陕西省中考数学考点题对题题一次函数的实际应用题
2025学年中考数学专题复习:分配方案问题(一次函数的综合实际应用)
2025学年九年级中考数学专题复习分配方案问题(一次函数的综合实际应用)一、解答题1.为复学做好防疫准备,乐乐妈妈去药店为乐乐购买口罩和免洗洗手液结账时,一顾客买5包口罩和一瓶洗手液共花费112元;乐乐妈妈为乐乐买了8包口罩和2瓶洗手液共花费184元.(1)求一包口罩和一瓶洗手液的价格;(2)由于全班同学都需要防疫物品,乐乐妈妈想联合班级其他学生家长进行团购,药店老板给出了口罩的两种优惠方式:方式一:每包口罩打九折;方式二:购买40包口罩按原价,超出40包的部分打八折.设乐乐妈妈团购x包口罩花费的总费用为y元,请分别写出y与x的关系式;(3)已知每位家长都要为孩子准备8包口罩,乐乐妈妈根据联合家长的人数应如何选择优惠方式2.为接新年,美丽的英语老师组织同学开展娱乐赛活动,班级计划购进A、B两种奖品共21件,已知A种奖品每件9元,B种奖品每件7元,设购头B种奖品x件,购买两种奖品所需费为y元,(1)求y与x的函数关系式;(2)若购买B种奖品的数量少于A种奖品的数量,请给出一种最省费用的方案,求出该方案所需费用.3.某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 元,求y关于x的函数关系式;(2)试问有无可能一天获得总租金是80050元?若有可能,请写出相应的调运方案;若无可能,请说明理由.4.咸阳是中国农业文明的发祥地,果业作为全市的支柱产业,近些年,咸阳市的果业规模迅速扩大,果品质量逐年提升,果业效益显著提升,已成为陕西第一果业大市.一家果业加工厂承担出口某种水果的加工任务,有一批水果需要装入某一规格的礼盒,而这种礼盒的来源有两种方案可供选择:方案一:从礼盒加工厂订购,购买礼盒所需费用为1y(元);方案二:由该果业加工厂租赁机器,自己加工制作这种礼盒,所需费用(包括租赁机器的费用和生产礼盒的费用)为2y(元).其中1y(元)、2y(元)与礼盒数x(个)满足如图所示的函数关系,根据图象解答下列问题:y与x之间的函数关系式;(1)请分别求出1y、2(2)若该果业加工厂需要这种礼盒2000个,你认为选择哪种方案更省钱?并说明理由;(3)当该果业加工厂需要这种礼盒多少个时,选择两种方案所需的费用相同?5.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物质援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物质共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物质,且必须装满.根据下表提供的信息,解答以下问题:每吨物资运费(元)120016001000(1)若有9架飞机装运口罩,有a架飞机装运消毒剂,求a的值;(2)若有x架飞机装运口罩,有y架飞机装运消毒剂,求y与x之间的函数关系式;(3)如果装运每种医疗物质的飞机都不少于4架,那么飞机的安排方案有几种?这些方案中,若要使此次物质运费最小,应采取哪个方案?6.A城有肥料200t,B城有肥料300t.现要把这些肥料全部运往C,D两乡.从A城往C,D两乡运肥料的费用分别为20元/t和25元/t;从B城往C,D两乡运肥料的费用分别为15元/t和24元/t.现C乡需要肥料240t,D乡需要肥料260t.设A城运往C乡肥料x(吨),总调运费y(元).请完成下列问题:(1)求y关于x的函数解析式;(2)求x的取值范围;(3)怎样调运可使总运费最少.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案.(2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?8.众志成城抗灾情,全国人民在行动.某公司决定安排大、小货车共30辆,运送390吨物资到A地和B地,支援当地抗击灾情.每辆大货车装15吨物资,每辆小货车装10吨物资,这30辆货车恰好装完这批物资.已知这两种货车的运费如下表:现安排上述装好物资的30辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的20辆前往A地,其余前往B地,设前往A地的大货车有m辆,这20辆货车的总运费为w元.A地(元/辆)B地(元/辆)大货车8001000小货车500600(1)这30辆货车中,大货车、小货车各有多少辆?(2)求w与m的函数解析式,并直接写出m的取值范围.(3)若运往A地的物资不多于260吨,求总运费w的最小值,并写出运输方案9.2019年4月25日至27日,第二届“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议.我国准备将A地的茶叶1000吨和B地的茶叶500吨销往“一带一路”沿线的C地和D地,C地和D地对茶叶需求分别为900吨和600吨,已知从A、B两地运茶叶到C、D两地的运费(元/吨)如下表所示,设A地运到C地的茶叶为x吨,(1)用含x的代数式填空:A地运往D地的茶叶吨数为___________,B地运往C地的茶叶吨数为___________,B地运往D地的茶叶吨数为___________.(2)用含x(吨)的代数式表示总运费W(元),并直接写出自变量x的取值范围;(3)求最低总运费,并说明总运费最低时的运送方案.10.某工厂现有甲种原料360 kg,乙种原料290 kg,计划利用这两种原料生产A,B两种产品共50件.已知生产1件A种产品,需要甲种原料9 kg,乙种原料3 kg,可获利润700元;生产1件B 种产品,需要甲种原料4 kg,乙种原料10 kg,可获利润1 200元.(1)按要求安排A,B两种产品的生产件数,有哪几种方案?请设计出来.(2)设生产A,B两种产品所获总利润为y(元),其中一种产品的生产件数为x,试写出y关于x的函数解析式,并利用函数的性质说明(1)中哪种生产方案所获总利润最大,最大利润是多少. 11.某商场购进甲、乙两种商品,每个乙种商品的价格比每个甲种商品的价格2倍少20元,用900元购进甲种商品的数量与用1200元购进乙种商品的数量相同,请回答下列问题:(1)求每个甲、乙两种商品的进价分别是多少元?(2)若商场从厂家购进甲、乙两种商品共100个,且甲种商品的数量不多于乙种商品的数量,设购进甲x个,总成本是y元,求y与x的函数关系式,并求出最少成本的方案和最少成本;(3)用(2)中的最少成本的27再次同时购进甲、乙两种商品,在钱全部用尽的情况下,请直接写出再次购进甲、乙两种商品有多少种方案.12.运城有甲、乙两家葡萄采摘园的葡萄销售价格相同,中秋期间,两家采摘园推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的葡萄六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的葡萄按售价付款。
初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)
一次函数的几何应用,一次函数的实际问题一、选择5、(陕西省)如图,直线对应的函数表达式是()答案: A9、( 江苏常州 ) 甲、乙两同学骑自行车从 A 地沿同一条路到 B 地, 已知乙比甲先出发 , 他们离出发地的距离 s(km) 和骑行时间 t(h) 之间的函数关系如图所示 , 给出下列说法 : 【】(1)他们都骑行了 20km;(2)乙在途中停留了 0.5h;(3)甲、乙两人同时到达目的地 ;(4)相遇后 , 甲的速度小于乙的速度 .根据图象信息 , 以上说法正确的有A.1 个B.2 个C.3 个D.4 个答案: B10、 ( 湖北仙桃等 ) 如图,三个大小相同的正方形拼成六边形,一动点从点出发沿着→→→→ 方向匀速运动,最后到达点. 运动过程中的面积()随时间( t )变化的图象大致是()答案: B11、( 黑龙江哈尔滨 )9 .小亮每天从家去学校上学行走的路程为900 米,某天他从家去上学时以每分 30 米的速度行走了 450 米,为了不迟到他加快了速度,以每分 45 米的速度行走完剩下的路程,那么小亮行走过的路程 S(米)与他行走的时间 t (分)之间的函数关系用图象表示正确的是().答案: D12、(黑龙江)5月23日8时40分,哈尔滨铁路局一列满载着2400 吨“爱心”大米的专列向四川灾区进发,途中除 3 次因更换车头等原因必须停车外,一路快速行驶,经过 80 小时到达成都.描述上述过程的大致图象是()答案: D13、(湖北天门)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度 h 随时间 t 的变化规律如图所示 ( 图中 OABC为一折线 ) ,这个容器的形状是图中().答案: A14、( 湖南怀化 ) 如图 1,是张老师晚上出门散步时离家的距离与时间之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()答案:D15、(山东济南)济南市某储运部紧急调拨一批物资,调进物资共用 4 小时,调进物资 2 小时后开始调出物资(调进物资与调出物资的速度均保持不变). 储运部库存物资 S(吨)与时间 t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4 小时 B.4.4小时 C.4.8小时D.5 小时答案: B16、( 重庆 ) 如图,在直角梯形 ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点 M从点 D 出发,以 1cm/s 的速度向点 C 运动,点 N 从点 B 同时出发,以 2cm/s 的速度向点 A 运动,当其中一个动点到达端点停止运动时,另一个动点2也随之停止运动 . 则四边形 AMND的面积 y(cm)与两动点运动的时间 t (s)的函数图象大致答案: D二、填空1、(江苏省南通市)将点A(, 0)绕着原点顺时针方向旋转45°角得到点B,则点 B 的坐标是 ________.答案:( 4,- 4)2、(江苏省无锡市)已知平面上四点,,,,直线将四边形分成面积相等的两部分,则的值为答案:.3、(江苏省苏州市) 6 月 1 日起,某超市开始有偿提供可重复使用的三种环保..购物袋,每只售价分别为 1 元、 2 元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、 5 公斤和 8 公斤. 6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们选购的 3 只环保购物袋至少应付..给超市元.答案: 8、湖北荆门 ) 如图,l 1反映了某公司的销售收入与销量的关系, l 24 (反映了该公司产品的销售成本与销量的关系,当该公司赢利 ( 收入大于成本 )时,销售量必须 ____________.答案:大于 45、(山东烟台)如图是某工程队在“村村通”工程中,修筑的公路长度(米)与时间(天)之间的关系图象. 根据图象提供的信息,可知该公路的长度是______米.答案: 504三、解答题1、(湖北襄樊)我国是世界上严重缺水的国家之一. 为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费 . 即一月用水 10 吨以内 ( 包括 10 吨 ) 用户 , 每吨收水费 a 元 ; 一月用水超过 10 吨的用户 ,10 吨水仍按每吨 a 元水费 , 超过的部分每吨按 b 元(b>a) 收费 . 设一户居民月用水 y 元 ,y 与 x 之间的函数关系如图所示 .(1) 求 a 的值 , 若某户居民上月用水8 吨 , 应收水费多少元 ?(2)求 b 的值 , 并写出当 x 大于 10 时 ,y 与 x 之间的函数关系 ;(3)已知居民甲上月比居民乙多用水 4 吨, 两家共收水费 46元 , 求他们上月分别用水多少吨 ?解:( 1)当 x≤ 10 时,有 y=ax.将x=10,y=15代入,得a=1.5用水 8 吨应收水费 8×1.5=12 (元)(2)当 x>10 时,有(3)将 x=20,y=35 代入,得 35=10b+15. b=2(4)故当 x>10 时, y=2x- 5(5)因 1.5 ×10+1.5 ×10+2×4<46.所以甲、乙两家上月用水均超过10 吨则解之,得故居民甲上月用水16 吨,居民乙上月用水12 吨2、(湖北孝感)某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:(一)每位职工在年初需缴纳医疗公积金m元;(二)职工个人当年治病花费的医疗费年底按表 1 的办法分段处理:表 1分段方式处理办法不超过 150 元(含 150 元)全部由个人承担超过 150 元,不超过 10000 元(不含 150个人承担n%,剩余部分由公司承担元,含 10000 元)的部分超过 10000 元(不含 10000 元)的部分全部由公司承担设一职工当年治病花费的医疗费为x 元,他个人实际承担的费用(包括医疗费个人承担的部分和缴纳的医疗公积金m元)为 y 元( 1)由表 1 可知,当时,;那么,当时,y=;(用含 m、 n、x 的方式表示)(2)该公司职工小陈和大李 2007 年治病花费的医疗费和他们个人实际承担的费用如表 2:职工治病花费的医疗费 x(元)个人实际承担的费用 y(元)小陈300280大李500320请根据表 2 中的信息,求 m、n 的值,并求出当时, y 关于 x 函数解析式;(3)该公司职工个人一年因病实际承担费用最多只需要多少元?(直接写出结果)解: 1)(2)由表2 知,小陈和大李的医疗费超过150 元而小于10000 元,因此有:( 3)个人实际承担的费用最多只需2220 元。
陕西十年中考一次函数考题集锦
陕西历年中考一次函数考题集锦1.(2018陕西本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.2.(2017年)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.、3.(2016陕西本题满分7分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛创新大赛,赛后,他当天按原路返回,如图是小明昨天出行的过程中,他去西安的距离y(千米)与他离家的时间x(时)之间的函数图像根据图像回答下列问题:(1)求线段AB所表示的函数关系式(2)已知,昨天下午3点时,小明距西安112千米,求他何时到家?4.(2015年陕西本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。
中考数学考点:专题(50)函数的应用(含答案)
专题50 函数的应用 聚焦考点☆温习理解1.函数的应用主要涉及到经济决策、市场经济等方面的应用.2.利用函数知识解应用题的一般步骤: (1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案.3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.名师点睛☆典例分类考点典例一、一次函数相关应用题【例1】 (2015.陕西省,第21题,7分)(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。
假设组团参加甲、乙两家旅行社两日游的人数均为x 人。
(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。
【答案】(1)甲旅行社:x 85.0640y ⨯==x 544.乙旅行社:当20x ≤时,x 9.0640y ⨯==x 576.当x>20时,20)-x 0.75640209.0640y (⨯+⨯⨯==1920x 480+.(2)胡老师选择乙旅行社.【解析】×人数;乙总费用y=20个人九折的费用+超过的人数×报价×打折率,列出y关于x的函数关系式,(2)根据人数计算出甲乙两家的费用再比较大小,哪家小就选择哪家.考点:一次函数的应用、分类思想的应用.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.【举一反三】(2015·黑龙江哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。
陕西中考题一次函数应用题所有类型题详细分析
一次函数应用题表格题出题类型:设置两问,第一问根据题意及表格写出函数表达式,第二问与不等式和一次函数性质结合求最值。
中考题解析:1.(本题满分8分)某厂准备购买A、B、C三种配件共1000件,要求购买时C配件的件数是A配件件数的4倍,B配件不超过400件,且每种配件必须买.三种配件的价格如下表:配件 A B C价格(元/件)30 50 80现在假设购买A配件x(件),买全部配件所需的总费用为y(元).(1)求y 与x之间的函数关系式;(2)要使买全部配件所需的总费用最少,三种配件应各买多少件?所需的总费用最少多少元?1. (2014年黑龙江龙东地区10分)我市为改善农村生活条件,满足居民清洁能源的需求,计划为万宝村400户居民修建A、B两种型号的沼气池共24个.政府出资36万元,其余资金从各户筹集.两种沼气池的型号、修建费用、可供使用户数、占地面积如下表:池共需费用y万元.(1)求y与x之间函数关系式.(2)试问有哪几种满足上述要求的修建方案.(3)要想完成这项工程,每户居民平均至少应筹集多少钱?2. (2014年湖北天门学业10分)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以13元/千克的价格销售,那么每天可获取利润750元.【利润=(销售价-进价) 销售量】(1)请根据他们的对话填写下表:(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?3. (2014年湖南湘西12分)湘西盛产椪柑,春节期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品质的椪柑120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品质的椪柑,每种椪柑所用车辆部不少于3辆.(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,根据下表提供的信息,求出y与x之间的函数关系式;椪柑品种 A B C每辆汽车运载量10 8 6每吨椪柑获利(元)800 1200 1000(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案;(3)为了减少椪柑积压,湘西州制定出台了促进椪柑销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对外地运销客户,按每吨50元的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?并求出利润W(元)的最大值?4. (2012青海西宁10分)2012年6月9日召开的青海省居民阶梯电价听证会,征求了消费者、经营者和有关方面的意见,对青海省居民阶梯电价发、方案的必要性、可行性进行了论证.阶梯电价方案规定:若每月用电量为130度以下,收费标准为0.38元/度;若每月用电量为131度~230度,收费标准由两部分组成:①其中130度,按0.38元/度收费,②超出130度的部分按0.42元/度收费.现提供一居民某月电费发票的部分信息如下表所示:根据以上提供的信息解答下列问题:(1)如果月用电量用x(度)来表示,实付金额用y(元)来表示,请你写出这两种情况实付金额y 与月用电量x 之间的函数关系式;(2)请你根据表中本月实付金额计算这个家庭本月的实际用电量;(3)若小芳和小华家一个月的实际用电量分别为80度和150度,则实付金额分别为多少元?青海省居民电费专用发票计费期限:一个月用电量(度)单价(元/度)阶梯一:1300.38 阶梯二:131~230(超出部分) 0.42本月实付金额:78.8(元)(大写)柒拾捌元捌角第二 联图像题出题类型:设置两到三问,学会看懂图表并与题意结合,与一次函数解析式的求解及图像之间交点问题考察较多。
2024陕西中考数学二轮专题训练 题型十 一次函数实际应用题 (含答案)
2024陕西中考数学二轮专题训练题型十一次函数实际应用题
类型一文字型
【类型解读】文字型函数实际应用题近10年考查4次,分值为7或8分.考查形式:气温随高度变化情况(2020)、阶梯收费问题(2次)、空气含氧量问题(2020),设问均为两问.考查特点:求一次函数表达式(必考)、解一元一次方程(3考).
1.[跨学科知识]科学家研究发现,声音在空气中传播的速度y(m/s)(简称:音速)与气温x(℃)有关,当气温每升高5℃时,音速提高3m/s,已知当气温为0℃时,音速为331m/s.
(1)求y与x之间的函数关系式;
(2)2021年6月17日,小明在电视机前观看神舟十二号载人飞船发射(由A摄影机拍摄),他发现从火箭点火到听到火箭升空声音经过了5s,已知火箭发射时的气温约为22℃,求A 摄影机距离发射架的距离约为多少?(忽略电视传输信号等时间)
2.李叔叔承包了一片土地种植某种经济作物,为了提高产量,通常会采用喷施药物的方法控制其高度.已知该种经济作物的平均高度y(m)与每公顷所喷施药物的质量x(kg)之间的关系近似地满足一次函数关系.已知当每公顷喷施药物5kg时,该种经济作物的平均高度为1.8m,当每公顷喷施药物10kg时,该种经济作物的平均高度为0.6m.
(1)求出y与x之间的函数关系式,并写出x的取值范围;
(2)根据李叔叔的经验,该种经济作物平均高度在1.5m左右时,它的产量最高,此时每公顷应喷施多少药物?。
2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)(提升篇)(含答案)
2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)姓名:___________班级:___________考号:___________1.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,图中的折线表示两车之间距离()kmy与慢车行驶时间()h x之间的函数关系图象,请根据图象提供的信息回答:(1)快车的速度是______km/h.(2)求线段BC所表示的函数关系式.(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同,直接写出第二列快车出发多长时间与慢车相距200km.2.A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中12,分别表示甲、乙l l两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.(1)求点A的坐标,并说明其实际意义;(2)甲出发多少时间,两人之间的距离恰好相距5km;(3)若用y3(km)表示甲、乙两人之间的距离,请在坐标系(图3)中画出y3(km)关于时间x(h)的函数关系图象,注明关键点的数据.3.快车甲和慢车乙分别从A、B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息.解答下列问题:(1)直接写出快、慢两车的速度及A、B两站间的距离;(2)求快车从B返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.4.甲、乙两人从相距4千米的两地同时、同向出发,乙每小时走4千米,小狗随甲一起同向出发,小狗追上乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直匀速跑下去.如图,折线A B C--,A D E--分别表示甲、小狗在行进过程中,y与甲行进时间x(h)之间的部分函数图象.离乙的路程()km(1)求AB所在直线的函数解析式;(2)小狗的速度为______km/h;求点E的坐标;(3) 小狗从出发到它折返后第一次与甲相遇的过程中,求x为何值时,它离乙的路程与离甲的路程相等?5.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发.设普通列车行驶的时间为x(小时),两车之间的距离为y(千米).图中的折线表示y与x之间的函数关系图像.求:(1)甲、乙两地相距______千米;(2)求动车和普通列车的速度;(3)求C点坐标和直线CD解析式;(4)求普通列车行驶多少小时后,两车相距1000千米.6.甲、乙两车分别从A,B两地同时出发,匀速行驶,先相向而行.途中乙车因故停留1小时,然后以原速继续向A地行驶,甲车到达B地后,立即按原路原速返回A地(甲车掉头的时间忽略不计),到达A地后停止行驶,原地休息;甲、乙两车距B地的路程y(千米)与所用时间x (时)之间的函数图象如图,请结合图象信息解答下列问题:(1)乙车的速度为千米/时,在图中的()内应填上的数是.(2)求甲车从B地返回A地的过程中,y与x的函数关系式.(3)两车出发后几小时相距120千米,请直接写出答案:时.7.甲、乙两人从A地前往B地,先到终点的人在原地休息.已知甲先出发30s后,乙才出发.在运动过程中,甲、乙两人离A地的距离分别为1y(单位:m)、2y(单位:m),都是甲出发时间x(单位:s)的函数,它们的图象如图①.设甲的速度为1v m/s,乙的速度为2v m/s.(1)12:v v=______,=a______;(2)求2y与x之间的函数表达式;(3)在图②中画出甲、乙两人之间的距离s(单位:m)与甲出发时间x(单位:s)之间的函数图象.8.小明从学校出发,匀速骑行前往距离学校2400米的图书馆,小明出发的同时,同学小阳以每分钟80米的速度从图书馆沿同一条道路步行回学校,两人距离学校的路程y(单位:米)与小明从学校出发的时间x(单位:分钟)的函数图象如图所示.(1)点C的坐标为_________;(2)求直线BC的表达式;(3)若小明在图书馆停留7分钟后沿原路按原速返回,请补全小明距离学校的路程y与x的函数图象;(4)在(3)的基础上,小明能否在返校途中追上小阳?若能,请计算此时两人与学校之间的距离;若不能,请说明理由.9.如图,已知:平面直角坐标系中,正比例函数y=kx(k≠0)的图象经过点A(﹣2,﹣2),点B是第二象限内一点,且点B的横、纵坐标分别是一元二次方程x2﹣36=0的两个根.过点B作BC⊥x轴于点C.(1)直接写出k的值和点B的坐标:k=;B(,);(2)点P从点C出发,以每秒1个单位长度的速度沿x轴向右运动,设运动时间为t,若△BPO 的面积是S,试求出S关于t的函数解析式(直接写出t的取值范围)(3)在(2)的条件下,当S=6时,以PQ为一边向直线PQ下方作正方形PQRS,求点R 的坐标.10.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶,乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.根据图像回答下列问题:(1)乙车行驶小时追上了甲车.(2)乙车的速度是;(3)m=;(4)点H的坐标是;(5)n=.11.已知矩形ABCD中,AB=4米,BC=6米,E为BC中点,动点P以2米/秒的速度从A 出发,沿着△AED的边,按照A→E→D→A顺序环行一周,设P从A出发经过x秒后,△ABP 的面积为y(平方米),求y与x间的函数关系式.12.某兴趣小组利用计算机进行电子虫运动实验.如图1,在相距100个单位长度的线段AB 上,电子虫甲从端点A出发,匀速往返于端点A、B之间,电子虫乙同时从端点B出发,设定不低于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员重点探究了甲、乙迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.设甲、乙第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.(1)请直接写出:当x=20时,y的值为_________;当x=40时,y的值为________;(2)兴趣小组成员发现了y与x的函数关系,并画出了部分函数图像(如图2中的线段OM,但不包括点O,因此点O用空心画出)①请直接写出:a=_______;②分别求出各部分图像对应的函数解析式,并在图2中补全函数图像,标出关键点的坐标;(2)小黄在距离学校多少米处遭遇堵车?从小黄遇到堵车到小吴追上小黄用了多少时间?(3)小吴和小黄何时相距520m?15.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)点A的实际意义是什么?(2)求甲、乙两人的速度;(3)求OC和BD的函数关系式;(4)求学校和博物馆之间的距离.16.甲乙两人沿相同的路线同时登山甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲距地面的高度y(米)与登山时间x(分)之间的函数关系式为:y 甲.(2)若乙提速后,乙的速度是甲登山速度的3倍,登山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?答案:21200 430v=15 6v∴=⨯30 a∴=⨯。
陕西中考21题 一次函数实际应用
、两种竹编工艺品1. (2012 四川省眉山市) 青神竹编,工艺精美,受到人们的喜爱,有一客商到青神采购A B、两种竹编工艺品共60件,所需总费用为回去销售,其进价和回去的售价如右表所示,若该客商计划采购A By元,其中A型工艺品x件.(1)请写出y与x之间的函数关系式;(不求出x的取值范围)(2)若该客商采购的B型工艺品不少于14件,且所获总利润要求不低于2500元,那么他有几种采购方案?写出每种采购方案,并求出最大利润.2. (2013 内蒙古包头市) 某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天所获利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?3. (2013 浙江省宁波市) 某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进这两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价-进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.4. (2013 湖北省十堰市) 某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?答案 一、应用题1. 解:(1)()1508060y x x =+-704800x =+3分 (2)由题意得:()()()601420015010080602500x x x -⎧⎪⎨-+--⎪⎩≥≥5分解之得:130463x ≤≤ ∵x 为正整数 ∴44x =或45或46 6分∴有如下三种方案:方案一:购买A 型工艺品44件,B 型工艺品16件; 总利润为:445016202520⨯+⨯=(元) 方案二:购买A 型工艺品45件,B 型工艺品15件; 总利润为:455015202550⨯+⨯=(元) 方案三:购买A 型工艺品46件,B 型工艺品14件; 总利润为:465014202580⨯+⨯=(元)综上所述第三种方案所获利润最大,最大利润为2580元9分2. 解:(1)根据题意可得,()121001010180y x x =⨯+-⨯,60018000y x ∴=-+.(3分)(2)当14400y =时,有1440060018000x =-+, 解得,6x =,∴要派6名工人去生产甲种产品.(5分)(3)根据题意可得,15600y =,即:6001800015600x -+≥, 解得4x ≤.(8分)∴106x -≥.∴至少要派6名工人去生产乙种产品才合适.(10分)3.解:(1)设商场计划购进甲种手机x 部,乙种手机y 部,由题意得:0.40.2515.50.030.05 2.1x y x y +=⎧⎨+=⎩,.(3分)························· 解得:2030x y =⎧⎨=⎩,.(5分)············· 答:该商场计划购进甲种手机20部,乙种手机30部. (2)设甲种手机减少数量为a 部, 则乙种手机增加数量为2a 部,由题意得: 0.4(20-a )+0.25(30+2a )≤16,(7分) 解得:5a ≤.(8分)设全部销售后获得的毛利润为W 万元, 则0.03(20)0.05(302)0.07 2.1Wa a a =-++=+.(9分)W 随着a 的增大而增大,∴当5a =时,W 有最大值,此时0.075 2.1 2.45W =⨯+=.(10分)答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利最大,最大毛利润是2.45万元.(12分)4. 解:设商场应购进A 型台灯x 盏,则B 型台灯为(100)x -盏,(1)根据题意得:3050(100)3500x x +-=. 解得:75x =,10025x ∴-=.答:应购进A 型台灯75盏,B 型台灯25盏. (2)设商场销售完这批台灯可获利y 元,则(4530)(7050)(100)y x x =-+-- 1520(100)x x =+-52000x =-+.由题意得:1003x x -≤,解得:x ≥25 50k =-< ,y ∴随x 的增大而减小,∴当25x =时,y 取得最大值:52520001875-⨯+=答:商场购进A 型台灯25盏,B 型台灯75盏,销售完这批台灯获利最多,此时利润为1875元.。
西安市初中数学一次函数知识点训练附答案
西安市初中数学一次函数知识点训练附答案一、选择题1.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【答案】C【解析】【分析】 由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案.【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3),∴-3=-6+b ,解得:b=3,∴一次函数的解析式为y=-6x+3,∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴,∴这个一次函数的图象一定经过一、二、四象限,故选:C .【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.2.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】 解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意;②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( )A .0b <B .2b <C .02b <<D .0b <或2b >【答案】D【解析】【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2.【详解】解∵B 点坐标为(b ,-b+2),∴点B 在直线y=-x+2上,直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0),∴∠AQO=45°,∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,∴b 的取值范围为b <0或b >2.故选D .本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4.正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为()A.B.C.D.【答案】B【解析】【分析】根据图象分别确定k的取值范围,若有公共部分,则有可能;否则不可能.【详解】根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.5.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大【答案】B【解析】根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+4)(0<m<4),根据矩形的周长公式即可得出C矩形CDOE=8,此题得解.【详解】解:设点C的坐标为(m,-m+4)(0<m<4),则CE=m,CD=-m+4,∴C矩形CDOE=2(CE+CD)=8.故选B.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.6.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y与x之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④.【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时,设动车的速度为x千米/小时,根据题意,得:3x+3×2503=1000,解得:x=250,动车的速度为250千米/小时,错误;④由图象知x=t时,动车到达乙地,∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=1x是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.8.甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程y(米)与时间t(分)的函数关系如图所示,则下列结论错误的是()A .他们步行的速度为每分钟80米;B .出租车的速度为每分320米;C .公司与火车站的距离为1600米;D .出租车与乙相遇时距车站400米.【答案】D【解析】【分析】 根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可.【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变, 即:甲步行的速度为每分钟480806=米,乙步行的速度也为每分钟80米, 故A 正确;又∵甲乙再次相遇时是16分钟,∴16分乙共走了80161280?米,由图可知,出租车的用时为16-12=4分钟,∴出租车的速度为每分12804320?米, 故B 正确;又∵相遇后,坐出租车去火车站比预计早到3分钟,设公司与火车站的距离为x 米, 依题意得:12380320x x =++,解之得:1600x =, ∴公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米. 故C 正确,D 不正确.故选:D .【点睛】本题通过考查一次函数的应用来考查从图象上获取信息的能力.要注意题中分段函数的意义.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2- B .1- C .1 D .2【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n个单位长度,得到新的直线的解析式是y=2x+1-n,则1-n=-1,解得n=2.故选:D.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④【答案】B【解析】【分析】根据函数图象上特殊点的坐标和实际意义即可作出判断.【详解】根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;②甲的速度为:64÷8=8米/秒,乙的速度为:52÷8=6.5米/秒,故甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选B.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.11.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2019的坐标为()A.(21009,21010)B.(﹣21009,21010)C.(21009,﹣21010)D.(﹣21009,﹣21010)【答案】D【解析】【分析】写出一部分点的坐标,探索得到规律A2n+1[(﹣2)n,2×(﹣2)n](n是自然数),即可求解;【详解】A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…由此发现规律:A2n+1[(﹣2)n,2×(﹣2)n](n是自然数),2019=2×1009+1,∴A2019[(﹣2)1009,2×(﹣2)1009],∴A2019(﹣21009,﹣21010),故选D.【点睛】本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.m-的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为13.一次函数 y = mx +1()A.-1 B.3 C.1 D.- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.【详解】∵一次函数y=mx+|m-1|中y随x的增大而增大,∴m>0.∵一次函数y=mx+|m-1|的图象过点(0,2),∴当x=0时,|m-1|=2,解得m1=3,m2=-1<0(舍去).故选B.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,已知正比例函数y 1=ax 与一次函数y 2=12x +b 的图象交于点P .下面有四个结论:①a <0; ②b <0; ③当x >0时,y 1>0;④当x <﹣2时,y 1>y 2.其中正确的是( )A .①②B .②③C .①③D .①④【答案】D【解析】【分析】 根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y 1=ax 经过二、四象限,所以a <0,①正确;一次函数212y x b =+ \过一、二、三象限,所以b >0,②错误; 由图象可得:当x >0时,y 1<0,③错误;当x <−2时,y 1>y 2,④正确;故选D.【点睛】 考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.15.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】 试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.16.对于一次函数24y x =-+,下列结论正确的是( )A .函数值随自变量的增大而增大B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4【答案】C【解析】【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解.【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确;B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x ,故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确.故选:C .【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤C .1122b -≤≤D .112b -≤≤【答案】B【解析】【分析】将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】 考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.18.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B【解析】【分析】 由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x 的取值即为所求.【详解】∵经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),∴直线y =kx +b 与直线y =4x +2的交点A 的坐标为(﹣1,﹣2),直线y =kx +b 与x 轴的交点坐标为B (﹣2,0),又∵当x <﹣1时,4x +2<kx +b ,当x >﹣2时,kx +b <0,∴不等式4x +2<kx +b <0的解集为﹣2<x <﹣1.故选B .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.19.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B - 设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:3y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.20.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y2═−2x+m得−2+m=3,解得m=5,∴y2═−2x+5,解方程−2x+5=0,解得x=52,则直线y2═−2x+m与x轴的交点坐标为(52,0),∴不等式0<y2<y1的解集是1<x<5 2故选:D【点睛】本题考查了一次函数与一元一次不等式,会观察一次函数图象.。
(陕西专用)2019版中考数学一练通 第二部分 重点题型突破 专项二 解答题专项 七 一次函数的实际应用试题
七一次函数的实际应用满分训练类型1 文字型一次函数的实际应用1.(2018·陕西模拟)随着“一带一路”的进一步推进,我国瓷器(“china”)更为“一带一路”沿线人民所推崇,某商户看准这一商机,准备经销瓷器茶具,计划购进青瓷茶具和白瓷茶具共80套。
已知青瓷茶具每套280元,白瓷茶具每套250元,设购进x套青瓷茶具,购进青瓷茶具和白瓷茶具的总费用为y元。
(1)求出y与x之间的函数表达式。
(2)若该商户想要用不多于20 900元的钱购进这两种茶具,则青瓷茶具最多能购进多少套?2.(2019·原创题)西安市某学校举办演讲活动,为了表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品。
已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元。
(1)每个文具盒、每支钢笔分别为多少元?(2)若本次表彰活动,老师决定购买文具盒与钢笔共10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x之间的函数表达式。
如果至少需要购买3个文具盒,那么本次活动老师最多需要花多少钱?3.(2018·陕西模拟)某省某城市的长途客运公司规定,每人每次携带行李不超过10 kg 可免收行李费,若超过10 kg,则超过的部分按每千克0.4元收费,设行李的质量为x千克,应付行李费y元。
(1)求y与x之间的函数表达式。
(2)当岳明的行李为50 kg时,他应该付多少行李费?4.(2018·湖北武汉中考)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B 型钢板可制成1块C型钢板和3块D型钢板。
现准备购买A,B型钢板共100块,并全部加工成C,D型钢板,要求C型钢板不少于120块,D型钢板不少于250块。
设购买A型钢板x块(x为整数)。
(1)求A,B型钢板的购买方案共有多少种。
(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元,若将C,D型钢板全部出售,请你设计获利最大的购买方案。
中考数学复习----《一次函数之实际应用》知识点总结与专项练习题(含答案解析)
中考数学复习----《一次函数之实际应用》知识点总结与专项练习题(含答案解析)知识点总结1.分段函数:在一次函数的实际应用中,最常见为分段函数。
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
关键点:①分段函数各段的函数解析式。
②各个拐点的实际意义。
③函数交点的实际意义。
专项练习题1、(2022•攀枝花)中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y1(km)与时间x(h)之间的函数关系:折线OABN表示轿车离西昌距离y2(km)与时间x(h)之间的函数关系,则以下结论错误的是()A.货车出发1.8小时后与轿车相遇B.货车从西昌到雅安的速度为60km/hC.轿车从西昌到雅安的速度为110km/hD.轿车到雅安20分钟后,货车离雅安还有20km【分析】根据“速度=路程÷时间”分别求出两车的速度,进而得出轿车出发的时间,再对各个选项逐一判断即可.【解答】解:由题意可知,货车从西昌到雅安的速度为:140÷4=60(km/h),故选项B不合题意;轿车从西昌到雅安的速度为:(240﹣75)÷(3﹣1.5)=110(km/h),故选项C不合题意;轿车从西昌到雅安所用时间为:240÷110=(小时),3﹣=(小时),设货车出发x小时后与轿车相遇,根据题意得:,解得x=1.8,∴货车出发1.8小时后与轿车相遇,故选项A不合题意;轿车到雅安20分钟后,货车离雅安还有60×=40(km),故选项D符合题意.故选:D.2、(2022•恩施州)如图1是我国青海湖最深处的某一截面图,青海湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=kh+P0,其图象如图2所示,其中P0为青海湖水面大气压强,k为常数且k≠0.根据图中信息分析(结果保留一位小数),下列结论正确的是()A.青海湖水深16.4m处的压强为189.36cmHgB.青海湖水面大气压强为76.0cmHgC.函数解析式P=kh+P0中自变量h的取值范围是h≥0D.P与h的函数解析式为P=9.8×105h+76【分析】由图象可知,直线P=kh+P0过点(0,68)和(32.8,309.2).由此可得出k和P0的值,进而可判断B,D;根据实际情况可得出h的取值范围,进而可判断C;将h=16.4代入解析式,可求出P的值,进而可判断A.【解答】解:由图象可知,直线P=kh+P0过点(0,68)和(32.8,309.2),∴,解得.∴直线解析式为:P=7.4h+68.故D错误,不符合题意;∴青海湖水面大气压强为68.0cmHg,故B错误,不符合题意;根据实际意义,0≤h≤32.8,故C错误,不符合题意;将h=16.4代入解析式,∴P=7.4×16.4+68=189.36,即青海湖水深16.4m处的压强为189.36cmHg,故A正确,符合题意.故选:A.3、(2022•绥化)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为()A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟【分析】根据题意和函数图象中的数据,可以先表示出两人的速度,然后即可计算出两人第一次和第二次相遇的时间,然后作差即可.【解答】解:由图象可得,小王的速度为米/分钟,爸爸的速度为:=(米/分钟),设小王出发m分钟两人第一次相遇,出发n分钟两人第二次相遇,m=(m﹣4)•,n+[n﹣4﹣(12﹣4)÷2]=a,解得m=6,n=9,n﹣m=9﹣6=3,故选:C.4、(2022•毕节市)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是()A.汽车在高速路上行驶了2.5hB.汽车在高速路上行驶的路程是180kmC.汽车在高速路上行驶的平均速度是72km/hD.汽车在乡村道路上行驶的平均速度是40km/h【分析】由3.5h到达目的地,在乡村道路上行驶1h可得下高速公路的时间,从而可判断A,由图象直接可判断B,根据速度=路程除以时间可判断C和D.【解答】解:∵3.5h到达目的地,在乡村道路上行驶1h,∴汽车下高速公路的时间是2.5h,∴汽车在高速路上行驶了2.5﹣0.5=2(h),故A错误,不符合题意;由图象知:汽车在高速路上行驶的路程是180﹣30=150(km),故B错误,不符合题意;汽车在高速路上行驶的平均速度是150÷2=75(km/h),故C错误,不符合题意;汽车在乡村道路上行驶的平均速度是(220﹣180)÷1=40(km/h),故D正确,符合题意;故选:D.5、(2022•桂林)桂林作为国际旅游名城,每年吸引着大量游客前来观光.现有一批游客分别乘坐甲乙两辆旅游大巴同时从旅行社前往某个旅游景点.行驶过程中甲大巴因故停留一段时间后继续驶向景点,乙大巴全程匀速驶向景点.两辆大巴的行程s(km)随时间t (h)变化的图象(全程)如图所示.依据图中信息,下列说法错误的是()A.甲大巴比乙大巴先到达景点B.甲大巴中途停留了0.5hC.甲大巴停留后用1.5h追上乙大巴D.甲大巴停留前的平均速度是60km/h【分析】根据函数图象中的数据,可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:由图象可得,甲大巴比乙大巴先到达景点,故选项A正确,不符合题意;甲大巴中途停留了1﹣0.5=0.5(h),故选项B正确,不符合题意;甲大巴停留后用1.5﹣1=0.5h追上乙大巴,故选项C错误,符合题意;甲大巴停留前的平均速度是30÷0.5=60(km/h),故选项D正确,不符合题意;故选:C.6、(2022•玉林)龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次赛跑的过程(x表示兔子和乌龟从起点出发所走的时间,y1,y2分别表示兔子与乌龟所走的路程).下列说法错误的是()A.兔子和乌龟比赛路程是500米B.中途,兔子比乌龟多休息了35分钟C.兔子比乌龟多走了50米D.比赛结果,兔子比乌龟早5分钟到达终点【分析】根据函数图象中的数据可以判断各个选项中的结论是否正确.【解答】解:A、“龟兔再次赛跑”的路程为500米,原说法正确,故此选项不符合题意;B、乌龟在途中休息了35﹣30=5(分钟),兔子在途中休息了50﹣10=40(分钟),兔子比乌龟多休息了35分钟,原说法正确,故此选项不符合题意;C、兔子和乌龟同时从起点出发,都走了500米,原说法错误,故此选项符合题意;D、比赛结果,兔子比乌龟早5分钟到达终点,原说法正确,故此选项不符合题意.故选:C.7、(2022•乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少【分析】观察函数图象,逐项判断即可.【解答】解:由图象可得:前10分钟,甲的速度为0.8÷10=0.08(千米/分),乙的速度是1.2÷10=0.12(千米/分),∴甲比乙的速度慢,故A正确,不符合题意;经过20分钟,甲、乙都走了1.6千米,故B正确,不符合题意;∵甲40分钟走了3.2千米,∴甲的平均速度为3.2÷40=0.08(千米/分钟),故C正确,不符合题意;∵经过30分钟,甲走过的路程是2.4千米,乙走过的路程是2千米,∴甲比乙走过的路程多,故D错误,符合题意;故选:D.8、(2022•阜新)快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离s(km)与行驶时间t(h)之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速度是km/h.【分析】根据图象求出快递员往返的时间为2(0.35﹣0.2)h,然后再根据速度=路程÷时间.【解答】解:∵快递员始终匀速行驶,∴快递员的行驶速度是=35(km/h).故答案为:35.9、(2022•资阳)女子10千米越野滑雪比赛中,甲、乙两位选手同时出发后离起点的距离y(千米)与时间t(分钟)之间的函数关系如图所示,则甲比乙提前分钟到达终点.【分析】根据图象求出20分钟后甲的速度,进而求出32分钟,甲和乙所处的交点位置,再根据速度公式求出20分钟后乙的速度,进而求出达到终点时乙所需的时间,即可求出答案.【解答】解:由图象可知,甲20~35分钟的速度为:(千米/分钟),∴在32分钟时,甲和乙所处的位置:(千米),乙20分钟后的速度为:(千米/分钟),∴乙到达终点的时间为:(分钟),∴甲比乙提前:36﹣35=1(分钟),故答案为:1.10、(2022•呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为.【分析】根据糯米的价格为5元/千克,如果一次购买2千克以上糯米,超过2千克的部分的糯米的价格打8折,即可得出解析式;再把x=14代入即可.【解答】解:∵x>10时,∴一次购买的数量超过2千克,∴y=,=.∵14>10,∴y=,=,=3.故答案为:3;y=.11、(2022•苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为.【分析】设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,求出x,再求出8分钟后的放水时间,可得结论.【解答】解:设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,∴x=12,∵8分钟后的放水时间==,8+=,∴a=,故答案为:.。
2018陕西省中考数学考点题对题---21题一次函数的实际应用题讲课稿
2018年陕西省中考数学考点题对题-第21一次函数及实际应用题【中考目标】1.会求一次函数表达式,能根据题意列出一元次方程或一元一次不等式并求解;2.能明确图象中点、线的具体意义,能从图象的变化中获取有用信息;3.能根据一次函数的性质解决最值问题.【精讲精练】类型一 文字型1. 张强要去外省旅游,特申请使用了某电信公司的手机漫游来电畅听业务,这个公司的漫游来电畅听业务规定:用户每月交月租费16元,可免费接听来电,而打出电话每分钟收费0.13元 .设张强月手机的通话费(包括月租费和打出电话的费用)为y 元,打出电话时间为x 分钟.(1)求出y 与x 之间的函数关系式;(2)如果张强在外省旅游的当月的通话费(包括月租费和打出电话的费用)为42元,请你求出张强这个月打出电话时间为多少分钟?2. (2016三明10分)小李是某服装厂的一名工人,负责加工A ,B 两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A 型服装1件可得20元,加工B 型服装1件可得12元.已知小李每天可加工A 型服装4件或B 型服装8件,设他每月加工A 型服装的时间为x 天,月收入为y 元.(1)求y 与x 的函数关系式;(2)根据服装厂要求,小李每月加工A 型服装数量应不少于B 型服装数量的35,那么他的月收入最高能达到多少元?3. (2016攀枝花8分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?4. (2017原创)电话手表上市以来,深受家长和孩子的青睐.经销商王某从市场获得如下信息:A品牌电话手表:进价700元/块,售价900元/块;B品牌电话手表:进价100元/块,售价160元/块.他计划用4万元资金一次性购进这两种电话手表共100块.(1)设王某购进A品牌电话手表x块,这两种品牌电话手表全部销售完后获得利润为w元,试写出w与x之间的函数关系式,并求出自变量x的取值范围;(2)王某计划全部销售完后获得的利润不少于1.258万元,该经销商有哪几种进货方案?选择哪种进货方案,可获利最大?最大利润是多少?类型二图象型1. (2016义乌8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.2. (2017原创)某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶的路程s(千米)与时间t(分)之间的函数关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)求王老师吃完早餐到学校这一过程中行驶路程s(千米) 与时间t(分)之间的函数表达式;(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速度达到多少?3. 某道路建筑公司承包修筑一条公路,建筑队开始修筑一段时间后,由于公司另外一个项目着急交工,因此将该建筑队抽调了一部分人员去支援另外一个项目,已知该工程队修筑这条公路所用的时间x(天)与修筑公路的里程y(千米)之间的关系如图所示.(1)求出该工程队修筑公路的里程y(千米)与所用时间x(天)之间的函数关系式;(2)完成公路修筑后,该建筑公司发现,如果一直按开始的速度修筑此公路,可提前20天完成,求此公路的长度.4. (2016 南京8分)下图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120).已知线段BC表示的函数关系中,该汽车的速度每增加1 km/h,耗油量增加0.002 L/m.(1)当速度为50 km/h、100 km/h时,该汽车的耗油量分别为________L/km、________L/km;(2)求线段AB所表示的y与x之间的函数表达式;(3)速度是多少时,该汽车的耗油量最低?最低是多少?5. (2015牡丹江8分)甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地,40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?直接写出答案.类型三表格型1. 某欢乐谷为回馈广大游客,准备在五一期间推出学生个人门票优惠价,各票价如下:某中学欲购买三种类型的票共80张奖励品学兼优的学生,其中购买的B种票数是A种票数的2倍还多5张,设购买A种票x张,总费用为y元.(1)求y与x之间的函数关系式;(2)为方便学生游玩,计划购买节假日通票45张,求该学校购买三种类型的票的总费用.2. “十三五”时期国家扶贫开发工作的重点是:贵在精准,重在精准.为了贯彻“精准扶贫”精神,某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送152箱鱼苗到A,B两村养殖,若用大货车8辆、小货车7辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A,B两村的运费如下表:(1)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A,B两村总费用为y元,试求出y与x的函数解析式;(2)在(1)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.3. (2015陕师大附中模拟)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20 m3时,按2元/m3计费;月用水量超过20 m3时,其中的20 m3仍按2元/m3,超过部分按2.6元/m3计费.设每户家庭用水量为x m3时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x的函数表达式;(2)小明家第二季度交纳水费的情况如表:小明家这个季度共用水多少m34. (2016漳州10分)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?5. (2016 十堰8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg.经销一段时间后得到如下数据:销售单价x(元/kg) 120 130 (180)每天销量y(kg) 100 95 (70)设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?附:2017年中考典型试题1.(2017年贵州省毕节地区第11题)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A. y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+22.(2017年湖北省十堰市第10题)如图,直线y=3 x﹣6分别交x轴,y轴于A,B,M是反比例函数y=kx(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,ACBD=43,则k的值为()A .﹣3B .﹣4C .﹣5D .﹣63.(2017年山东省潍坊市第8题)一次函数b ax y +=与反比例函数x b a y -=,其中0<ab ,b a 、为常数,它们在同一坐标系中的图象可以是( ).A .B .C .D .4.(2017年辽宁省沈阳市第9题) 在平面直角坐标系中,一次函数1y x =-的图象是( )A. B. C. D.5.(2017年贵州省毕节地区第18题)如图,已知一次函数y=kx ﹣3(k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,与反比例函数y=12x (x >0)交于C 点,且AB=AC ,则k 的值为 .6.(2017年山东省日照市第8题)反比例函数y=kb x的图象如图所示,则一次函数y=kx+b (k ≠0)的图象的图象大致是( )A .B .C .D .7.(2017年内蒙古通辽市第17题)如图,直线333--=x y 与y x ,轴分别交于B A ,,与反比例函数xk y =的图象在第二象限交于点C .过点A 作x 轴的垂线交该反比例函数图象于点D .若AC AD =,则点D 的坐标为 .8. (2017年四川省成都市第13题)如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点()2,1A .当2x <时,1y 2y .(填“>”或“<”)9.(2017年湖北省荆州市第24题)(本题满分10分)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p (元/千克)与时间第t (天)之间的函数关系为:116(140,)4146(4180,)2t t t p t t t ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩为整数为整数,日销售量y (千克)与时间第t (天)之间的函数关系如图所示:(1)求日销售量与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间的增大而增大,求m的取值范围.10(2017年湖北省宜昌市第19题)“和谐号”火车从车站出发,在行驶过程中速度y (单位:/BC x轴.m s)与时间x (单位:)的关系如图所示,其中线段//(1)当010x ≤≤,求y 关于x 的函数解析式;(2)求C 点的坐标.11.(2017年四川省内江市第21题)已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y =kx +b 和反比例函数m y x=图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.12.(2017年四川省成都市第19题)如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数k y x=的图象交于(),2,A a B -两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图像上一点,过点P作y轴的平行线,交直线AB于点 的面积为3,求点P的坐标.C,连接PO,若POC。
陕西中考数学一次函数应用题类型
一次函数应用题,即解答第21题回归传统。
(1)纯文字形式(2012陕西)21.(本题满分8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2 000米的地方,空气含氧量约为235克/立方米.(1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1 200米,请你求出该山山顶处的空气含氧量约为多少?(2)图象形式(2012•上海)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示.(1)求y 关于x 的函数解析式,(并写出它的定义域);(2)当生产这种产品的总成本为280万元时,求该产品的生产数量. (注:总成本=每吨的成本×生产数量) 答案:(1)11110y x =-+; (2)121(11)280,40,70.10x x x x -+=== 1050,40.x x ≤≤∴=(3)表格形式(24)(2012天津市8分)某通讯公司推出了移动电话的两种计费方式(详情见下表).月使用费/元主叫限定时间/分 主叫超时费/(元/分) 被叫方式一 58 150 0.25 免费 方式二883500.19免费设一个月内使用移动电话主叫的时间为t 分(t 为正整数),请根据表中提供的信息回答下列问题: (Ⅰ)用含有t 的式子填写下表:温馨提示:若选用方式一,每月固定交费58元,当主动打出电话月累计时间不超过150分,不再额外交费;当超过150分,超过部分每分加收0.25元.t≤150150<t<350 t=350 t>350 方式一计费/元58 108方式二计费/元88 88 88(Ⅱ)当t为何值时,两种计费方式的费用相等;(Ⅲ)当330<t<360时,你认为选用哪种计费方式省钱(直接写出结果即可).解:(Ⅰ)填表如下:t≤150150<t<350 t=350 t>350 方式一计费/元58 0.25t+20.5 108 0.25t+20.5方式二计费/元88 88 88 0.19t+21.5 (Ⅱ)∵当t>350时,(0.25t+20.5)-(0.19t+21.5)=0.06t-1>0,∴当两种计费方式的费用相等时,t的值在150<t<350取得.∴列方程0.25t+20.5=88,解得t=270。
陕西中考一次函数应用(图象型)
———图象型
01 02
CONTENTS
陕考分析
知识储备 陕考真题
当堂测评
03 04
目录
首页
上一页
下一页
尾页
01陕考分析
目录
首页
上一页
下一页
尾页
01陕考分析
类型
分析函数图象 解决实际问题
年份
2013 2016 2012
考察形式
分析行程问题的函数图象 分析行程问题的函数图象 利用待定系数法求一次函 数解析式并求相关值 一次函数与一元一次不等 式组结合的实际应用 一次函数与一元一次不等 式组结合的实际应用 一次函数与一元一次不等 式组结合的实际应用 分段函数的应用
04当堂测评
目录
首页
上一页
下一页
尾页
自行小结
目录
首页
上一页
下一页
尾页
课后作业:
《45套》19、21、22、25、 26的21题
目录
首页
上一页
下一页
尾页
2.张师傅驾车从甲地到乙地,两地相距500km,汽车出发前油箱有 油25L,途中加油若干升,加油前、后汽车以相同的速度匀速行驶, 已知油箱中剩余油量y(L)与行驶时间t(h)之间的函数关系如图所示. 求加油前后邮箱中剩余油量与行驶时间的函数表达式?
目录
首页
上一页
下一页
尾页
02知识储备
3.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b). (1)求b,m的值; (2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD 长为2,求a的值.
03陕考真题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省中考数学考点题对题题一次函数的实际应用题SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-2018年陕西省中考数学考点题对题-第21一次函数及实际应用题【中考目标】1.会求一次函数表达式,能根据题意列出一元次方程或一元一次不等式并求解;2.能明确图象中点、线的具体意义,能从图象的变化中获取有用信息;3.能根据一次函数的性质解决最值问题.【精讲精练】类型一 文字型1. 张强要去外省旅游,特申请使用了某电信公司的手机漫游来电畅听业务,这个公司的漫游来电畅听业务规定:用户每月交月租费16元,可免费接听来电,而打出电话每分钟收费元 .设张强月手机的通话费(包括月租费和打出电话的费用)为y 元,打出电话时间为x 分钟.(1)求出y 与x 之间的函数关系式;(2)如果张强在外省旅游的当月的通话费(包括月租费和打出电话的费用)为42元,请你求出张强这个月打出电话时间为多少分钟2. (2016三明10分)小李是某服装厂的一名工人,负责加工A ,B 两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A 型服装1件可得20元,加工B 型服装1件可得12元.已知小李每天可加工A 型服装4件或B 型服装8件,设他每月加工A 型服装的时间为x 天,月收入为y 元.(1)求y 与x 的函数关系式;(2)根据服装厂要求,小李每月加工A 型服装数量应不少于B 型服装数量的35,那么他的月收入最高能达到多少元3. (2016攀枝花8分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元4. (2017原创)电话手表上市以来,深受家长和孩子的青睐.经销商王某从市场获得如下信息:A品牌电话手表:进价700元/块,售价900元/块;B品牌电话手表:进价100元/块,售价160元/块.他计划用4万元资金一次性购进这两种电话手表共100块.(1)设王某购进A品牌电话手表x块,这两种品牌电话手表全部销售完后获得利润为w元,试写出w与x之间的函数关系式,并求出自变量x的取值范围;(2)王某计划全部销售完后获得的利润不少于万元,该经销商有哪几种进货方案选择哪种进货方案,可获利最大最大利润是多少类型二图象型1. (2016义乌8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间排水孔的排水速度是多少(2)当2≤t≤时,求Q关于t的函数表达式.2. (2017原创)某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶的路程s(千米)与时间t(分)之间的函数关系.(1)学校离他家多远从出发到学校,用了多少时间(2)求王老师吃完早餐到学校这一过程中行驶路程s(千米) 与时间t(分)之间的函数表达式;(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快最快时速度达到多少3. 某道路建筑公司承包修筑一条公路,建筑队开始修筑一段时间后,由于公司另外一个项目着急交工,因此将该建筑队抽调了一部分人员去支援另外一个项目,已知该工程队修筑这条公路所用的时间x(天)与修筑公路的里程y(千米)之间的关系如图所示.(1)求出该工程队修筑公路的里程y(千米)与所用时间x(天)之间的函数关系式;(2)完成公路修筑后,该建筑公司发现,如果一直按开始的速度修筑此公路,可提前20天完成,求此公路的长度.4. (2016 南京8分)下图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120).已知线段BC表示的函数关系中,该汽车的速度每增加1 km/h,耗油量增加 L/m.(1)当速度为50 km/h、100 km/h时,该汽车的耗油量分别为________L/km、________L/km;(2)求线段AB所表示的y与x之间的函数表达式;(3)速度是多少时,该汽车的耗油量最低最低是多少5. (2015牡丹江8分)甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地,40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米直接写出答案.类型三表格型1. 某欢乐谷为回馈广大游客,准备在五一期间推出学生个人门票优惠价,各票价如下:某中学欲购买三种类型的票共80张奖励品学兼优的学生,其中购买的B种票数是A种票数的2倍还多5张,设购买A种票x张,总费用为y元.(1)求y与x之间的函数关系式;(2)为方便学生游玩,计划购买节假日通票45张,求该学校购买三种类型的票的总费用.2. “十三五”时期国家扶贫开发工作的重点是:贵在精准,重在精准.为了贯彻“精准扶贫”精神,某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送152箱鱼苗到A,B两村养殖,若用大货车8辆、小货车7辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A,B两村的运费如下表:(1)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A,B两村总费用为y元,试求出y与x的函数解析式;(2)在(1)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.3. (2015陕师大附中模拟)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20 m3时,按2元/m3计费;月用水量超过20 m3时,其中的20 m3仍按2元/m3,超过部分按元/m3计费.设每户家庭用水量为x m3时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x的函数表达式;(2)小明家第二季度交纳水费的情况如表:小明家这个季度共用水多少m34. (2016漳州10分)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人5. (2016 十堰8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg.经销一段时间设y与x(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大最大利润是多少附:2017年中考典型试题1.(2017年贵州省毕节地区第11题)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A. y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+22.(2017年湖北省十堰市第10题)如图,直线 x﹣6分别交x轴,y轴于A,B,M是反比例函数y=kx(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,,则k的值为()A .﹣3B .﹣4C .﹣5D .﹣63.(2017年山东省潍坊市第8题)一次函数b ax y +=与反比例函数x b a y -=,其中0<ab ,b a 、为常数,它们在同一坐标系中的图象可以是( ).A .B .C .D .4.(2017年辽宁省沈阳市第9题) 在平面直角坐标系中,一次函数1y x =-的图象是( )A. B. C. D.5.(2017年贵州省毕节地区第18题)如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=12x(x>0)交于C点,且AB=AC,则k的值为.6.(2017年山东省日照市第8题)反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A .B .C .D .7.(2017年内蒙古通辽市第17题)如图,直线333--=x y 与y x ,轴分别交于B A ,,与反比例函数xk y =的图象在第二象限交于点C .过点A 作x 轴的垂线交该反比例函数图象于点D .若AC AD =,则点D 的坐标为 .8. (2017年四川省成都市第13题)如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点()2,1A .当2x <时,1y 2y .(填“>”或“<”)9.(2017年湖北省荆州市第24题)(本题满分10分)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p (元/千克)与时间第t (天)之间的函数关系为: 116(140,)4146(4180,)2t t t p t t t ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩为整数为整数,日销售量y (千克)与时间第t (天)之间的函数关系如图所示:(1)求日销售量与时间t 的函数关系式(2)哪一天的日销售利润最大最大利润是多少(3)该养殖户有多少天日销售利润不低于2400元(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m <7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间的增大而增大,求m 的取值范围.10(2017年湖北省宜昌市第19题)“和谐号”火车从车站出发,在行驶过程中速度y (单位:/m s)与时间x (单位:)的关系如图所示,其中线段//BC x轴.(1)当010x≤≤,求y关于x的函数解析式;(2)求C点的坐标.11.(2017年四川省内江市第21题)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数myx=图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.12.(2017年四川省成都市第19题)如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数k y x=的图象交于(),2,A a B -两点. (1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图像上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若POC ∆的面积为3,求点P 的坐标.。