蛋白质化学课件
合集下载
第5章蛋白质化学-蛋白质的三维结构ppt课件

二个或二个以上具有独立的三级结构的多肽 链(亚基),彼此借次级键相连,形成一定的空间结 构,称为四级结构。
具有独立三级结构的多肽链单位,称为亚基 或亚单位(subunit),亚基可以相同,亦可以不同。 四级结构的实质是亚基在空间排列的方式。
(二)亚基的缔合
血红蛋白(Hb)是四个亚基缔合而成,聚合动力:疏 水作用(主要),二硫键,离子键,氢键等。
纤维状蛋白质是结构蛋白,含大量的α-螺旋, β-折叠片,整个分子呈纤维状,广泛分布于脊椎和 无脊椎动物体内,起支架和保护作用。角蛋白来 源于外胚层细胞,包括皮肤以及皮肤的衍生物:发, 毛,鳞,羽,翮,甲,蹄,角,爪,啄等.角蛋白可分为α-角 蛋白和β- 角蛋白。
α-角蛋白,如毛发中主要蛋白质。β-角蛋白, 如丝心蛋白。
结构域间的裂缝,常是酶的活性部位,也是反应物的 出入口
三、蛋白质三级结构
(一).三级结构的特点 (二). 肌红蛋白(Mb)的构象 (三). 一级结构与三级结构的关系 (四).维持三级结构的作用力
(一)三级结构的特点
一条多肽链中所有原子在三维空间的整 体排 布,称为三级结构,是包括主、侧链在内的空间 排列。大多数蛋白质的三级结构为 球状或近似球 状。在三级结构中,大多数的亲水的R侧基分布 于球形结构的表面,而疏水的R侧基分布于球形 结构的内部,形成疏水的核心。
三级结构形成后,生物学活性必需基团靠近,形成活 性中心或部位,即蛋白质分子表面形成了某些发挥生物学 功能的特定区域。
(三) 一 级 结 构 与 三 级 结 构 的 关 系
四、寡聚蛋白的四级结构
(一)寡聚蛋白的概念 (二)亚基的聚合 (三)亚基的空间排布 (四)血红蛋白(Hb)的构象
(一) 寡聚蛋白的概念
主要的化学键 包括:疏水键、 离子键、氢键 和 范德华力等。
具有独立三级结构的多肽链单位,称为亚基 或亚单位(subunit),亚基可以相同,亦可以不同。 四级结构的实质是亚基在空间排列的方式。
(二)亚基的缔合
血红蛋白(Hb)是四个亚基缔合而成,聚合动力:疏 水作用(主要),二硫键,离子键,氢键等。
纤维状蛋白质是结构蛋白,含大量的α-螺旋, β-折叠片,整个分子呈纤维状,广泛分布于脊椎和 无脊椎动物体内,起支架和保护作用。角蛋白来 源于外胚层细胞,包括皮肤以及皮肤的衍生物:发, 毛,鳞,羽,翮,甲,蹄,角,爪,啄等.角蛋白可分为α-角 蛋白和β- 角蛋白。
α-角蛋白,如毛发中主要蛋白质。β-角蛋白, 如丝心蛋白。
结构域间的裂缝,常是酶的活性部位,也是反应物的 出入口
三、蛋白质三级结构
(一).三级结构的特点 (二). 肌红蛋白(Mb)的构象 (三). 一级结构与三级结构的关系 (四).维持三级结构的作用力
(一)三级结构的特点
一条多肽链中所有原子在三维空间的整 体排 布,称为三级结构,是包括主、侧链在内的空间 排列。大多数蛋白质的三级结构为 球状或近似球 状。在三级结构中,大多数的亲水的R侧基分布 于球形结构的表面,而疏水的R侧基分布于球形 结构的内部,形成疏水的核心。
三级结构形成后,生物学活性必需基团靠近,形成活 性中心或部位,即蛋白质分子表面形成了某些发挥生物学 功能的特定区域。
(三) 一 级 结 构 与 三 级 结 构 的 关 系
四、寡聚蛋白的四级结构
(一)寡聚蛋白的概念 (二)亚基的聚合 (三)亚基的空间排布 (四)血红蛋白(Hb)的构象
(一) 寡聚蛋白的概念
主要的化学键 包括:疏水键、 离子键、氢键 和 范德华力等。
初中化学蛋白质课件

蛋白质提取的原理
蛋白质的提取基于其理化性质,如溶解度、吸附性、分子大小和电荷等 。通过选择合适的提取方法,将目标蛋白质从复杂的生物样本中分离出 来。
常见的蛋白质提取方法
包括沉淀法、吸附法、膜分离法等。这些方法的选择取决于蛋白质的性 质和目标。
03
提取过程中的注意事项
在提取过程中,需注意保持生物样本的完整性,防止蛋白质降解;同时
PART 02
蛋白质的分类
REPORTING
简单蛋白质
结构特点
由氨基酸组成,链状排列,相对分子质量较小。
实例
血红蛋白、肌红蛋白等。
功能
主要参与细胞代谢和能量转换等过程。
结合蛋白质
01
02
03
结构特点
由蛋白质和其它非蛋白质 物质结合而成,相对分子 质量较大。
实例
核蛋白、糖蛋白、脂蛋白 等。
功能
参与细胞的结构和功能, 如细胞膜、染色体、酶等 。
求。
注意食物的搭配,如将谷物与 豆类搭配食用,以提高食物中
蛋白质的利用率。
根据个人情况,咨询医生或营 养师的建议,制定适合自己的
蛋白质补充计划。
THANKS
感谢观看
REPORTING
蛋白质是细胞生长和组织修复的重要物质,缺乏 蛋白质会导致细胞生长受阻和组织修复能力下降 。
维持免疫系统
蛋白质是免疫系统的重要组成部分,缺乏蛋白质 会导致免疫力下降,容易感染疾病。
3
维持肌肉和骨骼健康
蛋白质对于肌肉和骨骼的健康发育和维持至关重 要,缺乏蛋白质会导致肌肉萎缩和骨质疏松。
缺乏蛋白质的影响
生长发育受阻
缺乏蛋白质会影响儿童的生长发 育,导致身高和体重发育迟缓。
化学蛋白质课件

结构成分
许多细胞器和细胞结构中的重要成 分是蛋白质,如细胞膜、染色体、 肌纤维等。
免疫防御
免疫球蛋白是机体免疫防御的重要 物质,可以识别和清除外来抗原, 介导免疫应答。
02
蛋白质的分类
膜蛋白
1 2
膜整合蛋白
与脂质层紧密结合,参与细胞识别、细胞通讯 和物质转运等功能。
跨膜蛋白
跨越脂质双层,具有信号转导、离子通道和转 运等功能。
3
外周膜蛋白
与脂质层非共价结合,参与细胞黏附、细胞信 号转导等功能。
胞内蛋白
细胞骨架蛋白
包括微管、微丝和中间纤维,参与细胞形态维持、细胞运动和物质运输等功能。
细胞连接蛋白
包括锚定连接和黏着连接,参与细胞间相互作用和信号转导等功能。
细胞内酶和辅助蛋白
参与细胞内的化学反应和能量转换等过程。
分泌蛋白
激素蛋白
自身免疫性疾病相关蛋白质
某些自身免疫性疾病,如类风湿关节炎、系统性红斑狼疮等,是由于机体对某些正常蛋白 质产生免疫应答,导致免疫损伤和疾病发生。
蛋白质在药物研发中的应用
01
蛋白质药物
利用蛋白质作为药物分子,可开发出治疗多种疾病的特效药物,如单
克隆抗体药物、重组蛋白药物、疫苗等。
02 03
药物靶点
蛋白质在细胞信号转导、细胞周期调控、免疫应答等生理过程中发挥 重要作用,针对这些蛋白质开发出的药物能够直接作用于疾病发生的 各个环节。
这些修饰方式也参与细胞信号转导、基因调控和细胞周期调控
03
等多种生物学过程。
06
蛋白质与疾病的关系
异常蛋白质与疾病的关系
肿瘤标志物
一些异常蛋白质,如癌胚抗原、甲胎蛋白等,可以在癌症发生时出现,用于肿瘤的早期诊 断和预后评估。
蛋白质化学ppt文档课件

NH 3
Tyrosine (Tyr) O
NH 3
谷氨酰胺 Glutamine
(Gln)
HS CH2 CH COO 半胱氨酸
NH 3
Cysteine (Cys)
H3C CH CH COO
苏氨酸 Threonine
HO NH3
(Thr)
3. 酸性氨基酸 带负电荷
OOC CH2 CH COO
NH 3
天冬氨酸 Aspartic acid (Asp)
蛋白质的主要化学组成
含N量平均——%, 即1克的N相当于——克的蛋白质。
粗蛋白% = N% ——
第二节 蛋白质的基本结构--氨基酸
氨基酸的结构通式∶
组 成 蛋 白 质 的 二 十 种 基 本 氨 基 酸
常见氨基酸的分类及结构
(1)、根据R基团的化学性质 (2)、根据R基团的酸碱性 (3)、根据R基团的电性质
红色代表带正点荷最多的阳离子氨基酸,与 离子交换树脂结合最紧密,洗脱时最晚流出
分离氨基酸常用的是 带有耐酸性非常强的 磺酸根SO3-Na+ (以盐的形式出现) 的强阳离子交换树脂。
首先将这种树脂填充 到柱子中,然后注入 含有样品的流动相, 样品中含有阳离子成 分X+,通过静电吸 引,与树脂中的带电 基团相互作用,结果 X+与Na+交换,即 发生阳离子交换后, 形成SO3-X+。
Imino Acids
Proline
Pro - P
2.4 9.4 2.0 10.6
(三)、氨基酸的重要化学反应
1、α-氨基的反应 (A)与亚硝酸的反应
可用于氨基酸定量 和蛋白质水解程度 的测定
Pro是一个亚氨基酸,没有此反应
(B)与醛类反应
AA是一个两性电解质,但不能用酸、碱直接来滴定, 因为等电点pH或过高(12-13)或过低(1-2)没有适当 的指示剂可以被选用。醛类化合物与-NH2结合后降低了氨 基的碱性生成了弱碱(西佛碱-Schiff‘s base),是滴定终
蛋白质和核酸化学PPT课件.ppt

试问100g大豆中含蛋白质多少克?
▪ 2. 用凯氏微量定氮法测得0.2ml血清中含
氮2.1mg,问100ml血清中含蛋白质多少克?
二、蛋白质的基本单位—氨基酸
▪ 氨基酸是蛋白质的基本组成单位。 ▪ 20标准氨基酸 ▪ 氨基(-NH2)和羧基(-COOH)
COOH H2N—Cα—H
R
不带电形式
COO+H3N—Cα—H
2.空间结构与功能的关系
▪ 蛋白质的空间
结构一旦改变 就会影响蛋白 质的生物活性。
▪ (如右图)牛
核糖核酸酶的 空间结构与功 能。
•牛脑海绵状病,简称BSE。1985年4月,医学家 们在英国发现了一种新病,专家们对这一世界 始发病例进行组织病理学检查,并于1986年11 月将该病定名为BSE,首次在英国报刊上报道。 •食用被疯牛病污染了的牛肉、牛脊髓的人,有 可能染上致命的克罗伊茨费尔德—雅各布氏症 (简称克-雅氏症),其典型临床症状为出现 痴呆或神经错乱,视觉模糊,平衡障碍,肌肉 收缩等。病人最终因精神错乱而死亡。 医学 界对克-雅氏症的发病机理还没有定论,也未 找到有效的治疗方法。
(1)
(2)
(二)
一级结构是空间结构的基础。结构与功能密切相关,蛋白质的一级 结构一旦确立,其空间结构以及生理功能也基本确立。
四、蛋白质的空间结构
▪ 多肽链需通过各种方式卷曲成特定的空间
结构。蛋白质肽链通过折叠、盘曲,使分 子内部原子形成一定的空间排布及相互关 系,称为蛋白质的构象,即空间结构。
(2)分子病
——蛋白质分子一级结构的氨基酸排列顺序与 正常有所不同的遗传病。
镰状细胞贫血(sick-cell anemia) 从患者红细胞中鉴定出特异的镰刀型或月牙型细胞。
▪ 2. 用凯氏微量定氮法测得0.2ml血清中含
氮2.1mg,问100ml血清中含蛋白质多少克?
二、蛋白质的基本单位—氨基酸
▪ 氨基酸是蛋白质的基本组成单位。 ▪ 20标准氨基酸 ▪ 氨基(-NH2)和羧基(-COOH)
COOH H2N—Cα—H
R
不带电形式
COO+H3N—Cα—H
2.空间结构与功能的关系
▪ 蛋白质的空间
结构一旦改变 就会影响蛋白 质的生物活性。
▪ (如右图)牛
核糖核酸酶的 空间结构与功 能。
•牛脑海绵状病,简称BSE。1985年4月,医学家 们在英国发现了一种新病,专家们对这一世界 始发病例进行组织病理学检查,并于1986年11 月将该病定名为BSE,首次在英国报刊上报道。 •食用被疯牛病污染了的牛肉、牛脊髓的人,有 可能染上致命的克罗伊茨费尔德—雅各布氏症 (简称克-雅氏症),其典型临床症状为出现 痴呆或神经错乱,视觉模糊,平衡障碍,肌肉 收缩等。病人最终因精神错乱而死亡。 医学 界对克-雅氏症的发病机理还没有定论,也未 找到有效的治疗方法。
(1)
(2)
(二)
一级结构是空间结构的基础。结构与功能密切相关,蛋白质的一级 结构一旦确立,其空间结构以及生理功能也基本确立。
四、蛋白质的空间结构
▪ 多肽链需通过各种方式卷曲成特定的空间
结构。蛋白质肽链通过折叠、盘曲,使分 子内部原子形成一定的空间排布及相互关 系,称为蛋白质的构象,即空间结构。
(2)分子病
——蛋白质分子一级结构的氨基酸排列顺序与 正常有所不同的遗传病。
镰状细胞贫血(sick-cell anemia) 从患者红细胞中鉴定出特异的镰刀型或月牙型细胞。
大学生物化学之 蛋白质(共89张PPT)

(1)测定蛋白质一级结构的要求
a、样品必需纯(>97%以上); b、知道蛋白质的分子量;可以预测AA
数目,工作量大小。 c、知道蛋白质由几个亚基组成;
(2) 测定步骤
A.测定蛋白质分子中多肽链的数目和种类。
通过测定末端氨基酸残基的摩尔数与蛋白质分子量 之间的关系,即可确定多肽链的数目。
蛋白质一级结构的测定
CO-NH-CH-CO-NH-CH Nhomakorabea-COOH
CH2 CH2
谷胱甘肽—存在与动、植物及
CH2 SH CHNH2
微生物中:
1.参与体内氧化还原反应 2.作为辅酶参与氧化还原反应
保护巯基酶或含Cys的蛋白质中
COOH
SH的还原性,防止氧化物积累
2GSH
GS-SG
2.蛋白质一级结构的测定
蛋白质氨基酸顺序的测定是蛋白质化学 研究的基础。自从1953年测定了胰岛素 的一级结构以来,现在已经有上千种不 同蛋白质的一级结构被测定。
氨基酸的顺序是从N-端的氨基酸残基开始,以C-端氨基
酸残基为终点的排列顺序。如上述五肽可表示为:
Ser-Val-Tyr-Asp-Gln
肽的命名
❖ 从肽链的N-末端开始,残基用酰称呼。 例如:丝氨酰甘氨酰酪氨酰丙氨酰亮氨酸,
简写:Ser-Gly--Tyr -- Ala -- Leu,
书写时,通常把NH2末端AA残基放在左边,COOH末端AA
催化代谢反应。这是蛋白 质的一个最重要的生物学 功能
调
启
节
动 操纵
乳糖结构基因
基
子 基因
因R
P O LacZ
LacY Laca
1. 催化
mRNA
蛋白质化学—蛋白质的理化性质(生物化学课件)

第一步是氨基酸被氧化脱氨形成酮酸,酮酸脱羧成醛, 放出CO2、NH3,水合茚三酮被还原成还原型茚三酮;
第二步是所形成的还原型茚三酮同另一个水合茚三酮分 子和氨缩合生成有蓝色物质。
第一步 还原
O
H
C
OH
C
+ H2N C COOH
C
OH
R
O
O
C
OH
C
+
C
H
NH3 + CO2 + R
O
C H
O 还原型茚三酮
高温、高压
物理因素
紫外线、X射线、
变
性
电离辐射和超声波等
因
有机酸、生物碱
素
化学因素
有机溶剂、重金属盐
高浓度尿素、盐酸胍等
2024/4/13
28
变性实质:破坏了空间结构,一级结构不受影响。
2024/4/13
29
变性蛋白 质 的特点
①生物学活性丧失
②理化性质改变 ③易被蛋白酶水解
空间结构改变
溶解度↓,沉降率↑
4.黄色反应
含有苯环的氨基酸,如酪氨酸、色氨酸,遇硝酸后,可被硝化成
黄色物质,该化合物在碱性溶液中进一步形成深橙色的硝醌酸钠。反
应式如下
NaOH
HO
+
HNO3
HO
O
NO2
N
O- Na+
硝基酚(黄色) O
邻硝醌酸钠(橙黄色)
多数蛋白质分子含有带苯环的氨基酸,所以呈黄色反应,苯丙氨酸 不易硝化,须加入少量浓硫酸才有黄色反应。
常用硫酸铵作分离蛋白质的盐析剂
3.醇沉分离法
醇沉法:利用杂质不溶于乙 醇的特性,在加入乙醇后,杂质 被沉淀出来的过程。
第二步是所形成的还原型茚三酮同另一个水合茚三酮分 子和氨缩合生成有蓝色物质。
第一步 还原
O
H
C
OH
C
+ H2N C COOH
C
OH
R
O
O
C
OH
C
+
C
H
NH3 + CO2 + R
O
C H
O 还原型茚三酮
高温、高压
物理因素
紫外线、X射线、
变
性
电离辐射和超声波等
因
有机酸、生物碱
素
化学因素
有机溶剂、重金属盐
高浓度尿素、盐酸胍等
2024/4/13
28
变性实质:破坏了空间结构,一级结构不受影响。
2024/4/13
29
变性蛋白 质 的特点
①生物学活性丧失
②理化性质改变 ③易被蛋白酶水解
空间结构改变
溶解度↓,沉降率↑
4.黄色反应
含有苯环的氨基酸,如酪氨酸、色氨酸,遇硝酸后,可被硝化成
黄色物质,该化合物在碱性溶液中进一步形成深橙色的硝醌酸钠。反
应式如下
NaOH
HO
+
HNO3
HO
O
NO2
N
O- Na+
硝基酚(黄色) O
邻硝醌酸钠(橙黄色)
多数蛋白质分子含有带苯环的氨基酸,所以呈黄色反应,苯丙氨酸 不易硝化,须加入少量浓硫酸才有黄色反应。
常用硫酸铵作分离蛋白质的盐析剂
3.醇沉分离法
醇沉法:利用杂质不溶于乙 醇的特性,在加入乙醇后,杂质 被沉淀出来的过程。