计算方法3解线性方程组计算解法
计算方法(3)第三章 线性代数方程组的解法
“回代”解得
xn
bn ann
xk
1 akk
[bk
n
akj x j ]
j k 1
其中aii 0 (i 1,2,......, n)
(k n 1, n 2, ,1)
返回变量
函数名
function X=backsub(A,b) 参数表
%Input—A is an n×n upper- triangular nonsingullar matrix % ---b is an n×1 matrix
x1
xi
b1 / a11
i 1
(bi aik
k 1
xk ) / aii
(i
2,3,
, n)
如上解三角形方程组的方法称为回代法.
二. 高斯消元法(Gaussian Elimination)
高斯消元法的求解过程,可大致分为两个阶段:首先, 把原方程组化为上三角形方程组,称之为“消元”过 程;然后,用逆次序逐一求出上三角方程组(原方程组的 等价方程组)的解,称之为“回代”过程.
符号约定:
1. (λEi )(Ei ): 第i个方程乘以非零常数λ。 2. (Ei +λEj )(Ei ): 第j个方程乘以非零常数λ
加到第i个方程。
3.(Ei )(Ej ): 交换第i个方程与第j个方程。
a11 x1 a12 x2 ... a1n xn b1
a21
x1 4 x4 x2 4 1 2 1
故解为(x1,x2 ,x3 ,x4 )T (1,2,0,1)T
A=[1 1 0 1;0 -1 -1 -5;0 0 3 13;0 0 0 -13] b=[4;-7;13;-13] X=backsub(A,b)
MATLAB计算方法3解线性方程组计算解法
MATLAB计算方法3解线性方程组计算解法线性方程组是数学中的一个重要问题,解线性方程组是计算数学中的一个基本计算,有着广泛的应用。
MATLAB是一种功能强大的数学软件,提供了多种解线性方程组的计算方法。
本文将介绍MATLAB中的三种解线性方程组的计算方法。
第一种方法是用MATLAB函数“linsolve”解线性方程组。
该函数使用高斯消元法和LU分解法求解线性方程组,可以处理单个方程组以及多个方程组的情况。
使用该函数的语法如下:X = linsolve(A, B)其中A是系数矩阵,B是常数向量,X是解向量。
该函数会根据A的形式自动选择求解方法,返回解向量X。
下面是一个使用“linsolve”函数解线性方程组的例子:A=[12;34];B=[5;6];X = linsolve(A, B);上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。
运行代码后,X的值为[-4.0000;4.5000]。
第二种方法是用MATLAB函数“inv”求解逆矩阵来解线性方程组。
当系数矩阵A非奇异(可逆)时,可以使用逆矩阵求解线性方程组。
使用“inv”函数的语法如下:X = inv(A) * B其中A是系数矩阵,B是常数向量,X是解向量。
该方法先计算A的逆矩阵,然后将逆矩阵与B相乘得到解向量X。
下面是一个使用“inv”函数解线性方程组的例子:A=[12;34];B=[5;6];X = inv(A) * B;上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。
运行代码后,X的值为[-4.0000;4.5000]。
第三种方法是用MATLAB函数“mldivide”(或“\”)求解线性方程组。
该函数使用最小二乘法求解非方阵的线性方程组。
使用“mldivide”函数的语法如下:X=A\B其中A是系数矩阵,B是常数向量,X是解向量。
线性方程组的求解方法
线性方程组的求解方法线性方程组是数学中的基础概念,广泛应用于各个领域,如物理、经济学、工程学等。
解决线性方程组的问题,对于推动科学技术的发展和解决实际问题具有重要意义。
本文将介绍几种常见的线性方程组的求解方法,包括高斯消元法、矩阵法和迭代法。
一、高斯消元法高斯消元法是求解线性方程组的经典方法之一。
它的基本思想是通过一系列的行变换将方程组化为阶梯形或行最简形,从而得到方程组的解。
首先,将线性方程组写成增广矩阵的形式,其中增广矩阵是由系数矩阵和常数向量组成的。
然后,通过行变换将增广矩阵化为阶梯形或行最简形。
最后,通过回代法求解得到方程组的解。
高斯消元法的优点是简单易懂,容易实现。
但是,当方程组的规模较大时,计算量会很大,效率较低。
二、矩阵法矩阵法是求解线性方程组的另一种常见方法。
它的基本思想是通过矩阵运算将方程组化为矩阵的乘法形式,从而得到方程组的解。
首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。
然后,通过矩阵运算将方程组化为矩阵的乘法形式。
最后,通过求逆矩阵或伴随矩阵求解得到方程组的解。
矩阵法的优点是计算效率高,适用于方程组规模较大的情况。
但是,对于奇异矩阵或非方阵的情况,矩阵法无法求解。
三、迭代法迭代法是求解线性方程组的一种近似解法。
它的基本思想是通过迭代计算逐步逼近方程组的解。
首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。
然后,选择一个初始解,通过迭代计算逐步逼近方程组的解。
最后,通过设定一个误差限,当迭代结果满足误差限时停止计算。
迭代法的优点是计算过程简单,适用于方程组规模较大的情况。
但是,迭代法的收敛性与初始解的选择有关,有时可能无法收敛或收敛速度较慢。
综上所述,线性方程组的求解方法有高斯消元法、矩阵法和迭代法等。
每种方法都有其适用的场景和特点,选择合适的方法可以提高计算效率和解决实际问题的准确性。
在实际应用中,根据问题的具体情况选择合适的方法进行求解,能够更好地推动科学技术的发展和解决实际问题。
线性方程组的解法与计算方法
线性方程组的解法与计算方法线性方程组是高中数学中的重要内容,它与矩阵、向量等概念密不可分。
解决线性方程组的问题是很多科学和工程领域中必不可少的基础技能,因此,学习线性方程组的解法和计算方法也是至关重要的。
一、高斯消元法高斯消元法是解决线性方程组的经典方法,其核心思想是通过初等行变换将系数矩阵化为一个上三角矩阵,再采用回代法求解,具体步骤如下:(1)将系数矩阵A和右端向量b合并成一个增广矩阵[ A | b]。
(2)通过初等行变换将增广矩阵消元为一个上三角矩阵U。
(3)利用回代法求解上三角矩阵U的解x。
高斯消元法的优点是能够对任意的线性方程组进行求解,但其缺点是可能会出现浮点数舍入误差,影响求解精度。
二、列主元高斯消元法列主元高斯消元法是在高斯消元法基础上改进而来的,在消元时每次选择列主元,即系数矩阵A中以列为单位元素的绝对值最大的所在行,并将该行交换到当前的行数,然后再进行消元操作。
这样选择列主元能够减小误差,提高求解的精度,具体步骤如下:(1)选取列主元所在的行,并将其与当前行交换。
(2)用当前行的第一个元素除以主元,将主元所在列下面的元素消成0。
(3)进行下一次迭代,直到将系数矩阵化成上三角矩阵。
(4)通过回代法求解上三角矩阵的解x。
列主元高斯消元法在提高求解精度的同时也增加了计算量,因此在实际应用中需要根据具体的情况选择合适的方法。
三、LU分解LU分解是将系数矩阵A分解成一个下三角矩阵L与一个上三角矩阵U的乘积,即A=LU。
通过LU分解可以将求解x的过程分解为两个步骤:先求解Ly=b,再求解Ux=y。
具体步骤如下:(1)分别求解下三角矩阵L与上三角矩阵U。
(2)用LU分解求解方程Ax=b相当于先求解Ly=b,再求解Ux=y。
LU分解的优点是可以减少误差,提高求解精度,并且在计算某些特定的矩阵时比高斯消元法更加高效,但其缺点是需要较大的存储空间。
综上所述,线性方程组的解法和计算方法有多种,选择合适的方法需要根据具体问题的不同来进行选择。
计算方法3_线性方程组迭代解法
计算方法3_线性方程组迭代解法线性方程组的迭代解法是解决线性方程组的一种常见方法,常用于大规模的线性方程组求解。
该方法通过不断迭代更新解的近似值,直到满足一定的收敛准则为止。
线性方程组的迭代解法有很多种,其中最经典的是雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法。
本文将分别介绍这三种迭代解法及其计算方法。
雅可比迭代法是一种比较简单的线性方程组迭代解法,它的基本思想是先将线性方程组转化为对角占优的形式,然后通过迭代求解逐渐接近精确解。
雅可比迭代法的迭代公式为:其中,x^(k+1)是第k+1次迭代的近似解,n是未知数的个数,a_ij 是系数矩阵A的元素,f_i是方程组的右端向量的元素。
雅可比迭代法的计算步骤如下:1.将线性方程组转化为对角占优的形式,即保证矩阵A的对角元素绝对值大于其它元素的绝对值。
2.初始化向量x^(0),设定迭代终止准则。
3.根据雅可比迭代公式,计算x^(k+1)。
4.判断迭代终止准则是否满足,如果满足,则停止迭代,返回近似解x^(k+1);否则,继续进行下一次迭代。
高斯-赛德尔迭代法是雅可比迭代法的改进方法,它的基本思想是在每次迭代计算x^(k+1)时,利用已经计算出的近似解作为x的一部分。
高斯-赛德尔迭代法的迭代公式为:其中,x^(k+1)_i是第k+1次迭代的近似解中第i个未知数的值,x^(k)_i是第k次迭代的近似解中第i个未知数的值。
高斯-赛德尔迭代法的计算步骤如下:1.将线性方程组转化为对角占优的形式。
2.初始化向量x^(0),设定迭代终止准则。
3.根据高斯-赛德尔迭代公式,计算x^(k+1)。
4.判断迭代终止准则是否满足,如果满足,则停止迭代,返回近似解x^(k+1);否则,继续进行下一次迭代。
超松弛迭代法是对高斯-赛德尔迭代法的一种改进方法,它引入了松弛因子ω,通过调整参数ω的值,可以加快迭代的收敛速度。
超松弛迭代法的迭代公式为:其中,0<ω<2,x^(k+1)_i是第k+1次迭代的近似解中第i个未知数的值,x^(k)_i是第k次迭代的近似解中第i个未知数的值。
大学数值计算方法(第3章解线性方程组的数值解法)3
征值, 则称 ρ ( A) = max{| λi |}
1≤i ≤ n
为矩阵A的谱半径。 矩阵A的谱半径ρ ( A)不是A的一种范数, 但可能与A的任何一种范数有某种关系。
例题
2 求矩阵 A = − 2 − 1 的谱半径。 4
则必存在两正数m, M , 使得 m || x ||β ≤|| x ||α ≤ M || x ||β
向量范数性质 等价性质:
1) 2) 3) 1 || x ||1 ≤|| x ||∞ ≤|| x ||1 n || x ||∞ ≤|| x ||1 ≤ n || x ||∞ || x ||∞ ≤|| x ||2 ≤ n || x ||∞
lim || x
(k)
− x ||∞ = 0 ⇔ lim max x
* k →∞ 1≤i ≤ n k →∞ (k ) i
(k ) i
− xi = 0
⇔ lim x
=x
* i
(i = 1,2,...n)
3.4.2 矩阵范数
定义3.4.3 设任意A ∈ R n×n , 若按某一确定的法则对 应于一非负实数 || A ||, 且满足 : 1)非负性 :|| A ||≥ 0,当且仅当A = 0时, A ||= 0; || 2)奇次性: kA ||=| k ||| A || ,k ∈ R; || 3)三角不等式: A + B ||≤|| A || + || B ||, ∀A, B ∈ R n×n ; || 4)相容性: ≤ A B ,∀A, B ∈ R n×n, AB 则称 || A || 为R n×n的一种范数。
算子范数
所以对x ≠ 0有 || ( A + B) x || ≤|| A || + || B || || x || || ( A + B) x || || A + B ||= max ≤|| A || + || B || x ≠0 || x || || AB ||≤|| A |||| B || 。 || I ||= max || Ix ||= 1 x =1
线性方程组的解法
线性方程组的解法作为一个线性代数主题,线性方程组的解法是一个非常重要的领域。
在本文中,我们将介绍几种解决线性方程组问题的方法。
我们将从初等变换、高斯消元法、矩阵展开式等几个方面来深入探讨。
一、初等变换初等变换往往是解决线性方程组问题的起点。
我们可以对方程组进行一些基本的操作来得到一个简化的等价方程组,从而方便我们去寻找方程组的解,初等变换主要包括三种操作:1.交换方程组中的两个方程的位置。
2.将某个方程的倍数加到另一个方程上。
3.用一个非零常数来乘某个方程。
执行初等变换时,我们必须记住每个变换对解x的影响。
在交换方程x 和y 的位置时,它们的解不变,而在加上一只方程的某个倍数时,系数矩阵和右侧向量也会随之改变,但解不变。
用一个非零常数乘以方程只会改变右侧向量,同时系数矩阵也会改变。
二、高斯消元法高斯消元法是解决线性方程组问题的另一种方法。
该方法通过使用矩阵增广形式来解决线性方程组问题。
具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中右侧向量位于最后一列。
2. 使用初等变换来将增广矩阵化为行梯阵形式。
行梯阵是矩阵的形式,其中每一行从左侧开始的第一个非零元素称为主元(pivot),每个主元下方的元素均为零。
3. 从最后一行开始,使用回带算法来求得线性方程组的解。
高斯消元法对于小规模的线性方程组可以轻松解决。
但是,在大规模问题上,该方法可能会产生误差或需要很长时间才能找到解决方案。
三、克拉默法则克拉默法则是解决线性方程组问题的第三种方法。
该方法的关键在于将解决方案表示为每个未知数的一个比值。
这个比值是通过计算每个未知数对其余所有未知数的系数行列式比率而得到的。
这个方法的好处在于消去解方程组所需要的系数矩阵增广形式和行梯阵形式的需要。
但是,如果有许多未知数,计算每个比率可能会非常繁琐。
另外,如果有两个或更多个未知数系数具有相同的值,则克拉默法则计算行列式比率会失败。
四、矩阵展开式最后,我们来看一下使用矩阵展开式来解决线性方程组问题的方法。
线性方程组的解法
线性方程组的解法线性方程组是数学中常见的问题,解决线性方程组可以帮助我们求解各种实际问题。
在本文中,我们将介绍几种常见的求解线性方程组的方法。
一、高斯消元法高斯消元法是最常见、最简单的一种求解线性方程组的方法。
该方法的基本思想是通过一系列的行变换将线性方程组化为简化的梯形方程组,并进一步求解出方程组的解。
具体的步骤如下:1. 将线性方程组写成增广矩阵的形式。
2. 选取矩阵中的一个元素作为主元,将主元所在的行进行换位,使主元尽可能地靠近对角线。
3. 使用消元法,通过将主元下方的所有元素消为零,将矩阵化为简化的梯形矩阵。
4. 从最后一行开始,逆推求解出每个未知数的值。
高斯消元法的优点是简单易懂,适用于一般的线性方程组。
然而,该方法在涉及大规模矩阵的情况下计算量较大,效率相对较低。
二、矩阵的逆和逆矩阵法矩阵的逆和逆矩阵法是通过求解矩阵的逆矩阵来求解线性方程组的方法。
这种方法需要先求出矩阵的逆矩阵,然后利用逆矩阵和增广矩阵相乘得到方程组的解。
具体的步骤如下:1. 将线性方程组写成增广矩阵的形式。
2. 求解增广矩阵的逆矩阵。
3. 将逆矩阵与增广矩阵相乘,得到方程组的解。
矩阵的逆和逆矩阵法的优点是适用于包含多个方程组的情况,且相对于高斯消元法在计算大型矩阵时具有更高的效率。
然而,该方法要求矩阵可逆,且逆矩阵存在才能得到准确的解。
三、克拉默法则克拉默法则是一种基于行列式的方法,用于求解含有n个未知数的n个线性方程组的解。
该方法通过求解方程组的行列式来得到各个未知数的解。
具体的步骤如下:1. 将线性方程组写成矩阵形式,并求出系数矩阵的行列式D。
2. 分别将系数矩阵的每一列替换成常数项的列向量,分别求出替换后的矩阵的行列式D1、D2...Dn。
3. 通过D1/D、D2/D...Dn/D得到方程组的解。
克拉默法则的优点是对于小规模的线性方程组简单易懂,但对于大规模的线性方程组计算量较大,效率较低。
总结:以上介绍了几种常见的线性方程组的求解方法,包括高斯消元法、矩阵的逆和逆矩阵法,以及克拉默法则。
计算方法3_线性方程组的解法
习题33.1 设有方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225321321321x x x x x x x x x (1) 考察用Jacobi 法,Gauss-Seidal 法解此方程组的收敛性; (2) 用Jacobi 法及Gauss-Seidal 法解方程组,要求当4)()1(10-∞+<-k k xx 时迭代终止。
3.2 设有方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a , )0,(1211≠a a ,迭代公式⎪⎪⎩⎪⎪⎨⎧-=-=--)(1)(1)1(221222)(2)1(212111)(1k k k k x a b a x x a b a x , ,2,1=k . 求证由上述迭代公式产生的向量序列{})(k x 收敛的充要条件是122112112<=a a a a γ.3.3 给定方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1011010201321x x x aa ,确定a 的取值范围,使方程组对应的Jacobi 迭代收敛。
3.4 用SOR 方法解下列方程组(取松驰因子2.1=ω),要求4)()1(10-∞+<-k k x x.⎩⎨⎧=-=+54122121x x x x .3.5 给定线性方程组AX =b ,其中2,,141R b x a a A ∈⎥⎦⎤⎢⎣⎡=,1)求出使Jacobi 迭代法和G-S 迭代法均收敛的α的取值范围。
2)当0≠α时,给出这两种迭代法的收敛速度之比。
3.6 用Gauss 消去法解方程组⎪⎩⎪⎨⎧=++=++=++52262342321321321x x x x x x x x x3.7 用选列主元高斯消去法求解方程组⎪⎩⎪⎨⎧=---=-+-=+-0232122743321321321x x x x x x x x x3.8 用追赶法解三角方程组⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--------00001211210001210001210001254321x x x x x3.9 用三角分解法求解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----765202616184842321x x x3.10 用选主元法去法计算下列行列式的值159423621.3.11 设⎪⎪⎭⎫⎝⎛=111014A 计算 ∞)(A cond .。
线性方程组的解法
线性方程组的解法一、引言线性方程组是数学中的重要概念,广泛应用于各个领域,包括物理学、经济学、工程学等。
解决线性方程组有多种方法,本文将介绍常见的三种解法:高斯消元法、矩阵法和克拉默法。
二、高斯消元法高斯消元法是一种基于矩阵变换的解法,可以将线性方程组转化为简化行阶梯形矩阵,从而快速求解解向量。
具体步骤如下:1. 将线性方程组写成增广矩阵形式;2. 选择一个非零首元,在该列中其余元素乘以某个系数并相减,使得除首元外该列其他元素变为零;3. 重复第二步,直至将矩阵转化为简化行阶梯形矩阵;4. 从简化行阶梯形矩阵中读出解。
三、矩阵法矩阵法是一种基于矩阵运算的解法,将线性方程组转化为矩阵形式,并求解矩阵的逆矩阵,从而得到解向量。
具体步骤如下:1. 将线性方程组写成矩阵形式;2. 求解矩阵的逆矩阵;3. 用逆矩阵乘以等号右边的向量,得到解向量。
四、克拉默法克拉默法是一种利用行列式性质求解线性方程组的方法,适用于方程组个数与未知数个数相等的情况。
具体步骤如下:1. 将线性方程组写成矩阵形式;2. 计算行列式的值;3. 分别用等号右边的向量替换矩阵中对应的列,再求解行列式的值;4. 将第三步得到的值除以第二步得到的值,得到解向量。
五、比较与应用场景1. 高斯消元法在实际计算中具有高效性和稳定性,适用于任意线性方程组求解;2. 矩阵法需要先求解矩阵的逆矩阵,计算过程相对复杂,适用于方程组个数与未知数个数相等的情况;3. 克拉默法计算过程较为复杂,不适用于大规模方程组的求解,但对于小规模方程组求解比较便捷。
六、总结线性方程组的解法有多种,本文介绍了高斯消元法、矩阵法和克拉默法三种常见方法。
应根据具体情况选择合适的方法来求解线性方程组,以达到高效、准确的目的。
对于大规模方程组的计算,高斯消元法更具优势;对于方程组个数与未知数个数相等的情况,矩阵法和克拉默法更适用。
随着数学计算方法的不断发展,越来越多的解法将出现,为解决复杂的线性方程组提供更多选择。
线性方程组的解法线性方程组
线性方程组的解法线性方程组线性方程组是数学中常见的一种方程形式,它由多个线性方程联立而成。
解线性方程组是在给定一组方程的条件下,求出符合这些方程的未知数的取值,从而满足方程组的所有方程。
本文将介绍线性方程组的解法和应用。
一、高斯消元法高斯消元法是解线性方程组的一种常用方法。
它通过一系列行变换将线性方程组转化为简化的行阶梯形矩阵,然后通过回代求解得到方程组的解。
具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中未知数的系数和常数项构成矩阵的左右两部分。
2. 选取一个主元(即系数不为零的元素)作为基准行,并通过行变换使得该元素为1,同时消去其他行中该列的元素。
3. 重复上述步骤,将矩阵转化为行阶梯形式,即每一行的主元都在前一行主元的右下方。
4. 进行回代,从最后一行开始,逐步求解方程组的未知数。
高斯消元法能够解决大部分线性方程组,但对于某些特殊情况,例如存在无穷解或无解的方程组,需要进行额外的判断和处理。
二、矩阵求逆法矩阵求逆法是另一种解线性方程组的方法。
它通过求解方程组的系数矩阵的逆矩阵,再与常数项的矩阵相乘,得到未知数的解向量。
具体步骤如下:1. 如果线性方程组的系数矩阵存在逆矩阵,即矩阵可逆,那么方程组有唯一解。
2. 计算系数矩阵的逆矩阵。
3. 将逆矩阵与常数项的矩阵相乘,得到未知数的解向量。
需要注意的是,矩阵求逆法只适用于方程组的系数矩阵可逆的情况,对于不可逆的方程组,则无解或者存在无穷解。
三、克拉默法则克拉默法则适用于n个未知数、n个方程的线性方程组。
它利用行列式的性质来求解未知数。
具体步骤如下:1. 构建系数矩阵和常数项的矩阵。
2. 计算系数矩阵的行列式,即主对角线上各元素的乘积减去副对角线上各元素的乘积。
3. 分别用求解一个未知数时的系数矩阵替代系数矩阵中对应列的元素,再计算新矩阵的行列式。
4. 将每个未知数的解依次计算出来。
克拉默法则的优点是理论简单,易于理解,但随着未知数和方程数的增加,计算复杂度呈指数增长,计算效率较低。
线性方程组的解法
线性方程组的解法线性方程组是数学中重要的概念,它是由一系列线性方程组成的方程组。
解决线性方程组的问题在实际应用中具有重要意义,因为它们可以描述许多自然和社会现象。
本文将介绍几种常见的线性方程组的解法,包括高斯消元法、矩阵法以及向量法。
一、高斯消元法高斯消元法是解决线性方程组的常用方法之一。
它通过对方程组进行一系列的消元操作,将方程组转化为简化的等价方程组,从而求得方程组的解。
步骤如下:1. 将线性方程组写成增广矩阵的形式,即将所有系数按照变量的次序排列,并在最后一列写上等号右边的常数。
2. 选取一个主元素,通常选择第一列第一个非零元素作为主元素。
3. 消去主元素所在的列的其他非零元素,使得主元素所在列的其他元素都变为零。
4. 选取下一个主元素,继续重复消元操作,直到将所有行都消为阶梯形。
5. 进行回代,从最后一行开始,求解每个变量的值,得到线性方程组的解。
二、矩阵法矩阵法是另一种解决线性方程组的常用方法。
它将线性方程组写成矩阵形式,通过矩阵的运算求解方程组的解。
步骤如下:1. 将线性方程组写成矩阵形式,即系数矩阵乘以未知数向量等于常数向量。
2. 对系数矩阵进行行变换,将系数矩阵化为行阶梯形矩阵。
3. 根据行阶梯形矩阵,得到线性方程组的解。
三、向量法向量法是解决线性方程组的一种简洁的方法。
它将线性方程组转化为向量的内积形式,通过求解向量的内积计算方程组的解。
步骤如下:1. 将线性方程组写成向量的内积形式,即一个向量乘以一个向量等于一个数。
2. 根据向量的性质,求解向量的内积,得到线性方程组的解。
以上是几种常见的线性方程组的解法。
在实际应用中,根据具体情况选择适合的解法,以高效地求解线性方程组的解。
通过掌握这些解法,可以更好地解决与线性方程组相关的问题,提高问题的解决能力。
结论线性方程组是数学中重要的概念,解决线性方程组的问题具有重要意义。
通过高斯消元法、矩阵法和向量法等解法,可以有效求解线性方程组的解。
线性方程组的解法
线性方程组的解法在数学中,线性方程组是由一系列线性方程组成的方程集合。
解决线性方程组是数学中的一个重要问题,在实际应用中也有广泛的应用。
本文将介绍几种常见的线性方程组的解法,以帮助读者更好地理解和应用这些方法。
一、高斯消元法高斯消元法是解决线性方程组的一种常见且经典的方法。
它通过一系列的行变换,将线性方程组化简为一个上三角矩阵,从而求得方程组的解。
具体步骤如下:步骤1:将线性方程组写成增广矩阵的形式。
步骤2:选取一个非零的系数作为主元素,并将该系数所在行作为当前行。
步骤3:将主元素所在列的其他行元素都通过初等变换变为0。
步骤4:重复步骤2和步骤3,直到将矩阵化简为上三角形式。
步骤5:回代求解,得到线性方程组的解。
高斯消元法是一种直观且容易理解的解法,但对于某些特殊的线性方程组,可能会遇到无解或者无穷多解的情况。
二、矩阵的逆乘法矩阵的逆乘法是另一种解决线性方程组的方法,它通过矩阵的逆和向量的乘法,将线性方程组表示为一个矩阵方程,从而求得方程组的解。
具体步骤如下:步骤1:将线性方程组表示为增广矩阵的形式。
步骤2:判断增广矩阵的系数矩阵是否可逆,如果可逆,则存在矩阵的逆。
步骤3:计算增广矩阵的系数矩阵的逆。
步骤4:将原始线性方程组表示为矩阵方程形式,即AX = B。
步骤5:求解矩阵方程,即X = A^(-1)B。
矩阵的逆乘法是一种简便且高效的解法,但需要注意矩阵的可逆性,在某些情况下可能不存在逆矩阵或者矩阵的逆计算比较困难。
三、克拉默法则克拉默法则是一种基于行列式求解线性方程组的方法。
它通过计算方程组的系数行列式和各个未知数在方程组中的代数余子式,从而求得方程组的解。
具体步骤如下:步骤1:将线性方程组的系数和常数项构成一个矩阵。
步骤2:计算系数矩阵的行列式,即主行列式D。
步骤3:分别将主行列式D中的每一列替换为常数项列,计算得到各个未知数的代数余子式。
步骤4:根据克拉默法则的公式,未知数的值等于其对应的代数余子式除以主行列式D。
线性方程组的解法
线性方程组的解法线性方程组是数学中常见的一个概念,它是由多个线性方程组成的方程集合。
对于一个线性方程组,我们常常需要找到它的解,即能够同时满足所有方程的变量值。
本文将介绍几种常见的线性方程组解法。
1. 列消法列消法,也被称为高斯消元法,是一种常见且直观的线性方程组解法。
其基本思想是通过逐行操作,将方程组进行简化,使其呈现出上三角形式,从而得到解。
具体的步骤如下:- 步骤一:将线性方程组写成增广矩阵形式。
增广矩阵是一个含有系数和常数的矩阵,每一行代表一个方程。
- 步骤二:逐列进行消元操作。
从第一列开始,逐行将该列下方的元素转化为0。
操作方式是将上一行的倍数加到下一行上。
- 步骤三:重复步骤二,直到将增广矩阵转化为上三角形式。
- 步骤四:回代求解。
从最后一行开始,逐行计算出每个变量的值,将其代入上方的方程中,继续求解。
2. 矩阵法矩阵法是一种将线性方程组转化为矩阵运算的解法,它简化了计算过程。
该方法基于矩阵的性质和运算规则,能够更加高效地求解线性方程组。
具体的步骤如下:- 步骤一:将线性方程组写成矩阵形式。
将系数和常数构成一个矩阵,将未知数构成一个列向量。
- 步骤二:对矩阵进行初等行变换。
通过初等行变换,将矩阵转化为上三角形式。
- 步骤三:回代求解。
从最后一行开始,逐行计算出每个变量的值,将其代入上方的方程中,继续求解。
3. 克拉默法则克拉默法则是一种基于行列式的线性方程组解法。
该方法适用于方程个数与未知数个数相等的情况。
具体的步骤如下:- 步骤一:计算系数矩阵的行列式值。
该值被称为主行列式。
- 步骤二:计算每个未知数对应的行列式值。
将主行列式进行替换,将替换后的行列式值称为次行列式。
- 步骤三:分别计算每个未知数的值。
将次行列式除以主行列式,得到每个未知数的取值。
需要注意的是,克拉默法则在求解大规模的线性方程组时效率较低,因为每次计算都需要求解大量的行列式。
综上所述,线性方程组的解法有列消法、矩阵法和克拉默法则等多种,每种方法都有其适用的场景和特点。
计算方法第三章线性方程组的直接解法
5 3
3 1
r3
r1 6
6 1 18 2
1 0
4 5 1 3
3 1
r3 r225
1 0
4 1
5 3
3 1
0 25 48 16
0 0 27 9
林龙
计算方法
6
化原方程组为三角方程组的过程为消元过程. 解三角方程组的过程为回代过程.
也可将上边的增广矩阵进一步化简.
1 4 5 3
1 0 7 1
xi
Di D
(i
1, 2,3,
),由于方程含有n 1个
行列式.如对每个行列式按展开定理来计算.
用克莱姆法则求解,所需要的乘除运算量为
n!(n2 1) n次,若n 20用每秒一千万次的
计算机要三百万年,所以并不是凡直接法都
可以用来做实际运算.
林龙
计算方法
4
设有
§3.1直接法
a11x1 a12 x2 a21x1 a22 x2
解 : 10
7
0
7
r1 r2
5 1 5 6
林龙
计算方法
16
10 3 5
7 2 1
0 6 5
7 4 6
r2
3 10
r1
r3
5 10
r1
10
0
0
7 0.1 2.5
0 7 6 6.1 5 2.5
r2 r3
r3
1 25
r2
10 7 0 7 x3 1
0
2.5
5
2.5
x2
2.5 5x
nn
a11 a12 .... a1n 1 0 0
a21
a22
线性方程组的解法
线性方程组的解法线性方程组是初等代数中的重要概念,它描述了一组线性方程的集合。
解决线性方程组是数学和物理等领域中最为基础且重要的问题之一。
本文将介绍三种常见的线性方程组解法:高斯消元法、矩阵求逆法和矩阵的列主元素消去法。
一、高斯消元法高斯消元法是最常用的线性方程组解法之一。
其基本思想是通过一系列的行变换将线性方程组转化为阶梯形矩阵,进而求解出方程组的解。
以一个二元线性方程组为例:```a₁₁x₁ + a₁₂x₂ = b₁a₂₁x₁ + a₂₂x₂ = b₂```通过行变换,我们可以将其转化为阶梯型矩阵:```a₁₁'x₁ + a₁₂'x₂ = b₁'a₂₂'x₂ = b₂'```其中,a₁₁'、a₁₂'、b₁'、a₂₂'、b₂'是经过行变换后的新系数。
由此可得到方程组的解。
二、矩阵求逆法矩阵求逆法是利用逆矩阵的性质来求解线性方程组的解法。
对于一个n阶线性方程组Ax = b,其中A为系数矩阵,x为未知数向量,b为常数向量。
首先,我们需要判断系数矩阵A是否可逆。
若A可逆,则可以得到A的逆矩阵A⁻¹。
方程组的解即为x = A⁻¹b。
若A不可逆,说明方程组的解不存在或者有无穷多个解。
三、矩阵的列主元素消去法矩阵的列主元素消去法是一种改进的高斯消元法,其目的是尽量减小计算误差。
在高斯消元法中,我们选择主元素为每一行首非零元素。
而在列主元素消去法中,我们选择主元素为每一列的绝对值最大的元素。
类似于高斯消元法,列主元素消去法也通过一系列的行变换将线性方程组转化为阶梯形矩阵。
通过后向代入的方法,可以得到方程组的解。
总结线性方程组的解法有多种,其中包括高斯消元法、矩阵求逆法和矩阵的列主元素消去法。
这些解法在不同场景下都有其应用价值,具体的选择取决于问题的特点和所需计算的精度。
通过掌握这些解法,并结合具体问题的特点,我们可以高效解决线性方程组,进而应用到更广泛的数学和物理等领域中。
MATLAB计算方法3解线性方程组计算解法名师公开课获奖课件百校联赛一等奖课件
li1 ai1
u11
(i 2,3,, n)
k 1
ukj akj lkmumj akj
m 1
(
j
k,
k
1,,
n)
lik
aik
k 1
limumk
m 1
(i
k
1,,
n)
ukk aik
(k 2,3,, n)
例3.1
2 1 2 6 2 1 2 6
4 5 4 18 2 3 0 6
a11 a12 a1n l11
a21
a22
a2n
l21
l22
l11 l21 l n1
l22
l
n2
an1
an2
ann
l n1
l n2
l
nn
l
nn
其中aij a ji
由矩阵乘法
(1)
1)
l2 11
a11
l11
a11
(取正)
2) L第1行 LT第j列 (j 2,,n)
…….
(k)
1求u的第k行:用L的第k行 u的第j列
(j k,k 1,,n)
(lk1 , lk 2 ,, lkk,0,0) (u1 j , u2 j ,, u jj,0,0)' akj
k 1
k 1
lkmumj 1 ukj akj ukj akj lkmumj
m 1
m 1
2 求L的第k列:用L的第i行 u的第k列
利用Gauss消元法得到同解旳三角方程为
1 c1
y1
2 c2
y2
n1
ቤተ መጻሕፍቲ ባይዱ
cn1
线性方程组的解法
线性方程组的解法线性方程组是数学中常见的问题之一,其解法有多种。
本文将介绍线性方程组的两种常见解法:高斯消元法和矩阵法。
一、高斯消元法高斯消元法是一种通过行变换将线性方程组转化为最简形式的方法。
接下来,我们将通过一个具体的例子来说明高斯消元法的步骤。
假设有以下线性方程组:a1x + b1y + c1z = d1a2x + b2y + c2z = d2a3x + b3y + c3z = d31. 将方程组转化为增广矩阵形式将系数矩阵和常数矩阵合并成一个增广矩阵:[a1 b1 c1 | d1][a2 b2 c2 | d2][a3 b3 c3 | d3]2. 主元选取和消元选取第一列第一行的元素作为主元,通过行变换将其他行的第一列元素消为零。
具体步骤如下:a2' = a2 - a2 / a1 * a1'b2' = b2 - a2 / a1 * b1'c2' = c2 - a2 / a1 * c1'd2' = d2 - a2 / a1 * d1'a3' = a3 - a3 / a1 * a1'b3' = b3 - a3 / a1 * b1'c3' = c3 - a3 / a1 * c1'd3' = d3 - a3 / a1 * d1'其中,a1'是主元。
3. 重复第二步,将第二列的其他行元素消为零。
以此类推,将每一列的其他行元素都消为零,直到整个矩阵变为最简形式:[a1' b1' c1' | d1'][0 a2' b2' | c2'][0 0 a3' | b3']4. 回代求解从最后一行开始,按照以下步骤求解每个未知数:z = d3' / a3'y = (d2' - b2' * z) / a2'x = (d1' - b1' * y - c1' * z) / a1'这样,我们便得到了线性方程组的解。
计算方法_3
L L M L
( a11) n
(1 2 a2n) 2n
M
(2 an1)) 2
M
(1 2 ann))
(1) ( b11) 若 a11 ≠ 0 则: (2 b21) 第二行: a21) a11)×第一行 (1 (1 M ( (1 (1) 2 bn 第n行: an1) a11) ×第一行 1
第三章 线性代数方程组的解法
3-9
消元过程中的误差实例
0.001 2.000 3.000 1.000 3.712 4.623 2.000 1.072 5.643 x1 1.000 x = 2.000 2 x3 3.000
x1 = -0.4907 x2 = -0.05095 x3 = 0.3674
L L
M M
O O
M M
(k (k L akk) L akn)
(k (k L ank) L ann)
子块 A k n
~
第三章 线性代数方程组的解法
3-14
完全主元素消去法编程方法概要
k = 1, 2, L, n-1,进行以下 (2) ~ (6) 的循环计算 ~ (k ) ax (k ) (2) 在子块 A k 中选绝对值最大的元素(主元素) amax = m ai j n k≤i ≤n
迭代法 (雅可比迭代法、高斯-赛德尔迭代法、超松弛迭代法)
将线性方程组改写为: n 1 xi = bi ∑aij x j (i = 1,2,L, n) aii j =1 j ≠i 给出一组原始估计值,依次迭代逼近。 第三章 线性代数方程组的解法
3-17
关于三角分解法和迭代法
三角分解法 计算精度高于高斯消去法 计算量少、储存量小 需根据不同的系数矩阵类型选择不同的方法 迭代法 原理简单、编程方便、占用计算机内存少 尤其适用于大型方程组 (150个方程以上) 需根据具体情况选择迭代方程组以实现收敛
计算机方法线性方程组的解法
高斯-塞德尔迭代格式
k k x1k 1 0.1x 2 0.2 x 3 0.72 k 1 k 1 k x 0 . 1 x 0 . 2 x 0.83 2 1 3 k 1 k 1 k 1 x 0 . 2 x 0 . 2 x 0.84 1 2 3
重要性:解线性代数方程组的有效方法在计算数学和
科学计算中具有特殊的地位和作用。如弹性力学、电
路分析、热传导和振动、以及社会科学及定量分析商 业经济中的各种问题。 求解线性方程组 Ax b 的求解方法,其中
A R nn
, x, b R n 。
* x* ( x1* , x2 , * T , xn )
… … …
…
( k 1 ) ( k 1 ) ( k 1 ) ( k 1 ) ( k 1 ) xn 1 ( a n1 x1 an 2 x2 an 3 x3 a nn 1 x n 1 bn ) a nn
写成矩阵形式: x( k 1) D1 ( Lx( k 1) Ux( k ) ) D1b
其准确解为X*={1.1, 1.2, 1.3}。
x1 0.1 x2 0.2 x3 0.72 x2 0.1 x1 0.2 x3 0.83 x 0.2 x 0.2 x 0.84 1 2 3
据此建立迭代公式:
(k ) (k ) x1(k +1) =0.1x2 +0.2x3 +0.72 (k +1) (k ) (k ) x2 =0.1x1 +0.2x3 +0.83 (k +1) (k ) (k ) x =0.2 x +0.2 x 1 2 +0.84 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为什么要讨论三角分解?若在消元法进行前能实
现三角分解 A LU , 则
Ax b (LU)x b
Ly b (下三角方程组) Ux y (上三角方程组)
第三章线性方程组数值解法
解线性方程组 Ax b
直接法:理论,无舍入误差,有限步,精确解 迭代法:格式,无穷序列 解向量 x
§3.1 直接法
一、 Gauss 消去法
a11x1 a12 x2 a1n xn a1,n1 设 有 a21x1 a22 x2 a2n xn a2,n1
用Matlab实现顺序Gauss消去法
在Matlab程序编辑器中输入:
function x=nagauss(a,b,flag) %解线形方程组ax=b, a为系数矩阵,b为右端列向量,flag若为0,则显示中间 过程,否则不显示,默认为0,x为解向量 if nargin<3,flag=0;end n=length(b); a=[a,b]; % 消元 for k=1:(n-1)
(3.1)
ai1x1 ai2 x2 ain xn ai,n1
an1x1 an2 x2 ann xn an,n1
消 元: 用a11将ai1(i 2, , n)化为零;
把
ai1 a11
第1行,加到第i
行。
问 题:a11 0或 a11 0?以后各步类似。
x(k,:)=(a(k,n+1)a(k,(k+1):n)*x((k+1):n))/a(k,k); end
程序运行 结果:
三.矩阵三角分解法
Gauss消元,初等行变换,化原方程组为上三 角型。
( A | b) (u | g) (| 1) Lk Lk1 L2 L1 ( A | b) (u | g) LK LK 1 L2 L1 A u A (LK LK 1 L2 L1 )1 u
3
3
Gauss 列主元消去法:
优点 ------ 计算结果更可靠;
缺点 ------ 挑主元花机时更多, 次序
有变动,程x序1 ,复,杂x。n
用Matlab实现选列主元Gauss消去法解线性方程组
在Matlab程序编辑器中输入:
function x=nagauss2(a,b,flag) %a为系数矩阵;b为右 端列向量;flag若为0,则显示中间过程,否则不显示 if nargin<3,flag=0;end n=length(b); a=[a,b]; % 选主元 for k=1:(n-1) [ap,p]=max(abs(a(k:n,k)));p=p+k-1; if p>k,t=a(k,:); a(k,:)=a(p,:); a(p,:)=t; end % 消元
x(k,:)=(a(k,n+1)a(k,(k+1):n)*x((k+1):n))/a(k,k); end
程序运行 结果:
二 列主元素Gauss消去法---计算结果可靠
(1)找行号r1
使 ar11
max
1 i n
ai1 ,对调1
r1行:
消元:用a11消ai1为0 :
第1行
ai1 a11
加到第i行, 第i行第j个元素成为
a((k+1):n,(k+1):(n+1))=a((k+1):n,(k+1):(n+1))a((k+1):n,k)/a(k,k)*a(k,(k+1):(n+1));
a((k+1):n,k)=zeros(n-k,1); if flag==0,a,end
% 回代 x=zeros(n,1); x(n)=a(n,n+1)/a(n,n); for k=n-1:-1:1
L ( LK L1 )1 ,则
A LU (下三角 上三角)
(三角因子分解)
定义3.1 A LU 叫 A 的三角(因子)分解,其中 L是
下三角, U是上三角。
定义3.2 若 L为单位下三角阵(对角元全为1),
U 为上三角阵,则称 A LU 为Doolittle分解;
若L是L 下三角,U 是单位上三角,则称 A LU
严格对角占优阵:至少有一个主对角线 元素的绝对值严格大于此行或此列其他 元素的绝对值之和。
说明:
(1)也可采用无回代的列主元消去法(叫Gauss-
--Jordan消去法),但比有回代的列主元消
去法的乘除运算次数多。
(2)有回代的列主元消去法所进行的乘除运算
次数为 1 n3 n2 1 n,量很小。
aij
a1 j
ai1 a11
aij
(i 2,3, , n;j 1,2, , n 1)
到此原方程组化为
a11 x1 a12 x2 a1n xn a1,n1 a22 x2 a2n xn a2,n1
ai 2 x2 ain xn ai,n1
an22
max
2 i n
ai2 ,
对调2 r2行.
消
元
:
用a22把ai
消
2
为0
(i
3,4,
, n) :
第2行
ai2 a22
第i行,则
aij
a2
j
ai2 a22
aij
(i 3,4, , n;j 2,3, , n 1)
直到(n-1) 原方程组化为
a11 x1 a12 x2 a1n xn a1,n1 a22 x2 a2n xn a2,n1
a((k+1):n,(k+1):(n+1))=a((k+1):n,(k+1):(n+1))a((k+1):n,k)/a(k,k)*a(k,(k+1):(n+1));
a((k+1):n,k)=zeros(n-k,1);
if flag==0,a,end end %回代 x=zeros(n,1); x(n)=a(n,n+1)/a(n,n); for k=n-1:-1:1
ann xn an,n1
(上三角方程组) (3.2)
以上为消元过程。
(n) 回代求解公式
xn
an,n1
ann
xk
1 akk
[ak ,n1
n
akj x j ]
j k 1
(k n 1, n 2,...,1)
(3.3)
系数矩阵为对称正定阵或严格对角占优 阵的方程组按高斯消去法计算是数值稳 定的,因而不必选主元。