP=2,如果点Q、点R分别是OA、OB上的两个动点,那么PQ+QR+RP的最小值是2.解:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA 交于点Q,与OB交于点R,此时△PQR的周长最小.从图上可看出△PQR的周长就是P1P2的长,∵∠AOB=30°,∴∠P1OP2=60°.∵OP1=OP2,∴△OP1P2是等边三角形.∴P1P2=OP1=OP=2.∴△PQR周长的最小值是2.即PQ+QR+RP的最小值是2故答案为:2.11.已知:在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是CD和BC上的点.求作:点M、N,使△AMN的周长最小.作法:如图2,(1)延长AD,在AD的延长线上截取DA´=DA;(2)延长AB,在AB的延长线上截取BA″=BA;(3)连接A′A″,分别交CD、BC于点M、N.则点M、N即为所求作的点.请回答:这种作法的依据是①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短.解:根据线段垂直平分线的性质和两点之间线段最短作图;故答案为:①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短12.如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为100°.解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°13.如图,△ABC中,∠A=15°,AB是定长.点D,E分别在AB,AC上运动,连结BE,ED.若BE+ED的最小值是2,则AB的长是4.解;作点B关于AC的对称点B',过B作BF⊥AB',∵点B关于AC的对称点B',∴∠B'AE=∠CAB=15°,∵BF⊥AB',∵BF即为BE+ED的最小值,即BF=2,∴AB=4,故答案为:414.如图,∠AOB=30°,∠AOB内有一定点P,且OP=12,在OA上有一点Q,OB上有一点R,若△PQR周长最小,则最小周长是12解:设∠PO A=θ,则∠POB=30°﹣θ,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM.作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.∵OA是PE的垂直平分线,∴EQ=QP;同理,OB是PF的垂直平分线,∴FR=RP,∴△PQR的周长=EF.∵OE=OF=OP=12,且∠EOF=∠EOP+∠POF=2θ+2(30°﹣θ)=60°,∴△EOF是正三角形,∴EF=12,即在保持OP=12的条件下△PQR的最小周长为12.故答案为:12三.解答题(共9小题)15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B两村供水.若铺设水管的工程费用为每千米1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.解:连接AB,作AF⊥BD于点F,则BF=BD﹣AE=0.5km,∴AF=1.2,作A关于直线L的对称点A′,连接A′B到L交于点C,则C点为水厂所在地,如图,过B作BD⊥L于D,作A′G⊥BD于点G,∵BG=BD+DG=3.5,A′G=AF=1.2,CD=2÷3.5×1.2=,EC=1.2﹣=,∴AC+BC=A′C+BC=A′B=3.7km,∴总费用为3.7×1.8=6.66万元.16.如图,一个人从C点骑马出发到D点,但他必须先到河岸边l1的P1点去让马饮水,然后再到河岸边l2的P2点去,再次让马饮水,最后骑马到D点,他应如何选择饮水点P1,P2.才能使所走的路程CP1+P1P2+P2D最短?解:如图,作点C关于l1的对称点C′,点D关于l2的对称点D′,连接C′D′,交于l1,l2于点P1,点P2,连接CP1,P1P2,P2D,所以路程CP1+P1P2+P2D最短.17.八(二)班举行元旦文艺晚会,桌子摆成两条直线(如图中所示的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的小花先拿桔子再拿糖果,然后送给D处的小红,最后回到C处.请你帮助她设计一条行走路线,使其所走的总路程最短(尺规作图,并写出作法,不需说明理由)解:如图所示,小花所走的行走路线为:CM﹣MN﹣ND,所走的总路程最短.18.尺规作图:(1)如图①,江边A,B两个村庄准备集资建造一个自来水厂,请你确定一个厂址,使得从自来水厂到A,B两村所用的水管最短.(2)如图②,P是∠A0B内部一点,试在角的两边上各找一个点E,F,使△PEF 的周长最小.解:(1)如图①,过A点关于江边的对称点C,再连接CB,BC与江边的交点Q 即为自来水厂厂址;(2)如图②,作点P关于OA对称的点M,作点P关于OB对称的点N,连接MN,与OA交于点E,与OB交于点F,此时△PEF的周长最小.19.如图,为了做好2013年沈阳全运会起降的交通安全工作,某交警执勤小队从A处出发,先到公路l1上设卡检查,再到公路l2上设卡检查,最后再到B 地执行任务,他们应如何走才能使总路程最短?【解答】解:如图所示,交警小队沿A→C→D→B走才能使总路程最短.20.如图所示,A、B为公路l同旁的两个村庄,在l上找一点P.(1)当P到A、B等距离时,P在何处?(2)当P到两村距离之和最小时,P在何处?解:(1)因为点P到两个村庄A,B的距离相等,所以P应建在AB的垂直平分线和l的交点处,理由是到线段两个端点距离相等的点在线段的垂直平分线上,如图1:,(2)作点A关于直线l的对称点,连接A′B交直线于点P,点P就是设置的点,如图2:21.如图,A、B两城市之间有一条国道,国道的宽为a,现要在国道上修建一座垂直于国道的立交桥,使通过A、B两城市路程最近,请你设计建桥的位置,并说明理论依据.解:如图,过点B作BC垂直国道,且使BC等于国道宽a,连接AC交国道边缘与M,作MN∥BC即可.理由:两点之间线段最短.22.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?在下图中画出路径,不写画法但要说明理由.(假定河的两岸是平行的直线,桥要与河垂直.)解:如图,作BB'垂直于河岸GH,使BB′等于河宽,连接AB′,与河岸EF相交于M,作MN⊥GH,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故NB=MB′.根据“两点之间线段最短”,AB′最短,即AM+BN最短.故桥建立在MN处符合题意.23.如图,平面上有直线a及直线a外的三点A、B、P.(1)过点P画一条直线m,使得m∥a;(2)若直线a、m表示一条河的两岸,现要在这条河上建一座桥(桥与岸垂直),使得从村庄A经桥过河到村庄B的路程最短,试问桥应建在何处?画出示意图.解:(1)如图1所示,(2)如图2,作AA'垂直于河岸a,使AA′等于河宽,连接BA′,与另一条河岸相交于M,作MN⊥直线a,则MN∥AA′且MN=AA′,于是MNAA′为平行四边形,故MA′=NA.根据“两点之间线段最短”,BA′最短,即AN+BM最短.故桥建立在M、N处符合题意.。
最短路径练习题
最短路径练习题一、选择题:1. 在图论中,最短路径问题是指在加权图中找到两个顶点之间的最短路径,以下哪个算法不是用于解决最短路径问题的?A. Dijkstra算法B. Bellman-Ford算法C. Prim算法D. A*搜索算法2. 以下哪个选项不是Dijkstra算法的前提条件?A. 图必须是有向图B. 所有边的权重必须非负C. 图中不能有负权重边D. 图可以是无向图3. 以下哪个算法可以处理包含负权重边的图?A. Dijkstra算法B. Bellman-Ford算法C. Floyd-Warshall算法D. A*搜索算法4. Floyd-Warshall算法的时间复杂度是:A. O(n^2)B. O(n^3)C. O(nlogn)D. O(n)5. 以下哪个选项是Dijkstra算法的步骤之一?A. 从起点开始,不断扩展最短路径树B. 从终点开始,不断扩展最短路径树C. 从每个顶点开始,计算到其他顶点的最短路径D. 从每个顶点开始,不断扩展最短路径树二、填空题:1. 在Dijkstra算法中,初始时,除了起点的最短路径为0外,其他所有顶点的最短路径都设为________。
2. Dijkstra算法中,当所有顶点都被访问过之后,算法结束,此时得到的距离数组中存储的是从起点到每个顶点的________。
3. Bellman-Ford算法可以处理图中的负权重边,但该算法不能处理图中的________。
4. Floyd-Warshall算法是一种动态规划算法,它可以在O(n^3)的时间复杂度内计算出图中所有顶点对之间的最短路径。
5. A*搜索算法是一种启发式搜索算法,它通过________和实际代价的和来估计从当前顶点到目标顶点的代价。
三、简答题:1. 描述Dijkstra算法的基本思想,并说明其在处理有向图中的最短路径问题时的优势。
2. 说明Bellman-Ford算法如何检测图中是否存在负权重环,并解释其在处理负权重边时的适用性。
最短路径经典练习题
最短路径经典练习题一、基础理论题1. 请简述迪杰斯特拉(Dijkstra)算法的基本原理。
2. 什么是贝尔曼福特(BellmanFord)算法?它适用于哪些类型的图?3. 请解释A搜索算法中启发式函数的作用。
4. 如何判断一个图中是否存在负权环?5. 简述弗洛伊德(Floyd)算法的基本步骤。
二、单选题A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 弗洛伊德算法D. A搜索算法A. 初始化距离表B. 选择当前距离最小的顶点C. 更新相邻顶点的距离D. 重复步骤B和C,直到所有顶点都被访问A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 弗洛伊德算法D. A搜索算法A. 启发式函数B. 起始节点C. 目标节点D. 图的规模三、多选题A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 深度优先搜索算法D. 广度优先搜索算法A. 初始化距离矩阵B. 更新距离矩阵C. 查找负权环D. 输出最短路径A. 图的存储结构B. 顶点的数量C. 边的数量D. 起始顶点四、计算题A (3)>B (2)> D\ | ^ \ | | \(2)\ | (1)/C \|(4)A (1)>B (2)> D\ ^ |\(2)\ | (3)/C \ |(1)A (2)>B (3)> D\ | ^\(3)\ | (1)/C \ |(2)五、应用题1. 假设你是一名地图软件的开发者,请简述如何利用最短路径算法为用户提供导航服务。
2. 在一个网络游戏中,玩家需要从起点到达终点,途中会遇到各种障碍。
请设计一种算法,帮助玩家找到最佳路径。
六、判断题1. 迪杰斯特拉算法只能用于无向图的最短路径问题。
()2. 贝尔曼福特算法可以检测图中是否存在负权环。
()3. 在A搜索算法中,如果启发式函数h(n)始终为0,则算法退化为Dijkstra算法。
()4. 弗洛伊德算法的时间复杂度与图中顶点的数量无关。
()七、填空题1. 迪杰斯特拉算法中,用来存储顶点到源点最短距离的数组称为______。
最短路径练习题
最短路径练习题一、基础理论题1. 请简述迪杰斯特拉(Dijkstra)算法的基本原理。
2. 什么是贝尔曼福特(BellmanFord)算法?它与迪杰斯特拉算法有什么区别?3. 请解释弗洛伊德(Floyd)算法的核心思想。
4. A算法是如何工作的?它相较于其他最短路径算法有什么优势?5. 请列举几种常见的最短路径问题应用场景。
二、单项选择题A. 初始化距离表,将起点到其他点的距离设置为无穷大B. 每次从距离表中找出未确定最短路径的点中距离最小的点C. 更新距离表时,可以出现负权边D. 确定起点到所有点的最短路径后,算法结束A. 图中存在负权边B. 图中存在负权环C. 图中不存在负权环D. 图中存在多条边3. 在弗洛伊德算法中,path[i][j]表示的是?A. 从点i到点j的最短路径长度B. 从点i到点j的最短路径C. 从点j到点i的最短路径长度D. 从点j到点i的最短路径A. 当前点到终点的直线距离B. 当前点到终点的实际路径长度C. 当前点的邻接点数量D. 当前点的父节点三、填空题1. 在迪杰斯特拉算法中,用来存储起点到各点最短距离的数据结构是______。
2. 贝尔曼福特算法的时间复杂度为______。
3. 弗洛伊德算法的核心三重循环分别对应三个变量:______、______和______。
4. A算法的启发式函数f(n) = g(n) + h(n),其中g(n)表示______,h(n)表示______。
四、应用题A 6 B| \ |1 2 3| \ |D 4 CA >B (2)^ || vC <D (1)A >B (4)^ || vC >D (2)4. 请简述如何使用A算法解决迷宫问题,并给出一个示例。
五、编程题1. 编写一个迪杰斯特拉算法的实现,输入为一个带权无向图和起点,输出为起点到其他各顶点的最短路径长度。
2. 编写一个贝尔曼福特算法的实现,输入为一个带权有向图和起点,输出为起点到其他各顶点的最短路径长度及是否存在负权环。
中考最短路径问题专题训练(将军饮马-胡不归-瓜豆原理-辅助圆-费马点)
最短路径问题专题训练一、将军饮马问题特征:定直线上找一动点到两定点距离之和最小. 解法:做不动点对称点 如图,在直线上找一点P 使得P A +PB 最小?例1.(一动点两定点)如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.例2.(一定点两动点)如图,点P 是△AOB 内任意一点,△AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.例3.(一定点两动点)已知P 为△AOB 内部一定点,在OA 、OB 上分别取M 、N 使得PM +MN 最小。
二、费马点问题若点P 满足∠PAB =∠BPC =∠CPA =120°,则PA +PB +PC 值最小,P 点称为该三角形的费马点. 在∠ABC 内找一点P ,使得PA +PB +PC 最小.PBAP OBAMNP'M NAPOOPBMABCDMN例1.如图,在△ABC 中,△BAC =90°,AB =AC =1,P 是△ABC 内一点,求P A +PB +PC 的最小值.例2.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.三、胡不归问题从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)【模型建立】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V 的值最小.ABCPCABCDME2驿道2MM【问题分析】121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值.【问题解决】构造射线AD 使得sin △DAN =k ,CH /AC =k ,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH △AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.例1. 如图,△ABC 中,AB =AC =10,tanA =2,BE △AC 于点E ,D 是线段BE上的一个动点,则CD 的最小值是_______.例2. 如图,平行四边形ABCD 中,△DAB =60°,AB =6,BC =2,P 为边CD上的一动点,则PB 的最小值等于________.总结:在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型.四、瓜豆原理引例:如图,P 是圆O 上一个动点,A 为定点,连接AP ,Q 为AP 中点. 考虑:当点P 在圆O 上运动时,Q 点轨迹是?考虑到Q 点始终为AP 中点,连接AO ,取AO 中点M ,则M 点即为Q 点轨迹圆圆心,半径MQ 是OP 一半,ABCDEABCDP任意时刻,均有△AMQ △△AOP ,QM :PO =AQ :AP =1:2. 【模型总结】为了便于区分动点P 、Q ,可称点P 为“主动点”,点Q 为“从动点”. 此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角: ∠P AQ =∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP :AQ =AO :AM ,也等于两圆半径之比. 按以上两点即可确定从动点轨迹圆,Q 与P 的关系相当于旋转+伸缩.例1 如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.例2 如图,正方形ABCD 中,25AB ,O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.五、辅助圆(轨迹圆/隐圆) 定直线对定角/四点共圆例1 如图,已知圆C 的半径为3,圆外一定点O 满足OC =5,点P 为圆C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA =OB ,△APB =90°,l 不经过点C ,则AB 的最小值为________.例2 如图,在边长为2的菱形ABCD 中,△A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A’MN ,连接A ’C ,则A ’C 长度的最小值是__________.O yxA BCM POABCDEF例3 如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =42 ,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为__________.例4 如图,∠A O B =45°,边O A 、OB 上分别有两个动点C 、D ,连接C D ,以CD 为直角边作等腰Rt △CDE ,且CD =CE ,当CD 长保持不变且等于2cm 时,OE 最大值为__________.综合练习1. 如图,菱形ABCD 中,AB =2,△A =120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK +QK 的最小值为__________.2. 如图,在Rt △ABC 中,△C =90°,AB =17,AC =8,D 为AB 边上的一动点,E 、F 分别为AC 、BC 上两点,且DE △DF ,则EF 的最小值为__________.3. 如图,△MON =90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,运动过程中,点D 到点O 的最大距离为__________.4. 已知正方形ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为 2 +6,则正方形的边长 .5. 如图,在四边形ABCD 中,AB =2,BC =5,若AC =AD 且△ACD =60°,则当对角线BD 取得最大值时,对角线AC 的长是_________.lPO CBA A'NMABCD6. 在等边△ABC 中,AB =4,点D 是BC 的中点,连接AD ,P 为AD 上一动点,则CP +12BP 最小值为____.7. 如图,在等腰直角△ABC 中,BC =8,D 为BC 中点,E 为DC 中点,P 为AD 上一动点,则2PE +2AP 的最小值________.8. 如图,在△ABC 中,AB =AC =10,tan △A =2,BE △AC 于点E ,D 是线段BE 上的一个动点,则CD +55BD 的最小值为________.9.如图,已知正方形ABCD 的边长为4.点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM 和BN ,交于点P ,则PC 长的最小值为________.10. 如图,AC 为边长为4的菱形ABCD 的对角线,∠ABC =60°,点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CA 运动.连接AM 和BN ,交于点P ,则PC 长的最小值为________.11. 如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________.。
八年级上册《数学》第13章最短路径问题练习题(含答案)
13.4最短路径问题练习题一、能力提升1.如图,OA,OB分别是线段MC,MD的垂直平分线,MD=5cm,MC=7cm,CD=10cm,一只小蚂蚁从点M出发爬到OA边上任意一点E,再爬到OB边上任意一点F,然后爬回点M处,则小蚂蚁爬行的路径最短可为()A.12cmB.10cmC.7cmD.5cm2.如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则∠AMN+∠ANM的度数为()A.60°B.120°C.90°D.45°3.如图,牧童在A处放牛,其家在B处,A,B到河岸的距离分别为AC和BD,且AC=BD.若点A到河岸CD的中点的距离为500m,则牧童从A处把牛牵到河边饮水再回家,所走的最短路程是m.4.如图,要在河边修建一个水泵站,分别向张庄、李庄直接送水,水泵站修建在河边什么位置,可使所用的水管最短?(不写作法,只保留作图痕迹)5.如图,某公路(视为x轴)的同一侧有A,B,C三个村庄,要在公路边建一货栈(即在x轴上找一点)D,向A,B,C三个村庄运送农用物资,路线是:D→A→B→C→D(或D→C→B→A→D).试问在公路上是否存在点D使送货路程之和最短?若存在,请在图中画出点D所在的位置;若不存在,请说明理由.二、创新应用6.某中学八(2)班举行文艺晚会,桌子摆成如图所示的两直排(图中的AO,BO),AO桌面上摆满了橘子,BO桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短.答案:一、能力提升1.B设CD与OA的交点为E,与OB的交点为F.因为OA,OB分别是线段MC,MD的垂直平分线,所以ME=CE,MF=DF,所以小蚂蚁爬行的路径最短为CD=10cm,故选B.2.B如图,作点A关于BC和CD的对称点A',A″,连接A'A″,交BC于点M,交CD于点N,则A'A″即为△AMN的周长的最小值.∵∠DAB=120°,∴∠A'+∠A″=180°-120°=60°.∵∠A'=∠MAA',∠NAD=∠A″,且∠A'+∠MAA'=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠A'+∠MAA'+∠NAD+∠A″=2(∠A'+∠A″)=2×60°=120°,故选B.3.10004.解:如图.点P就是修建水泵站的位置.5.解:存在点D使所走路线D→A→B→C→D的路程之和最短.作法:(1)作点A关于x轴的对称点A';(2)连接A'C,交x轴于点D.如图.则点D(3,0)就是要建货栈的位置.二、创新应用6.解:如图.作法:①作点C关于OA的对称点C1,点D关于OB的对称点D1;②连接C1D1,分别交OA,OB于点P,Q,连接CP,DQ,小明沿C→P→Q→D的路线行走时,所走的总路程最短.。
最短路径问题专项练习题(含解析)
故选 .
11.【答案】C
【解答】
解:∵ ,
∴此时 ,
∵点 与点 关于 对称, 平分 ,
∴ ,
在 中, .
即 的最小值为 .
故选 .
12.解:在射线BC上取一点E′,使得BE′=BE.过点A作AH⊥BC于H.
在Rt△ACH中,∵∠AHC=90°,AC=24,∠C=30°,
∴AH= AC=12,
∵BD平分∠ABC,
问题:某正方体盒子,如图左边下方 处有一只蚂蚁,从 处爬行到侧棱 上的中点 点处,如果蚂蚁爬行路线最短,请画出这条最短路线图.
34.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.
(1)若∠ABC=65°,则∠NMA的度数是度.
(2)若AB=10cm,△MBC的周长是18cm.
(1)如图 为 ,有点 , , ,则线段 的“对称点”是________.(填“ ”" "或" ")
如图 为线段 的“完美对称点”, 为线段 的中点, 为线段 的一个“对称点”,则 的最小值为________.
14.如图,在 中, , ,点 在 边上,且 , ,动点 在 边上,连接 , ,则 的最小值是________.
A. B.
C. D.
3.如图,点 , 在直线 的同侧,若要用尺规在直线 上确定一点 ,使得 最短,则下列作图正确的是()
A. B. C. D .
4.如图,一圆柱高 ,底面半径为 ,一只蚂蚁从点 爬到点 处吃食,要爬行的最短路程是( )
A. B. C. D.
5.如图,在锐角△ABC中,∠ACB=50°;边AB上有一定点P,M、N分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是( )
最短路径问题总动员(含答案)
最短路径问题总动员(含答案)最短路径问题专题练习1. 如图,长⽅体中,,,,⼀蚂蚁从点出发,沿长⽅体表⾯爬到点处觅⾷,则蚂蚁所⾏路程的最⼩值为A. B. C. D.2. 如图是⼀个三级台阶,它的每⼀级的长、宽和⾼分别是,,,和是这个台阶的两个相对的端点,点有⼀只壁虎,它想到点去吃可⼝的⾷物,请你想⼀想,这只壁虎从点出发,沿着台阶⾯爬到点,⾄少需爬A. B. C. D.3. 如图,个边长为的⼩正⽅形及其部分对⾓线所构成的图形中,如果从点到点只能沿图中的线段⾛,那么从点到点的最短距离的⾛法共有A. 种B. 种C. 种D. 种4. 如图所⽰,圆柱的底⾯周长为,是底⾯圆的直径,⾼,点是母线上⼀点且.⼀只蚂蚁从点出发沿着圆柱体的表⾯爬⾏到点的最短距离是A. B. C. D.5. 如图,是⼀个三级台阶,它的每⼀级的长、宽、⾼分别为,,,和是这个台阶两个相对的端点,点有⼀只蚂蚁,想到点去吃可⼝的⾷物,则蚂蚁沿着台阶⾯爬到点的最短路程是.A. B. C. D.6. 如图,已知,,,要在长⽅体上系⼀根绳⼦连接,绳⼦与交于点,当所⽤绳⼦最短时,绳⼦的长为A. B. C. D.7. 已知蚂蚁从长、宽都是,⾼是的长⽅形纸箱的点沿纸箱爬到点,那么它所⾏的最短路线的长是A. B. C. D.8. 如图所⽰,⼀圆柱⾼,底⾯半径长,⼀只蚂蚁从点爬到点处吃⾷,要爬⾏的最短路程(取)是A. B. C. D. ⽆法确定9. 如图圆柱底⾯半径为 cm,⾼为 cm,点,分别是圆柱两底⾯圆周上的点,且,在同⼀母线上,⽤⼀棉线从顶着圆柱侧⾯绕圈到,则棉线最短为A. cmB. cmC. cmD. cm10. 如图,点为正⽅体左侧⾯的中⼼,点是正⽅体的⼀个顶点,正⽅体的棱长为,⼀蚂蚁从点沿其表⾯爬到点的最短路程是A. B. C. D.11. 如图所⽰是⼀棱长为的正⽅体,把它分成个⼩正⽅体,每个⼩正⽅体的边长都是 .如果⼀只蚂蚁从点爬到点,那么,间的最短距离满⾜A. B. C. D. 或12. 如图所⽰,圆柱形玻璃杯的⾼为,底⾯周长为,在杯内离杯底的点处有⼀滴蜂蜜,此时⼀只蚂蚁正好在杯外壁离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂蜜的最短距离为A. B. C. D.13. 如图,点的正⽅体左侧⾯的中⼼,点是正⽅体的⼀个顶点,正⽅体的棱长为,⼀蚂蚁从点沿其表⾯爬到点的最短路程是A. B. C. D.14. 我国古代有这样⼀道数学问题:“枯⽊⼀根直⽴地上,⾼⼆丈周三尺,有葛藤⾃根缠绕⽽上,五周⽽达其顶,问葛藤之长⼏何?”,题意是如图所⽰,把枯⽊看作⼀个圆柱体,因⼀丈是⼗尺,则该圆柱的⾼为尺,底⾯周长为尺,有葛藤⾃点处缠绕⽽上,绕五周后其末端恰好到达点处.QQ群450116225则问题中葛藤的最短长度是尺.15. 如图,已知圆柱体底⾯的半径为,⾼为,,分别是两底⾯的直径.若⼀只⼩⾍从点出发,沿圆柱侧⾯爬⾏到点,则⼩⾍爬⾏的最短路线长度是(结果保留根号).16. 如图,圆柱形容器⾼,底⾯周长为,在杯内壁离杯底的点处有⼀滴蜂蜜,此时⼀只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁从外壁处到达内壁处的最短距离为 .17. 如图所⽰的正⽅体⽊块的棱长为,沿其相邻三个⾯的对⾓线(图中虚线)剪掉⼀⾓,得到如图②的⼏何体,⼀只蚂蚁沿着图②中的⼏何体表⾯从顶点爬⾏到顶点的最短距离为 .QQ群45011622518. 如图,长⽅体的底⾯边长分别为和,⾼为.如果⽤⼀根细线从点开始经过个侧⾯缠绕⼀圈到达点,那么所⽤细线最短需要.19. 如图,长⽅体的长为,宽为,⾼为,点距离点,⼀只蚂蚁如果要沿着长⽅体的表⾯从点爬到点,蚂蚁爬⾏的最短距离是.20. 我国古代有这样⼀道数学问题:“枯⽊⼀根直⽴在地上,⾼⼆丈,周三尺,有葛藤⾃根缠绕⽽上,五周⽽到其顶,问葛藤之长⼏何?”题意是:如图,把枯⽊看做⼀个圆柱体,因⼀丈是⼗尺,则该圆柱的⾼是尺,底⾯周长为尺,有葛藤⾃点处缠绕⽽上,绕五周后其末端恰好到达点处,则问题中的葛藤的最短的长度是尺.21. 如图,长⽅体的底⾯边长分别为和,⾼为,若⼀只蚂蚁从点开始经过个侧⾯爬⾏⼀圈到达点,则蚂蚁爬⾏的最短路径长为 .22. ⼀只蚂蚁从长、宽都是,⾼是的长⽅体纸箱的点沿纸箱爬到点,那么它爬⾏的最短路线的长是.23. 如图所⽰是⼀段三级台阶,它的每⼀级的长、宽和⾼分别为,,,和是这段台阶两个相对的端点. 点有⼀只蚂蚁,想到点去吃可⼝的⾷物,设蚂蚁沿着台阶⾯爬到点的最短路程为,则以为边长的正⽅形的⾯积为 .QQ群45011622524. 如图,长⽅体的底⾯边长分别为和,⾼为.如果⽤⼀根细线从点开始经过个侧⾯缠绕⼀圈到达点,那么所⽤细线最短需要;如果从点开始经过个侧⾯缠绕圈到达点,那么所⽤细线最短需要25. 在⼀个长为⽶,宽为⽶的矩形草地上,如图堆放着⼀根长⽅体的⽊块,它的棱长和场地宽平⾏且⼤于,⽊块的正视图是边长为⽶的正⽅形,⼀只蚂蚁从点处,到达处需要⾛的最短路程是⽶(精确到⽶)26. 如图为⼀圆柱体⼯艺品,其底⾯周长为,⾼为,从点出发绕该⼯艺品侧⾯⼀周镶嵌⼀根装饰线到点,则该装饰线最短长为.27. 如图,⼀个没有上盖的圆柱盒⾼为,底⾯圆的周长为,点距离下底⾯,⼀只位于圆柱盒外表⾯点处的蚂蚁想爬到盒内表⾯对侧中点处吃东西,则蚂蚁需爬⾏的最短路程的长为.28. 图1 所⽰的正⽅体⽊块棱长为,沿其相邻三个⾯的对⾓线(图中虚线)剪掉⼀⾓,得到如图 2 的⼏何体,⼀只蚂蚁沿着图 2 的⼏何体表⾯从顶点爬⾏到顶点的最短距离为.29. ⼀只蚂蚁沿棱长为的正⽅体表⾯从顶点爬到顶点,则它⾛过的最短路程为.30. 如图,圆锥的主视图是等边三⾓形,圆锥的底⾯半径为,假若点有⼀蚂蚁只能沿圆锥的表⾯爬⾏,它要想吃到母线的中点处的⾷物,那么它爬⾏的最短路程是.31. 如图,圆锥的母线长是,底⾯半径是,是底⾯圆周上⼀点,从点出发绕侧⾯⼀周,再回到点的最短的路线长是.QQ群45011622532. 如图,⼀个正⽅体⽊柜放在墙⾓处(与墙⾯和地⾯均没有缝隙),有⼀只蚂蚁从柜⾓处沿着⽊柜表⾯爬到柜⾓处.(1)请你在正⽅体⽊柜的表⾯展开图中画出蚂蚁能够最快达到⽬的地的可能路径;(2)当正⽅体⽊柜的棱长为时,求蚂蚁爬过的最短路径的长.33. 葛藤是⼀种植物,它⾃⼰腰杆不硬,为了争夺⾬露阳光,常常绕着树⼲盘旋⽽上,它还有⼀个绝招,就是它绕树盘升的路线,总是沿最短路线螺旋前进的.(1)如果树的周长为,绕⼀圈升⾼,则它爬⾏路程是多少?(2)如果树的周长为,绕⼀圈爬⾏,则爬⾏⼀圈升⾼多少?如果爬⾏圈到达树顶,则树⼲多⾼?34. 如图所⽰,长⽅体的长为,宽为,⾼为,点与点之间相距,⼀只蚂蚁如果要沿着长⽅体的表⾯从点爬到点,需要爬⾏的最短距离是多少?35. 图①,图②为同⼀长⽅体房间的⽰意图,图③为该长⽅体的表⾯展开图.(1)已知蜘蛛在顶点处;①苍蝇在顶点处时,试在图①中画出蜘蛛为捉住苍蝇,沿墙⾯爬⾏的最近路线;②苍蝇在顶点处时,图②中画出了蜘蛛捉住苍蝇的两条路线,往天花板爬⾏的最近路线和往墙⾯爬⾏的最近路线,试通过计算判断哪条路线更近;(2)在图③中,半径为的与相切,圆⼼到边的距离为,蜘蛛在线段上,苍蝇在的圆周上,线段为蜘蛛爬⾏路线.若与相切,试求的长度的范围.QQ群45011622536. 如图,直四棱柱侧棱长为,底⾯是长为,宽为的长⽅形.⼀只蚂蚁从顶点出发沿棱柱的表⾯爬到顶点.求:(1)蚂蚁经过的最短路程;(2)蚂蚁沿着棱爬⾏(不能重复爬⾏同⼀条棱)的最长路程.37. 如图,观察图形解答下⾯的问题:(1)此图形的名称为.(2)请你与同伴⼀起做⼀个这样的物体,并把它沿剪开,铺在桌⾯上,则它的侧⾯展开图是⼀个.(3)如果点是的中点,在处有⼀只蜗⽜,在处恰好有蜗⽜想吃的⾷品,但它⼜不能直接沿爬到处,只能沿此⽴体图形的表⾯爬⾏.你能在侧⾯展开图中画出蜗⽜爬⾏的最短路线吗?(4)的长为,侧⾯展开图的圆⼼⾓为,请你求出蜗⽜爬⾏的最短路程.38. 如图,⼀只⾍⼦从圆柱上点处绕圆柱爬⼀圈到点处,圆柱的⾼为,圆柱底⾯圆的周长为,求⾍⼦爬⾏的最短路程.39. 如图,⼀个长⽅体形的⽊柜放在墙⾓处(与墙⾯和地⾯均没有缝隙),有⼀只蚂蚁从柜⾓处沿着⽊柜表⾯爬到柜⾓处.(1)请你画出蚂蚁能够最快到达⽬的地的可能路径;(2)当,,时,求蚂蚁爬过的最短路径的长;40. 如图⼀个长⽅体形的⽊柜放在墙⾓处(与墙⾯和地⾯均没有缝隙),有⼀只蚂蚁从柜⾓A处沿着⽊柜表⾯爬到柜⾓处.当=,=,=时,求蚂蚁爬过的最短路径的长.41. ⼀只蚂蚁从长、宽都是,⾼是的长⽅体纸箱的点沿纸箱爬到点,如图,求它爬⾏的最短路线的长.42. 如图所⽰是⼀段楼梯,已知,,楼梯宽 .⼀只蚂蚁要从点爬到点,求蚂蚁爬⾏的最短路程.QQ群45011622543. 如图,⼀个长⽅体⽊柜放在墙⾓处(与墙⾯和地⾯均没有缝隙),有⼀只蚂蚁从柜⾓A处沿着⽊柜表⾯爬到柜⾓处.(1)请你画出蚂蚁能够最快到达⽬的地的可能路径.(2)当,,时,求蚂蚁爬过的最短路径的长.(3)求点到最短路径的距离.44. 已知圆锥的底⾯半径为,⾼,现在有⼀只蚂蚁从底边上⼀点出发.在侧⾯上爬⾏⼀周⼜回到点,求蚂蚁爬⾏的最短距离.45. 如图,是⼀个长⽅体盒⼦,长,宽,⾼.(1)⼀只蚂蚁从盒⼦下底⾯的点沿盒⼦表⾯爬到点,求它所⾏⾛的最短路线的长.(2)这个长⽅体盒⼦内能容下的最长⽊棒的长度为多少?46. 图1、图2为同⼀长⽅体房间的⽰意图,图 3为该长⽅体的表⾯展开图.(1)蜘蛛在顶点处.①苍蝇在顶点处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙⾯爬⾏的最近路线.②苍蝇在顶点处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板爬⾏的最近路线和往墙⾯爬⾏的最近路线,试通过计算判断哪条路线更近.(2)在图中,半径为的与相切,圆⼼到边的距离为,蜘蛛在线段上,苍蝇在的圆周上,线段为蜘蛛爬⾏路线,若与相切,试求长度的范围.47. 如图,长⽅体中,,,⼀只蚂蚁从点出发,沿长⽅体表⾯爬到点,求蚂蚁怎样⾛最短,最短路程是多少?48. 如图,平⾏四边形中,,,,将平⾏四边形沿过点的直线折叠,使点落到边上的点处,折痕交边于点.(1)求证:四边形是菱形;(2)若点时直线上的⼀个动点,请计算的最⼩值.49. 实践操作在矩形中,,,现将纸⽚折叠,点的对应点记为点,折痕为(点,是折痕与矩形的边的交点),再将纸⽚还原.QQ群450116225(1)初步思考若点落在矩形的边上(如图①).①当点与点重合时,,当点与点重合时,;②当点在上,点在上时(如图②),求证:四边形为菱形,并直接写出当时菱形的边长.(2)深⼊探究若点落在矩形的内部(如图③),且点,分别在,边上,请直接写出的最⼩值.(3)拓展延伸若点与点重合,点在上,射线与射线交于点(如图④).在各种不同的折叠位置中,是否存在某⼀种情况,使得线段与线段的长度相等?若存在,请直接写出线段的长度;若不存在,请说明理由.答案1. B2. C 【解析】将台阶⾯展开,连接,如图,线段即为壁虎所爬的最短路线.因为,,在中,根据勾股定理,得,所以.所以壁虎⾄少爬⾏.3. C 【解析】4. B5. D6. A 【解析】 .7. B 8. B 9. B 10. C11. B 12. A 13. C 【解析】将正⽅体的左侧⾯与前⾯展开,构成⼀个长⽅形,⽤勾股定理求出距离即可.如图,.14.15.【解析】将圆柱的侧⾯沿剪开并铺平得长⽅形,连接,如图.线段就是⼩⾍爬⾏的最短路线.根据题意得.在中,由勾股定理,得,.所以.16.17.18.19.【解析】只要把长⽅体的右侧表⾯剪开与前⾯这个侧⾯所在的平⾯形成⼀个长⽅形,如图 1:长⽅体的宽为,⾼为,点离点的距离是,,,在直⾓三⾓形中,根据勾股定理得:。
专题02 平面展开-最短路径问题(勾股定理)(专项培优训练)(教师版)
专题02 平面展开-最短路径问题(勾股定理)(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.54一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•中原区校级开学)如图是一个台阶示意图,每一层台阶的高都是20cm,宽都是50cm,长都是40cm,一只蚂蚁沿台阶从点A出发到点B,其爬行的最短线路的长度是( )A.100cm B.120cm C.130cm D.150cm解:把这个台阶示意图展开为平面图形得图①:在RT△ACB中,∵AC=50,BC=120,∴AB===130,∴一只蚂蚁沿台阶从点A出发到点B,其爬行的最短线路AB的长度=130cm.故选:C.2.(2分)(2022秋•新都区期末)一个长方体盒子的长、宽、高分别为15cm,10cm,20cm,点B离点C 的距离是5cm,一只蚂蚁想从盒底的点A沿盒的表面爬到点B,蚂蚁爬行的最短路程是( )A.10cm B.25cm C.5cm D.5cm解:如图所示,将长方体的正面与右侧面展开在同一平面,那么AB==25cm.故选:B.3.(2分)(2023•陇县三模)如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为( )厘米.A.8B.10C.12D.13解:如图所示:∵长方体的底面边长分别为2cm和4cm,高为5cm.∴PA=4+2+4+2=12(cm),QA=5cm,∴PQ==13cm.故选:D.4.(2分)(2022秋•宛城区校级期末)已知点A,B是两个居民区的位置,现在准备在墙l边上建立一个垃圾站点P,如图是4位设计师给出的规划图,其中PA+PB距离最短的是( )A.B.C.D.解:先作B关于直线l的对称点,连接点A和对称点与l交于点P,此时PA+PB距离最短.故选:D.5.(2分)(2023•十堰模拟)如图.一大楼的外墙面ADEF与地面ABCD垂直,点P在墙面上,若PA=AB=10米,点P到AD的距离是6米,有一只蚂蚁要从点P爬到点B,它的最短行程是( )米.A.16B.8C.15D.14解:如图,将教室的墙面ADEF与地面ABCD展成一个平面,过P作PG⊥BF于G,连接PB,在Rt△APG中,AG=6米,AP=AB=10米,∴PG===8(米),在Rt△BPG中,PG=8米,BG=AG+AB=16米,∴PB==8(米).故这只蚂蚁的最短行程应该是8米.故选:B.6.(2分)(2022秋•蒲城县期末)今年9月23日是第五个中国农民丰收节,小彬用3D打印机制作了一个底面周长为20cm,高为20cm的圆柱粮仓模型.如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为( )A.20πcm B.40πcm C.D.解:如图,圆柱的侧面展开图为长方形,AC=A'C,且点C为BB'的中点,∵AB=20,BC=20=10,∴装饰带的长度=2AC=2=20(cm),故选:D.7.(2分)(2023•滕州市校级开学)如图一个三级台阶,它的每一级的长宽高分别是5cm,3cm和1cm,A 和B是这个台阶的两个相对的端点,点A上有一只蚂蚁,想到点B去吃可口的食物,则蚂蚁沿着台阶面爬到点B的最短路程长为( )A.10B.11C.12D.13解:如图所示,∵三级台阶平面展开图为长方形,宽为5,长为(3+1)×3=12,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长,由勾股定理得,则蚂蚁沿着台阶面爬到B点最短路程是13.故选:D.8.(2分)(2022秋•辽阳期末)今年9月23日是第五个中国农民丰收节,小明用3D打印机制作了一个底面周长为12cm,高为8cm的圆柱粮仓模型.如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为( )A.96πcm B.48cm C.D.20cm解:如图,圆柱的侧面展开图为长方形,AC=A′C,且点C为BB′的中点,∵AB=8,,∴装饰带的长度=,故选:D.9.(2分)(2022秋•辉县市校级期末)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm.在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cm.A.15B.C.12D.18解:如图所示,将圆柱沿过A的母线剪开,由题意可知,需在杯口所在的直线上找一点F,使AF+CF最小,故先作出A关于杯口所在直线的对称点A',连接A'C与杯口的交点即为F,此时AF+CF=A'F+CF=A'C,根据两点之间线段最短,即可得到此时AF+CF最小,并且最小值为A'C的长度,如图所示,延长过C的母线,过A'作A'D垂直于此母线于D,由题意可知,A'D=18÷2=9(cm),CD=12﹣4+4=12(cm),由勾股定理得:A'C==15(cm),故蚂蚁到达蜂蜜的最短距离为15cm,故选:A.10.(2分)(2023春•五华区校级期中)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为( )A.B.C.20cm D.解:将圆柱侧面展开,如图所示,作出A点关于DE的对称点A',过点B作BC⊥CD于点C,∵形容器高为18cm,点A处离杯上沿2cm,点B处离杯底4cm,∴AD=A'D=2cm,CD=18﹣4=14(cm),∴A'C=AD+CD=2+14=16(cm),∵底面周长为24cm,∴,根据勾股定理可得:,故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022秋•叙州区期末)如图是一个三级台阶,它的每一级的长、宽、高分别是4米、0.7米、0.3米,A、B是这个台阶上两个相对的顶点,A点处有一只蚂蚁,它想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是 5 米.解:三级台阶平面展开图为长方形,长为4,宽为(0.7+0.3)×3,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=42+[(0.7+0.3)×3]2=25,解得x=5(米),答:蚂蚁沿台阶面爬行到B点最短路程是5米,故答案为:5.12.(2分)(2022秋•安岳县期末)如图所示,ABCD是长方形地面,长AB=10m,宽AD=5m,中间竖有一堵砖墙高MN=1m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它至少要走 13 m的路程.解:如图所示,将图展开,图形长度增加2m,原图长度增加2m,则AB=10+2=12m,连接AC,∵四边形ABCD是长方形,AB=12m,宽AD=5m,∴AC===13m,∴蚂蚱从A点爬到C点,它至少要走13m的路程.故答案为:13.13.(2分)(2023春•岚山区期中)如图,圆柱形玻璃杯高为5cm,底面周长为12cm,在杯内壁底的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离是(杯壁厚度不计) 10cm .解:如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,在直角△A′DB中,由勾股定理得,A′B===10(cm).则蚂蚁从外壁A处到内壁B处的最短距离为10cm,故答案为:10cm.14.(2分)(2022秋•烟台期末)我国古代有这样一道数学问题:“枯木一根直立地上,高三丈,周八尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为3丈,底面周长为8尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 5 丈.解:如图所示:AB表示葛藤的最短长度,由题意可知:BC=3(丈),AC=8×5÷10=4(丈),在Rt△ABC中,(丈).故答案为:5.15.(2分)(2022秋•宛城区期末)如图,圆柱形容器的高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为 1m .解:如图:∵高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A处,∴A′D=0.6m,BD=0.8m,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===1(m).故答案为:1m.16.(2分)(2022秋•通许县期末)长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是 25cm .解:把左侧面展开到水平面上,连接AB,如图1,AB===5(cm)把右侧面展开到正面上,连接AB,如图2,AB==25(cm);把向上的面展开到正面上,连接AB,如图3,AB===5(cm).∵>>25所以一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离为25cm.故答案为:25cm.17.(2分)(2023春•肇源县月考)如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是 15 cm.解:∵CD=9cm,AD=(3+9)cm,∴AC===15cm,故答案为:15.18.(2分)(2022秋•榆阳区校级期末)如图所示,已知圆柱的底面周长和高都为8,BC、AD分别为上、下底面的直径,点P在线段AB上,且AP=1,点S为线段CD的中点,若一只蚂蚁从点P出发,沿圆柱的外侧面爬行到点S处,则蚂蚁爬行的最短路程为 5 .解:如图,圆柱侧面展开后连接PS,过点P作PH⊥CD于H.线段PS的长就是蚂蚁爬行的最短路程,因为圆柱的底面周长和高都为8,所以图中AD=×8=4,CD=8,∵AP=1,点S为线段CD的中点,∴HD=1,SD=4,∴SH=4﹣1=3,在Rt△PSH中,由勾股定理得:AC==5,即蚂蚁爬行的最短路程是5.故答案为:5.19.(2分)(2022秋•高新区校级期末)如图,圆柱底面半径为cm,高为9cm,点A,B分别是圆柱两底面圆周上的点,且A,B在同一条竖直直线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为 15 cm.解:圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B 的路线最短;∵圆柱底面半径为cm,∴长方形的宽即是圆柱体的底面周长:2π×=4(cm);又∵圆柱高为9cm,∴小长方形的一条边长是3cm;根据勾股定理求得AC=CD=DB==5(cm);∴AC+CD+DB=15(cm);故答案为:15.20.(2分)(2022秋•沙坪坝区校级期末)如图,一个长方体盒子,其中AB=9,BC=3,M为AB上靠近A 的三等分点,在大长方体盒子上有一个小长方体盒子,EC=6,CG=1,CF=4,一只蚂蚁要沿着长方体盒子的表面从点M爬行到N点,它爬行的最短路程为 10 .解:如图,将面MBCE、面ECGI和面IGNH展开在同一平面内,连接MN,在Rt△MHN中,HN=CE=6,HM=EM+IE+IH=BC+CG+CF=8,∴MN===10,故答案为:10.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2022秋•宝丰县期中)一只蚂蚁沿图①中立方体的表面从顶点A爬到顶点B,图②是图①立方体的表面展开图,设立方体的棱长为1.(1)在图②中标出点B的位置.(2)求蚂蚁从点A到点B爬行的最短路径长.解:(1)如图所示;(2)连接AB,∵立方体的棱长为1,∴AC=2,BC=1,∴AB==,∴蚂蚁爬行的最短路程是.22.(6分)(2022秋•偃师市期末)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF =10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程是多少?解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12(cm),BN=10+6=16(cm),∴MN==20(cm);如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18(cm),NP=10(cm),∴MN==2(cm).∴它需要爬行的最短路程是20cm.23.(8分)(2021秋•原阳县期末)如图,一个正方体木箱子右边连接一个正方形木板,甲蚂蚁从点A出发,沿a,b,d三个面走最短路径到点B;同时,乙蚂蚁以相同的速度从点B出发,沿d,c两个面走最短路径到点A.请你通过计算判断哪只蚂蚁先到达目的地?解析展开a,b,c与d在同一平面内,如图所示.由题意可知,甲蚂蚁走的路径为A1B,(cm).乙蚂蚁走的路径为A2B,(cm).因为,所以A1B>A2B,故乙蚂蚁先到达目的地.24.(8分)(2021秋•高青县期末)如图所示是一个三级台阶,它的每一级的长、宽、高分别等于5cm、3cm、1cm,A和B是这两个台阶的两个相对的端点,则一只蚂蚁从点A出发经过台阶爬到点B的最短路线有多长?解:将台阶展开,如图,因为AC=3×3+1×3=12,BC=5,所以AB2=AC2+BC2=169,所以AB=13(cm),所以蚂蚁爬行的最短线路为13cm.答:蚂蚁爬行的最短线路为13cm.25.(8分)(2022秋•沈阳月考)如图,两个一样的长方体礼品盒,其底面是边长为15cm的正方形,高为20cm.现有彩带若干(足够用),数学组的小明和小刚分别采用自己喜欢的方式用彩带装饰两个礼品盒(假设彩带完美贴合长方体礼品盒).(1)如图1,小明从底面点A开始均匀缠绕长方体侧面,刚好缠绕2周到达点B,求所用彩带的长度;(2)如图2,小刚沿着长方体的表面从点C缠绕到点D,点D与点E的距离是5cm,请问小刚所需要的彩带最短是多少?(注:以上两问均要求画出平面展开示意图,再解答)解:(1)如图,将长方体的侧面沿AB展开,取A′B′的中点M,取AB的中点N,连接AM,NB′,则AM+NB′=2AM为所求的彩带长,∵AM2=AA′2+A′M2,AC==10(cm),∴AM+NB′=2AM=20(cm),答:彩带的长度是20cm;(2)当上面的面与前面的面展成一个平面时,如图,此时CD==5(cm);当右边的面与前面的面展成一个平面时,如图,此时CD==20(cm);当上面的面与左边的面展成一个平面时,如图,此时CD==25(cm);由上可知小刚所需要的彩带最短是20cm.26.(8分)(2021秋•景德镇期中)如图,已知圆柱底面的周长为12,圆柱的高为8,在圆柱的侧面上,过点A,C嵌有一圈长度最短的金属丝.(1)现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是 A .(2)如图①,求该长度最短的金属丝的长.(3)如图②,若将金属丝从点B绕四圈到达点A,则所需金属丝最短长度是多少?解:(1)因圆柱的侧面展开面为长方形,AC展开应该是两线段,且有公共点C.故选:A;(2)如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为12,∴BC=12=6,∵圆柱的高AB=8,∴该长度最短的金属丝的长为2AC=2×=20;(3)若将金属丝从点B绕四圈到达点A,则所需金属丝最短长度是=8.27.(8分)(2022春•新市区校级期中)(1)如图1,长方体的底面边长分别为3m和2m,高为1m,在盒子里,可以放入最长为 m的木棒;(2)如图2,在与(1)相同的长方体中,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点C,那么所用细线最短需要 m;(3)如图3,长方体的棱长分别为AB=BC=6cm,AA1=14cm,假设昆虫甲从盒内顶点C1以2厘米/秒的速度在盒子的内部沿棱C1C向下爬行,同时昆虫乙从盒内顶点A以相同的速度在盒壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕捉昆虫甲?解:(1)可以放入最长为=(m)的木棒;故答案为:;(2)如图所示:将长方体展开,连接AC,∴AC==(m).故答案为:;(3)因为昆虫是在侧面上爬行,可以看出,下面两图的最短路径相等,设昆虫甲从顶点C1沿棱C1C向顶点C爬行的同时,昆虫乙从顶点A按路径A→E→F,爬行捕捉到昆虫甲需x秒钟,如图1在Rt△ACF中,(2x)2=122+(14﹣2x)2,解得:x=.答:昆虫乙至少需要秒钟才能捕捉到昆虫甲.28.(8分)(2022秋•镇江期中)十九世纪英国赫赫有名的谜题创作者在1903年的英国报纸上发表的“蚂蚁爬行”的问题.问题是:如图1,在一个长、宽、高分别为8m,8m,4m的长方体房间内,一只蚂蚁在右面墙的高度一半位置(即M点处),并且距离前面墙1m,苍蝇正好在左面墙高度一半的位置(即N点处),并且距离后面墙2m,蚂蚁爬到苍蝇处应该怎样爬行所走路程最短,最短路程是多少m?这只蚂蚁在长方体表面爬行的问题,引起了当时很多数学爱好者的研究与讨论,今天我们也一起来研究一下这个当时非常热门的数学问题![基础研究]如图2,在长、宽、高分别为a,b,c(a>b>c)的长方体一个顶点A处有一只蚂蚁,欲从长方体表面爬行去另一个顶点C′处吃食物,探究哪种爬行路径是最短的?(1)观察发现:蚂蚁从A点出发,为了走出最短路线,根据两点之间线段最短的知识,并结合展开与折叠原理,一共有3种不同的爬行路线,即图3、图4、图5所示.填空:图5是由 左 面与 上 面展开得到的平面图形;(填“前”、“后”、“左”、“右”、“上”、“下”)(2)推理验证:如图3,由勾股定理得,.AC′2=(a+b)2+c2=a2+b2+c2+2ab,如图4,由勾股定理得,AC′2=(b+c)2+a2=a2+b2+c2+2bc,如图5,AC′2=(a+c)2+b2=a2+b2+c2+2ac.要使得AC′的值最小,∵a>b>c……,(请补全推理过程)∴ab>ac>bc∴选择如图 4 情况,此时AC′2的值最小,则AC′的值最小,即这种爬行路径是最短的.[简单应用]如图6,长方体的长,宽,高分别为24cm,12cm,40cm,点P是FG的中点,一只蚂蚁要沿着长方体的表面从点A爬到点P,则爬行的最短路程长为 50 cm.[问题回归]最后让我们再回到那道十九世纪英国报纸上发表的“蚂蚁爬行”的问题(如图1),那只蚂蚁所走的最短路程是 13 m.解:(1)将图5上面与左面展开即可得到图5,故答案为:左,上.(2)推理验证∵a>b>c>0,∵a>b,∴ac>bc,∵b>c,∴ab>ac,∴ab>ac>bc.故选图4.[简单应用]∵FP=FG=×12=6cm,根据(2)的推理,爬行最短路径为=50cm.故答案为:50cm.[问题回归]把M、N所在点作为顶点,从房间中切出如图长方体,只能将左、上、右三面展开,得到下面展开图,MN==13m.故答案为:13.。
最短路径专题 含答案
(1)如图 ,当点 是 ;
垂足分别为 ‴,′, 为斜边 与点
是 Rt
‸ 斜边
的中点.
重合时, ‴ 与 ′ 的位置关系是
上一动点(不与 , 重合),分别过 , 向直线 ‸ 作垂线, , ‴ 与 ′ 的数量关系
(2)如图 ,当点 明;
在线段
上不与点
重合时,试判断 ‴ 与 ′ 的数量关系,并给予证
(3)如图 ,当点
‴
和
‸ 相似,求点
的坐标.
25. 如图,已知抛物线经过原点 ,顶点为
过 ,且与直线
h
交于 ,‸ 两点.
(1)求抛物线的解析式及点 ‸ 的坐标; (2)求证: (3)若点 为 ‸ 是直角三角形; 轴上的一个动点,过点 作 轴与抛物线交于点 ,则是否存在以 , , 为顶点的三角形与 26. 阅读下面材料: 连接 ‴′,则 ‴′ h ‴ ‸ 相似?若存在,请求出点 的坐标;若不存在,请说明理由.
(1)求这条抛物线的解析式; (2)点 是线段 上的动点,过点 的坐标; 最大时,求点 (3)探究:若点 作 ‴∥ ‸,交 ‸ 于点 ‴,连接 ‸ ,当 的坐标;若不存在,请说明理由. h
的坐标;若不存在,请说明理由.
,将矩形沿对角线 ‸ 剪开,请解决以下问题:
(1)将 接 与 30. 如图甲,在 向点
,并求线段
‸‴ 绕点 ‸ 顺时针旋转 高 得到 的长度;
‸‴ ,请在备用图中画出旋转后的 高㤵 㤵
‸‴ ,连
(2)在(1)的情况下,将 ‸ 中,
‸ 重叠部分的面积为 ,求 由点 ,设运动时间为
(2)在图③中,半径为 高 dm 的 在线段 试求 上,苍蝇 在 的长度的范围. 20. 如图所示,长方体的长为
最短路径问题练习题
最短路径问题练习题最短路径问题是图论中的一个经典问题,主要研究在加权图中找到两个顶点之间的最短路径。
这个问题在实际生活中有广泛的应用,比如导航系统中的路线规划、网络中的数据传输等。
以下是一些关于最短路径问题的练习题,供同学们练习和思考。
练习题1:Dijkstra算法的应用给定一个包含6个顶点的图,顶点编号为1到6,边的权重如下所示:- 1-2: 7- 1-3: 9- 2-3: 14- 2-4: 10- 3-4: 15- 3-5: 6- 4-5: 11- 5-6: 2- 3-6: 20请使用Dijkstra算法找出从顶点1到顶点6的最短路径。
练习题2:Bellman-Ford算法的应用考虑一个包含5个顶点的图,顶点编号为A、B、C、D、E,边的权重如下所示:- A-B: 5- A-C: 3- B-C: 1- B-D: 2- C-E: 8使用Bellman-Ford算法计算从顶点A到顶点E的最短路径。
练习题3:Floyd-Warshall算法的应用给定一个包含4个顶点的图,顶点编号为1、2、3、4,边的权重如下所示:- 1-2: 4- 1-3: 5- 2-3: 3- 2-4: 7- 3-4: 2使用Floyd-Warshall算法计算所有顶点对之间的最短路径。
练习题4:有向图中的最短路径问题在一个有向图中,有5个顶点,编号为1到5,边的权重如下所示:- 1->2: 2- 1->3: 3- 2->3: 1- 2->4: 4- 3->4: 5- 3->5: 2- 4->5: 1找出从顶点1到顶点5的最短路径。
练习题5:负权重边的最短路径问题考虑一个包含4个顶点的图,顶点编号为1、2、3、4,边的权重如下所示:- 1-2: 10- 2-3: -3- 3-4: 1在这种情况下,使用Bellman-Ford算法找出从顶点1到顶点4的最短路径,并讨论负权重边对最短路径算法的影响。
八年级数学上册最短路径问题(将军饮马)专项训练(含解析)
最短路径问题(将军饮马)专项训练一、单选题1.如图,在ABC 中,AB AC =,10BC =,60ABC S =△,D 是BC 中点,EF 垂直平分AB ,交AB 于点E ,交AC 于点F ,在EF 上确定一点P ,使PB PD +最小,则这个最小值为( )A .10B .11C .12D .132.如图方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上,点P 也在小正方形的顶点上.某人从点P 出发,沿图中已有的格点所连线段走一周(即不能直接走线段AC 且要回到P ),则这个人所走的路程最少是( )A .7B .14C .10D .不确定3.如图,在等边△ABC 中,AB =2,N 为AB 上一点,且AN =1,AD =3,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,连接BM 、MN ,则BM+MN 的最小值是( )A .3B .2C .1D .34.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=12,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则BQ+QP 的最小值是( )A.4 B.5 C.6 D.75.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°6.图1为某四边形ABCD纸片,其中∠B=70°,∠C=80°.若将CD迭合在AB上,出现折线MN,再将纸片展开后,M、N两点分别在AD、BC上,如图2所示,则∠MNB的度数为()度.A.90 B.95 C.100 D.1057.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰△ACD,过点D作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()A.15 B.17 C.18 D.208.平面直角坐标系xOy中,已知A(-1,0),B(3,0),C(0,-1)三点,D(1,m)是一个动点,当△ACD 的周长最小时,则△ABD的面积为()A.13B.23C.43D.839.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A .15°B .22.5°C .30°D .45°10.如图,在△ABC 中,∠C =90°,∠BAC =30°,AB =8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ +BQ 的最小值是A .4B .5C .6D .711.如图,锐角三角形ABC 中,∠C =45°,N 为BC 上一点,NC =5,BN =2,M 为边AC 上的一个动点,则BM +MN 的最小值是( )A .29B .21C .74D .4512.如图是一块长,宽,高分别是6cm ,4cm 和3cm 的长方体纸盒子,一只老鼠要从长方体纸盒子的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A .(3213cm +B 85cmC 97cmD 109cm13.如图,ABC ∆是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,则PE PC +的最小值为( )A .1B .2C .3D .2314.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是( )A .3B .4C .5D .615.如图,A 、B 是两个居民小区,快递公司准备在公路l 上选取点P 处建一个服务中心,使P A +PB 最短.下面四种选址方案符合要求的是( )A .B .C .D .16.已知:如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点A 1处,CA 1与AB 交于点N ,且AN=AC ,则∠A 的度数是( )A .30°B .36°C .50°D .60°17.如图,在ABC 中,90BCA ∠=︒,3BC =,4CA =,AD 平分BAC ∠,点M N 、分别为AD AC 、上的动点,则CM MN +的最小值是( )A .1.2B .2C .2.4D .518.在平面直角坐标系中,点A 、B 的坐标分别为( 2,0 ),(4,0),点C 的坐标为(m ,3 m )(m 为非负数),则CA +CB 的最小值是( )A .6B .37C .27D .5二、填空题 19.如图,在等边ABC ∆中,D 是BC 的中点,E 是AB 的中点,H 是AD 上任意一点.如果10AB AC BC ===,53AD =,那么HE HB +的最小值是 .20.如图,在ABC 中,10AB AC cm ==,8BC cm =,AB 的垂直平分线交AB 于点M ,交AC 于点N ,在直线MN 上存在一点P ,使P 、B 、C 三点构成的PBC 的周长最小,则PBC 的周长最小值为______.21.如图,等腰三角形ABC 的底边BC 长为6,面积是36,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值____.22.如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN 的周长的最小值为___________.23.等边三角形ABC中,∠BPC=150°,BP=3,PC=4,M、N分别为AB,AC上两点,且AM=AN,则PM+PN的最小值为__.24.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=4,M是AB边上一动点,N是AC边上的一动点,则MN+MC的最小值为_____.25.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为____.26.如图所示,在边长为2的等边三角形ABC中,G为BC的中点,D为AG的中点,过点D作EF∥BC 交AB于E,交AC于F,P是线段EF上一个动点,连接BP,GP,则△BPG的周长的最小值是________.27.已知∠AOB=30°,点P、Q分别是边OA、OB上的定点,OP=3,OQ=4,点M、N是分别是边OA、OB上的动点,则折线P-N -M -Q长度的最小值是___________.28.如图,在等边三角形ABC中,BC边上的中线4AD=,E是AD上的一个动点,F是边AB上的一个动点,在点E、F运动的过程中,EB EF+的最小值是______.29.如图,∠AOB=30°,∠AOB内有一定点P,且OP=12,在OA上有一点Q,OB上有一点R,若△PQR 周长最小,则最小周长是_____30.如图,在△ABC中,AB=AC=5,BC=6,AD是∠BAC的平分线,AD=4.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.31.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC 的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.32.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(6,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为_____.33.某市为解决农村燃气困难,在P处建立了一个燃气站,从P站分别向A、B、C村铺设燃气管道。
13.4最短路径问题将军饮马专题训练人教版八年级上册2024—2025学年八年级上册
13.4最短路径问题将军饮马专题训练人教版八年级上册2024—2025学年八年级上册一.将军饮马:线段和的最小值例1.唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题.如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的C点饮马后再到B点宿营.请问怎样走才能使总的路程最短?请你用所学的数学知识在图2中画出.例2.已知x+y=7,且x,y均为正数,则的最小值是.变式1.如图,在平面直角坐标系中,点A(﹣2,2),B(2,1),点P(x,0)是x轴上的一个动点.结合图形得出式子的最小值是()A.3B.C.5D.变式2.如图,正方形ABCD的边长为8,M在CD上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为()A.6B.8C.10D.8变式3.如图,牧童在A处牧马,牧童的家在B处,A,B处到河岸的距离分别是AC=300m,BD=500m,且C,D两地之间的距离为600m.牧童从A处将马牵到河边去饮水,再牵回家,他至少要走的路程是()A.1400m B.(500+300)mC.1000m D.(300+100)m变式4.如图,在△ABC中,AB⊥AC,AB=3,BC=5,AC=4,EF垂直平分BC,点P为直线EF上的任意一点,则△ABP周长的最小值是()A.12B.6C.7D.8变式5.如图,在△ABC中,AB=7,BC=5,AC的垂直平分线分别交AB,AC于点D,E,点F是DE上任意一点,△BCF的周长的最小值是()A.2B.12C.5D.7二.选址造桥例3.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.变式1.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.请说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.变式2.如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)三.线段差最大例4.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为()A.2B.3C.D.变式1.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.变式2.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A﹣PB的最大值为()A.12cm B.8cmC.6cm D.2cm四.角中对称问题例5.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C.D.变式1.如图,点P是∠AOB内任意一点,OP=8cm,点M和点N分别是射线OA和射线OB上的动点,若PN+PM+MN的最小值是8cm,求∠AOB的度数.变式2.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,求则△PMN的周长.变式3.如图,∠AOB=60°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,求MP+PQ+QN的最小值课后练习1.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG ⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.2.如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC 上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是.3.如图,在矩形ABCD中,AB=3,AD=6,AE=4,AF=2,G,H分别是边BC,CD上的动点,则四边形EFGH周长的最小值为.4.如图,在边长为4的正方形ABCD中,E为BC的中点,P为对角线BD上的一个动点,则线段CP+EP的最小值为.5.如图,正方形ABCD的边长为6,∠DAC的平分线交DC于点E.若点P,Q分别是AD 和AE上的动点,则DQ+PQ的最小值是.6.如图,过边长为2的等边三角形ABC的顶点C作直线l ⊥BC,然后作△ABC关于直线l对称的△A′B′C,P为线段A′C上一动点,连接AP,PB,则AP+PB的最小值是()A.4B.3C.2D.2+7.如图,∠AOB=30°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.3B.C.D.65.如图,已知正方形ABCD的边长为3,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则当DF+CF之和取最小值时,△DCF的周长为()A.B.C.D.6.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°7.如图,△ABC中,AD⊥BC,垂足为D,AD=BC,P为直线BC 上方的一个动点,△PBC的面积等于△ABC的面积的,则当PB+PC最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°8.如图,直线y=x+8分别与x轴、y轴交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,当PC+PD值最小时,点P的坐标为()A.(﹣4,0)B.(﹣3,0)B.C.(﹣2,0)D.(﹣1,0)9.如图,等边△ABC中,BD⊥AC于D,QD=15,点P、Q分别为AB、AD上的两个定点且BP=AQ=20,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.35B.40C.50D.6010.如图,在△ABC中,∠A=90°,AB=6,BC=10,EF是BC 的垂直平分线,P是直线EF上的任意一点,则P A+PB的最小值是()A.6B.8C.10D.1213.如图,在正方形ABCD中,点E,F在对角线AC上,AC=12,若点E,F是AC的三等分点,点P在正方形ABCD的边上从点A开始按逆时针方向运动一周,直至返回点A,则在此过程中PE+PF的最小值为()A.4B.4C.6D.614.如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC 的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=()A.2B.4C.6D.815.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上的点,当△PMN的周长最小时,∠MPN=100°,求∠AOB.16.如图,在锐角△ABC中,∠C=40°;点P是边AB上的一个定点,点M、N分别是AC 和BC边上的动点,当△PMN的周长最小时,求∠MPN的度数17.如图,∠AOB=30°,点P在OB上且OP=2,点M、N分别是OA、OB上的动点,求PM+MN的最小值18.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D在BC上且BD=1,AD=4,点E、F分别为边AC、AB上的动点,求△DEF的周长的最小值为.19.如图,在锐角△ABC中,∠ACB=30°,点P为边AB上的一定点,连接CP,CP=4,M,N分别为边AC和BC上的两动点,连接PM,PN,MN,则△PMN周长的最小值为;当△PMN周长的最小值时,∠MPN的度数为.20.如图,在△ABC中,AC=BC=4,∠ACB=120°,点M在边BC上,且BM=1,点N 是直线AC上一动点,点P是边AB上一动点,求PM+PN的最小值.21.如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D是线段BF上的动点,连接AD,在AD的右侧作等边△ADE,连接BE,求△ABE周长的最小值。
数学八年级下册专题17.4 勾股定理中最短路径问题专项训练(30道)(人教版)(学生版)
专题17.4 勾股定理中最短路径问题专项训练(30道)【人教版】1.如图,在长为3,宽为2,高为1的长方体中,一只蚂蚁从顶点A出发沿着长方体的表面爬行到顶点B,那么它爬行的最短路程是()A.√14B.√18C.√20D.√262.如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.10cm B.20cm C.√208cm D.100cm3.如图,长方体的长为3,宽为2,高为4,点B离点C的距离为1,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是()A.√21B.5C.√29D.√374.如图,在长方体透明容器(无盖)内的点B处有一滴糖浆,容器外A点处的蚂蚁想沿容器壁爬到容器内吃糖浆,已知容器长为5cm,宽为3cm,高为4cm,点A距底部1cm,请问蚂蚁需爬行的最短距离是(容器壁厚度不计)()A.3√17cm B.10cm C.5√5cm D.√113cm5.如图,一圆柱体的底面圆周长为20cm,高AB为4cm,BC是上底的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则爬行的最短路程是()A.2√29B.4π√π2+25C.2√25π2+4D.146.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A处的最短距离是()A.√73厘米B.10厘米C.8√2厘米D.8厘米7.国庆节期间,重庆南开中学用彩灯带装饰了艺术楼大厅的所有圆柱形柱子.为了美观,每根柱子的彩灯带需要从A点沿柱子表面缠绕两周到其正上方的B点,如图所示,若每根柱子的底面周长均为2米,高均为3米,则每根柱子所用彩灯带的最短长度为()A.√7米B.√11米C.√13米D.5米8.如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为()(π取3)m.A.30B.28C.25D.229.如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.则这只蚂蚁沿着台阶面爬行的最短路程是()A.18B.15C.12D.810.某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A 到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为4cm,则这圈金属丝的长度至少为()A.8cm B.10cm C.12cm D.15cm二.填空题(共10小题)11.如图所示,ABCD是长方形地面,长AB=16m,宽AD=9m,中间竖有一堵砖墙高MN=1m.一只蚂蚱从B点爬到D点,它必须翻过中间那堵墙,则它至少要走m的路程.12.在一个长6+2√2米,宽为4米的长方形草地上,如图堆放着一根三棱柱的木块,它的侧棱长平行且大于场地宽AD,木块的主视图的高是√2米的等腰直角三角形,一只蚂蚁从点A处到C处需要走的最短路程是米.13.如图,若圆柱的底面周长是30cm,高是120cm,从圆柱底部A处沿侧面缠绕几圈丝线到顶部B处做装饰,则按图中此方式缠绕的这条丝线的最小长度是cm.14.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是cm.15.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上.(1)若绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.(2)若绕n周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.16.如图,长方体盒子的长为15cm ,宽为10cm ,高为20cm ,点B 距离C 点5cm ,一只蚂蚁如果要沿着盒子的表面从点A 到点B .(1)蚂蚁爬行的最短距离是 cm ;(2)若从C 处想盒子里面插入一根吸管,要使吸管不落入盒子中,吸管应不少于 cm .17.如图,这是一个供滑板爱好者使用的U 型池的示意图,该U 型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为32πm 的半圆,其边缘AB =CD =15m ,点E 在CD 上,CE =3m ,一滑板爱好者从A 点滑到E 点,则他滑行的最短距离约为 m .(边缘部分的厚度忽略不计)18.如图所示的长方体透明玻璃鱼缸,假设其长AD =80cm ,高AB =60cm ,水深AE =40cm .在水面上紧贴内壁G 处有一块面包屑,G 在水面线EF 上,且EG =60cm ,一只蚂蚁想从鱼缸外的A 点沿鱼缸壁爬进鱼缸内的G 处吃面包屑.则蚂蚁爬行的最短路线为 cm .19.边长分别为4cm,3cm两正方体如图放置,点P在E1F1上,且E1P=13E1F1,一只蚂蚁如果要沿着长方体的表面从点A爬到点P,需要爬行的最短距离是cm.20.在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体.一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是分米.三.解答题(共10小题)21.如图是一个玻璃容器,在ABCD面的外面一点E处有一个蚂蚁,里面F点处有一小块食物,蚂蚁要想爬到里面去吃食物,请你帮它选择一条最近的爬行路线.(保留作图痕迹)22.在立方体纸盒的顶点A处有一只蚂蚁,在另一顶点E处有一粒糖,你能为这只蚂蚁设计一条最短路线,使它沿着立方体表面上的这一条路线爬行,最快捷吃到糖吗?以下提供三个方案:①A→B→C→E;②A→C→E;③A→D→E.(1)三种方案①、②、③中爬行路线最短的方案是;最长的方案是.(2)请根据数学知识说明理由.23.如图1,长方体的底面边长分别为3m和2m,高为1m,在盒子里,可以放入最长为m的木棒;(2)如图2,在与(1)相同的长方体中,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点C,那么所用细线最短需要m;(3)如图3,长方体的棱长分别为AB=BC=6cm,AA1=14cm,假设昆虫甲从盒内顶点C1以2厘米/秒的速度在盒子的内部沿棱C1C向下爬行,同时昆虫乙从盒内顶点A以相同的速度在盒壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕捉昆虫甲?24.如图,已知圆柱底面的直径BC=8,圆柱的高AB=10,在圆柱的侧面上,过点A,C嵌有一圈长度最短的金属丝.(1)现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是.(2)求该长度最短的金属丝的长.25.如图,长方体的长BE=30cm,宽AB=20cm,高AD=40cm,点M在CH上,且CM=10cm.一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?26.如图,长方体的长AB=5cm,宽BC=4cm,高AE=6cm,三只蚂蚁沿长方体的表面同时以相同的速度从点A出发到点G处.蚂蚁甲的行走路径S甲为:翻过棱EH后到达G处(即A→P→G),蚂蚁乙的行走路径S乙为:翻过棱EF后到达G处(即A→M→G),蚂蚁丙的行走路径S丙为:翻过棱BF后到达G 处(即A→N→G).(1)求三只蚂蚁的行走路径S甲,S乙,S丙的最小值分别是多少?(2)三只蚂蚁都走自己的最短路径,请判断哪只最先到达?哪只最后到达?27.如图①所示,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处,要想使路程较短,有三种不同的方式:①沿面ABB1A1和面A1B1C1D1;②沿面和ABB1A1和面BCC1B1;③沿面AA1D1D 和面A1B1C1D1.(1)图②为第一种方式展成的平面图形,请你画出另两种方式展成的平面图形;(2)若AB=4,BC=2,BB1=1,请通过计算,判断第几种方式所走路线最短?最短路线长为多少?(3)若长方体的长、宽、高分别为a、b、c,且a>b>c,请直接写出最短路线的长(用a,b,c的代数式表示).28.吴老师在与同学们进行“蚂蚁怎样爬最近”的课题研究时设计了以下问题,请你根据下列所给的条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿正方体表面爬到点C1处;(2)如图2,长方体底面是边长为5cm的正方形,高为6cm,一只蚂蚁欲从长方体底面上的点A沿长方体表面爬到点C1处.29.图(1)为一个无盖的正方体纸盒,现将其展开成平面图,如图(2).已知展开图中每个正方形的边长为1.(1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条.(2)试比较立体图中∠ABC与平面展开图中∠A′B′C′的大小关系.30.勾股定理是解决直角三角形很重要的数学定理.这个定理的证明的方法很多,也能解决许多数学问题.请按要求作答:(1)用语言叙述勾股定理;(2)选择图1、图2、图3中一个图形来验证勾股定理;(3)利用勾股定理来解决下列问题:如图4,一个长方体的长为8,宽为3,高为5.在长方体的底面上一点A处有一只蚂蚁,它想吃长方体上与A点相对的B点处的食物,则蚂蚁需要沿长方体表面爬行的最短路程是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB最短路径问题专项练习共13页,全面复习与联系最短路径问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题;线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。
(构建“对称模型”实现转化)1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区 利用轴对称解决最值问题应注意题目要求 根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】 如图,小河边有两个村庄A ,B ,要在河边建一自来水厂向A 村与B 村供水.(1)若要使厂部到A ,B 村的距离相等,则应选择在哪建厂?(2)若要使厂部到A ,B 两村的水管最短,应建在什么地方?分析:(1)到A ,B 两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB 的垂直平分线,与EF 的交点即为符合条件的点.(2)要使厂部到A 村、B 村的距离之和最短,可联想到“两点之间线段最短”,作A (或B )点关于EF 的对称点,连接对称点与B 点,与EF 的交点即为所求.解:(1)如图1,取线段AB 的中点G ,过中点G 画AB 的垂线,交EF 于P ,则P 到A ,B的距离相等.也可分别以A 、B 为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如图所示,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短.5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l 于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-C B.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.B C DABLCD三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B处,则它爬行的最短路径是。
②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。
例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。
②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。
请在图中找出点P的位置,并计算PA+PB的最小值。
③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度为。
四、练习题(巩固提高)(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。
2、现要在如图所示的圆柱体侧面A点与B点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm,底面圆周长为16cm,则所缠金丝带长度的最小值为。
3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A点爬到点B处吃到食第2题张村李庄张村李庄ABB 第1题第3题图(2)E B D AC P 图(3)D B AO CP 物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。
4、正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 。
第4题 第5题 第6题 第7题5、在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。
6、如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为____ ___。
7、AB 是⊙O 的直径,AB=2,OC 是⊙O 的半径,OC ⊥AB ,点D 在AC 上,AD = 2CD ,点P 是半径OC 上的一个动点,则AP+PD 的最小值为____ ___。
(二)8、如图,点P 关于OA 、OB 的对称点分别为C 、D ,连接CD ,交OA 于M ,交OB 于N ,若CD =18cm ,则△PMN 的周长为________。
9、已知,如图DE 是△ABC 的边AB 的垂直平分线,D 为垂足,DE 交BC 于E ,且AC =5,BC =8,则△AEC 的周长为__________。
10、已知,如图,在△ABC 中,AB <AC ,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,AC =8,△ABE 的周长为14,则AB 的长 。
11、如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____.12、在平面直角坐标系中,有A (3,-2),B (4,2)两点,现另取一点C (1,n ),当n = 时,AC + BC 的值最小.CD A BE FP第11题 第14题 第15题⌒ ⌒ ⌒13、△ABC 中,∠C = 90°,AB = 10,AC=6,BC=8,过AB 边上一点P 作PE ⊥AC 于E ,PF ⊥BC 于 F ,E 、F 是垂足,则EF 的最小值等于 .14、如图,菱形ABCD 中,AB=2, ∠BAD=60°,点E 、F 、P 分别是AB 、BC 、AC 上的动点,则PE+PF 的最小值为___________.15、如图,村庄A 、B 位于一条小河的两侧,若河岸a 、b 彼此平行,现在要建设一座与河岸垂直的桥CD ,问桥址应如何选择,才能使A 村到B 村的路程最近?16、一次函数y=kx+b 的图象与x 、y 轴分别交于点A (2,0),B (0,4).(1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点坐标.(三)16、如图,已知∠AOB 内有一点P ,试分别在边OA 和OB 上各找一点E 、F ,使得△PEF 的周长最小。