8-2-常见非线性特性及其对系统运动的影响

合集下载

第8章 非线性系统分析

第8章 非线性系统分析
14
一、非线性控制系统概述(11)
考虑著名的范德波尔方程
x 2 (1 x2 ) x x 0, 0
该方程描述具有非线性阻尼的非线性二阶系统。当扰动使 x 1 时,因为 (1 x 2 ) 0 系统具有负阻尼,此时系统 x(t ) 的运动呈发散形式;当 x 1 时,因为 从外部获得能量, 2 (1 x 2)>0,系统具有正阻尼,此时系统消耗能量, x(t ) 的运动呈收敛形式;而 当x=1 时,系统为零阻尼, 系统运动呈等幅振荡形式。 上述分析表明,系统能克 服扰动对 的影响,保持幅 值为1的等幅振荡,见右图。
1
第八章 非线性控制系统分析
本章主要内容: 一、非线性控制系统概述 二、常见非线性特性及其对系统运动的影响 三、描述函数法
2
第八章、非线性控制系统分析
本章要求 : 1、了解非线性系统的特点 2、了解常见非线性特性及其对系统运动的影响 3、掌握研究非线性系统描述函数法
3
一、非线性控制系统概述
本节主要内容: 1、研究非线性控制理论的意义 2、非线性系统的特征 3、非线性系统的分析与设计方法
5
一、非线性控制系统概述(2)
6
一、非线性控制系统概述(3)
在下图所示的柱形液位系统中,设 H为液位高度,Qi 为 C 为贮槽的截面积。根据水力 液体流入量, Q0为液体流出量, 学原理知
Q0 k H
其中比例系数 k 取决于液体的粘度的阀阻。 液体系统的动态方程为
dH C Qi Q 0 Qi k H dt
显然,液位和液体输入量的数字关系式为非线性微分方程。 由此可见,实际系统中普遍存在非线性因素。
7
一、非线性控制系统概述(4)

《自动控制原理》考点精讲(第8讲 非线性控制系统分析)

《自动控制原理》考点精讲(第8讲  非线性控制系统分析)
(2)稳定性分析很复杂 线性系统的稳定性只取决于系统的结构与参数,而与外部作用 和初始条件无关。 非线性系统的稳定性:与系统的参数与结构、运动的初始状 态、输入信号有直接关系。 非线性系统的某些平衡状态(如果不止有一个平衡状态的话) 可能是稳定的,而另外一些平衡状态却可能是不稳定的。
自动控制原理(自动控制理论)考点精讲
量外,还含有关于ω的高次谐波分量。使输出波形发生非线
性畸变。 正弦响应的复杂性:①跳跃谐振及多值响应;②倍频振荡与 分频振荡;③组合振荡(混沌);④频率捕捉。 混沌:
自动控制原理(自动控制理论)考点精讲
网学天地( )
e
x
x(t)
x(t)
x(t)
x(t)
ωt ωt
ωt ωt
自动控制原理(自动控制理论)考点精讲
自动控制原理(自动控制理论)考点精讲
网学天地( )
例:欠阻尼二阶系统的相平面描述——相轨迹
相轨迹在某些特定情况 下,也可以通过积分法, 直接由微分方程获得x和x 导数的解析关系式:
x dx = f (x, x) ⇒ g(x)dx = h(x)dx dx
自动控制原理(自动控制理论)考点精讲
α
=
dx dx
=
f (x, x) x
则与该曲线相交的任何相轨迹在交点处的切线斜率均为α,
该曲线称为等倾线。 注1:线性系统的等倾线为直线; 注2:非线性系统的等倾线为曲线或折线。
自动控制原理(自动控制理论)考点精讲
网学天地( )
由等倾线的概念知,当相轨迹经过该等倾线上任一点时,其 切线的斜率都相等,均为α。取α为若干不同的常数,即可 在相平面上绘制出若干条等倾线,在等倾线上各点处作斜率 为α的短直线,并以箭头表示切线方向,则构成相轨迹的切 线方向场。

自动控制原理(8-2)

自动控制原理(8-2)

即y(t)为t的奇对称函数,直流分量为零。
A1,B1按下式计算:
1 2π 2 π A1 = ∫ y (t ) cos ωt dωt = ∫y (t ) cos ωt dωt π 0 π 0
1 2π 2 π B1 = ∫ y (t ) sin ωt dωt = ∫y (t ) sin ωt dωt π 0 π 0

二、典型非线性特性的描述函数
1.理想继电器特性
x(t ) A sin t
M y(t ) M (0 t ) ( t 2 )
傅氏展开
y(t ) A0 ( An cos nt Bn sin nt )
n 1
斜对称、奇函数→A0=A1=0
若非线性环节特性为输入的奇函数,则直流分量为
零。 当 f ( x) =-f ( -x) 时,则有
π π y (t + ) = f [ A sin ω(t + )] = f [ A sin (π + ωt )] ω ω = f( -A sin ωt ) = f ( -x) =-f ( x) =-y (t )
函数N也为零,故死区特性描述函数为:
2k k N 0
2 a a a arcsin 1 X X X
( X a) (X a )
4.死区饱和特性
0,
0 ≤ ωt ≤ ψ1 π ψ 2 ≤ ωt ≤ 2
y (t ) = K ( A sin ωt-Δ), ψ1 ≤ ωt ≤ ψ 2 K (a-Δ),
Δ ψ1 = arcsin A
ψ 2 = arcsin a A
由于y(t)为奇函数,所以A0=0,A1=0,而y(t)又为半

自动控制原理第八章

自动控制原理第八章
非线性是宇宙间的普遍规律 非线性系统的运动形式多样,种类繁多 线性系统只是在特定条件下的近似描述

2.非线性系统的一般数学模型
f (t , d y dt
n n
,
dy dt
, y ) g (t ,
d r dt
m
m
,
dr dt
, r)
其中,f (· )和g (· )为非线性函数。
2012-6-21 《自动控制原理》 第八章 非线性系统 23
2012-6-21 《自动控制原理》 第八章 非线性系统 5
(1)当初始条件x0<1时,1-x0>0,上式具有负的特
征根,其暂态过程按指数规律衰减,该系统稳定。 (2)当x0=1时,1-x0=0,上式的特征根为零,其暂 态过程为一常量。 (3)当x0>1时,1-x0<0,上式的特征根为正值,系 统暂态过程按指数规律发散,系统不稳定。 系统的暂态过程如图所示。 由于非线性系统的这种性质, 在分析它的运动时不能应用 线性叠加原理。
非线性弹簧输出的幅频特性
2012-6-21 《自动控制原理》 第八章 非线性系统 11
实际中常见的非线性例子
实际的非线性例子:晶体管放大器有一个线性工作范围,
超出这个范围,放大器就会出现饱和现象;有时,工程上
还人为引入饱和特性用以限制过载;
电动机输出轴上总是存在摩擦力矩和负载力矩,只有在输
2012-6-21
《自动控制原理》 第八章 非线性系统
16

系统进入饱和后,等效K↓
% ( 原来系统稳定,此时系 统一定稳定) (原来不稳,非线性系 统最多是等幅振荡) 振荡性 限制跟踪速度,跟踪误 差 ,快速性

非线性系统分析方法

非线性系统分析方法

非线性系统分析方法8-1 概述一、教学目的和要求了解研究非线性系统的意义、方法,常见非线性特性种类。

二、重点内容非线性概念,常见非线性特性。

三、教学内容:1 非线性系统概述非线性系统运动的规律,其形式多样,线性系统只是一种近似描述。

(1)非线性系统特征—不满足迭加原理1)稳定性:平衡点可能不只一个,系统的稳定性与系统结构参数、初始条件及输入有关。

2)自由运动形式,与初条件,输入大小有关。

3)自振,自振是非线性系统特有的运动形式,它是在一定条件下,受初始扰动表现出的频率,振幅稳定的周期运动。

(2)非线性系统研究方法1)小扰动线性化处理(第二章介绍)2)相平面法-----分析二阶非线性系统运动形式3)描述函数法-----分析非线性系统的稳定性研究及自振。

2、常见非线性因素对系统运动特性的影响:1)死区:(如:水表,电表,肌肉电特性等等)饱和对系统运动特性的影响:进入饱和后等效K ↓⎪⎩⎪⎨⎧↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡)(原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ死区对系统运动特性的影响:⎪⎩⎪⎨⎧↓↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误等效%(e K ssσ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。

2) 饱和(如运算放大器,学习效率等等)3) 间隙:(如齿轮,磁性体的磁带特性等)间隙对系统影响:1) 间隙宽度有死区的特点----使ss e ↓2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性减小间隙的因素的方法:(1)提高齿轮精度 ; (2)采用双片齿轮; (3)用校正装置补偿。

5) 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理改善慢变化过程平稳性的方法1)2)3)⎧⎪⎨⎪⎩、良好润滑、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性摩擦对系统运动的影响:影响系统慢速运动的平稳性6)继电特性:对系统运动的影响:1)K (2K %3)ss e σ⎧⎧⎪⎨⎩⎪⎪⎧↑⎪⎪⎪⎧↓⎨⎨⎪⎨⎪⎪↓⎪⎩⎩⎪⎪⎪⎪⎩一、二阶系统可以稳定、理想继电特性 等效: 一般地,很多情况下非线性系统会自振带死区))、带死区继电特性 等效: 快态影响(死区+饷)的综合效果振荡性、一般继电特性:除3、2中听情况外,多出一个延迟效果(对稳定性不利)8-2 相平面法一、教学目的和要求:掌握相平面概念及分析方法。

第八章 非线性控制系统分析

第八章 非线性控制系统分析
x x
整理后得: x
2
x (x x )
2 2 0 2 0
相轨迹
2.等倾线法 --不解微分方程,直接在相平面上绘制相轨迹。 等倾线: 相平面上相轨迹斜率相等的诸点的连线。 等倾线法基本思想: 先确定相轨迹的等倾线,进而绘出相轨迹的切线 方向场,然后从初始条件出发,沿方向场逐步绘制相
四、继电特性
y M 0 x
M y M
x 0 x 0
-M
对系统的影响:
1可能会产生自激振荡,使系统不稳定或稳态误差增大;
2.如选得合适可能提高系统的响应速度。
其他继电特性
y
M -h 0 h -M x M -△ 0
y
-△

y M 0 △ -M x
-M
死区 + 继电
x
滞环 + 继电
x ,从x, x 中消
(2)直接积分法
dx dx dx dx x x dt dx dt dx
dx x f ( x, x ) dx
g ( x)dx h( x)dx

x
x0
g ( x)dx h( x)dx
x1,2 0.25 1.39 j
系统在奇点(0,0)处有一对具有负实部的共轭复根, 故奇点(0,0)为稳定的焦点。
f ( x, x ) 奇点(-2,0)处 x
x 2 x 0
2
f ( x, x ) x

c
c
c
c
(6)≤-1 s1s2 --两个正实根
四、奇点和奇线
1.奇点 --同时满足 x 0 和 f ( x, x) 0 的点。

8-2常见非线性特性及其对系统运动的影响

8-2常见非线性特性及其对系统运动的影响

常见非线性因素对系统运动的影响
饱和 * 等效
振荡性↓ 振荡性↓,σ%↓ 限制跟踪速度 晶体管特性
对系统的 影响 举 例
滤除小幅值干扰 稳态误差ess ↑ 电动机, 电动机,仪表
抑制系统发散 容易导致自振 开关特性
8-2 常见非线性特性 及其对系统运动的影响
非线性特性的等效增益
y f ( x) k= = x x
(1)继电特性 继电器、 继电器、接触器和可控硅
(2)死区特性
测量元件、 测量元件、放大元件 及执行机构的不灵敏区
(3)饱和特性 放大器、 放大器、执行机构
(4)间隙特性 齿轮、 齿轮、磁滞效应
(5)摩擦特性 机械传动机构

自动控制原理第8章非线性控制系统

自动控制原理第8章非线性控制系统

自动控制原理第8章非线性控制系统在自动控制系统中,线性控制系统一直被广泛应用,因为线性系统的行为可预测且易于分析。

然而,在实际的控制系统中,往往存在着一些非线性特性,如非线性环节、非线性传感器和非线性负载等。

非线性系统的行为往往更为复杂,因此需要采用特殊的控制方法来进行控制。

8.1非线性系统的特性非线性系统与线性系统相比,具有以下几个特点:1.非线性特性:非线性系统的输入和输出之间的关系不符合线性定律,而是非线性关系。

这种非线性关系可能是由于系统内部的非线性元件或非线性行为导致的。

2.非线性行为:在非线性系统中,系统的行为经常出现不可预测的情况。

当输入信号的幅值较小时,系统的行为可能是线性的,但是当幅值增大时,系统的行为可能会发生剧烈的变化。

3.非线性耦合:在非线性系统中,不同输入变量之间可能存在耦合关系。

当一个输入变量发生改变时,可能会影响到其他输入变量的行为。

4.非线性稳定性:在非线性系统中,稳定性分析比线性系统更为困难。

非线性系统可能存在多个平衡点或者极限环,而且稳定性分析需要考虑到非线性因素的影响。

8.2非线性系统的建模对于非线性系统的控制,首先需要对系统进行建模,以便进行后续的分析和设计。

非线性系统的建模可以采用两种常用的方法:数学建模和仿真建模。

1.数学建模:数学建模是利用数学模型来描述非线性系统的行为。

非线性系统的数学建模可以采用微分方程、差分方程、泰勒级数展开、输入输出模型等多种方法。

2.仿真建模:仿真建模是利用计算机仿真软件来模拟非线性系统的行为。

通过建立系统的数学模型,并利用计算机进行仿真,可以得到系统的输出响应和稳定性分析。

8.3非线性控制方法在非线性控制系统中,常用的控制方法包括自适应控制、模糊控制和神经网络控制等。

1.自适应控制:自适应控制用于处理未知或难以测量的非线性系统。

自适应控制方法通过不断调整控制器的参数,以适应系统的变化。

2.模糊控制:模糊控制利用模糊逻辑和模糊推理来处理非精确和不确定的输入量。

非线性系统

非线性系统

4.逆系统法 逆系统法是运用内环非线性反馈控制,构成伪线性系统,并 以此为基础,设计外环控制网络。该方法应用数学工具直接研究 非线性控制问题,不必求解非线性系统的运动方程,是非线性系 统控制研究的一个发展方向。
三、常见非线性特性及其对系统运动的 影响
• 死区特性一般是由测量元件、放大元件及执行机构的不灵敏区所 造成的。死区特性如图7-1所示。
• 1.描述函数的定义 • 若含有非线性环节的控制系统经过适当的变换,简化成一 个非线性环节N(A)和线性部分G(s)串联连接的典 型结构形式,如图7-5所示
• 2.描述函数的求取步骤
• 1)取输入信号为x(t)=Asinωt,根据 非线性环节的静态特性绘制出输出非正弦周期信号 的曲线形式,根据曲线形式写出输出y(t)在一 周期内的数学表达式 • 2)据非线性环节的静态特性及输出y(t)的 数学表达式,求相关系数A1、B1。 • 3)用式(7-8)计算描述函数。
2 2 2M m h h 1- = 1- A A
• 3) 死区滞环继电特性的描述函数为
2 2 2M mh 2Mh h 1- N ( A)= 1 - j 2 (m - 1) A A A A≥h A • 取h=0可得理想继电特性的描述函数为
A1

1
2 0
y (t )costdωt

2பைடு நூலகம்
2
1
Mcostd t
2Mh (sin 2 sin 1 ) (m-1) A
2M
B1

2

0
y (t )sintdt
2M

2

自动控制原理原理第8章

自动控制原理原理第8章
y (t )
KX sint Ka
0 ≤t≤1 1≤ t≤
2
第8章 非线性系统分析
y
y
Ka
a
K
0
a
x
x
0 1 1 2
t
0 1
(a)
(c)
1
1
t (b)
饱和特性及输入、输出波形
第8章 非线性系统分析
(2)由于饱和特性为单值斜对称,所以, A0 0 A1 0 1 0
X a
这是一个与输入正弦函数的振幅有关的复函数,说明输出的 基波分量对输入是有相位差的,输出滞后于输入。
第8章 非线性系统分析
4.继电器特性的描述函数 继电器特性的输入、输出特性及在正弦函数输入时的输出波形 y y 如图。 E
0 ma
a x
0 1 2
3 4
2
t
1 2
3
0
x
死区特性描述函数为
N ( X ) B1 2 K a a a arcsin 1 ( ) 2 X 2 X X X
( X a)
3.间隙特性的描述函数
间隙特性的输入、输出特性及在正弦函数输入时的输出波形
如图。 其输出表达式为
第8章 非线性系统分析
y
K
y
2
A1 B1
A1
1


2
0
y (t ) costdt
B1

1
2
0
y (t ) sin tdt
第8章 非线性系统分析
2.描述函数定义 非线性元件在正弦输入时,输出的基波分量与输入正弦量的 复数比,称为该非线性元件的描述函数。 描述函数用符号 N 表示,即

自动控制原理教程课件_Part7

自动控制原理教程课件_Part7

应用描述函数分析方法所得结果比较准确。
对于实际非线性系统,很容易满足这个条件。线性部 分阶次越高,低通滤波性能越好;而欲具有低通滤波
性能,线性部分的极点应位于复平面的左半平面。 ⑶描述函数的物理意义
线性系统频率特性反映正弦信号作用下,系统稳态输 出中与输入同频率分量的幅值和相位相对于输入信号的 变化。

A 4
sin
2ϕ2
+
A sin 4
2ϕ1
+
Δ cosϕ2

Δ cosϕ1
+
(a

Δ) cosϕ2 ]
= 4K [ A arcsin a − A arcsin Δ − A a 1− ( a )2
π2
A2
A 2A A
快乐的坚持!
+ A Δ 1− (Δ)2 + a 1− ( a )2 − Δ 1− (Δ)2 ]
∫ ∫ ∫ A0
=
1

2π y(t)dωt = 1 [ π y(t)dωt +
0
2π 0
2π y(t)dωt]
π
取变换:
ωt = ωu + π
∫ ∫ A0
=
1

[
π y(t)dωt +
0
π y(u + π )dωu]
0
ω
= 1 [ π y(t)dωt + π − y(u)dωu] = 0
当非线性特性为输入x的奇函数时,即 f (−x) = − f (x),
ϕ1
=
arcsin
Δ A
ϕ2
=
arcsin
a A
⎧0

第八章非线性系统

第八章非线性系统

由此可见,非线性系统 要比线性系统 复杂得多,可能存在多 种运动状态。上述 现象均不能用线性理论 进行解释或分析, 必须用非线性理论来研 究。
三、非线性系统的分析方法 1、描述函数法 这是一种频域分析法,其实质是应 用谐波线性化的方法,将非线性特性线 性化,然后用频率法的结论来研究非线 性系统。它是线性理论中的频率法在非 线性系统中的推广,这种方法不受系统 阶次的限制。
1首先由非线性静特性曲 线,画出正弦信号 输入下的输出波形,并 写出输出波形 t 的表达式。 y
2利用傅氏级数求出 t 的基波分量。 y 3将求得的基波分量代入 定义式,
N X Y1 X 1 A1 B1 X
2 2
arctan
B1 A1
即 N X 得 。
中,本来幅值相对不大 的那些高次谐波分量将 在正弦信号作用下的输 出不包含直流分量。 闭环结构。 被大大削弱。因此,可 以近似地认为在闭环通 道内只有基波分量在流 通,此时应用描述函数
r t 0 法所得的分析结果才比 y 较准确。对于实际的非 c t e
线性系统来说,由于 s 通常具有低通滤波特 G
2、相平面法
相平面法是求解一、二阶常微分方程 的图解法。通过在相平面上绘制相轨迹, 可以求出微分方程在任何初始条件下的 解。这是一种时域分析法,但仅适用于 一阶和二阶系统。
3、李亚普诺夫第二法 这是一种对线性和非线性系统都适用 的方法,将在现代控制理论中讲述。
本章以系统分析为主,而且是以稳定性分 析为核心内容,着重介绍在工程上广泛应用的 描述函数法和相平面法。
而非线性系统即使在没有外界输入信号作用 时,系统也可能产生具有固定频率和幅值的稳定 振荡。其振幅和频率由系统本身的特性所决定。

自动控制原理(第三版)第7章非线性控制系统(1)

自动控制原理(第三版)第7章非线性控制系统(1)
大连民族学院机电信息工程学院
自动控制原理
4)当非线性输入的信号为正弦作用时,由 于非线性其输出将不再是正弦信号,而包 含有各种谐波分量,发生非线性畸变。
大连民族学院机电信息工程学院
自动控制原理
5)混沌
大连民族学院机电信息工程学院
自动控制原理
非线性系统运动的特殊性
• 不满足叠加原理 — 线性系统理论原则上不能运用 (区别) • 稳定性问题 — 不仅与自身结构参数,且与输入, 初条件有关,平衡点可能不惟一,可以稳定且可以 在多个平衡点稳定,可能不稳定—发散、衰减等 nonlinear • 自振运动— 非线性系统特有的运动形式,产生自 持振荡 • 发生频率激变—频率响应的复杂性 — 跳频响应, 倍/分频响应,组合振荡
大连民族学院机电信息工程学院
自动控制原理
3、滞环(非单值特性)
) x 0 , 且y 0 k ( x a sgn x y =0 y x2 m sgn x
滞环特性会 使系统的相 角裕度减小, 动态性能恶 化,甚至产生 自持振荡。
x2
x2m
x2
x2m
a
0
x1
a
x2m
7.3 描述函数法 7.4 相平面法
7.5 Matlab 在本章中的应用
大连民族学院机电信息工程学院
自动控制原理
7.1 非线性控制系统概述
如果一个控制系统包含一个或一个以上具有非 线性特性的元件或环节,则此系统即为非线性系统。
• 前面研究的线性系统满足叠加性和齐次性; • 严格地说,由于控制元件或多或少地带有非线性特 性,所以实际的自动控制系统都是非线性系统; • 一些系统作为线性系统来分析: ①系统的非线性 不明显,可近似为线性系统。②某些系统的非线性 特性虽然较明显,但在某些条件下,可进行线性化 处理; • 但当系统的非线性特征明显且不能进行线性化处理 时,就必须采用非线性系统理论来分析。这类非线 大连民族学院机电信息工程学院 性称为本质非线性。

自控第8章 非线性系统

自控第8章 非线性系统

6. 非线性系统中,当输入量是正弦信号时,输出稳态分 量包含大量的谐波成分,频率响应复杂,输出波形会 很容易畸变。
11
三、非线性系统的分析方法
1、相平面法
时域分析法中的一种图解分析法。不适用于高阶系统。 2、描述函数法 结合频域分析法和非线性的谐波线性化的一综合图解分
析法。分析非线性系统稳定性和自激振荡比较有效。
二、继电特性
1、特性曲线
M y
来源:继电器是继电
特性的典型元件。
0
-M
x
继电特性 具有图示性质的继电特性称理想继电器。
15
2、数学表达式
y
M y M
x0

M
x 0
0
-M
x
造成的影响:
继电特性
(1)改善系统性能,简化系统结构。
(2)可能会产生自激振荡,使系统不稳定。
16
旋线,这种奇点称为稳定
焦点。 系统欠阻尼运动时的相轨迹
51
4、稳定节点
1
x(t ) A1e
q1t
这时方程的解为
A2e
q2t
其中
A1
x0 x0 2
1 2
A2
x0 x0 1
1 2
(t ) A1q1e q1t A2q2e q2t x
相轨迹: 描绘相平面上的点随时间变化的曲线叫相轨迹。
相轨迹方程:x2和 x1的关系方程。
35
例1 弹簧—质量块运动系统如图。
m 是物体质量;
k 是弹性系数; x 是偏离平衡点的位移。
为方便计算令 m=k=1 ;
已知初始条件
x(0) x0 x(0) x0

2020山东理工大学硕士考试大纲之电气与电子工程学院

2020山东理工大学硕士考试大纲之电气与电子工程学院
2.熟练掌握电路的一般分析方法;
3.掌握线性电路的几个基本定理;
4.掌握正弦稳态电路分析的相量法,及各种功率计算;
5.掌握耦合电感及变压器的VCR特性及其电路分析;
6.掌握三相电路的特点及分析计算方法;
7.掌握一阶电路的暂态分析方法;
8.了解非正弦周期电流电路的分析方法;
9.了解拉普拉斯变换;掌握应用拉氏变换分析线性电路;
13. 电路方程的矩阵形式 割集;关联矩阵、回路矩阵、割集矩阵;回路电流方程的矩阵形式;节点电压方程的矩阵形式;割集电压方程的矩阵形式;状态方程。
14. 二端口网络 二端口网络的方程及其参数;二端口网络的转移函数;二端口网络的联接;回转器和负阻抗变换器。
15. 非线性电路 非线性电路的分析方法和电路方程的建立。
根轨迹的改造――增加开环零、极点对根轨迹的影响
由根轨迹分析系统稳定性、分析参数变化对系统运动模态的影响
五、 线性系统的频域分析法
知识点:
频率特性的概念及其图示法
开环频率特性的绘制
奈奎斯特稳定判据和对数稳定判据
稳定裕度
三频段的概念
基本要求:
在正弦输入信号下,系统稳态输出与稳态误差的求取
典型环节的频率特性(尤其是振荡环节的特征点要记住)
10. 三相电路 三相电路的概念;线电压(线电流)与相电压(相电流)的关系;对称三相电路的计算;不对称三相电路的概念;三相电路的功率。
11. 非正弦周期电流电路和信号的频谱 非正弦周期信号;周期函数分解为傅立叶级数;有效值、平均值和平均功率;非正弦周期电流电路的计算;对称三相电路中的高次谐波。
12. 拉普拉斯变换 拉普拉斯变换的定义;拉普拉斯变换的基本性质;拉普拉斯反变换的部分分式展开;运算电路;应用拉普拉斯变换分析线性电路。

精品文档-自动控制原理(李素玲)-第8章

精品文档-自动控制原理(李素玲)-第8章

x c xc
x c
(8-5)
28
在输入信号|x|<c时,该环节是放大倍数为k的比例环 节,当|x|>c时出现了饱和,随着|x|的不断增大,其等效 放大倍数逐步降低,如图8-6所示。
因此,饱和的存在使系统在大信号作用下的等效增益 下降,深度饱和情况下甚至使系统丧失闭环控制作用。另外, 饱和会使系统产生自振荡。但在控制系统中也可以人为地利 用饱和特性作限幅,限制某些物理量,保证系统安全合理的 工作,如调速系统中利用转速调节器的输出限幅值限制电机 的最大电枢电流,以保护电动机不致因电枢电流过大而烧坏。
16
非线性系统还具有很多与线性系统不同的特异现象,这 些现象无法用线性系统理论来解释,因而有必要研究它们, 以便抑制或消除非线性因素的不利影响。在某些情况下,还 可以人为地加入某些非线性环节,使系统获得较线性系统更 为优异的性能。
17
8.1.2 非线性系统的分析与设计方法 系统分析和设计的目的是通过求取系统的运动形式,以
26 图8-4 包含多个死区的非线性系统
27
8.2.2 饱和特性 饱和特性也是控制系统中常见的一种非线性,几乎所有
的放大器都存在饱和现象。由于采用了铁磁材料,在电机、 变压器中存在磁饱和。系统中加入的各种限幅装置也属饱和 非线性。
典型的饱和特性如图8-5所示,其数学表达式为
kx, y kc,
kc,
29 图8-5 饱和非线性特性
30 图8-6 饱和非线性特性的等效增益
31
8.2.3 间隙(回环)特性 在各种传动机构中,由于加工精度及运动部件的动作需
要,总会存在一些间隙。如图87所示的齿轮传动系统,为了 保证转动灵活,不至于卡死,必须留有少量的间隙。
由于间隙的存在,当主动轮的转向改变时,从动轮开始 保持原有的位置,直到主动轮转过了2c的间隙,在相反方向 与从动轮啮合后,从动轮才开始转动。典型的间隙非线性特 性如图8-8所示。

845自动控制理论(含经典和现代)

845自动控制理论(含经典和现代)
考试科目:845自动控制理论(含经典和现代)
一、复习要求:
要求考生全面掌握自动控制理论和现代控制理论的基本概念、基本原理和基本方法,具有定性分析能力、定量计算能力、综合运用能力、数形结合能力以及联系工程实际的能力。
二、主要复习内容:
1.自动控制的一般概念
自动控制的基本原理;控制系统的组成与分类;根据工作原理图绘制系统方框图的方法。
8.非线性控制系统分析
常见非线性系统特性及其对系统运动的影响;相平面法;描述函数法。
重点:典型非线性特性、描述函数、相平面、自持振荡的概念;相平面图形绘制及其奇点确定方法;用相平面分析系统的稳定性和自振;描述函数及其性质;用描述函数法分析系统的稳定性和周期运动。
9.线性系统的状态空间分析与综合
线性系统的状态空间描述;线性系统的可控性与可观测性;线性定常系统的反馈结构与状态观测器;李亚普诺夫稳定性分析。
重点:校正和综合的概念;线性系统串联校正中的超前、迟后、迟后—超前等三种网络的基本原理及设计方法;综合校正的基本原理及设计方法。
7.线性离散系统的分析与校正
离散系统的基本概念;信号的采样与保持;Z变换理论;离散系统的数学模型;离散系统的稳定性与稳态误差;离散系统的动态性能分析。
重点:采样控制、Z变换、脉冲传递函数的概念;采样系统与连续系统的区别与联系;采样定理;系统的响应求法;采样系统的稳定性分析。
重点:频率特性、稳定裕量的概念;伯德图和奈奎斯特图的绘制;相角稳定裕度的计算;运用频率特性分析系统的稳态响应;奈奎斯特稳定判据及应用;由开环频率特性分析系统的主要动态和静态特性;定性了解系统的超调量、调节时间与开环、闭环频率特性参数的对应关系。
6.线性系统的校正方法
常用校正装置及其特性;串联校正;综合校正。

第8章 非线性系统分析

第8章 非线性系统分析
线性二阶系统只在阻尼比=0时给予阶跃作用, 将产生周期性响应过程,这时系统处于临界稳定 状态。
实际上,一旦该系统参数发生微小变化,该周 期性状态就无法维持,要么发散至无穷大,要么 衰减至零。
而非线性系统中,除了稳定和不稳定运动形 式外,还有一个重要特征,就是系统可能发生 自持振荡----在没有周期
很小时 作为线性特性处理
较大时 将使系统静态误差增加, 系统低速不平滑性
理想死区特性的的数学描述为:
k(x a) y 0
k(x a)
x a | x | a xa
死区特性可能给控制系统带来不利影响,它会使 控制的灵敏度下降,稳态误差加大;死区特性也 可能给控制系统带来有利的影响,有些系统人为 引入死区以提高抗干扰能力。
一定条件下,可进行线性化处理,作为线性系 统来分析。这类系统统称为非本质非线性系统。
但当系统的非线性特征明显且不能进行线性化 处理时,就必须采用非线性系统理论来分析。 这类非线性称为本质非线性。
本章主要介绍分析非线性系统的两种常用方法: 相平面法和描述函数法。
如果一个控制系统包含一个或一个以上具有非线 性特性的元件或环节,则此系统即为非线性系统。
x(t) Ae ntsin(d t ) d 1 2n
式中,A、为由初始条件确定的常数。时域 响应过程是衰减振荡的。
可求出系统有一个位于相平面原点的平衡点(奇 点),不同初始条件出发的相轨迹呈对数螺旋线 收敛于该平衡点,这样的奇点称为稳定焦点。
欠阻尼二阶线性系统的响应和相轨迹
3、过阻尼运动(>1)
1.相平面的基本概念
考察二阶非线性时不变微分方程:
..
.
x f (x, x)

描述该系统特性必须有两个变量 x 和 x ,

自动控制原理第八章非线性控制系统分析

自动控制原理第八章非线性控制系统分析

第八章非线性控制系统分析l、基本内容和要求(l)非线性系统的基本概念非线性系统的定义。

本质非线性和非本质非线性。

典型非线性特性。

非线性系统的特点。

两种分析非线性系统的方法——描述函数法和相平面法。

(2)谐波线性化与描述函数描述函数法是在一定条件下用频率特性分析非线性系统的一种近似方法。

谐波线性化的概念。

描述函数定义和求取方法。

描述函数法的适用条件。

(3)典型非线性特性的描述函数(4)用描述函数分析非线性系统非线性系统的一般结构。

借用奈氏判据的概念建立在奈氏图上判别非线性反馈系统稳定性的方法,非线性稳定的概念,稳定判据。

(5)相平面法的基本概念非线性系统的数学模型。

相平面法的概念和内容。

相轨迹的定义。

(6)绘制相轨迹的方法解析法求取相轨迹;作图法求取相轨迹。

(7)从相轨迹求取系统暂态响应相轨迹与暂态响应的关系,相轨迹上各点相应的时间求取方法。

(8)非线性系统的相平面分析以二阶系统为例说明相轨迹与系统性能间的关系,奇点和极限环的定义,它们与系统稳定性及响应的关系。

用相平面法分析非线性系统,非线性系统相轨迹的组成。

改变非线性特性的参量及线性部分的参量对系统稳定性的影响。

2、重点(l)非线性系统的特点(2)用描述函数和相轨迹分析非线性的性能,特别注重于非线性特性或线性部分对系统性能的影响。

8-1非线性控制系统分析1研究非线性控制理论的意义实际系统都具有程度不同的非线性特性,绝大多数系统在工作点附近,小范围工作时,都能作线性化处理。

应用线性系统控制理论,能够方便地分析和设计线性控制系统。

如果工作范围较大,或在工作点处不能线性化,系统为非线性系统。

线性系统控制理论不能很好地分析非线性系统。

因非线性特性千差万别,无统一普遍使用的处理方法。

非线性元件(环节):元件的输入输出不满足(比例+叠加)线性关系,而且在工作范围内不能作线性化处理(本质非线性)。

非线性系统:含有非线性环节的系统。

非线性系统的组成:本章讨论的非线性系统是,在控制回路中能够分为线性部分和非线性部分两部分串联的系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
间隙特性和继电器特性等。
1. 死区特性
死区又称不灵敏区, 通常以阈值、分辨率等指标 衡量。 死区特性如图 所示。
y
-a 0 a x
常见于测量、放大元件中 , 一般的机械系统、 电机等, 都不同程度地存在死区。其特点是当输入信 号在零值附近的某一小范围之内时 , 没有输出。只有 当输入信号大于此范围时, 才有输出。 执行机构中的
y
-a 0 a x
在齿轮传动中, 由于间隙存在, 当主动齿轮方向 改变时, 从动轮保持原位不动, 直到间隙消除后才改 变转动方向。铁磁元件中的磁滞现象也是一种回环 特性。 间隙特性对系统影响较为复杂, 一般来说, 它 将使系统稳态误差增大,频率响应的相位迟后也增 大, 从而使系统动态性能恶化。 采用双片弹性齿轮 (无隙齿轮)可消除间隙对系统的不利影响。
静摩擦影响也可以用死区特性表示。控制系统中存
在死区特性 , 将导致系统产生稳态误差 , 其中测量元
件的死区特性尤为明显。摩擦死区特性可能造成系
统的低速不均匀, 甚至使随动系统不能准确跟踪目标。
2. 饱和特性
饱和也是一种常见的非线性 , 在铁磁元件及各种
放大器中都存在, 其特点是当输入信号超过某一范围
4. 继电器特性
由于继电器吸合电压与释放电压不等, 使其特性中
包含了死区、回环及饱和特性,如图所示。
y M -a -ma 0 ma -M a x

0<i<a时,触头不动;
i
i > m时,触头吸合;
i <ma时,触头释放。
当a=0时的特性称为理想继电器特性。继电器的 切换特性使用得当可改善系统的性能。 如从非线性环节的输出与输入之间存在的函数关 系划分, 非线性特性又可分为单值函数非线性与多值函 数非线性两类。 例如死区特性、饱和特性及理想继电
器特性都属于输出与输入间为单值函数关系的非线性
特性。 间隙特性和继电器特性则属于输出与输入之间
为多值函数关系的非线性特性。
后, 输出信号不再随输入信号变化而保持某一常值,如
图所示。
y
-a 0 a x
饱和特性将使系统在大信号作用之下的等效增
益降低, 深度饱和情况下 , 甚至使系统丧失闭环控制
作用。还有些系统中有意地利用饱和特性作信号限
幅, 限制某些物理参量, 保证系统安全合理地工作。
3. 间隙特性
间隙又称回环。传动机构的间隙是一种常见的 回环非线性特性,如图所示。
8.2 常见非线性特性及其对 系统运动的影响
非线性特性的分类 非线性特性种类很多 , 且对非线性系统尚 不存在统一的分析方法 , 所以将非线性特性分 类, 然后根据各个非线性的类型进行分析得到 具体的结论, 才能用于实际。 按非线性环节的物理性能及非线性特性的
形状划分 , 非线性特性有死区特性、饱和特性、
相关文档
最新文档