第10应力状态

合集下载

工程力学-10应力状态分析和强度计算

工程力学-10应力状态分析和强度计算

边的长度变化,所以广义胡克定律为:
y yx
z
x zy yz xz x
zx xy
z
y
x
1 E
[ x
( y
z)
]
y
1 E
[
y
( x
z) ]
14z
1 E
[
z
( x
y) ]
—— 广义胡克定律
在平面应力状态下,胡克定律变为:
x
1 E
( x
y )
y
y
1 E
( y
x )
z
E
( x

90 x y 10
90
——平面应力状态分析
过一点总存在三对相互垂直的主平面,对应三 个主应力
主应力排列规定:按代数值由大到 小。
剪应力为零的面为主平面; 主平面上的正应力为主应力; 全部由主平面构成的单元体 为主单元体。
1 2 3
10
50 单位:MPa
1 50; 30 2 10;
主 讲:谭宁 副教授 办公室:教1楼北305
——概 述
(1)、铸铁与低碳钢的拉、压、扭试验现象是怎样产生的?
P 铸铁拉伸
铸铁压缩
M
P
低碳钢
铸铁
P
P
(2)、组合变形杆将怎样破坏?
2
M
过一点有无数的截面
——概 述
应力
哪一个面上? 哪一点?
指明
哪一点? 哪个方向面?
过一点不同方位截面上应力的集合,称为一点的应力状态(State of the Stresses of a Given Point)。
(1)各个面上的应力均匀分布; (2)相互平行的平面上,应力大小和性质完全相同。 (3) 相邻垂直面上的切应力根据切应力互等定理确定.

材料力学第18讲 Chapter7-2第七章 应力状态(应力圆)

材料力学第18讲  Chapter7-2第七章 应力状态(应力圆)

x
y
2
R cos[180o
(2
20 )]
xy
x
2
y
R cos(2
20 )
O
xy
x
y
2
R(cos 2
cos 20
sin 2
sin 20 )
x
y
2
x
2
y
cos 2
xy
sin
2
D
A ( x , xy )
y R 2 20
E
C
x
B ( y , xy )
13
单元体与应力圆的对应关系
y y
y
10
a
64103 110103 3.206107 1012
219.6MPa
200
b
64103 100103 3.206107 1012
199.6MPa
10
c
64103 0 3.206107 1012
0.0MPa
120
10
c z
b a y
30
(Fs 160kN; M 64kN m)
xy
(3)以C 为圆心,AC为半径画圆
—应力圆或莫尔圆
O
xy
y
y
xy x
Ox
A ( x , xy )
y C
B ( y , xy )
x
10
3、单元体公式与应力圆的关系
以上由单元体公式
应力圆(原变换)
下面寻求由应力圆
单元体公式(逆变换)
只有这样,应力圆才能与公式等价 换句话,单元体与应力圆是否有一一对应关系?
x
x
x
0
y 1

7–9 复杂应力状态的应变能密度7-10、7-11、7-12、7-13

7–9 复杂应力状态的应变能密度7-10、7-11、7-12、7-13

1、 最大拉应力理论(第一强度理论)
1 [
2、 最大伸长线应变理论(第二强度理论) 根据:当作用在构件上的外力过大时,其危险点处的材料
就会沿垂直于最大伸长线应变方向的平面发生破坏。 基本假说:最大伸长线应变 1 是引起材料 脆断破坏的因素。
脆断破坏的条件:

1

u


E
u
1 最大伸长线应变 1 [1 ( 2 3)] E
极限应力作为强度指标,除以适当的安全系数 而得。
即根据相应的试验结果建立的强度条件。
二、材料破坏的两种类型(常温、静载荷)
1. 屈服失效(yielding failure): 材料出现显著的塑性 变形 而丧失其正常的工作能力。 2. 断裂失效(fracture failure)
(1)脆性断裂 :
(2)韧性断裂 :
uv
畸变能密度(形状改变能密度)
1 2 ( 1 2 3 )2 6E
u uv ud
ud 1 1 6E

2 2 3 2 3 1 2 2
例9 用能量法证明三个弹性常数间的关系。 纯剪单元体的应变能密度为:
A
xy
3 1
1 2 v 2 2G 纯剪单元体应变能密度以主应力表示为:
1 2 2 2 u 1 2 3 2 1 2 3 2 1 3 2E
1 2 0( ) 2 2 00( ) 2E




1 2 E
无明显的变形下突然断裂。
产生大量塑性变形后断裂。
§ 7-11 四种常用强度理论
引起破坏的某一共同因素
最大拉应力 最大切应力

工程力学 第10章 应力状态分析

工程力学 第10章 应力状态分析

(a) (b)
对于法线为 y′ 的方向面,也可以写出类似的关于σ y′和τy′x′ 的方程。于是,从这些方程 中消去 dA 后,得到关于相互垂直的、任意方向面上正应力和切应力的公式: σ x′=σ x cos2 θ+σ ysin 2 θ-τxycos θsin θ -τyx sin θcos θ σ y′=σ x sin 2 θ+σ ycos2 θ+τxycos θsin θ +τyx sin θcos θ τx′y′=σ xcos θsin θ-σ ysin θcos θ+τxycos2 θ-τyx sin 2 θ τy′x′=-σ xcos θsin θ+σ ysin θcos θ+τxysin 2 θ-τyx cos 2 θ (10-1) (10-2) (10-3) (10-4)
图 10-3 正负号规则
n θ角-从 x 正方向反时针转至 x′正方向者为正;反之为负。 n 正应力—拉为正;压为负。 n 切应力—使微元或其局部产生顺时针方向转动趋势者为正;反之为负。
图 10-3 中所示的θ角及正应力和切应力τxy 均为正;τyx 为负。
10-2-2 微元的局部平衡
为确定平面应力状态中任意方向面(法线为 x′ ,方向角为 θ)上的应力,将微元从任意方 向面处截为两部分。考察其中任意部分,其受力如图 10-3b 所示,假定任意方向面上的正 应力σ x′和切应力τx′y′ 均为正方向。 于是,根据力的平衡方程 ∑ Fx′=0 和 ∑ F y′=0 , 可以写出:
图 10-4 不同坐标系中应力状态的表达形式
或者说从一种坐标系 Oxy 变换到另一坐标系 Ox′ y′ 。例如图 10-4a、b 中所示的两种微元, 若二者的应力满足式(10-1)-(10-4) ,则二者表示了同一点的应力状态。由于坐标系 Ox′ y′ 是任意的,因此,同一点的应力状态可以有无穷多种表达形式。在无穷多种表达形式 中有没有一种简单的、 但又能反映一点应力状态本质内涵的表达形式?为了回答这一问题需 要引入主应力的的概念。

工程力学24373

工程力学24373

方向面的取向(方向角q)有关。因而有可能存在某种方向面,其上
之切应力xy=0,这种方向面称为主平面(principal plane),其
方向角用qp表示。
tan2qp=
-2τ xy x y
主平面上的正应力称为主应力(principal stress)。主平面法线方
向即主应力作用线方向,称为主方向(principal directions).主方
1. 问题的提出 2. 应力的三个重要概念 3. 一点应力状态的描述
第10章 应力状态分析
1. 问题的提出
请看下列实验现象:
低碳钢和铸铁的拉伸实验 低碳钢和铸铁的扭转实验
第10章 应力状态分析
铸铁拉伸实验
低碳钢拉伸实验
韧性材料拉伸时为什么会出现滑移线?
第10章 应力状态分析
低碳钢扭转实验
铸铁扭转实验
与前几章中所采用的平衡方法不同的是,平衡对象既 不是整体杆或某一段杆,也不是微段杆或其一部分,而是 三个方向尺度均为小量的微元局部。解析公式。
此外,本章中还将采用与平衡解析式相比拟的方法, 作为分析和思考问题的一种手段,快速而有效地处理一些 较为复杂的问题,从而避免死背硬记繁琐的解析公式。
第10章 应力状态分析
qqqq q q y x x s i n c o s y s i n c o s x y s i n 2 y x c o s 2
上述结果表明,一点处的应力状态,在不同的坐标系中有不 同的表达形式,即对于同一点,可以用不同取向的微元表示其应 力状态。这相当于将微元连同其坐标轴旋转了一个角度,或者说
x'y'
x'
xy
x'y'
x'

第九章应力状态(3,4,5)

第九章应力状态(3,4,5)

s
3
e3

1 E
s
3

s 1

s 2
例 9-17
边长a =0.1 m的铜质立方体,置于刚性很大的 钢块中的凹坑内(图a),钢块与凹坑之间无间隙。 试求当铜块受均匀分布于顶面的竖向荷载F =300 kN时,铜块内的主应力,最大切应力,以及铜块 的体应变。已知铜的弹性模量E =100 GPa,泊松比
1 2
E
sx sy sz
思考: 各向同性材料制成的构件内一点处,
三个主应力为s1=30 MPa,s2=10 MPa,s3=-40
MPa。现从该点处以平行于主应力的截面取出边 长均为a的单元体,试问:(1) 变形后该单元体的 体积有无变化?(2) 变形后该单元体的三个边长之 比有无变化?
弹性,小变形条件下可以
应用叠加原理,故知x方 向的线应变与正应力之
间的关系为
e x

sx
E


sy
E


sz
E


1 E
sx

sy
sz
同理有
e y

1 E
s
y
s x
s z ,e z

1 E
sz

sx
s
最一般表现形式的空间应力状态中有9个应力
分量,但根据切应力互等定理有txy=tyx,tyz=tzy , txz=tzx,因而独立的应力分量为6个,即sx、sy、sz、 tyx、tzy、tzx。
当空间应力状态的三个主应
力s1、s2、s3已知时(图a),与
任何一个主平面垂直的那些斜截
面(即平行于该主平面上主应力

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算


FP a2
ww w
5
.k hd
b
m
上表面

σa 4 = σb 3
习题 10-7 图
和 ε 2 。证明偏心距 e与 ε1 、 ε 2 之间满足下列关系:
FP

ww w
e=
ε1 − ε 2 h × ε1 + ε 2 6

后 答

FP
M = FP e
习题 10-8 图
解:1,2 两处均为单向应力状态,其正应力分别为: 1 处:
第10章
组合变形与变形杆件的强度计算
10-1 根据杆件横截面正应力分析过程, 中性轴在什么情形下才会通过截面形心?试分析 下列答案中哪一个是正确的。 (A)My = 0 或 Mz = 0, FN ≠ 0 ; (B)My = Mz = 0, FN ≠ 0 ; (C)My = 0,Mz = 0, FN ≠ 0 ; (D) M y ≠ 0 或 M z ≠ 0 , FN = 0 。 正确答案是 D 。 解:只要轴力 FN x ≠ 0 , 则截面形心处其拉压正应力一定不为零, 而其弯曲正应力一定为零, 这样使其合正应力一定不为零,所以其中性轴一定不通过截面形心,所以答案选(D) 。 关于中性轴位置,有以下几种论述,试判断哪一种是正确的。 (A)中性轴不一定在截面内,但如果在截面内它一定通过形心; (B)中性轴只能在截面内并且必须通过截面形心; (C)中性轴只能在截面内,但不一定通过截面形心; (D)中性轴不一定在截面内,而且也不一定通过截面形心。 正确答案是 D 。 解:中性轴上正应力必须为零。由上题结论中性轴不一定过截面形心;另外当轴力引起的 拉(压)应力的绝对值大于弯矩引起的最大压(拉)应力的绝对值时,中性轴均不在截面内, 所以答案选(D) 。 并且垂 10-3 图示悬臂梁中, 集中力 FP1 和 FP2 分别作用在铅垂对称面和水平对称面内, 直于梁的轴线,如图所示。已知 FP1=1.6 kN,FP2=800 N,l=1 m,许用应力 σ =160 MPa。 试确定以下两种情形下梁的横截面尺寸: 1.截面为矩形,h=2b; 2.截面为圆形。

材料力学教程10应力状态

材料力学教程10应力状态

x
y
y
x
x
y
x


x dA
y
y
Fx 0
dA-
x
( dA
cos)cos +
x (dA cos
) sin
+ y
( dA sin ) cos
- y (dAsin) sin
0

Fy 0

-
dA
+ x
(dAcos
)
sin
x
x dA
+x (dAcos) cos - (dAsin ) sin y
50KN
C
C C
MC y IZ
25 103 150 103 12 200 6003 1012
1.04MPa(压应力)
C
QCC SZ IZ b
应力状态
1. 直杆受轴向拉(压)时:
m
F
F
m
2.圆轴扭转时:
N
A
T
3.剪切弯曲的梁:
T
Ip
A
B
M (x) y
QSz
P
Iz
Iz b
FP
S平面
l/2 l/2
max
M max Wz
max
Qmax S z max Iz b
5 4
3
2 1 5
4 3 2
1
低碳钢
铸铁
塑性材料拉伸时为什么会出现滑移线?
低碳钢
铸铁
为什么脆性材料扭转破坏时沿45º螺旋面断开?
第五章 应力状态、强度理论
应力状态的概念及其描述 平面应力状态下的应力分析 主应力、主方向、最大剪应力 三向应力状态特例分析 广义胡克定律 强度理论 结论与讨论 应用实例

应力状态分析和强度理论

应力状态分析和强度理论

03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。

清华出版社工程力学答案-第10章应力状态与强度理论及其工程应用

清华出版社工程力学答案-第10章应力状态与强度理论及其工程应用

eBook工程力学习题详细解答教师用书(第10章)2011-10-1范 钦 珊 教 育 教 学 工 作 室FAN Qin-Shan ,s Education & Teaching Studio习题10-1 习题10-2 习题10-3 习题10-4 习题10-5 习题10-6 习题10-7 习题10-8 习题10-9 习题10-10 习题10-11 习题10-12(a)(a1)x ′习题10-1a 解图工程力学习题详细解答之十第10章 应力状态与强度理论及其工程应用10-1 木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。

试求:1.面内平行于木纹方向的剪应力; 2.垂直于木纹方向的正应力。

(a )题 解:1.平行于木纹方向的剪应力:6.0))15(2cos(0))15(2sin(2)6.1(4=°−×⋅+°−×−−−=′′y x τMPa 2.垂直于木纹方向的正应力:84.30))15(2cos(2)6.1(42)6.1(4−=+°−×−−−+−+−=′x σMPa(b )题 解:(a) 1.25 MPa(b)习题10-1图100 MPa60ºABCσxxyτ1.平行于木纹方向的剪应力:08.1))15(2cos(25.1−=°−×−=′′y x τMPa2.垂直于木纹方向的正应力:625.0))15(2sin()25.1(−=°−×−−=′x σMPa10-2 层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。

若已知胶层剪应力不得超过1MPa 。

试分析是否满足这一要求。

解:2(1)sin(2(60))0.5cos(2(60)) 1.552θτ−−=×−°+⋅×−°=−MPa || 1.55MPa 1θτ=>MPa ,不满足。

第10章应力状态概述

第10章应力状态概述

sx 三个互相垂直的主平面.
主应力:
sz
主平面上的正应力。
z
x 主应力排列规定:按代数值大小,
s2
s 1s 2 s 3
s1 主应力单元体:
由主平面构成的单元体。
s3
六.应力状态的分类: 三向应力状态: 三个主应力都不为零的应力状态。 二向应力状态:一个主应力为零的应力状态。
单向应力状态:一个主应力不为零的应力状态。
s1 17°
x
(e)
解析法:
s max s min
1 2
(s
x
s
y)
1 2
(s x
s y )2
4t
2 x
46.1MPa
26.1MPa
0
1 tg 1 2t x 2 sx sy
16.85o
s 1 46.1MPa, s 2 29MPa, s 3 26.1MPa
t max
s1
s3
2
36.1MPa
t
(c)
s 2 20MPa s 3 26MPa
t
(d)
B
D2
D2
max t
OC
A
s
OC
A
s
D1
s3
s1
D1
s3
s2 s1
最后依据三个主应力值可绘出三个应力圆,如图d。
最大剪应力对应于B点的纵坐标,即
tmax BC 36MPa
作用面与s2平行而与s1成45°角,如图e所示。
s3
tmax s2
s2
s1
t
s3
s2
s3
s1
s3
s2
s2
s1
s3

《工程力学》第 10 章 应力状态理论和强度理论

《工程力学》第 10 章 应力状态理论和强度理论

作应力圆:(1) 注意截面的选取
(2) 注意应力的符号,特别是剪应力 求斜截面上的应力: (1) (2) (3) (4) (5) 找准起始点 角度的旋转以C为圆心 旋转方向相同 2倍角的关系 应力的符号
工程力学电子教案
应力状态理论和强度理论
18
角度的取值范围和对应关系:

y


x
D 2 2 Dx
工程力学电子教案
应力状态理论和强度理论
12
T
T
T I
F
FS
F
x

X

X

M y IZ
QSZ IZb

X

M


X
Y

X

X
工程力学电子教案
应力状态理论和强度理论
13
§10-2 平面应力状态分析


X
Y

Y


x
X
y y
x

X
X
x

Y

Y
1. 求斜截面上的应力
y
平面应力状 态 n
0
dA ( xdA cos ) cos ( xdA cos ) sin ( ydA sin ) sin ( ydA sin ) cos 0
工程力学电子教案
应力状态理论和强度理论
15
y
y
n

Y


X
X


dA
Y



X
x

p
X


x

应力状态及强度理论

应力状态及强度理论

应力张量是一个二阶对称张量, 包含六个独立的分量,可以用 来描述物体的应力状态。
主应力和应力张量可以通过计 算得到,它们是描述物体应力 状态的重要参数。
02
强度理论
第一强度理论
总结词
最大拉应力准则
详细描述
该理论认为材料达到破坏是由于最大拉应力达到极限值,不考虑剪切应力和压 力的影响。
第二强度理论
05
实际应用
航空航天领域
飞机结构强度分析
利用应力状态及强度理论,对飞 机各部件的受力状态进行详细分 析,确保飞机在各种工况下的结 构安全。
航天器材料选择
根据材料的应力-应变关系,选择 适合航天器发射和运行阶段的材 料,确保航天器的可靠性和寿命。
航空材料疲劳寿命
评估
通过应力状态及强度理论,评估 航空材料的疲劳寿命,预防因疲 劳引起的结构失效。
03
材料失效分析
弹性失效
总结词
材料在弹性阶段发生的失效。
详细描述
当材料受到的应力超过其弹性极限时 ,会发生弹性失效。这种失效通常表 现为突然断裂或大幅度变形,且材料 不具有恢复原状的能力。
塑性失效
总结词
材料在塑性阶段发生的失效。
详细描述
当材料受到的应力超过其屈服点后,会发生塑性失效。这种 失效表现为材料发生较大的塑性变形,无法保持其原始形状 和尺寸。
土木工程领域
桥梁承载能力分析
通过对桥梁的应力分布和承载能力的分析,确保桥梁在设计寿命 内的安全性和稳定性。
建筑结构抗震设计
利用强度理论,对建筑结构进行抗震设计,提高建筑物的抗震能 力,减少地震灾害的影响。
岩土工程稳定性分析
通过对岩土工程的应力状态和强度理论的分析,评估岩土工程的 稳定性和安全性。

《工程力学》第十章 弯曲应力

《工程力学》第十章 弯曲应力

• 三、静力学关系
• 自纯弯曲的梁中截开一个横截
面来分析,如图10-5所示,图
中y轴为横截面的对称轴;z轴
为中性轴,z轴的确切位置待
定。在截面中取一微面积dA,
作用于其上的法向内力元素为
σdA,截面上各处的法向内力
图10-5
元素构成了一个空间平行力系。
• 由于梁弯曲时横截面上没有轴向外力,所以
这些内力元素的合力在x方向的分量应等于
• 图10-3所示。
图10-3
图10-4的对称轴,z轴与截面的中性轴重 合,如图10-4所示,至于中性轴的确切位 置,暂未确定。现研究距中性层y处纵向 纤维ab
• 由平截面规律知,在梁变形后该微段梁两
端相对地旋转了一个角度d ,如果以ρ代
表梁变曲后中性层
《工程力学》第十章 弯曲应力
§10-1梁弯曲时的正应力 设一简支梁如图10-1(a)所示,其上作用两个对称的集中 力P。此时在靠近支座的AC,DB两段内,各横截面上同 时有弯矩M和剪力Q,这种情况的弯曲,称为剪切变曲; 在中段CD内的各横截面上,则只有弯矩M,而无剪力Q, 这种情况的弯曲,称为纯弯曲。为了更集中地分析正应力
(10-15) • Wz称为抗弯截面模量,它是衡量横截面抗
弯强度的一个几何量,其值与横截面的形 状和尺寸有关,单位为米3(m3)或厘米 3(cm3)。对于矩形截面(图10-9)
(10-16)
• 对于圆形截面(图10-10(a)), (10-17)
• 对于空心圆形截面(图10-10(b)),
(10-18)
• (1)若梁较短或载荷很靠近支座,这时梁的最大 弯矩Mmax可能很小,而最大剪应力Qmax却 相对地较大,如果按这时的Mmax来设计截面 尺寸,就不一定能满足剪应力的强度条件;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 应力与应变分析
第一节 应力状态的概念 第二节 平面应力状态下的应力研究、应力圆 第三节 三向应力状态下的最大应力 第四节 广义虎克定律 第五节 三向应力状态下的变形比能
第一节 应力状态的概念
应力与应变分析
一、一点的应力状态
1.一点的应力状态:通过受力构件一点处各个不同截面
上的应力情况。
2.研究应力状态的目的:找出该点的最大正应力和剪应力
应力与应变分析
①只有一个主应力不为零称单向应力状态;
②只有一个主应力为零称两向应力状态(平面应力状态);
③三个主应力均不为零称三向应力状态(空间应力状态);
④单向应力状态又称简单应力状态,平面和空间应 力状态又称复杂应力状态。
第二节 平面应力状态下的 应力研究、应力圆
一、平面应力分析的解析法
1.平面应力状态图示:
02t2t 2
tg2a00t a045o 3)s1s't, s20, s3s''t
②单元体各个面上的应力已知或可求;
③几种受力情况下截取单元体方法:
P
P
Me B
Me
A
s A sP/A
B tMe/Wn
a) 一对横截面,两对纵截面 P
Me
b) 横截面,周向面,直径面各一对
C Me
c) 同b),但从 上表面截取
sC
t
s
P A
B C
sA
A
sA
B
tB
tC
sC
C
sC
三、应力状态分类(按主应力) Nhomakorabea4.极值切应力:
应力与应变分析
①令:
dt a 0,可求出两个相差90o 的 da
tg2a1
sx sy 2txy
a1,代表两个相互垂直的极值切应力方位。
②极值切应力: t t" ' sx 2sy2t2 xys 2s" ③ tg2a0tg21a1 (极值切应力平面与主平面成45o)
txy箭头指向第几象限 (一、四),则s'(较大主应 力)在第几象限,即先判断 s' 大 致 方 位 , 再 判 断 其 与 算得的a0相对应,还是与 a0+90o相对应。
⑥ s ' s " s x s y s a s a 9o0
ss" '
a0 *
ttxyxy a0 *
ss"'
数值及所在截面的方位,以便研究构件破坏原因并进行失效分 析。
二、研究应力状态的方法—单元体法
1.单元体:围绕构件内一所截取的微小正六面体。
Z sz
应力与应变分析
sy z
tzy
tzx
txy
tyx
tyz
txz O
txy
sx
tzy
tzx
sx
txz tyz tyx
dz sy
Y
dx
X O
y
x
dy sz
2.单元体上的应力分量
应力与应变分析
(1)应力分量的角标规定:第一角标表示应力作用面,第二 角标表示应力平行的轴,两角标相同时,只用一个角标表示。
(2)面的方位用其法线方向表示
t y z t z, yt z x t x, z t x y t yx
3.截取原始单元体的方法、原则
①用三个坐标轴(笛卡尔坐标和极坐标,依问题和构件形状 而定)在一点截取,因其微小,统一看成微小正六面体
(txd y A coas)sia n(tyxdA sia n)coas 0
t 0:ta dA (sxdc Aoa)ssia n(sydA sia n)coas
(txd y A coas)coas(tyd x A sia n)sia n 0

tsaassxx 2 2ssyysisn2xa 2styxcycoo2s2asatxysin2a
论 体
并证 s's明 "s: asa90oC(同一 任意垂直 应平 力面 之上 和)正 为
例92 分析圆轴扭转时的应力状态。
Me AD BC
s1
s3
t s3 ABCD s1
Me
45o x
-45o
分析圆轴扭转时的应力状态
解:1)围绕圆轴外表面一点取
单元体ABCD:tMe /Wn
2)s s'''02
符号规定:
应力与应变分析
a角—以x轴正向为起线,逆时针旋转为正,反之为负
s拉为正,压为负
t—使微元产生顺时针转动趋势者为正,反之为负
3.主应力及其方位:
①由主平面定义,令t =0,得:
tan2a0
2txy sx sy
可求出两个相差90o的a0值,对应两个互相垂直主平面。
②令
ds a da
例一 图示单元体,试求:①a=30o斜
截面上的应力; ②主应力并画出主单元 40 体;③极值切应力。
s" 40
20
sa 20 s'
30
a
143.90o
s'
ta
解1: )sa239.082M 40P30a240co6s0o(20)sin 60o
单位:sM" Pa
ta30240sin 60o(20)co6s0o20.3MPa
应力与应变分析
sy
sx
sx
tyx txy sy
sx
sx
txy tyx sy
2.任意a角斜截面上的应力
y sy
t
应力与应变分析
n
sx
sx x
txy
ssxtxxy a

a
dA

x
tyx sy
sy tyx
n 0:sa dA (sxdc Aoa)scoa s(sydA sia n)sia n
0
得:
tan2a0
2txy sx sy
即主平面上的正应力取得所有方向上的极值。
③主应力大小:
应力与应变分析
s s"' sx 2sysx 2sy2tx 2y(s's")
④由s'、s"、0按代数值大小排序得出:s1≥s2≥s3
⑤判断s'、s"作用方位(与两个a0如何对应)
2)ss'''30240 3024022023455..33M MPPaa
s1s'35.3MP, as20,s3s''45.3MPa
tg2a0302400 a014.9o,主单元体
3)tt'''s'2s''40.3MPa4)元 讨
应力与应变分析
1. ①主平面:单元体上剪应力为零的面;
②主单元体:各面均为主平面的单元体,单元体上有三对 主平面;
z
sz
tzy
tzx
tyz
txz
sy y
sx txy tyx x
x'
s1 旋转
z' s3
s2 y'
③主应力:主平面上的正应力,用s1、s2、s3 表示, 有s1≥s2≥s3。
2.应力状态按主应力分类:
相关文档
最新文档