建筑英语论文建筑材料的应用英汉对照

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The application of constructional material

建筑材料的应用

The availability of suitable structural materials is one of the principal limitations on the accomplishment of an experienced structural engineer. Early builders depended almost exclusively on wood, stone, brick, and concrete. Although iron had been used by humans at least since the building of the Egyptian pyramids, use of it as a structural material was limited because of the difficulties of smelting it in large quantities. With the industrial revolution, however, came both the need for iron as a structural material and the capability of smelting it in quantity.

John Smeaton, an English civil engineer, was the first to use cast iron extensively as a structural material in the mid-eighteenth century. After 1841, malleable iron was developed as a more reliable material and was widely used. Whereas malleable iron was superior to cast iron, there were still too many structural failures and there was a need for a more reliable material. Steel was the answer to this demand. The invention of the Bessemer converter in 1856 and the subsequent development of the Siemens-Martin open-hearth process for making steel made it possible to produce structural steel at competitive prices and triggered the tremendous developments and accomplishments in the use of structural steel over the next hundred years.

The most serious disadvantage of steel is that it oxidizes easily and must be protected by paint or some other suitable coating. When steel is used in an enclosure where a fire could occur, the steel members must be encased in a suitable fire-resistant enclosure such as masonry, concrete. Normally, steel members will not fail in a brittle manner unless an unfortunate combination of metallurgical composition, low temperature, and bi-or triaxial stress exists.

Structural aluminum is still not widely used in civil engineering structures, though its use is steadily increasing. By a proper selection of the aluminum alloy and its heat treatment, a wide variety of strength characteristics may be obtained. Some of the alloys exhibit stress-strain characteristics similar those of structural steel, except that the modulus of elasticity for the initial linearly elastic portion is about 10,000,000 psi (700,000 kgf/cm*cm) or about one-third that of steel. Lightness and resistance to oxidation are, of course, two of the major advantages of aluminum. Because its properties are very sensitive to its heat treatment, care must be used when riveting or welding aluminum. Several techniques have been developed for prefabricating aluminum subassemblies that can be readily erected and bolted together in the field to form a number of beautiful and well-designed shell structures. This general procedure of prefabrication and held assembly by bolting seems to be the most promising way of utilizing structural aluminum.

Reinforced and prestesses concrete share with structural material. Natural cement concretes have been used for centuries. Modern concrete construction dates from the middle of the nineteenth century, though artificial Portland cement was patented by Aspidin, an Englishman, about 1825. Although several builders and engineers experimented with the use of steel-reinforced concrete in the last half of the nineteenth century, its dominant use as a building material dates from the early decades of the twentieth century. The last fifty years have seen the rapid and vigorous development of prestressed concrete design and construction, founded largely on early work by Freyssinet in France and Magnel in Belgium.

Plain (unreinforced) concrete not only is a heterogeneous material but also has one very serious defect as a structural material, namely, its very limited tensile strength, which is only of the order of one-tenth its compressive strength. Not only is tensile failure in concrete of a brittle type, but likewise compression failure occurs in a relatively brittle fashion without being preceded by the forewarning of large deformations. (Of course, in reinforced-concrete construction, ductile behavior can be obtained by proper selection and arrangement of the reinforcement.) Unless proper care is used in the selection of aggregates and in the mixing

相关文档
最新文档