对信号与系统的认识
信号与系统分析
信号与系统分析在现代科学技术领域中,信号与系统分析是一门重要的学科。
它主要研究信号以及信号在系统中的传输和处理过程。
本文将从信号与系统的基本概念、数学模型、频域分析以及实际应用等方面对信号与系统进行分析。
一、信号与系统的基本概念1.1 信号的定义与分类信号是指随时间、空间或其他自变量的变化而变化的物理量。
根据信号的特征和性质,可以将信号分为连续时间信号和离散时间信号。
连续时间信号是在连续时间内取值的信号,例如模拟音频信号;离散时间信号是在离散时间点上取值的信号,例如数字音频信号。
1.2 系统的定义与分类系统是指对信号进行处理或者传输的设备或物理构造。
根据系统的输入和输出形式,可以将系统分为线性系统和非线性系统。
线性系统满足加法性和齐次性的特性,而非线性系统则不满足。
二、信号与系统的数学模型2.1 连续时间信号模型连续时间信号可以用连续函数来描述。
常见的连续时间信号模型有周期函数、指数函数和三角函数等。
在实际应用中,还可以利用微分方程来描述连续时间信号与系统之间的关系。
2.2 离散时间信号模型离散时间信号可以用序列来表示。
序列是由离散的采样点构成的数列。
常见的离散时间信号模型有单位样值序列、周期序列和随机序列等。
在实际应用中,离散时间信号与系统之间可以通过差分方程进行建模。
三、频域分析频域分析是对信号在频域上的特性进行分析的方法。
通过将信号从时域转换到频域,可以更加清晰地观察信号的频率成分及其变化规律。
常见的频域分析方法有傅里叶变换、拉普拉斯变换和Z变换等。
3.1 傅里叶变换傅里叶变换是将一个信号在频域上进行表示的方法。
它可以将信号分解成一系列的正弦函数或者复指数函数的组合。
傅里叶变换广泛应用于信号的频谱分析、滤波器设计以及通信系统等领域。
3.2 拉普拉斯变换拉普拉斯变换是对信号在复域上的频域表示。
它具有傅里叶变换的扩展性质,可以处理更加一般的信号和系统。
拉普拉斯变换在控制系统分析和设计、电路分析以及信号处理等方面有重要应用。
信号与系统实验总结及心得体会
信号与系统实验总结及心得体会2011211204 刘梦颉2011210960 信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。
下面我将从实验总结、心得体会、意见与建议等三方面作以总结。
一.实验总结本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。
1.信号的分类与观察主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。
主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。
2.非正弦信号的频谱分析主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。
主要内容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。
3.信号的抽样与恢复主要目的是:验证抽样定理,观察了解PAM信号的形成过程。
主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。
4.模拟滤波器实验主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。
主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。
信号与系统基本概念
(1)
o t0
t
(t)(t
t0 )dt 0, (t
1 t0 )
31
冲激函数的性质
为了信号分析的需要,人们构造了 t 函数,它属于广 义函数。就时间 t 而言, t 可以当作时域连续信号处
理,因为它符合时域连续信号运算的某些规则。但由于
t 是一个广义函数,它有一些特殊的性质。
1.抽样性 2.奇偶性
41
系统方框图(基本元件)
1.加法器 e1t
r t
e1t r t
2.乘法器
e2 t e1 t
e2 t
e2t rt e1t e2 t
r t
rt e1t e2 t
3.微分器
et
d
r t
d
rt de(t)
dt
4.积分器
et
rt
t
r(t) e( )d
42
§1.6 线性时不变系统
线性系统与非线性系统
线性系统:指具有线性特性的系统。
线性:指均匀性,叠加性。
均匀性(齐次性):
et rt ket krt
叠加性:
e1(t ) e2 (t )
r1 r2
(t) (t )
e1(t )
e2
(t)
r1(t )
r2
(t
)
43
判断方法
先线性运算,再经系统=先经系统,再线性运算
若 HC1 f1t C2 f2t C1H f1t C2H f2t
(t)具有筛选f (t)在t 0处函数值的性质 (t t0 )具有筛选f (t)在t t0处函数值的性质 33
奇偶性
(t) (t)
•由定义2,矩形脉冲本身是偶函数,故极限
电子信息工程专业公开课信号与系统分析
电子信息工程专业公开课信号与系统分析电子信息工程专业公开课信号与系统分析是该专业的一门重要课程,主要讲解信号与系统的基本概念、理论和应用。
本文将从信号与系统的基本概念、信号与系统的数学表示以及信号与系统的应用等方面进行探讨。
一、信号与系统的基本概念在电子信息工程中,信号是指携带有用信息和数据的电波或电流,它可以是数字信号或模拟信号。
系统是指处理信号的一种装置或方法。
信号与系统的基本概念涉及信号的分类、信号的特性、系统的分类以及系统的特性等。
在信号的分类中,常见的包括连续时间信号和离散时间信号。
连续时间信号是指信号在时间上是连续的,而离散时间信号是指信号在时间上是离散的。
在信号的特性中,常见的包括能量信号和功率信号。
能量信号是指信号在有限时间内的总能量有界,而功率信号是指信号的功率在无限时间内是有限的。
系统的分类主要包括线性系统和非线性系统。
线性系统是指系统的输出与输入之间存在线性关系,而非线性系统则没有线性关系。
在系统的特性中,常见的包括时不变系统和时变系统。
时不变系统是指系统的输出与输入之间不随时间变化,而时变系统则随时间变化。
二、信号与系统的数学表示为了方便分析和处理信号与系统,我们需要利用数学方法对其进行表示。
连续时间信号可以用函数表示,离散时间信号可以用数列表示。
连续时间信号的数学表示主要包括信号的幅度、相位和频率等。
离散时间信号的数学表示主要包括信号的取样、量化和编码等。
在系统的数学表示中,常见的包括系统的冲激响应、传递函数和频率响应等。
系统的冲激响应是指系统在输入为冲激函数时的输出响应,传递函数是指系统的输出与输入之间的关系,频率响应是指系统对输入信号频率的响应情况。
三、信号与系统的应用信号与系统在电子信息工程中有着广泛的应用。
在通信系统中,信号与系统分析可以用于信号的调制和解调、信号的传输和接收等方面。
在控制系统中,信号与系统分析可以用于系统的建模与仿真、系统的控制和稳定性分析等方面。
《信号与系统教案》课件
信号的分类与性质
连续时间、离散时间信 号
按时间的取值方式进行分类, 分别是连续时间信号和离散 时间信号。
周期信号、非周期信号
对于周期信号,其以某个时 间为周期不断重复,而非周 期信号没有明显的周期性。
模拟信号、数字信号
模拟信号具有连续时间和连 续值,而数字信号是对模拟 信号在时间上和幅度上均进 行离散化的结果。
信号与系统教案PPT课件
本课程将让您深入学习信号与系统的相关知识,掌握其定义、分类与性质, 并学会时域、频域分析的方法,了解实际案例与应用,如此多彩的音与乐世 界将为您绽放!
信号与系统的定义
1 信号
在某种介质中传递的物理量,如音频、视频 等,可分无限长信号、有限长信号及离散信 号。
2 系统
将一组给定的输入信号转化为一组对应的输 出信号的设备或物理过程,如滤波器、失真、 信噪比。
处理音乐或声音以达到音质改善、模拟特效、防 噪音的目的。
处理数字图片,包括色彩均衡、转换等,已广泛 应用于丰富人们的生活。
运用信号与系统理论开发和优化通信系统,包括 调制、编码、解码、信道估计等。
结束语
绝妙而复杂的世界
信号与系统是一个纷繁复杂而充满挑战的新领域, 我们鼓励您在追求音乐与声音之美的同时也可以探 寻更深入的知识领域!
傅里叶变换
将时域上的信号分解为不同频 率的正弦和余弦波来实现频域 分析。
滤波器
在频域分析中,滤波器用于过 滤掉带外频率的信号,这能够 极大的降低噪声干扰。
频域信号处理
频域信号处理是指通过对信号 的变换或滤波来改变信号的频 域特性,如平移、放大、缩小 等。
实际案例和应用
Байду номын сангаас音频信号处理 图像信号处理 通信系统
信号与系统课设心得体会
信号(xìnhào)与系统课设心得体会信号(xìnhào)与系统课设心得体会经过四周的时间,我们的信号与系统测试实验课画上了一个句号。
可以说,信号与系统测试实验课是我们真正的开始接触这个学科,因为以前学的都是理论知识,学懂得(dǒng de)仅仅是理论,而信号与系统测试实验课就给了我们这样一个将理论付诸于时间的时机,在这四周的实验课中,我收获了很多很多,也许会了很多很多。
可以说,这是我们第一次真正的进实验室,初中的实验室都是那些很简单的器材,以前也对大学的实验室充满了好奇,很想亲自送到实验室去体验体验。
然而,进了实验室我才发现,实验室并不像我的那样好玩,恰恰相反,实验室需要很严肃认真,来不得丝毫的玩笑。
每一个实验都要求很严格(yángé),只有认真的预习好实验的原理与详细操作方法,然后在实验时按照要求完成每一个步骤,才可以完成实验任务。
每一个微小的错误都有可能导致数据不准备,得不到正确的结论,所以在做实验的时候必须有一个严谨的态度。
在这短短的四周(sìzhōu)时间了,我们一共做了四个实验。
清楚是“信号的观察与分类”、“非正弦周期信号的频谱分析”、“信号的抽样与恢复(PAM)”、“模拟滤波器实验”。
通过这四个实验,我们根本上将所学的信号与系统的知识得到了全面的应用。
“信号的观察与分类”实验中各种常用的信号,这就要求对常用信号的波形特点及产生方法有所理解。
经过第一次的实验课,我不仅对各个常用信号的波形有了更深化的理解,也对信号的产生有了一定的认识。
在这个试验中,还用到了示波器,进过这次试验,根本理解了示波器的使用方法,各个按钮的功能,还有如何利用示波器显示出需要的信号。
“非正弦周期信号的频谱分析”实验中要求我们队非正弦周期信号的离散型、谐波性、频谱特性等有一定的理解,以及如何测试非正弦周期信号。
在这个实验中,我接触到了频谱仪和DDS信号源。
信号与系统第三章(Lec)
线性时不变系统的时域分析
描述方程
线性时不变系统的数学模型通常 由微分方程或差分方程表示,如 Laplace变换、Z变换等。
冲激响应
系统的冲激响应h(t)是系统对单位 冲激信号δ(t)的响应,可以用来描 述系统的动态特性。
阶跃响应
系统的阶跃响应g(t)是系统对单位 阶跃信号u(t)的响应,可
极点
系统函数的极点是使得系统函数 值为无穷大的复数点,对应于系 统的稳定性。
02
零点
系统函数的零点是使得系统函数 值为零的复数点,对应于系统的 频率响应特性。
03
极点与零点对系统 性能的影响
极点和零点的分布决定了系统的 频率响应特性、稳定性以及动态 性能。
系统响应的计算方法
02
CATALOGUE
信号的基本特性
信号的时域特性
周期性
信号在时间上重复出现,具有周期性。周期 是信号重复一次所需的时间长度。
连续性
信号在时间上是连续不断的,即信号在任意 时间点都有对应的值。
确定性
信号在时间上是确定性的,即信号在任意时 间点上的值是确定的。
可变性
信号在时间上是可变的,即信号在任意时间 点上的值可以改变。
定义
系统的幅度响应是描述系统 对不同频率信号的幅度变化 。
分类
最大幅度、最小幅度、平均 幅度等。
意义
幅度响应决定了系统对不同 频率信号的增益,影响信号 的强度和信噪比。
系统的群延迟响应
定义
系统的群延迟响应是描述系统对信号的群延迟效 应。
分类
恒定群延迟、线性群延迟等。
意义
群延迟影响信号的传播速度和波形,对信号的完 整性、失真度和处理效果有重要影响。
信号与系统基础概述
信号与系统基础概述信号与系统是电子工程、通信工程以及其他相关领域中的重要基础知识,它涉及信号的产生、处理、传输及其在系统中的应用。
本文将基于这一主题,对信号与系统的基础概念、特性和应用进行探讨。
一、信号的定义与分类信号是信息的表达方式,它可以是电压、电流、光强等物理量的变化。
根据信号的特性和使用环境,我们可以将信号分为以下几类:1. 连续时间信号:连续时间信号是指在时间上连续存在的信号,可以用数学函数表示。
例如,声音信号就是一种连续时间信号,可以用声音波形来表示。
2. 离散时间信号:离散时间信号是在时间上离散存在的信号,只在某些时间点有定义。
例如,传感器输出的数字信号就是一种离散时间信号。
3. 连续振幅信号:连续振幅信号的振幅是连续变化的,可以是正弦波、方波等形式。
4. 离散振幅信号:离散振幅信号的振幅在离散时间点上有定义,只能取离散的数值。
二、系统的定义与分类系统是对输入信号进行处理的过程,它可以是物理系统、电子电路、计算机算法等。
根据系统对信号的处理方式和系统的特性,我们可以将系统分为以下几类:1. 线性系统:线性系统的输入和输出之间存在线性关系,满足叠加原理。
即系统对多个信号的加权叠加等于对这些信号分别加权后的输出信号加权叠加。
2. 非线性系统:非线性系统的输入和输出之间不存在线性关系,不满足叠加原理。
3. 时不变系统:时不变系统的输出只依赖于当前时刻的输入信号,与输入信号的历史无关。
4. 时变系统:时变系统的输出依赖于输入信号的历史,与时间有关。
三、信号与系统的时域分析时域分析是对信号与系统在时域上的行为进行分析,通过研究信号和系统的时域特性,可以推导出系统的稳定性、响应等重要信息。
常用的时域分析方法有以下几种:1. 冲击响应:冲击响应是指将单位冲激信号输入系统后的输出响应,通过求解冲击响应可以得到系统的单位冲击响应函数。
2. 阶跃响应:阶跃响应是指将单位阶跃信号输入系统后的输出响应,通过求解阶跃响应可以得到系统的单位阶跃响应函数。
《信号与系统》课件第1章 (3)
4. 指数信号 指数信号的一般数学表达式为
f(t)=Aest
根据式中s的不同取值,可以分下列两种情况讨论: (1) s=σ时,此时为实指数信号,即
(1-23)
f(t)=Aeσt
(1-24)
当σ>0时,信号呈指数规律增长;当σ<0时,信号随指数规律
衰减;当σ=0时,指数信号变成恒定不变的直流信号,如图1-
16所示。
42
图1-16 实指数信号
43
(2) s=σ+jω,此时为复指数信号。利用欧拉公式,可以进 一步表示为
(1-25) 可见,复指数信号的实部和虚部都是振幅按指数规律变化的 正弦振荡,当σ>0(σ<0)时,其实部和虚部的振幅按指数规律增 长(衰减);当σ=0时,复指数信号变为虚指数信号
(1-26) 此时信号的实部和虚部都是等幅振荡的正弦波。复指数信号 虚部的波形如图1-17所示。
f(t)δ(t)=f(0)δ(t)
若f(t)在t=t0时连续,则有
f(t)δ(t-t0)=f(t0)δ(t-t0)
(1-16) (1-17)
36
对上面两式取积分,可得到下面两个重要的积分结果: (1-18) (1-19)
式(1-19)说明,δ(t)函数可以把信号f(t)在某时刻的值采样(筛选) 出来,这就是δ(t)的筛选性。
11
图1-4 非周期能量信号
12
图1-5 非周期功率信号
13
图1-6 非功率非能量信号
14
1.2.2 几种常用的基本信号 1. 单位斜变信号 斜变信号是指从某一时刻开始随时间成正比例增加的信
号。斜变信号也称斜坡信号。若斜变信号增长的变化率为1, 斜变的起始点发生在t=0时刻,就称其为单位斜变信号(如图 1-7所示),其数学表达式为
信号与系统
A
-1
0
1
2
3
t
-A
正弦信号 f (t) = A sin t
例3:单位阶跃函数 t t
1
0
t
例4: f (t) e(t 为实数)
0
0
0
2、离散信号
仅在一些离散时刻才有定义的信号——离散时间信号。
“离散”仅指定义域,只在 tk k 0,1,2,
有定义。
本书仅讨论Tk tk1 tk T为常数的情况。 则离散信号只在均匀离散时刻
❖ 3、判别下列信号是周期序列还是非周期序列,若是 周期序列,试确定其周期。
1
f1k
cos
k 4
cos
k
4
2
f2 k
2cos k
4
sin k
8
2cos k
2
6
1.1.3 信号的基本运算
一个复杂的运算总可以看成是一些基本运算的 复合,如加、乘、时移、反转、尺度变换、微分、 积分、卷积等 T
oT
T
2
2
-A
f (t)
…
…
t
-4 -2 0
246
k
2、非周期性信号: 不具有周期性的信号,称为非周期性信号。 例1 求下列函数的周期(三角函数)、
f1(t ) sint
f 2 (t ) s in 4 t
解: T1 2
T2 2
8
4
例2 试判断下列信号是否为周期信号。若是,确定 其周期。
(1) f1(t)=sin 2t+cos 3t
(2) f2(t)=cos 2t+sinπt
解 我们知道,如果两个周期信号x(t)和y(t)的周期 T1和T2具有公倍数,并且T1/T2为有理数,则它 们的和信号 f(t)=x(t)+y(t)仍然是一个周期信号, 其周期是x(t)和y(t)周期的最小公倍数。
电子工程优质课信号与系统分析
电子工程优质课信号与系统分析信号与系统是电子工程专业中非常重要的一门课程,它涉及到信号的产生、传输、处理和分析等方面内容,是电子工程师必须掌握的基础知识之一。
本文将对电子工程中的信号与系统分析进行详细介绍和阐述。
一、信号与系统的概念及基本特性信号是一种事物的特征或变化规律在一定时间内的表现,比如声音、图像等。
系统是指将输入信号转换为输出信号的过程,它可以是物理系统、电子系统或者其他形式的系统。
信号与系统分析就是研究信号在系统中传递、处理和改变的过程。
信号与系统分析的基本特性有时域特性和频域特性两个方面。
时域特性是指信号与系统在时间上的表现,包括信号的幅度、相位、波形等;频域特性是指信号与系统在频率上的表现,包括频谱分析、频率响应等。
二、信号与系统的数学表示信号与系统可以用数学模型进行描述和表示。
常见的信号有连续时间信号和离散时间信号两种形式。
连续时间信号是在连续时间域上变化的信号,可以用函数表示;离散时间信号是在离散时间点上变化的信号,可以用数列表示。
系统也可以用数学模型进行描述,常见的有线性时不变系统(LTI系统)。
LTI系统具有线性性质和时不变性质,可以用差分方程或者传递函数表示。
通过对信号与系统的数学表示,可以进行信号与系统的分析和理论推导。
三、信号的频谱分析频谱分析是信号与系统分析中非常重要的一个环节。
信号的频谱分析可以得到信号在频率上的分布情况,从而了解信号中包含的不同频率成分。
常见的频谱分析方法有傅里叶变换、快速傅里叶变换、功率谱密度分析等。
傅里叶变换可以将信号从时域转换到频域,得到信号的频谱图。
功率谱密度分析可以得到信号的能量在不同频率上的分布情况,用于描述信号的频率特性。
四、系统的频率响应系统的频率响应描述了系统对不同频率信号的传递特性。
常见的系统频率响应有幅频响应和相频响应两种形式。
幅频响应是指系统对输入信号幅度的变化情况,描述了系统对不同频率信号的衰减或放大程度。
相频响应是指系统对输入信号相位的变化情况,描述了系统对不同频率信号的相位差异。
信号与系统基本概念和分类
信号与系统基本概念和分类在现代通信领域,信号与系统是一门基础而重要的学科。
理解信号与系统的基本概念和分类对于深入研究通信原理和系统设计至关重要。
本文将介绍信号与系统的基本概念和分类,并探讨其在实际应用中的重要性。
一、信号的基本概念信号是信息的载体,可以通过某种形式或载体传递。
信号的基本概念包括以下几个方面:1. 信号的定义:信号是随时间变化的物理量。
它可以是连续的、离散的、周期的或非周期的。
2. 信号的特征:信号可以通过其振幅、频率、相位、时间等特征进行描述。
这些特征可以在频域或时域中进行观察和分析。
3. 信号的分类:信号可以分为连续信号和离散信号。
连续信号在时间和幅度上都是连续变化的,例如声音信号、电压信号等;离散信号在时间和幅度上都是离散变化的,例如数字信号、脉冲信号等。
二、系统的基本概念系统是对信号进行处理或传输的过程或设备。
理解系统的基本概念可以帮助我们分析和设计复杂的通信系统。
以下是系统的基本概念:1. 系统的定义:系统是由一组有序的组件或部件构成,它们相互作用或协作以实现特定的功能。
2. 系统的输入与输出:系统接受输入信号,并根据某种规则对其进行处理,产生输出信号。
3. 系统的状态:系统的状态是系统在某一时刻的描述,可以用于描述系统的性能和行为。
三、信号与系统的分类信号与系统可以根据不同的特征进行分类。
以下是几种常见的分类方式:1. 按信号的数学表示方式分类:a. 连续时间信号:用函数描述,例如正弦信号、指数信号等。
b. 离散时间信号:用序列描述,例如单位样本序列、冲激序列等。
2. 按系统的输入输出关系分类:a. 线性系统:输出与输入之间存在线性关系,满足叠加原理。
b. 非线性系统:输出与输入之间不存在线性关系,不满足叠加原理。
3. 按系统的时变性分类:a. 时不变系统:系统的性质不随时间改变。
b. 时变系统:系统的性质随时间改变。
四、信号与系统的应用信号与系统的理论和方法在现代通信领域有着广泛的应用。
完整版信号与系统的理解与认识
1.《信号与系统》这门课程主要讲述什么内容?《信号与系统》是一门重要的专业基础课程。
它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。
分析系统对信号的响应一个任务连续时间系统两种系统离散事件系统主要时域法内两类方法容变换域法傅里叶变换三大变换拉斯变换Z变换2.这门在我们的知识架构中占有什么地位?是一门承上启下的重要的专业基础课程。
其基本概念和方法对所有的专业都很工科重要。
信号与系统的分析方法的应用范围一直不断的在扩大。
信号与系统不仅仅是工科教育中一门最基本的课程,而且能够成为工科类学生最有益处而又引人入胜又最有用处的一门课程。
《信号与系统》是将我们从电路分析的知识领域引入信号处理与传输领域的关键性课程。
《高等数学》《通信原理》《线性代数》《信号与系统》《数字信号处理》《复变函数》《自动控制原理》《电路分析》·学习这门课程有什么用处?3.学习这门课程有什么用处呢?百度告诉我:通过本课程的学习,学生将理解信号的函数表示与系统分析方法,掌握连续时间系和离散时间系统的时域分析和频域分析,连续时间系统的S 域分析和散时间系统的Z分析,以及状态方程与状态变量分析法等相关内容。
通过上机实验,使学生掌握利用计算机进行信号与系统分析的基本方法加深对信号与线性非时变系统的基本理论的理解,训练学生的实验技能和科学实验方法,提高分析和解决实际问题的能力。
在百度上和道客巴巴还有知乎上都是很多这样看起来很高大上的解释,但是作为学生的我还是不能很清楚的了解到学习这门课程有什么用处,后面我发现了这样一个个例子,觉得对信号与系统的用处有了一定的了解。
设计的呢?如图这样一个轮子是怎么,就是很神奇的一个轮子,交通工具)(打印有可能打印不出来没学过信号与系统的小明想到了反馈与系统,在轮子上放一个传感器,轮子正不正系统就知道了,所以设计这个轮子其实就是设计一个系统。
关于信号与系统最通俗的解释
关于信号与系统最通俗的解释•关于信号与系统最通俗的解释,讲得真好!(在网上找的,方便大家参考)第二课到底什么是频率什么是系统?这一篇,我展开的说一下傅立叶变换F。
注意,傅立叶变换的名字F可以表示频率的概念(freqence),也可以包括其他任何概念,因为它只是一个概念模型,为了解决计算的问题而构造出来的(例如时域无限长的输入信号,怎么得到输出信号)。
我们把傅立叶变换看一个C语言的函数,信号的输出输出问题看为IO 的问题,然后任何难以求解的x->y的问题都可以用x->f(x)->f-1(x)->y来得到。
1. 到底什么是频率?一个基本的假设: 任何信息都具有频率方面的特性,音频信号的声音高低,光的频谱,电子震荡的周期,等等,我们抽象出一个件谐振动的概念,数学名称就叫做频率。
想象在x-y 平面上有一个原子围绕原点做半径为1匀速圆周运动,把x轴想象成时间,那么该圆周运动在y轴上的投影就是一个sin(t)的波形。
相信中学生都能理解这个。
那么,不同的频率模型其实就对应了不同的圆周运动速度。
圆周运动的速度越快,sin(t)的波形越窄。
频率的缩放有两种模式(a) 老式的收音机都是用磁带作为音乐介质的,当我们快放的时候,我们会感觉歌唱的声音变得怪怪的,调子很高,那是因为"圆周运动"的速度增倍了,每一个声音分量的sin(t)输出变成了sin(nt)。
(b) 在CD/计算机上面快放或满放感觉歌手快唱或者慢唱,不会出现音调变高的现象:因为快放的时候采用了时域采样的方法,丢弃了一些波形,但是承载了信息的输出波形不会有宽窄的变化;满放时相反,时域信号填充拉长就可以了。
2. F变换得到的结果有负数/复数部分,有什么物理意义吗?解释: F变换是个数学工具,不具有直接的物理意义,负数/复数的存在只是为了计算的完整性。
3. 信号与系统这们课的基本主旨是什么? 对于通信和电子类的学生来说,很多情况下我们的工作是设计或者OSI七层模型当中的物理层技术,这种技术的复杂性首先在于你必须确立传输介质的电气特性,通常不同传输介质对于不同频率段的信号有不同的处理能力。
信号与系统---基本概念
信号与系统---基本概念⼀、系统理论概念1、信号:信号是信息和能量的载体。
2、系统:系统⽤来对信号并因此也对信息和能量进⾏处理;3、信息:信息是⼀种知识内容,这种知识的物理体现(知识表现)就是信号;4、抽象的系统:为了进⾏系统研究,需要使⽤⼀个数学模型。
已经表明,在采⽤抽象的数学公式进⾏描述时,许多表⾯上不同的系统都表现为相同的形式。
系统理论的巨⼤优势就在于这种数学上的抽象概括。
因此不同专业领域的⼈就可以说同⼀种语⾔,并且能够共同地处理⼀项任务。
由于这个原因,系统理论具有了中⼼的地位。
抽象理论的另⼀个优点是,对系统进⾏描述,与系统的实际实现⽆关。
系统理论是⼀个思想流派,它允许:进⾏更⼴义的思考;把外来的解决⽅案应⽤到其他问题上。
5、数学模型:⼀个真实系统的数学模型是⼀组数学⽅程。
为了能够脱离物理意义⽽⼯作,常常是采⽤定标的,⽆量纲形式对信号进⾏记录的。
为了使数学上的⼯作量保持在可控的范围内,在模型中只对实际系统中需要关注的主要部分进⾏映像变换。
因此简单化的模型不再与实际样本相符。
但是,只要模型能够为真实系统的特征提供有⽤的解释和预测,这样的由于简化⽽带来的不符合也就⽆关紧要了。
否则就必须使模型得到逐步完善。
从原则上讲,⼀个模型应当尽可能简单,⽽且只要在必要时才是复杂的。
在应⽤⽅⾯,最为困难的部分是建模。
⾄于⼀个模型是否能够精确地解决⼀个具体课题,就只能通过经验回答这个问题了。
可以通过仿真对模型的特征与实际系统的特征进⾏⽐较。
但是为此需要对各种物理关系有深⼊的认识。
系统理论做为纯粹的数学学科不能对这种物理诠释提供⽀持。
因此,系统理论也只不过是⼀种⼯具(尽管是⼀种引⼈⼊胜的强⼤⼯具)⽽已,绝不可能使使⽤者摒弃其原专业领域坚实的专业知识。
系统理论在电⽓技术⽅⾯的主要应⽤领域是通信技术、调节技术和测量技术。
这些专业的典型特征是抽象并侧重理论,⽽且理论具有通⽤性。
对于应⽤⽽⾔,除了理论以外,在理论应⽤过程中所获得经验也是必要的。
信号与系统ppt
包权
人书友圈7.三端同步
通信系统的一般模型如图1.1所示。其 中转换器是指把声音转换为电信号或者把 电信号转换为声音的装置,如话筒和喇叭。 信道是指电信号传输的通道,在有线电话 中它是一对导线,在无线电话中它是电磁 波传播的空间和通信卫星等。在电话通信 系统中,声音信号变换为电信号后经发射 机以电磁波的形式通过信道传输给接收端, 接收端的转换器再把传过来的电信号转换 为声音信号。
本书只讨论确定性信号。
2.连续时间信号与离散时间信号
若t是定义在时间轴上的连续自变量, 那么,我们称x(t)为连续时间信号,又称模 拟信号。图1.2所示是连续时间信号。
图1.2连续时间信号
如果一个信号只在某些时间点上才有 意义,则这种信号称为离散时间信号。离 散时间信号一般用序列x[n]来表示,其 中n取整数。图1.3所示为离散时间信号。
函数曲线与时间轴所围的面积,常称其为
冲激函数的强度。单位冲激函数的强度为1, 而冲激函数kδ(t)的强度为k。延迟t0时刻的 单位冲激函数为δ(t-t0)。冲激函数用箭头表 示,强度值标记在箭头旁边,如图1.11所示。
图1.11 冲激函数
② 脉冲函数取极限定义法 宽度为τ,高度为1τ的矩形脉冲逼近冲 激信号的过程如图1.12所示 。
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
深入浅出谈《信号与系统》
戏谈《信号与系统》第一课什么是卷积傅利叶变换拉普拉斯变换引子很多朋友和我一样,工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了。
先说"卷积有什么用"这个问题。
(有人抢答,"卷积"是为了学习"信号与系统"这门课的后续章节而存在的。
我大吼一声,把他拖出去枪毙!)讲一个故事:张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。
一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。
然后,经理让张三测试当输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。
张三照做了,花了一个波形图。
"很好!"经理说。
然后经理给了张三一叠A4纸: "这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。
你分别测试以下我们产品的输出波形是什么吧!"这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?"于是上帝出现了: "张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形"。
上帝接着说:"给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!"张三照办了,"然后呢?"上帝又说,"对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。
你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。
"张三领悟了:" 哦,输出的结果就积分出来啦!感谢上帝。
这个方法叫什么名字呢?"上帝说:"叫卷积!"从此,张三的工作轻松多了。
信号与系统知识点总结
信号与系统知识点总结在现代科学和工程领域中,信号与系统是重要的基础理论。
它涉及到从电子通信、音频处理到图像识别等许多领域的技术和应用。
本文将对信号与系统的若干关键概念和知识点进行总结与概括。
一、信号的分类和性质信号可以被分为连续时间信号和离散时间信号两类。
连续时间信号是在定义域上连续存在的信号,它可以用连续的函数描述。
离散时间信号是在定义域上只取有限或无限多个离散点的信号,它可以用序列来表示。
信号还可以根据其能量和功率来分类。
能量信号是其能量有限的信号,如脉冲信号;功率信号是其功率有限的信号,如正弦信号。
这个概念对于信号在通信中的传输和处理具有重要意义。
二、线性时不变系统线性时不变系统(简称LTI系统)是信号与系统领域中最为重要的概念之一。
它的特点是输出与输入之间存在线性关系且不随时间发生变化。
LTI系统的性质可以由其冲激响应来描述。
冲激响应是当输入信号为单位冲激函数时,LTI系统的输出。
通过对冲激响应进行线性叠加和时间平移,可以得到系统对任意输入信号的响应。
三、卷积运算卷积运算是在信号与系统中常用的一种数学运算方法。
它可以将两个信号进行融合和混合,得到新的信号。
连续时间信号的卷积可以通过函数乘积和积分运算得到。
离散时间信号的卷积可以通过序列元素的加权和得到。
卷积运算在信号的滤波和频域分析中扮演着重要的角色。
例如,通过卷积可以实现低通滤波和高通滤波,以及信号的快速傅里叶变换。
四、傅里叶变换傅里叶变换是将一个信号从时域变换到频域的数学工具。
它可以将信号表示为一系列复数的和,从而揭示信号的频率分量和功率分布。
连续时间信号的傅里叶变换可以通过积分运算得到,离散时间信号的傅里叶变换可以通过离散的和运算得到。
傅里叶变换在信号压缩、频谱分析和滤波等方面有广泛应用。
例如,通过傅里叶变换可以将音频信号从时域转换为频域,实现音频的压缩和编码。
五、采样定理与信号重构在实际应用中,信号往往是以离散时间形式进行采样和处理的。
信号与系统概述
第一章信号与系统概述 (1)1。
1 信号与系统基本概念 (1)1。
1.1 信号基本概念 (1)1.1。
2 系统基本概念 (2)1.2 连续时间信号及分类 (2)1。
2。
1 确定性信号和随机信号 (3)1。
2.2 连续和分段连续时间信号 (3)1.2。
3 实信号与复信号 (4)1.2.4 周期信号与非周期信号 (7)1。
2。
5能量信号和功率信号 (7)1.2.6 MA TLAB实现常见标准信号波形 (8)1。
3 连续时间信号的基本运算 (11)1。
3。
1 信号的+、-、×运算 (11)1。
3.2 信号的时间变换运算 (12)1.3。
3 尺度变换(横坐标展缩) (14)1.3.4 微分与积分运算 (15)1。
3.5 MATLAB实现信号的时域运算和变换 (16)1.4 奇异信号 (19)1.4.1 阶跃函数 (19)1。
4.2 冲激函数 (21)1.5 系统的分类及性质 (26)1.5。
1 连续系统与离散系统 (26)1。
5.2 动态系统与即时系统 (26)1。
5。
3 线性系统与非线性系统 (26)1.5.4 时不变系统与时变系统 (28)1.5.5 因果系统与非因果系统 (28)1.5.6 稳定系统与不稳定系统 (29)1。
5。
7 LTI连续系统的微分特性和积分特性 (29)1。
6 连续系统描述方法 (30)1。
6。
1 系统的解析描述-—建立微分方程 (30)1。
6。
2 系统的框图描述——物理模型 (32)*1.7 LTI系统分析概述 (34)本章小结 (36)习题一 (36)第一章信号与系统概述本章将介绍信号与系统的概念以及它们的分类方法,然后讨论线性时不变(LinearTimer—Invariant,简称LTI)系统的特性和描述方法,同时深入地研究阶跃函数、冲激函数以及其特性,它们在LTI系统分析中占有十分重要的地位。
1。
1 信号与系统基本概念信号与系统在自然科学和社会科学领域中发挥着越来越重要的作用,信号与系统问题无处不在.近代,人们在自然科学以及工程、经济、社会科学等许多领域中,广泛地引用“系统"的概念、理念和方法,并根据各学科自身规律,建立相应的数学模型,研究各自的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对信号与系统的认识
信号与系统是通信和电子信息类专业的核心基础课,其中的概念和分析方法
广泛应用于通信、自动控制、信号与信息处理、电路与系统等领域。
从而我感觉这是一门很有用的课程,必须要努力扎扎实实的把这门课学好,为后续课程打下良好的基础。
首先我们要具备必备的数学知识,在已有的数学知识的基础上了解这门课的框架,找到本门课程的两条脉络,也就是连续系统和离散系统。
就其中的一条脉络我们找到关于它的所有内容,以连续系统为例,它又分两条线:时域分析法和变换域分析法。
时域分析法中求解输出和输入的关系的数学工具是微分方程,变换域分析法中求解输出和输入的关系的数学工具是拉普拉斯变换和傅立叶变换。
由于前面虚的知识有一定的遗忘,所以在以后得学习过程中要不断的有意识的把一些数学引入到实际问题的解决当中。
学了本门课程让我们了解了如何在实际中运用这些知识将复杂的问题简单化,真正体会到了那些公式的妙用。
本课程主要研究确定性信号和线性时不变系统的基本概念、基本理论和基本分析方法。
课程由信号分析、系统分析、信号与系统分析工具软件三大部分构成。
信号分析包括信号的时域分析和频域分析,信号分解思想贯穿本课程始终,任何复杂信号都可以分解成基本信号之和,通过对基本信号的特征和通过线性系统的特征来分析复杂信号通过系统特性,课程的体系安排是连续连信号与离散信号并行、先时域后频域的顺序;本课程系统分析的对象限于线性时不变系统,系统分析包括建立描述系统的数学模型并根据给定的激励和初始状态求解系统的响应。
这和我们以前学的电路有一定的关系,所以此课程和我们的其它专业课由很多的关联。
虽然这门课有一定的难度,但是我们不能知难而退。
在课前一定要做好预习,把自己弄不明白的问题在课上更加注重的听。
及时完成老师布置的课后作业,对做错的题目要认真订正。
我相信只要对这门学科做到心到,口到,手到,再大的困难都不是困难,再大的问题都不成问题,我一定能把它学好。
160511109
何志强。