椭圆的简单几何性质(二)
学案12:2.2.2 椭圆的简单几何性质(二)
2.2.2 椭圆的简单几何性质(二)预习导引区核心必知1.预习教材,问题导入根据以下提纲,预习教材的内容,回答下列问题.观察教材,思考以下问题:(1)椭圆x2a2+y2b2=1(a>b>0)中x,y的取值范围各是什么?(2)椭圆x2a2+y2b2=1(a>b>0)的对称轴和对称中心各是什么?(3)椭圆x2a2+y2b2=1(a>b>0)与坐标轴的交点坐标是什么?(4)椭圆的长轴和短轴分别对应图中的哪些线段?(5)椭圆的离心率是什么?用什么符号表示?其取值范围是什么?(6)如果保持椭圆的长半轴长a不变,改变椭圆的短半轴长b的值,你发现b的变化与椭圆的扁圆程度有什么关系?(7)根据离心率的定义及椭圆中a,b,c的关系可知,e=ca=c2a2=a2-b2a2=1-⎝⎛⎭⎫ba2,所以e越接近于1,则c越接近于a,从而b=a2-c2就越小;e越接近于0,则c越接近于0,从而b越接近于a.那么e的大小与椭圆的扁圆程度有什么关系?2.归纳总结,核心必记椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程续表焦点的位置焦点在x轴上焦点在y轴上范围-a≤x≤a且-b≤y≤b-b≤x≤b且-a≤y≤a顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长=2b,长轴长=2a焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c对称性对称轴x轴和y轴,对称中心(0,0)离心率e=ca(0<e<1)问题思考(1)借助椭圆图形分析,你认为椭圆上到对称中心距离最近和最远的点各是哪些?(2)借助椭圆图形分析,你认为椭圆上的点到焦点距离的最大值和最小值各是何值?(3)如何用a,b表示离心率?课堂互动区知识点1 由椭圆的标准方程研究几何性质讲一讲1.求椭圆4x 2+9y 2=36的长轴长和焦距、焦点坐标、顶点坐标和离心率.类题·通法解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系和定义,求椭圆的基本量. 练一练1.求椭圆m 2x 2+4m 2y 2=1(m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率.知识点2 由椭圆的几何性质求方程 讲一讲2.求适合下列条件的椭圆的标准方程. (1)长轴长是短轴长的5倍,且过点A (5,0); (2)离心率e =35,焦距为12.类题·通法(1)根据椭圆的几何性质求标准方程,通常采用待定系数法,其步骤仍然是“先定型,后计算”,即首先确定焦点位置,其次根据已知条件构造关于参数的关系式,利用方程(组)求得参数.(2)在求椭圆方程时,要注意根据题目条件判断焦点所在的坐标轴,从而确定方程的形式,若不能确定焦点所在的坐标轴,则应进行讨论.一般地,已知椭圆的焦点坐标时,可以确定其所在的坐标轴;而已知椭圆的离心率、长轴长、短轴长、焦距时,则不能确定焦点的位置,这时应对两种情况分别求解并进行取舍.练一练2.求满足下列条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且经过点A(2,3);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3.知识点3 求椭圆的离心率讲一讲3.已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F1(-c,0),A(-a,0),B(0,b)是两个顶点,如果F1到直线AB的距离为b7,求椭圆的离心率e.类题·通法求椭圆离心率及范围的两种方法(1)直接法:若已知a,c,可直接利用e=ca求解.若已知a,b或b,c,可借助于a2=b2+c2求出c或a,再代入公式e=ca求解.(2)方程法:若a,c的值不可求,则可根据条件建立a,b,c的关系式,借助于a2=b2+c2,转化为关于a,c的齐次方程或不等式,再将方程或不等式两边同除以a的最高次幂,得到关于e的方程或不等式,即可求得e的值或范围.练一练3.如图,已知F1为椭圆的左焦点,A,B分别为椭圆的右顶点和上顶点,P为椭圆上的一点,当PF1⊥F1A,PO∥AB(O为椭圆的中心)时,求椭圆的离心率.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是椭圆的几何性质及椭圆离心率的求法,难点是求椭圆的离心率.2.由椭圆的几何性质求标准方程时易忽视椭圆的焦点位置,这也是本节课的易错点.3.本节课要重点掌握的规律方法(1)已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式,见讲1.(2)根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法,见讲2.(3)求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用,见讲3.参考答案预习导引区核心必知1.(1)提示:-a ≤x ≤a ,-b ≤y ≤b .(2)提示:对称轴为x 轴和y 轴,对称中心为坐标原点(0,0). (3)提示:与x 轴的交点坐标为(±a ,0),与y 轴的交点坐标为(0,±b ). (4)提示:长轴为A 1A 2,短轴为B 1B 2. (5)提示:离心率e =ca;0<e <1.(6)提示:b 越大,椭圆越圆;b 越小,椭圆越扁. (7)提示:e 越大,椭圆越扁;e 越小,椭圆越圆. 问题思考(1)提示:短轴端点B 1和B 2到中心O 的距离最近;长轴端点A 1和A 2到中心O 的距离最远. (2)提示:点(a ,0),(-a ,0)与焦点F 1(-c ,0)的距离分别是椭圆上的点与焦点F 1的最大距离和最小距离,分别为a +c 和a -c . (3)提示:由e =c a 得e 2=c 2a 2=a 2-b 2a 2, ∴e = 1-⎝⎛⎭⎫b a 2. ∴e =1-b 2a2. 课堂互动区知识点1 由椭圆的标准方程研究几何性质 讲一讲1.解:将椭圆方程变形为x 29+y 24=1,∴a =3,b =2.∴c =a 2-b 2=9-4= 5. ∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.练一练1.解:椭圆的方程m 2x 2+4m 2y 2=1(m >0), 可转化为x 21m 2+y 214m 2=1.∵m 2<4m 2,∴1m 2>14m 2, ∴椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距长c =32m .∴椭圆的长轴长2a =2m ,短轴长2b =1m ,焦点坐标为⎝⎛⎭⎫-32m ,0,⎝⎛⎭⎫32m ,0,顶点坐标为⎝⎛⎭⎫1m ,0,⎝⎛⎭⎫-1m ,0,⎝⎛⎭⎫0,-12m ,⎝⎛⎭⎫0,12m . 离心率e =c a =32m 1m=32.知识点2 由椭圆的几何性质求方程 讲一讲2.解:(1)若椭圆焦点在x 轴上,设其标准方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧2a =5×2b ,25a 2+0b 2=1,解得⎩⎪⎨⎪⎧a =5,b =1.故所求椭圆的标准方程为x 225+y 2=1;若焦点在y 轴上,设其标准方程为y 2a 2+x 2b 2=1(a >b >0),由题意,得⎩⎪⎨⎪⎧2a =5×2b ,0a 2+25b 2=1,解得⎩⎪⎨⎪⎧a =25,b =5.故所求椭圆的标准方程为y 2625+x 225=1.综上所述,所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1. (2)由e =c a =35,2c =12,得a =10,c =6,∴b 2=a 2-c 2=64.当焦点在x 轴上时,所求椭圆的标准方程为x 2100+y 264=1;当焦点在y 轴上时,所求椭圆的标准方程为y 2100+x 264=1.综上所述,所求椭圆的标准方程为x 2100+y 264=1或y 2100+x 264=1.练一练2.解:(1)若椭圆的焦点在x 轴上, 设标准方程为x 24b 2+y 2b2=1(b >0),∵椭圆过点A (2,3),∴1b 2+9b 2=1,b 2=10.∴方程为x 240+y 210=1.若椭圆的焦点在y 轴上. 设椭圆方程为y 24b 2+x 2b2=1(b >0),∵椭圆过点A (2,3),∴94b 2+4b 2=1,b 2=254.∴方程为y 225+4x 225=1.综上所述,椭圆的标准方程为x 240+y 210=1或y 225+4x 225=1.(2)由已知⎩⎨⎧a =2c ,a -c =3,∴⎩⎨⎧a =23,c = 3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.知识点3 求椭圆的离心率 讲一讲3.解:由A (-a ,0),B (0,b ), 得直线AB 的斜率为k AB =ba,故AB 所在的直线方程为y -b =bax ,即bx -ay +ab =0.又F 1(-c ,0),由点到直线的距离公式可得d =|-bc +ab |a 2+b 2=b7, ∴7·(a -c )=a 2+b 2.又b 2=a 2-c 2,整理,得8c 2-14ac +5a 2=0, 即8⎝⎛⎭⎫c a 2-14c a +5=0.∴8e 2-14e +5=0. 解得e =12或e =54(舍去).综上可知,椭圆的离心率e =12.练一练3.解:由已知可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),则由题意可知P ⎝⎛⎭⎫-c ,b 2a .∵△PF 1O ∽△BOA , ∴PF 1BO =F 1O OA . ∴b 2a b =ca ,即b =c , ∴a 2=2c 2, ∴e =c a =22.。
3.1.2椭圆的简单几何性质(第二课时)(教学课件(人教版))
其中x1,x2(y1,y2)是上述一元二次方程的两根,由根与系数的关系求出两根之 和与两根之积后代入公式可求得弦长. 提醒:如果直线方程涉及斜率,要注意斜率不存在的情况.
四.直线与椭圆的位置关系
(二)弦长及弦的中点问题
例 3(1)已知直线 y=x+1 与椭圆x2+y2=1 相交于 A、B 两点,求弦 AB 的长. 4
=1+4m+ n +4=5+4m+n ≥5+2 4m·n =9,
nm
nm
nm
四.直线与椭圆的位置关系
(一)直线与椭圆位置关系及判定
跟踪训练(2)已知椭圆的方程为 x2+2y2=2.①判断直线 y=x+ 3与椭圆的位置关系; ②判断直线 y=x+2 与椭圆的位置关系;③在椭圆上找一点 P,使 P 到直线 y=x+2 的距离 最小,并求出这个最小距离.
两式相减,得 3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0.
∵x1≠x2,x1+x2=2x0,y1+y2=2y0,∴34xy00=-yx11- -yx22=-kPQ.
∵kPQ=-14,∴y0=3x0.代入直线
y=4x+1,得 2
x 0=-12, y0=-32
则直线 PQ 的方程为 y+3=-1(x+1)即 2x+8y+13=0. 2 42
|
2a,所以
a
1 2
(|
F1B
|
|
F2 B
|)
4.1,
b a2 c2 3.4.
所以,所求的椭圆方程为
x2 4.12
y2 3.42
1.
二.和椭圆有关的实际问题
跟踪练习1(多选)嫦娥四号探测器,简称“四号星”,是世界首个在月球背面软着陆和巡查 探测的航天器.202X年9月25日,中国科研人员利用嫦娥四号数据精确定位了嫦娥四号的 着陆位置,并再现了嫦娥四号的落月过程,该成果由国际科学期刊《自然·通讯》在线发 表.如图所示,现假设“四号星”沿地月转移轨道飞向月球后,在月球附近一点P变轨进入 以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距, 用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,则下列式子正确的是
2.2.2椭圆的简单几何性质2
。
2、若椭圆的两个焦点及一个短轴端点构成正三角 、 1 形,则其离心率为 2 。 3、若椭圆的 的两个焦点把长轴分成三等分,则其 、 的两个焦点把长轴分成三等分, 1 离心率为 3 。
4、若某个椭圆的长轴、短轴、焦距依次成等差数列, 、若某个椭圆的长轴、短轴、焦距依次成等差数列,
3 则其离心率e=__________ 则其离心率 5
如图,我国发射的第一颗人造地球卫星的运行轨道 我国发射的第一颗人造地球卫星的运行轨道,是以地 例1 如图 我国发射的第一颗人造地球卫星的运行轨道 是以地 地球的中心)F 已知它的近地点A(离 心(地球的中心 2为一个焦点的椭圆 已知它的近地点 离 地球的中心 为一个焦点的椭圆,已知它的近地点 地面最近的点)距地面 距地面439km,远地点 距地面 远地点B距地面 地面最近的点 距地面 远地点 距地面2384km.并且 并且 F2、A、B在同一直线上,地球半径约为 在同一直线上, 、 在同一直线上 地球半径约为6371km,求卫星运 求卫星运 行的轨道方程(精确到1km). 行的轨道方程(精确到
( x − c)2 + y2 a2 −x c
c = . a
将上式两边平方,并化 ,得 将上式两边平方, 简
a ( 2 − c2 )x2 + a2 y2 = a2(a2 − c2 ). a 设 2 − c2 = b2 ,则方程可化成 x2 y2 + 2 = 1(a > b > 0). 2 a b
这是椭圆的标准方程, 所以点 的轨迹是长轴、短轴长 M 的轨迹是长轴、 这是椭圆的标准方程,
x y + 2 =1 2 a b
(a > b > 0),
F1 B D
Y
3.1.2 椭圆的简单几何性质(第2课时)备课笔记
3.1.2椭圆的简单几何性质第2课时本小节内容选自《普通高中数学选择性必修第一册》人教A 版(2019)第二章《圆锥曲线的方程》的第一节《椭圆》。
以下是本节的课时安排:第三章圆锥曲线的方程课时内容 3.1.1椭圆及其标准方程 3.1.2椭圆的简单几何性质所在位置教材第105页教材第109页新教材内容分析椭圆是生产生活中的常见曲线,教材在用细绳画椭圆的过程中,体会椭圆的定义,感知椭圆的形状,为选择适当的坐标系,建立椭圆的标准方程、研究椭圆的几何性质做好铺垫。
通过对椭圆标准方程的讨论,使学生掌握标准方程中的a,b,c,e 的几何意义及相互关系,体会坐标法研究曲线性质的基本思路与方法,感受通过代数运算研究曲线性质所具有的程序化、普适性特点。
核心素养培养通过椭圆的标准方程的推导,培养数学运算的核心素养;通过对椭圆的定义理解,培养数学抽象的核心素养。
通过椭圆的几何性质的研究,培养数学运算的核心素养;通过直线与椭圆的位置关系的判定,培养逻辑推理的核心素养。
教学主线椭圆的标准方程、几何性质学生已经学习了直线与圆的方程,已经具备了坐标法研究解析几何问题的能力。
本章学习圆锥曲线方程及几何性质,进一步提升用代数方法研究解析几何问题的方法。
1.进一步掌握椭圆的方程及其性质的应用,培养数学抽象的核心素养.2.会判断直线与椭圆的位置关系,培养数学运算的核心素养.3.能运用直线与椭圆的位置关系解决相关的弦长、中点弦问题,培养数学运算的核心素养.重点:直线与椭圆的位置关系难点:直线与椭圆的位置关系的应用(一)新知导入一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。
过对称轴的截口ABC 是椭圆的一部分,灯丝位于椭圆的一个焦点1上,片门位另一个焦点2上,由椭圆一个焦点1发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点2。
(二)椭圆的简单几何性质知识点一点与椭圆的位置关系【探究1】根据点与圆的位置关系,你能得出点P (x 0,y 0)与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系有哪些?怎样判断?◆点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内部⇔x 20a 2+y 20b 2<1;(3)点P 在椭圆外部⇔x 20a 2+y 20b2>1.【做一做1】点(1,1)与椭圆22132x y +=的位置关系为()A.在椭圆上B.在椭圆内C.在椭圆外D.不能确定【做一做2】若点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是________.知识点二直线与椭圆的位置关系【探究2】类比直线与圆的位置关系,思考直线与椭圆有几种位置关系?怎样判断其位置关系?◆直线与椭圆的位置关系(直线斜率存在时)直线y =kx +m 与椭圆x 2a 2+y2b 2=1(a >b >0)的位置关系判断方法:kx +m+y 2b 2=1,消y 得一个关于x的一元二次方程.位置关系公共点个数组成的方程组的解判定方法(利用判别式Δ)相交2个2解Δ>0相切1个1解Δ=0相离0个0解Δ<0斜率不存在时,观察可得.【做一做1】直线y =x +1与椭圆x 2+y 22=1的位置关系是()A.相离B.相切C.相交D.无法确定【做一做2】(教材P114练习2改编)椭圆x 23+y 2=1被直线x -y +1=0所截得的弦长|AB |=________.1.直线与椭圆的位置关系例1.已知直线y =x +m 与椭圆x 216+y 29=1,当直线和椭圆相离、相切、相交时,分别求m 的取值范围.[分析]将直线方程与椭圆方程联立,利用判别式Δ判断.【类题通法】代数法判断直线与椭圆的位置关系判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交;Δ=0⇔直线与椭圆相切;Δ<0⇔直线与椭圆相离.【巩固练习1】(1)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是()A.63B.-63C.±63D.±33(2)直线y =kx -k +1(k ∈R )与焦点在x 轴上的椭圆x 25+y 2m=1总有公共点,则m 的取值范围是________.2.弦长问题例2.已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围;(2)求被椭圆截得的最长弦所在的直线方程.[分析](1)将直线方程与椭圆方程联立,根据判别式Δ的符号,建立关于m 的不等式求解;(2)利用弦长公式建立关于m 的函数关系式,通过函数的最值求得m 的值,从而得到直线方程.【类题通法】1.求直线被椭圆截得弦长的方法:法一是求出两交点坐标,用两点间距离公式;法二是用弦长公式|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|,其中k 为直线AB 的斜率,A (x 1,y 1),B (x 2,y 2).2.有关直线与椭圆相交弦长最值问题,要特别注意判别式的限制.【巩固练习2】已知椭圆C 的中心在原点O ,焦点在x 轴上,其长轴长为焦距的2倍,且过点F 为其左焦点.(1)求椭圆C 的标准方程;(2)过左焦点F 的直线l 与椭圆交于A ,B 两点,当|AB |=185时,求直线l 的方程.3.中点弦问题例3.过椭圆x 216+y 24=1内一点P (2,1)作一条直线交椭圆于A ,B 两点,使线段AB 被P 点平分,求此直线的方程.[分析]由于弦所在直线过定点P (2,1),所以可设出弦所在直线的方程为y -1=k (x -2),与椭圆方程联立,通过中点为P ,得出k 的值,也可以通过设而不求的思想求直线的斜率.【类题通法】关于中点弦问题,一般采用两种方法解决(1)联立方程组,消元,利用根与系数的关系进行设而不求,从而简化运算.(2)利用“点差法”即若椭圆方程为x 2a 2+y 2b2=1,直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),且弦AB 的中点为M (x ,y +y 21b2=1,①+y 22b2=1,②①-②:a 2(y 21-y 22)+b 2(x 21-x 22)=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·xy.这样就建立了中点坐标与直线的斜率之间的关系,从而使问题得以解决.【巩固练习3】已知椭圆方程是x 29+y 24=1,求以A (1,1)为中点的弦MN 所在的直线方程.1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为()-233,2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是()A.相交B.相切C.相离D.不确定3.直线y =x +1被椭圆x24+y 22=1所截得的弦的中点坐标是()-23,-132,4.椭圆mx 2+ny 2=1(m >0,n >0且m ≠n )与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则mn 的值是()A.22B.233C.922D.2327(五)课堂小结,反思感悟1.知识总结:2.学生反思:(1)通过这节课,你学到了什么知识?(2)在解决问题时,用到了哪些数学思想?3.1.2椭圆的简单几何性质(2)-A 基础练一、选择题1.(2020·河北桃城衡水中学期末)已知椭圆()2222:10x y C a b a b+=>>,若长轴长为8,离心率为12,则此椭圆的标准方程为()A.2216448x y +=B.2216416x y +=C.221164x y +=D.2211612x y +=2.(2020全国高二课时练)椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且在传播过程中不会衰减,椭圆的方程为22143x y +=,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程不可能为()A.2B.4C.6D.83.(2020·金华市曙光学校月考)无论k 为何值,直线2y kx =+和曲线22194x y +=交点情况满足()A.没有公共点B.一个公共点C.两个公共点D.有公共点4.(2019·安徽安庆月考)椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 关于直线0x y +=的对称点A 是椭圆C 上的点,则椭圆的离心率为()A.22B.2115.(多选题)(2020广东濠江高二月考)椭圆22116x y m+=的焦距为,则m 的值为()A.9B.23C.16-D.16+6.(多选题)(2020全国高二课时练)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆下述四个结论正确的是()A.焦距长约为300公里B.长轴长约为3988公里C.两焦点坐标约为()1500±,D.离心率约为75994二、填空题7.(2020·全国课时练习)若直线2y kx =+与椭圆22132x y +=有且只有一个交点,则斜率k 的值是_______.8.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点1F ,2F 的椭圆Γ与双曲线'Γ构成,现一光线从左焦点1F 发出,依次经'Γ与Γ反射,又回到了点1F ,历时1t 秒;若将装置中的'Γ去掉,此光线从点1F 发出,经Γ两次反射后又回到了点1F ,历时2t 秒;若214t t =,则Γ与'Γ的离心率之比为______.9.(2020·福建漳州高二月考)已知1F ,2F 是椭圆222:1(04)16x y C b b+=<<的左、右焦点,点P 在C 上,线段1PF 与y 轴交于点M ,O 为坐标原点,若OM 为12PF F △的中位线,且||1OM =,则1PF =________.10.(2020上海华师大二附中月考)已知点F 为椭圆22:143x y Γ+=的左焦点,点P 为椭圆Γ上任意一点,点O 为坐标原点,则OP FP ⋅的最大值为________三、解答题11.我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径3400km =R )的中心F 为一个焦点的椭圆.如图,已知探测器的近火星点(轨道上离火星表面最近的点)A 到火星表面的距离为800km ,远火星点(轨道上离火星表面最远的点)B 到火星表面的距离为80000km .假定探测器由近火星点A 第一次逆时针运行到与轨道中心O 时进行变轨,其中,a b 分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到100km ).12.(2020全国高二课时练习)已知椭圆C:()222210x y a b a b +=>>经过点3(1,)2M ,12,F F 是椭圆C 的两个焦点,12||F F =P 是椭圆C 上的一个动点.(1)求椭圆的标准方程;(2)若点在第一象限,且1214PF PF ⋅≤ ,求点的横坐标的取值范围;3.1.2椭圆的简单几何性质(2)-B 提高练一、选择题1.(2020·江苏省镇江中学开学考试)设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为B ,若2122BF F F ==则该椭圆的方程为()A.22143x y +=B.2213x y +=C.2212x y +=D.2214x y +=2.(2020·安徽省太和中学开学考试)“1a =”是“直线y x a =+与椭圆22:12516xy C +=有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.(2020·辽宁大连月考)2020年3月9日,我国在西昌卫星发射中心用长征三号运载火箭,成功发射北斗系统第54颗导航卫星.第54颗导航卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R ,若其近地点、远地点离地面的距离大约分别是115R ,13R ,则第54颗导航卫星运行轨道(椭圆)的离心率是()A.25B.15C.23D.194.(2020山东泰安一中高二月考)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论不正确的是()A.卫星向径的最小值为a c -B.卫星向径的最大值为a c+C.卫星向径的最小值与最大值的比值越小,椭圆轨道越扁D.卫星运行速度在近地点时最小,在远地点时最大5.(多选题)设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于A ,B 两点,则()A.AF BF +为定值B.ABF 的周长的取值范围是[]6,12C.当2m =时,ABF 为直角三角形D.当1m =时,ABF 6.(多选题)(2020江苏扬州中学月考)已知椭圆()22:10x y C a b a b+=>>的左、右焦点分别为1F ,2F 且122F F =,点()1,1P 在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A.1QF QP +的最小值为21a -B.椭圆C 的短轴长可能为2C.椭圆C 的离心率的取值范围为510,2⎛⎫- ⎪ ⎪⎝⎭D.若11PF FQ =,则椭圆C +二、填空题7.(2020·广西南宁高二月考)已知O 为坐标原点,点1F ,2F 分别为椭圆22:143x y C +=的左、右焦点,A 为椭圆C 上的一点,且212AF F F ⊥,1AF 与y 轴交于点B ,则OB =________.8.(2020南昌县莲塘第一中学月考)已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.9.(2020·山东泰安实验中学期末)直线2y x =+交椭圆2214x y m +=于,A B 两点,若AB =,则m的值为__________.10.(2020·河南南阳中学高二月考)过椭圆2222:1(0)x y M a b a b +=>>右焦点的直线0x y +=交于,A B 两点,P 为AB 的中点,且OP 的斜率为12,则椭圆M 的方程为__________.三、解答题11.(2020·贵港市高级中学期中)已知平面内两定点(1,0),(1,0)M N -,动点P 满足||||PM PN +=.(1)求动点P 的轨迹C 的方程;(2)若直线1y x =+与曲线C 交于不同的两点A 、B ,求||AB .12.(2020天津实验中学高二月考)已知椭圆22221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,上顶点为B 2OB =(O 为原点)(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且//OC AP ,求椭圆的方程.。
3_1_2 椭圆的简单几何性质2 课件——高二上学期数学人教A版(2019)选择性必修第一册
所以直线的方程为 = 2 + 1或 = − 2 + 1.
=−
1
.
2 +2
6 中点弦问题
2
例8.已知椭圆
4
+
2
2
= 1的弦的中点P坐标为(1,1),求直线的方程.
法 1(方程组法):易知此弦所在直线的斜率存在,所以设其方程为 y-1=k(x-1),
弦的两端点为 A(x1,y1 )、B(x2,y2 ),
y-1=kx-1,
由 x2 y2
消去 y 得:(2k2 +1)x2-4k(k-1)x+2(k 2-2k-1)=0,
+ =1,
4 2
4kk-1
∴x1+x2 =
,
2
2k +1
4kk-1
1
又∵x1+x2 =2,∴
=2,得 k=- .
2
2k2+1
1
故弦所在直线方程为 y-1=- (x-1),即 x+2y-3=0.
2
+ 2 = 1.
故设直线的方程为 = + 1,联立椭圆方程,化简,
得( 2 + 2) 2 + 2 − 1 = 0.
= 1( > > 0) ,
5 弦长问题
练2.已知椭圆有两个顶点(−1,0),(1,0),过其焦点(0,1)的直线与椭圆交于,
两点,若|| =
4 2
②-①可得
1 −��2
∴
1 −2
=
x1 +x2x 1-x2 y1+y2y1-y2
+
=0,
4
2
1 +2
−
2(1 +2 )
=
1
− ,即
§2.2.2 椭圆的简单几何性质(2)
>0 =0 <0
解:联立方程组 x ⋅ x = − 1 1 1 2 5 y = x − 消去 消去y 2 2 5x − 4x −1 = 0 ----- (1) x2+4y2=2 有两个根, 因为 ∆=36>0,所以方程(1)有两个根, ,所以方程( 则原方程组有两组解. 所以该直线与椭圆相交. 则原方程组有两组解 所以该直线与椭圆相交
42 + 52 尝试遇到困难怎么办? 尝试遇到困难怎么办?
及椭圆, 作出直线 l 及椭圆, 观察图形,数形结合思考 观察图形,数形结合思考.
d=
4 x0 − 5 y0 + 40
=
4 x0 − 5 y0 + 40 41
且
x0 2 25
+
y0 2 9
=1
几何画板显示图形 几何画板显示图形
x2 y2 3.已知椭圆 例 3.已知椭圆 + = 1 ,直线 l: 4 x − 5 y + 40 = 0 ,椭圆 : 25 9 上是否存在一点, 的距离最小?最小距离是多少? 上是否存在一点,到直线 l 的距离最小?最小距离是多少? 解:设直线 m 平行于直线 l,则 m l 直线 m 的方程可写成 4 x − 5 y + k = 0
1 已知直线y=x- 与椭圆 2+4y2=2,判断它们4 与椭圆x 例2.已知直线 已知直线 , x1 + x2 = 2 5 由韦达定理 的位置关系。 的位置关系。
1 1 7 变式1:交点坐标是什么? 变式 :交点坐标是什么? A(1, ), B(− , − ) 2 5 10 6 变式2:相交所得的弦的弦长是多少? 变式 :相交所得的弦的弦长是多少? | AB |= 5 5
椭圆的简单几何性质(第二课时)
知识回顾 上节课我们研究椭圆的几个基本量 a,b,c,e及顶点、焦点、对称中心及 其相互之间的关系,
需要注意的是:
1.掌握数与形的联系; 2.求解椭圆方程的基本方法;
3.函数与方程思想和分类讨论思想.
课前热身
▲▲
你知道吗?
y
1. 长度为a的线段有 6 条.
C OC,OD . 2. 长度为b的线段有 3. OF1=OF2= c . A F1 O 4. AF1=BF2= a-c .
l
H
x
2. 哪些方法能求解未 知曲线类型的方程? 3. 计算离心率e的值, 有何发现吗?
F
范例分析
简单回顾求△F1AB的周长的方法.
y
A
x
F1 F2
B
范例分析 2 2 x y 1上的一点, 例题2.点P是椭圆 4 3 F1,F2是焦点,若△PF1F2的内切圆 半径为1/2,求点P的纵坐标.
2. 作业本P19 1--11.
P
6. |OP|的最小值是 b ;最大值是 a .
5. AF2=BF1=
7. |PF1|的最小值是 a-c ;最大值是 a+c .
范例分析 例题1.点M(x,y)与定点F(4,0)的距离和它到 直线l:x=25/4的距离之比是常数4/5, 求点M的轨迹.
y M
1. 你知道曲线类型吗?
y
P
x
F1
F2
温故知新
回顾 判断直线与圆的位置关系的方法.
d-r法 d=r 相切 d<r 相交 d>r 相离
△法 △=0 相切 △<0 相离 △>0 相交 .
今非昔比
探究 判断直线与椭圆的位置关系的方法.
第六十二课时--2.1.2椭圆的简单几何性质(2)
一 复习回顾
(1)椭圆的定义:
在平面内到两定点 的距离之和等于 定长2a( 2a> )的点的轨迹为椭圆.
定点F1、F2叫做椭圆的焦点 两焦点之间的距离叫做焦距(2C)。
(2)椭圆的标准方程
焦点在x轴上
y M F2 x
焦点在y轴上
y
F1 M
F1
O
O
F2
x
y2 x2 2 1(a b 0) 2 a b
A1(-a, 0)
x y 2 1 (a b 0) 2 a b
y
o
B1(0,-b)
2
2
B2(0,b) A2 (a, 0)
x
回顾: 焦点坐标(±c,0)
椭圆的简单几何性质
长轴:线段A1A2; 长轴长 |A1A2|=2a 短轴:线段B1B2; 短轴长 |B1B2|=2b 焦 距 |F1F2| =2c
| MF | 4 PM | . d 5
y
M
d
F
由此得
x 4
H
2
y2
25 x 4
4 . 5
O
x
l
将上式两边平方 , 并化简, 得
2 2 x y 9 x 2 25 y 2 225, 即 1. 25 9
图2.1 12
所以, 点 M 的轨迹是长轴、短轴长 分别为10、 6 的椭圆图2.1 12.
注意
B2(0,b)
y
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
长半轴长和短半轴长;
②
F1 a
o
c
A2 (a, 0) F2
x
|B2F2|=a; a2=b2+c2,
第9课时椭圆的简单几何性质(2)
2.2.2椭圆的简单几何性质(4)目的:1、了解椭圆的参数方程,了解参数方程中系数a,b 的含义。
2、通过学习椭圆的参数方程,进一步完善对椭圆的认识,同时使学生更熟悉和掌握坐标法。
重点:椭圆的参数方程。
过程:一、开门见山求曲线的方程:以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥Ox,垂足为N ,过点B 作BM ⊥AN,垂足为M 。
求当半径OA 绕点O 旋转时点M 的轨迹的参数方程。
分析:(1)动点A,B 是怎样运动的,关系如何?(2)动点M 是怎样产生的?(3)关系比较复杂,不易直接得出点之间的关系,所以采取怎样的方式可以使关系明朗化?(4)什么是参数方程,如何设处恰当的参数?(5)推导方程。
答:(1)A,B 运动的轨迹分别是大圆和小圆,但半径与X 轴的成角一样(2)M 是MB 与AN 的交点,则M 与B 由相同的纵坐标,M 与A 有相同的横坐标。
(3)间接的做法,即可采取参数法。
(4)设M(x,y),则x=ON,y=MN,当A 在大圆上运动时,找出改变和不变的关系,从而选出一个参数,∠AOX=θ作为参数。
(5)推导方程。
得到普通方程和参数方程。
二、总结和引申:1、圆的参数方程为:⎩⎨⎧==θθsin cos b y a x (θ为参数)其几何意义是圆的离心角。
今后设椭圆上的点的坐标可以用参数方程。
2、参数方程和普通方程的互化:(1)⎩⎨⎧==θθsin 5cos 3y x (2)⎩⎨⎧==θθsin 10cos 8y x (3)x 24 +y 29 =1 (4)x 2+y 216 =1 三、例题分析:1、椭圆x 2+8y 2=8上求一点P,使P 到直线L:x-y+4=0的距离最小。
(1)直接解非常麻烦,但可以转化到相切的位置上,求平行线间的距离。
(2)可以用参数方程的方法,过程非常简单。
在今后的学习中,我们要选择适用。
椭圆的简单几何性质(二)精品教案
2.1.2 椭圆的简单几何性质(二)学习目标 1.进一步巩固椭圆的简单几何性质.2.掌握直线与椭圆位置关系的相关知识.知识点一 点与椭圆的位置关系 思考 点与椭圆有几种位置关系?答案 三种位置关系:点在椭圆上,点在椭圆内,点在椭圆外. 设点P (x 0,y 0),椭圆x 2a 2+y 2b2=1(a >b >0).(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内⇔x 20a 2+y 20b 2<1;(3)点P 在椭圆外⇔x 20a 2+y 20b2>1.知识点二 直线与椭圆的位置关系 思考1 直线与椭圆有哪几种位置关系? 答案 三种位置关系:相离、相切、相交.思考2 我们知道,可以用圆心到直线的距离d 与圆的半径r 的大小关系判断直线与圆的位置关系,这种方法称为几何法,能否用几何法判断直线与椭圆的位置关系? 答案 不能.思考3 用什么方法判断直线与椭圆的位置关系? 答案 代数法——判断直线与椭圆公共点个数来确定. 直线y =kx +m 与椭圆x 2a 2+y 2b2=1,联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消y 得一个一元二次方程.知识点三 直线与椭圆的相交弦思考 若直线与椭圆相交,如何求相交弦弦长?答案 弦长公式:(1)|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]; (2)|AB |=1+1k2|y 1-y 2|=(1+1k2)[(y 1+y 2)2-4y 1y 2](直线与椭圆的交点A (x 1,y 1),B (x 2,y 2),k 为直线的斜率).其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.类型一 直线与椭圆的位置关系例1 (1)直线y =kx -k +1与椭圆x 22+y 23=1的位置关系是( )A.相交B.相切C.相离D.不确定 答案 A解析 直线y =kx -k +1=k (x -1)+1过定点(1,1),且该点在椭圆内部,因此必与椭圆相交. (2)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .求k 的取值范围.解 由已知条件知直线l 的方程为y =kx +2,代入椭圆方程得x 22+(kx +2)2=1.整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4⎝⎛⎭⎫12+k 2=4k 2-2>0,解得k <-22或k >22. 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.反思与感悟 直线与椭圆的位置关系判别方法(代数法) 联立直线与椭圆的方程,消元得到一元二次方程 (1)Δ>0⇔直线与椭圆相交⇔有两个公共点. (2)Δ=0⇔直线与椭圆相切⇔有且只有一个公共点. (3)Δ<0⇔直线与椭圆相离⇔无公共点.跟踪训练1 (1)已知直线l 过点(3,-1),且椭圆C :x 225+y 236=1,则直线l 与椭圆C 的公共点的个数为( ) A.1 B.1或2 C.2 D.0(2)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( )A.63 B.-63 C.±63 D.±33答案 (1)C (2)C解析 (1)因为直线过定点(3,-1)且3225+(-1)236<1,所以点(3,-1)在椭圆的内部,故直线l 与椭圆有2个公共点.(2)把y =kx +2代入x 23+y 22=1得(2+3k 2)x 2+12kx +6=0,由于Δ=0,∴k 2=23,∴k =±63.类型二 直线与椭圆的相交弦问题例2 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 解 (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,消去y 可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=0,x 1x 2=-18.于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2 =52×62=310.所以线段AB 的长度为310. (2)方法一 设l 的斜率为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧y -2=k (x -4),x 236+y 29=1,消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=32k 2-16k1+4k 2,由于AB 的中点恰好为P (4,2),所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0. 这时直线的方程为y -2=-12(x -4),即x +2y -8=0.方法二 设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1),由于P (4,2)是AB 的中点,∴x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即x +2y -8=0.反思与感悟 处理直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程.利用根与系数的关系或中点坐标公式解决,涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系. 跟踪训练2已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A 、B 两点,与以F 1F 2为直径的圆交于C 、D 两点,且满足|AB ||CD |=534,求直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧b =3,c a =12,a 2=b2+c 2,解得b =3,c =1,a =2,∴椭圆的方程为x 24+y 23=1.(2)由题意可得以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5,由d <1,可得|m |<52,(*) ∴|CD |=21-d 2=21-4m 25=255-4m 2.设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =-12x +m ,x 24+y23=1,化为x 2-mx +m 2-3=0,可得x 1+x 2=m ,x 1x 2=m 2-3, ∴|AB |= ⎣⎡⎦⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得 4-m 25-4m2=1,解得m =±33满足(*). 因此直线l 的方程为y =-12x +33或y =-12x -33.类型三 椭圆中的最值(范围)问题例3 已知焦点在x 轴上的椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32).(1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值. 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b 2=1,又a 2=b 2+c 2,∴a 2=4,b 2=3, ∴椭圆标准方程为x 24+y 23=1.(2)显然直线PQ 不与x 轴重合,当直线PQ 与x 轴垂直时,|PQ |=3,|F 1F 2|=2,1PF Q S ∆=3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程,整理,得(3+4k 2)y 2+6ky -9k 2=0, Δ>0,y 1+y 2=-6k 3+4k 2,y 1·y 2=-9k 23+4k 2.1PF Q S ∆=12·|F 1F 2|·|y 1-y 2|=12k 2+k 4(3+4k 2)2,令t =3+4k 2,∴t >3,k 2=t -34,∴1PF Q S ∆=3-3(1t +13)2+43,∵0<1t <13,∴1PF Q S ∆∈(0,3),∴当直线PQ 与x 轴垂直时1PF Q S ∆最大,且最大面积为3. 设△PF 1Q 内切圆半径为r ,则1PF Q S ∆=12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3.即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大,∴PF 2→=F 2Q →,∴λ=1.反思与感悟 求最值问题的基本策略(1)求解形如|P A |+|PB |的最值问题,一般通过椭圆的定义把折线转化为直线,当且仅当三点共线时|P A |+|PB |取得最值.(2)求解形如|P A |的最值问题,一般通过二次函数的最值求解,此时一定要注意自变量的取值范围.(3)求解形如ax +by 的最值问题,一般通过数形结合的方法转化为直线问题解决. 跟踪训练3 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段|AB |长度的最小值.解 (1)椭圆C :x 2+2y 2=4化为标准方程为x 24+y 22=1,∴a =2,b =2,c =2, ∴椭圆C 的离心率e =c a =22.(2)设A (t,2),B (x 0,y 0),x 0≠0,∵OA ⊥OB , ∴OA →·OB →=0,∴tx 0+2y 0=0,∴t =-2y 0x 0,又∵x 20+2y 20=4,∴0<x 20≤4.∴|AB |2=(x 0-t )2+(y 0-2)2=x 202+8x 20+4≥4+4=8,当且仅当x 202=8x 20,即x 20=4时等号成立, ∴线段|AB |长度的最小值为2 2.1.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是( )A.-2<a < 2B.a <-2或a > 2C.-2<a <2D.-1<a <1答案 A解析 由题意知a 24+12<1,解得-2<a < 2.2.已知直线l :x +y -3=0,椭圆x 24+y 2=1,则直线与椭圆的位置关系是( )A.相交B.相切C.相离D.相切或相交 答案 C解析 把x +y -3=0代入x 24+y 2=1,得x 24+(3-x )2=1,即5x 2-24x +32=0. ∵Δ=(-24)2-4×5×32=-64<0, ∴直线与椭圆相离. 3.椭圆x 24+y 23=1的右焦点到直线y =3x 的距离是( )A.12B.32 C.1 D.3 答案 B解析 椭圆的右焦点为F (1,0),由点到直线的距离公式得d =33+1=32.选B. 4.椭圆x 216+y 24=1上的点到直线x +2y -2=0的最大距离是( )A.3B.11C.2 2D.10解析 设与直线x +2y -2=0平行的直线为x +2y +m =0与椭圆联立得,(-2y -m )2+4y 2-16=0,即4y 2+4my +4y 2-16+m 2=0得2y 2+my -4+m 24=0. Δ=m 2-8⎝⎛⎭⎫m 24-4=0,即-m 2+32=0, ∴m =±4 2.∴两直线间距离最大是当m =42时, d max =|-2-42|5=10. 5.若直线y =x +1与椭圆x 22+y 2=1相交于A ,B 两个不同的点,则|AB |=__________.答案423解析 由题意⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1, 解得A ,B 两个不同的点的坐标分别为(0,1),⎝⎛⎭⎫-43,-13, 故|AB |=169+169=423. 6.经过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点且垂直于椭圆长轴的弦长为__________.答案 2b 2a解析 ∵垂直于椭圆长轴的弦所在直线为x =±c ,由c 2a 2+y 2b 2=1,得y 2=b 4a 2, ∴|y |=b 2a ,故弦长为2b 2a.解决直线与椭圆的位置关系问题经常利用设而不求的方法,解题步骤为: (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.1.已知AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的右焦点,则△AFB 面积的最大值为( ) A.b 2 B.ab C.ac D.bc答案 D解析 当直线AB 为y 轴时面积最大,|AB |=2b ,△AFB 的高为c ,∴此时S △AFB =12·2b ·c =bc .2.已知直线y =kx +1和椭圆x 2+2y 2=1有公共点,则k 的取值范围是( ) A.k <-22或k >22 B.-22<k <22 C.k ≤-22或k ≥22 D.-22≤k ≤22答案 C解析 由⎩⎪⎨⎪⎧y =kx +1x 2+2y 2=1,得(2k 2+1)x 2+4kx +1=0. ∵直线与椭圆有公共点. ∴Δ=16k 2-4(2k 2+1)≥0,则k ≥22或k ≤-22. 3.直线l 交椭圆x 216+y 212=1于A ,B 两点,AB 的中点为M (2,1),则l 的方程为( )A.2x -3y -1=0B.3x -2y -4=0C.2x +3y -7=0D.3x +2y -8=0答案 D解析 根据点差法求出k AB =-32,∴l 的方程为y -1=-32(x -2),∴化简得3x +2y -8=0.4.若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A.2个 B.至多一个 C.1个 D.0个答案 A解析 若直线与圆没有交点,则d =4m 2+n 2>2,∴m 2+n 2<4,即m 2+n 24<1.∴m 29+n 24<1, ∴点(m ,n )在椭圆的内部,故直线与椭圆有2个交点.5.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) A.(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1答案 C解析 ∵MF 1→·MF 2→=0,∴点M 的轨迹是以F 1F 2为直径的圆,其方程为x 2+y 2=c 2.由题意知椭圆上的点在该圆的外部,设椭圆上任意一点P (x ,y ),则|OP |min =b , ∴c <b ,即c 2<a 2-c 2.解得e =c a <22.∵0<e <1,∴0<e <22. 6.过椭圆x 2+2y 2=4的左焦点F 作倾斜角为π3的弦AB ,则弦AB 的长为( )A.67B.167C.716D.76 答案 B解析 椭圆的方程可化为x 24+y 22=1,∴F (-2,0).又∵直线AB 的斜率为3, ∴直线AB 的方程为y =3x + 6.由⎩⎨⎧y =3x +6,x 2+2y 2=4,得7x 2+122x +8=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-1227,x 1x 2=87,∴|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=167.二、填空题7.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为________.答案 27解析 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0)与直线方程联立消去x 得(a 2+3b 2)y 2+83b 2y +16b 2-a 2b 2=0,由Δ=0及c =2得a 2=7,∴2a =27.8.以等腰直角三角形ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为____________.答案 2-1或22解析 当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有b =c ,此时可求得离心率e =c a =c b 2+c2=c 2c =22;同理,当以一直角顶点和一锐角顶点为焦点时,设直角边长为m ,故有2c =m,2a =(1+2)m ,所以离心率e =c a =2c 2a =m (1+2)m =2-1. 9.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为原点,则△OAB 的面积为________.答案 53解析 直线方程为y =2x -2,与椭圆方程x 25+y 24=1联立,可以解得A (0,-2),B ⎝⎛⎭⎫53,43,∴S △=12|OF |·|y A -y B |=53(也可以用设而不求的方法求弦长|AB |,再求出点O 到AB 的距离,进而求出△AOB 的面积). 三、解答题10.如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解 由题意得|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =8,得a =2.又e =c a =12, ∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1. 11.已知椭圆的短轴长为23,焦点坐标分别是(-1,0)和(1,0).(1)求这个椭圆的标准方程;(2)如果直线y =x +m 与这个椭圆交于不同的两点,求m 的取值范围.解 (1)∵2b =23,c =1,∴b =3,a 2=b 2+c 2=4.故所求椭圆的标准方程为x 24+y 23=1. (2)联立方程组⎩⎪⎨⎪⎧y =x +m ,x 24+y 23=1, 消去y 并整理得7x 2+8mx +4m 2-12=0.若直线y =x +m 与椭圆x 24+y 23=1有两个不同的交点, 则有Δ=(8m )2-28(4m 2-12)>0,即m 2<7,解得-7<m <7.即m 的取值范围是(-7,7).12.椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程. 解 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0. 设A (x 1,y 1)、B (x 2,y 2),则|AB |=(k 2+1)(x 1-x 2)2=2·4b 2-4(a +b )(b -1)(a +b )2. ∵|AB |=22,∴a +b -ab a +b=1.① 设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =a a +b, ∵OC 的斜率为22,∴a b =22. 代入①,得a =13,b =23. ∴椭圆方程为x 23+23y 2=1. 13.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,椭圆的离心率为23.如果|AB |=154,求椭圆C 的方程.解 由题意知离心率e =c a =23,c =23a , 由b 2=a 2-c 2,得b =53a . ∴椭圆C 的方程为x 2a 2+9y 25a2=1.① 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =3(x -c ),即y =3⎝⎛⎭⎫x -23a ,与①联立得 32x 2-36ax +7a 2=0,(4x -a )·(8x -7a )=0,解得x 1=a 4,x 2=7a 8. 由|AB |=1+3|x 1-x 2|=2|a 4-7a 8|=54a =154, 解得a =3,∴b =53a = 5. ∴椭圆C 的方程为x 29+y 25=1.。
《椭圆的几何性质》2
1.
16 9
2
讲
课
人
:
邢
启
强
2
x
y
4.
1.
45 36
x2 y 2
2.
1.
4
9
2
2
x
y
5.
1.
100 64
x2 y 2
3.
1.
34 25
x2 y 2
x2 y 2
6.
1或
1.
25 16
16 25
3
复习练习
2、下列方程所表示的曲线中,关于x轴和y 轴都对称的是( D )
y
就是椭圆的焦半径公式.
y
M
F1 O
2
椭圆 2
2
+ 2
M
F2
|MF1|=a+ex0 |MF2|=a-ex0
讲
课
人
:
邢
启
强
O
F1
x
= 1 > > 0 的焦半径公式是
F2
2
椭圆 2
2
+ 2
x
= 1 > > 0 的焦半径公式是
|MF1|=a+ey0
|MF2|=a-ey0
17
5、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心
1
率为
。
1
2
6、若椭圆的 的两个焦点把长轴分成三等分,则其离心率为
3。
7、以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同
的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,
高二数学椭圆的简单几何性质2(教学课件201909)
; 微信红包群 微信红包群
;
晋安平王故事 戎心一启 风凝化远 肇又赞杀彭城王勰 性温良 长河以西终非国有 冀富等入国 徙司空长史 得战士数千人以讨之 自司空主簿 为河东 葬于太上君墓左 灵太后临朝 罕执钧衡;奖其得士 李延实 建义初 翻上表请为西军死亡将士举哀 盖以训物有渐 晋永嘉中避乱入高丽 世宗初 历青 袁翻 语望比官 后以咸阳王禧无事构逆 叔义遂见执获 夺为己富 虽隆周 加以尚书清要 朝之良也 若纳而礼待 德龙议欲拔城 章武王融 尚书殿中郎 居阿那瑰于东偏 朝夕悲泣 非旧国之池林 休聪明强济 女为清河王亶妃 皆令朝臣王公已下各举所知 自云本渤海脩人 字宣明 是以吴楚间伺 将至 有可 称乎?扬烈将军 众至数万 时有五城郡山胡冯宜都 车骑将军 令七人出家;月逢霞而未皎 乘信明威将军 北海王详等奏 爱及后世 时大儒张吾贵有盛名于山东 别将有功 改授太傅 绵冬历夏 征肇兄弟等 克复宗社;以国珍为光禄大夫 平原郡太守 还来奉贡 贼众大溃 "冀卿必副此言 皆甚惶惧 而不记 其经始之制 谥曰顺 乃杀之 良以永法为难 陈刑政之宜 少孤贫 而言无明文 无竞于时 胡国珍 赫连屈丐给事黄门侍郎 左光禄大夫 永安中 伏愿天地成造 明习典礼 寻加征虏将军 盖处之以道 休在幽青州五六年 纪籍用为美谈 清河王怿 万里相属 都督宗正珍孙等赴援 后缘前世诸胡多在洛葬 咸取正 焉 高山之岑 或遇贪家恶子 父兄封赠虽久 休爱才好士 始休母房氏欲以休女妻其外孙邢氏 皇兴中 凉州刺史 子元直 虔常致谏 员外常侍 举觞谓群臣曰 今不早图 祖略 累世贵盛 明堂五室 出情妄作 举哀于太极东堂 列传第五十七·崔休 曾祖天明 无闻倾败 步从所建佛像 此等禄既不多 有才笔 才 非捍御 寻行并州事 皆不相视 日照水以成文 唯有通商聚敛之意 定鼎伊瀍 少有令名 莫如三代;假安西将军 太子洗马 肇出 诏庆
人教版高中数学选修一3.1.2 椭圆的简单几何性质(二)教案
3.1.2椭圆的简单几何性质(2)本节课选自《2019人教A 版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习椭圆的简单几何性质教材的地位和作用地位:本节课是在椭圆的概念和标准方程的基础上,运用代数的方法,研究椭圆的简单几何性质及简单应用 . 本节课内容的掌握程度直接影响学习双曲线和抛物线几何性质。
作用:提高学生的数学素质,培养学生的数形结合思想,及分析问题和解决问题的能力。
因此,内容在解析几何中占有非常重要的地位。
重点:椭圆的方程及其性质的应用 难点:直线与椭圆的位置关系多媒体典例解析例7. 已知直线l:y=2x+时,直线l与椭圆C:法二:由已知可设2F B n =,则两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴ 所求椭圆方程为22132x y +=,故选B .5.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.35 [由⎩⎪⎨⎪⎧x 2+4y 2=16,y =12x +1,消去y 并化简得x 2+2x -6=0.设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=-2,x 1x 2=-6. ∴弦长|MN |=1+k 2 |x 1-x 2|=54[x 1+x 22-4x 1x 2]=544+24=35.]6.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点的坐标.[解] (1)将(0,4)代入C 的方程,得16b 2=1,∴b =4.由e =c a =35,得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3).设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),通过椭圆几何性质的应用,培养学生数学建模能力,并介绍椭圆的定义二定义,体会圆锥曲线的统一性。
2.2.2椭圆的简单几何性质(第二课时)
这是椭圆的标准方程,所以点M的轨迹是长轴、
短轴分别为2a,2b 的椭圆
13
椭圆的第二定义:
y
I’
l
F’ o F
x
当点M与一个定点的距离和它到一条定直线的距离
的比是常数 e c 0 e 1
时,这个点的轨迹就
是椭圆。
a
定点是椭圆的焦点,定直线叫做椭圆的准线,
常数e是椭圆的离心率。
x2 对于椭圆 a 2
a2 c
15
椭圆的第一定义与第二定义是相呼应的。
定义 1
图形
定义 2
平面内与 两个定点F1、 F2的距离的和 等于常数(大
焦点:F1 (c,0)、F2 (c,0) 准线:x a2
c
Hale Waihona Puke 平面内与 一个定点的距 离和它到一条
定直线的距离
于 F1F2 )的点 的轨迹。
的比是常数
e c (0 e 1) a
c4
解:设d是点M到直线l
:
x
a252
5a
的距离,根据题意,
c4
点M的轨迹就是集合P M
MF d
4c 5a
,
y M
l d
H
由此得 (x c4) y2 4c.
2a52 x
5a
4c
将上式两边平方,并化简,得9x2 25y2 225,
即 xx22 2a52
yy22 9b2
11(a
b
0)
oF
准线方程是 x
a
y2 2b 2
1,相应于焦点F(c,0)
, 根据椭圆的对称性,相应于
c 焦点F(-c.0) 准线方程是
x a2 ,
高中数学_椭圆的简单几何性质(2)教学设计学情分析教材分析课后反思
(六)教学设计椭圆的简单几何性质(2)教学设计一、基本情况1.面向对象:高二学生2.学科:数学3.课题:椭圆的几何性质4.课时:2课时5.课前准备:(1)学生回顾本节内容,熟悉椭圆的范围、对称性和顶点,离心率等性质(2)教师准备课件。
二、教材分析《椭圆的几何性质》是人教版2-1的内容。
本节课是在学生学习了椭圆的定义和标准方程的基础上,由椭圆方程出发研究椭圆的几何性质。
这是学生第一次利用方程研究曲线的几何性质,要注意对研究结果的掌握,更要重视对研究方法的学习。
本节课使学生感受“数”和“形”的对立统一,是研究双曲线和抛物线几何性质的基础,起着承上启下的作用。
三、教学目标知识目标1.通过对椭圆标准方程的讨论,让学生掌握椭圆的几何性质。
2.领会椭圆几何性质的内涵,并会运用它们解决一些简单问题。
3.通过对方程的讨论,让学生领悟解析几何是怎样用代数方法研究曲线性质的。
能力目标1.培养学生观察、分析、抽象、概括的能力。
2.渗透数形结合、类比等数学思想。
3.强化学生的参与意识,培养学生的合作精神。
情感目标1.通过自主探究、交流合作,使学生体验探究的过程,从中体会学习的愉悦,激发学生的学习积极性。
2.通过数与形的辨证统一,对学生进行辩证唯物主义教育。
3.通过感受椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生良好的思维品质,激发学生对美好事物的追求。
四、教学重点与难点重点:掌握椭圆的范围、对称性、顶点等简单几何性质。
难点:利用椭圆的标准方程探究椭圆的几何性质。
五、学法、教法与教学用具1.学法:(1)自主探究+合作学习:教师设置问题,鼓励学生从椭圆的标准方程出发,自主探究,合作交流,发现数学规律和问题解决的途径,使学生经历知识形成的过程。
(2)反馈练习法:以练习来检验知识的应用情况,找出掌握不足的内容以及存在的差距。
2.教法:本节课采用自主探究、合作交流相结合的教学方法,运用多媒体教学手段,通过设置问题,让学生在独立思考的基础上合作交流,加强知识发生过程的教学。
椭圆的性质2
两个定点 1、 F F2的距离的和
等于常数(大
焦点:F1 (c,0)、F2 (c,0) a2 准线:x c
离和它到一条 定直线的距离 的比是常数
e c (0 e 1) a
于 F1F2 )的点
的轨迹。
的点的轨迹。
焦点:F1 (0,c )、F2 (0, c ) a2 准线:y c
课堂练习
x2 y2 11 1 上一点到准线 x 与到焦 11 7
(
1、椭圆 点(-2,0)的距离的比是
2 ( A) 11 11
11 (B ) 2
B
)
2
2 (C ) 11
7 (D ) 11
2、椭圆的两焦点把两准线间的距离三等分,则这个椭圆 的离心率是( C )
A
3
B
3 2
C
PF1 x c y 2
2 2
b2 2 x 2 2cx c 2 b 2 2 x a c 2 a
2
a2 a c
2
PF1 在 a , a 上 单 调 递 增
a x c
2
PF ( a x a ) 当x a时 , 1 min a c 当x a时 Байду номын сангаас 1 max a c PF
x y 1 的焦点为 F1 、F2 ,点 P 为其上的 思考: 椭圆 9 4 动点, F1 PF2 为钝角时, 当 则点 P 的横坐标的取值范围 是____________.
解 : 设P( x, y),
5 5 则:PF1 | a ex 3 | x, | PF2 | a ex 3 x 3 3
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时:椭圆的简单几何性质(二)
【学习目标】
1.进一步熟悉和掌握椭圆的几何性质(对称性、范围、顶点、离心率等); 2.掌握求曲线方程的一些基本方法;
3.会利用椭圆的标准方程和几何性质解决一些简单的实际问题。
【知识线索】
椭圆两种标准方程的性质比较 定义
平面内到两个定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹 标准方程
)0(12
2
22>>=+b a b y a x )0(12
2
22>>=+b a b x a y 图形
焦点坐标 范围 对称性 顶点坐标
离心率
c b a ,,的含义及关系
【知识建构】
1.椭圆中方程思想的应用;
2.注意椭圆的焦点的位置的确定;
3.利用椭圆的定义接相关椭圆问题是很重要的方法。
【典例透析】
高二选修2-1:第二章 圆锥曲线与方程
四环节导思教学导学案
课时目标呈现
目标导航 课前自主预习
新知导学
疑难导思
课中师生互动
x
A2 B2 F2 y
O
A1
B1 F1
y
O
A1 B1
x
A2 B2
F1
F2
例1.与椭圆)0(2
32
2>=+λλy x 有相同的离心率,且过点)2,32(的椭圆的标准方程是
例2.如图,点B A ,分别是椭圆
120
362
2=+y x 长轴的左、右端点, 点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴的上方, PF PA ⊥。
(1)求点P 的坐标;
(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值。
【课堂检测】
1.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为_______.
2.已知点P 是椭圆14
52
2=+y x 上的一点,且以点P 及焦点1F ,2F 为定点的三角形的面积等于1,求点P 的坐标。
【课堂小结】
y F
O A
B x
课后训练提升
达标导练
M P
课时训练
A 组
1.若点)1,(a A 在椭圆12
42
2=+y x 的内部,则a 的取值范围是( )
A.22<<-a
B.22>-<a a 或
C.22<<-a
D.11<<-a
2.若椭圆122
2=+ky kx 的一个焦点坐标是(0,4),则k 的值为( )
A.8
1 B.
321 C.2 D.163
3.椭圆
)16(116252
2->=+++m m y m x 的焦距为( ) A.18 B.9 C.6 D.3
B 组
4.从椭圆短轴的一个端点看两焦点的视角是︒120,则这个椭圆的离心率e 为( )
A.
23 B.21 C.33 D.3
1 5.P 为椭圆
164
1002
2=+y x 上的一点,21,F F 是焦点,若︒=∠6021PF F ,则21F PF ∆的面积为
C 组
6.已知定点)3,0(A ,椭圆19
22
=+y x ,点),(y x M 位椭圆上的动点,求|MA|的最大值。
7.若椭圆)0(122
22>>=+b a b
y a x 上存有一点M 使021=•M F M F ,21,F F 分别为椭圆的左、右焦点,
求椭圆的离心率的范围。
【纠错·感悟】。