(完整word版)高中物理动态平衡受力分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受力分析精讲(2)
知识点1:动态平衡
1.动态平衡:物体受到大小方向变化的力而保持平衡。是受力分析问题中的难点,也是高考热门考点。
2.在共点力的平衡中,有些题目中常有“缓慢”一词,表示物体在受力过程中处于动态平衡状态,即每一时刻下物体都保持平衡。
3.基本方法:解析法、图解法和相似三角形法.
知识点2:解析法
解析法:对研究对象的任一状态进行受力分析,建立平衡方程,求出未知力的函数表达式,然后根据自变量的变化进行分析。通常需要借助正交分解法和力的合成分解法。特别适合解决四力以上的平衡问题。
例1:有一只小虫重为G,不慎跌入一个碗中,如图,碗内壁为一半径为R的球壳的一部分,且其深度为D,碗与小虫脚间的动摩擦因数为μ,若小虫可顺利爬出碗口而不会滑入碗底,则D的最大值为多少?(用G、R表示D)
例2:如图所示,上表面光滑的半圆柱体放在水平面上,小物块从靠近半圆柱体顶点O的A点,在外力F作用下沿圆弧缓慢下滑到B点,此过程中F始终沿圆弧的切线方向且半圆柱体保持静止状态。下列说法中正确的是 ( )
A. 半圆柱体对小物块的支持力变大
B. 外力F先变小后变大
C. 地面对半圆柱体的摩擦力先变大后变小
D. 地面对半圆柱体的支持力变大
知识点3:图解法
图解法常用来解决动态平衡类问题,尤其适合物体只受三个力作用,且其中一个为恒力的情况。根据平行四边形(三角形)定则,将三个力的大小、方向放在同一个三角形中. 利用邻边及其夹角跟对角线的长短关系分析力大小变化情况。因此图解法具有直观、简便的特点。在应用时需正确判断某个分力方向的变化情况及变化范围,也常用于求极值问题。
1. 恒力F+某一方向不变的力
例3:如图1所示,用细绳通过定滑轮沿竖直光滑的墙壁匀速向上拉动,则拉力F和墙壁对球的支持力N的变化情况如何?
例4:如右图所示,半圆形支架BAD,两细绳OA和OB结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直位置C的过程中,分析OA绳和OB绳所受力的大小如何变化?
例5:如图所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m的光滑均质球体,试求:β取何值时,夹板对球的弹力最小?
归纳:物体受到三个力而平衡,若其中一个力大小方向不变,另一个力的方向不变,第三个力大小方向都变,在这种情况下,当大小、方向可改变的分力与方向不变、大小可变的分力垂直时,存在最小值。
例6:如图3装置,AB为一光滑轻杆,在B处用铰链固定于竖墙壁上,AC为不可伸长的轻质拉索,重物W可在AB杆上滑行。(1)画出重物W 移动到AB杆中点,AB杆的受力分析。 (2)试分析当重物W从A端向B端缓慢滑行的过程中,绳索中拉力的变化情况以及墙对AB杆作用力的变化情况。
图3
2.恒力F+某一大小不变的力
三力中有一个力确定.即大小、方向不变,一个力大小确定,这个力的方向及第三个力的大小、方向变化情况待定。这类题目需要辅助圆图解法。
例7:如图所示,在做“验证力的平行四边形定则”的实验时,用M 、N 两个测力计通过细线拉橡皮条的结点,使其到达O 点,此时α+β=90°.然后保持M 的读数不变,而使α角减小,为保持结点位置不变,可采用的办法是( )
A 减小N 的读数同时减小β角
B 减小N 的读数同时增大β角
C 增大N 的读数同时增大β角
D 增大N 的读数同时减小β角
例8:如图7所示,质量为m 的小球,用一细线悬挂在点0处.现用一大小恒定的外力F(F ﹤mg),慢慢将小球拉起,在小球可能的平衡位置中,细线与竖直方向的最大的偏角是多少?
3.恒力F+某一大小不变的角
例9: 如图所示的装置,用两根细绳拉住一个小球,两细绳间的夹角为θ,细绳AC 呈水平状态.现将整个装置在纸面内顺时针缓慢转动,共转过90°.在转动的过程中,CA 绳中的拉力F 1和CB 绳中的拉力F 2的大小发生变化,即( ) A .F 1先变小后变大 B .F 1先变大后变小 C .F 2逐渐减小
D .F 2最后减小到零
知识点4: 相似三角形法
相似三角形法是解平衡问题时常遇到的一种方法,属于图解法的特例情况。正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例10: 如图所示,半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,
轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )
A
C
B
A、N变大,T变小
B、N变小,T变大
C、N变小,T先变小后变大
D、N不变,T变小
例11:如图所示,质量不计的定滑轮用轻绳悬挂在B点,另一条轻绳一端系重物C,绕过滑轮后,另一端固定在墙上A点,若改变B点位置使滑轮位置发生移动,但使A段绳子始终保持水平,则可以判断悬点B所受拉力F T的大小变化情况是()
A.若B向左移,F T将增大
B.若B向右移,F T将增大
C.无论B向左、向右移,F T都保持不变
D.无论B向左、向右移,F T都减小
例12:(多选) 一轻杆BO,其O端用光滑铰链铰于固定竖直杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示.现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是()
A . F N先减小,后增大
B . F N始终不变
C . F先减小,后增大
D . F始终不变
知识点5:临界法
若题目中出现“最大”“最小”“刚好”等词语时,一般都有临界状态出现。求解平衡中的临界问题和极值问题时,首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点。
临界条件必须在变化中寻找,不能停留在一个状态来研究临界问题,而是把某个物理量推向极端,即极大或极小,并依此作出科学的推理分析,从而给出判断或导出一般结论。有时会出现多解的情况。
常见的临界状态有:
(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(物体间弹力为0);
(2)绳子断与不断的临界条件为绳中张力达到最大值;绳子绷紧与松弛的临界条件为绳中张力为0;
(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。
例13:轻绳的两端A、B固定在天花板上,绳能承受的最大拉力为120N。现用挂钩将一重物挂在绳子的结点C处。如图所示,两端与竖直方向的夹角分别为37°和53°。要保证两绳均不绷断,求此重物的重力不应超过多少?
370
530
A
C
B