基于卡尔曼滤波器的雷达目标跟踪
雷达信号处理中的目标跟踪方法

雷达信号处理中的目标跟踪方法目标跟踪是雷达信号处理的重要任务之一,它是通过分析雷达接收到的信号,实时追踪并确定目标的位置、速度和轨迹等信息。
目标跟踪在军事、航空航天、交通监控、环境监测等领域都具有广泛的应用。
本文将介绍雷达信号处理中常用的目标跟踪方法。
1. 卡尔曼滤波方法卡尔曼滤波方法是一种基于状态空间模型的目标跟踪方法。
该方法根据目标的运动模型和观测模型,通过预测目标的状态和测量目标的状态残差来估计目标的运动状态。
在雷达信号处理中,卡尔曼滤波方法通常用于目标的线性运动模型,对于目标速度较稳定的情况更为适用。
2. 粒子滤波方法粒子滤波方法是一种基于蒙特卡洛采样的目标跟踪方法。
该方法通过在状态空间中随机采样一组粒子,并基于测量信息对粒子进行重采样和权重更新,从而逼近目标的后验概率密度函数。
粒子滤波方法适用于非线性运动模型,并且在多目标跟踪问题中具有较好的性能。
3. 光流方法光流方法是一种基于图像序列的目标跟踪方法。
该方法通过分析连续图像帧中目标的移动来估计目标的运动状态。
在雷达信号处理中,光流方法可以通过分析雷达接收到的连续信号帧中目标的频率变化来实现目标跟踪。
光流方法适用于目标速度较慢、目标轨迹较短的情况。
4. 关联滤波方法关联滤波方法是一种基于关联度量的目标跟踪方法。
该方法通过计算目标与候选目标之间的相似度来实现目标的跟踪。
在雷达信号处理中,关联滤波方法可以通过计算目标与周围雷达回波之间的相似度来确定目标的位置和速度。
关联滤波方法适用于目标数量较少、目标与背景之间的差异明显的情况。
5. 神经网络方法神经网络方法是一种基于人工神经网络的目标跟踪方法。
该方法通过训练神经网络来学习目标的运动模式和特征,从而实现目标的跟踪和分类。
在雷达信号处理中,神经网络方法可以通过分析雷达接收到的信号特征来实现目标的跟踪和分类。
神经网络方法具有良好的自适应性和鲁棒性。
综上所述,雷达信号处理中的目标跟踪方法包括卡尔曼滤波方法、粒子滤波方法、光流方法、关联滤波方法和神经网络方法等。
基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的算法。
在目标跟踪定位中,它可以用于估计目标的运动轨迹。
下面是一个简单的基于扩展卡尔曼滤波的目标跟踪定位算法的描述,以及一个简化的MATLAB程序实现。
算法描述1. 初始化:设置初始状态估计值(例如位置和速度)以及初始的估计误差协方差矩阵。
2. 预测:根据上一时刻的状态估计值和模型预测下一时刻的状态。
3. 更新:结合观测数据和预测值,使用扩展卡尔曼滤波算法更新状态估计值和估计误差协方差矩阵。
4. 迭代:重复步骤2和3,直到达到终止条件。
MATLAB程序实现这是一个简化的示例,仅用于说明扩展卡尔曼滤波在目标跟踪定位中的应用。
实际应用中,您需要根据具体问题和数据调整模型和参数。
```matlab% 参数设置dt = ; % 时间间隔Q = ; % 过程噪声协方差R = 1; % 观测噪声协方差x_est = [0; 0]; % 初始位置估计P_est = eye(2); % 初始估计误差协方差矩阵% 模拟数据:观测位置和真实轨迹N = 100; % 模拟数据点数x_true = [0; 0]; % 真实轨迹初始位置for k = 1:N% 真实轨迹模型(这里使用简化的匀速模型)x_true(1) = x_true(1) + x_true(2)dt;x_true(2) = x_true(2);% 观测模型(这里假设有噪声)z = x_true + sqrt(R)randn; % 观测位置% 扩展卡尔曼滤波更新步骤[x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R);end% 扩展卡尔曼滤波更新函数(这里简化为2D一维情况)function [x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R)% 预测步骤:无观测时使用上一时刻的状态和模型预测下一时刻状态F = [1 dt; 0 1]; % 状态转移矩阵(这里使用简化的匀速模型)x_pred = Fx_est + [0; 0]; % 预测位置P_pred = FP_estF' + Q; % 预测误差协方差矩阵% 更新步骤:结合观测数据和预测值进行状态更新和误差协方差矩阵更新K = P_predinv(HP_pred + R); % 卡尔曼增益矩阵x_est = x_pred + K(z - Hx_pred); % 更新位置估计值P_est = (eye(2) - KH)P_pred; % 更新误差协方差矩阵end```这个示例代码使用扩展卡尔曼滤波对一个简化的匀速运动模型进行估计。
卡尔曼滤波实现目标跟踪

卡尔曼滤波实现目标跟踪1.系统模型x_k=A_k*x_{k-1}+B_k*u_k+w_k其中,x_k是目标的状态向量,A_k是系统状态转移矩阵,表示目标从k-1时刻到k时刻状态的变化;B_k是控制输入矩阵,表示外部输入对目标状态的影响;u_k是控制输入向量,表示外部输入的值;w_k是过程噪声,表示系统模型的误差。
2.观测模型观测模型描述了如何根据目标状态得到观测值。
观测模型可以用下面的观测方程表示:z_k=H_k*x_k+v_k其中,z_k是观测值,H_k是观测矩阵,表示目标状态到观测值的映射关系;v_k是观测噪声,表示观测数据的误差。
3.初始化在开始跟踪之前,需要对目标的状态进行初始化。
可以根据已有的观测数据和模型来初始化状态向量和协方差矩阵。
4.预测步骤在预测步骤中,根据系统模型和上一时刻的状态估计,可以预测目标的下一时刻状态。
预测的状态估计由下面的方程给出:x_k^-=A_k*x_{k-1}+B_k*u_k其中,x_k^-是预测的状态估计值。
同时,还需要预测状态估计值的协方差矩阵,可以使用下面的方程计算:P_k^-=A_k*P_{k-1}*A_k^T+Q_k其中,P_k^-是预测的协方差矩阵,Q_k是过程噪声的协方差矩阵。
5.更新步骤在更新步骤中,根据观测数据来修正预测的状态估计。
首先,计算创新(innovation)或者观测残差:y_k=z_k-H_k*x_k^-其中,y_k是观测残差。
然后,计算创新的协方差矩阵:S_k=H_k*P_k^-*H_k^T+R_k其中,S_k是创新的协方差矩阵,R_k是观测噪声的协方差矩阵。
接下来,计算卡尔曼增益:K_k=P_k^-*H_k^T*S_k^-1最后,更新估计的目标状态和协方差矩阵:x_k=x_k^-+K_k*y_kP_k=(I-K_k*H_k)*P_k^-其中,I是单位矩阵。
6.重复预测和更新步骤重复进行预测和更新步骤,可以得到目标的状态估计序列和协方差矩阵序列。
卡尔曼滤波在GPS中的应用

本科毕业论文 (设计)题目:卡尔曼滤波在GPS定位中的应用学院:自动化工程学院专业:自动化姓名:指导教师:2010年 6月 4日The Application of Kalman Filtering for GPS Positioning摘要本文提出了一种应用卡尔曼滤波的GPS滤波模型。
目前在提高GPS定位精度的自主式方法研究领域,普遍采用卡尔曼滤波算法对GPS定位数据进行处理。
由于定位误差的存在,在GPS动态导航定位中,为提高定位精度,必须对动态定位数据进行滤波处理。
文中在比较分析各种动态模型的基础上,提出了应用卡尔曼滤波的GPS滤波模型,并通过对实测滤波算例仿真,证实了模型的可行性和有效性。
最后提出了卡尔曼滤波在GPS定位滤波应用中的问题和改进思路。
关键词 GPS 卡尔曼滤波定位误差AbstractThis article proposed applies the GPS filter model of the Kalman filtering. At present, to improve GPS positioning accuracy in the autonomous areas of research methods, we commonly use Kalman filter algorithm to process GPS location data.As a result of the position error existence in the GPS dynamic navigation localization, we must carry on filter processing to the dynamic localization data for the enhancement pointing accuracy.In the base of comparing each kind of dynamic model, this article proposed applies the GPS filter model of the Kalman filtering,the actual examples of filter calculation are simulated, it confirmed that the model is feasibility and validity. Finally, this article also proposed the existing problems and improving the idea ofthe applications of Kalman filter in GPS positioning.Keywords GPS Kalman filtering Positioning error目录前言 (1)第1章绪论 (3)1.1GPS的简介及应用 (3)1.2本课题的背景及意义 (5)1.3国内外研究动态及发展趋势 (7)1.4目前GPS定位系统面临着新的困扰和挑战 (5)第2章 GPS全球定位系统及GPS定位误差分析 (8)2.1GPS全球定位系统组成部分 (8)2.1.1 GPS卫星星座 (8)2.1.2 地面支持系统 (9)2.1.3 用户部分 (10)2.2GPS定位原理和测速原理 (16)2.2.1 卫星无源测距定位和伪距测量定位原理 (17)2.2.2 多普勒测量定位原理 (193)2.2.3 GPS测速原理 (214)2.3GPS定位误差分析 (225)2.3.1 星钟误差 (225)2.3.2 星历误差 (225)2.3.3 电离层和对流层的延迟误差 (236)2.3.4 多路径效应引起的误差 (246)2.3.5 接收设备误差 (246)2.3.6 GPS测速误差 (257)第3章卡尔曼滤波理论 (27)3.1卡尔曼滤波理论的工程背景 (27)3.2卡尔曼滤波理论 (28)第4章卡尔曼滤波在GPS定位中的应用 (34)4.1卡尔曼滤波在GPS定位中的应用概述 (34)4.2运动载体的动态模型 (35)4.3卡尔曼滤波模型 (36)4.3.1 状态方程 (36)4.3.2系统的量测方程 (37)4.4滤波仿真和结论 (37)第5章卡尔曼滤波在GPS定位应用中的问题和改进思路 (40)5.1对野值的处理 (40)5.2对状态以及观测噪声方差阵的处理 (41)5.3对观测噪声和测量噪声的处理 (42)结论 (30)谢辞 (31)参考文献 (47)前言自从赫兹证明了麦克斯韦的电磁波辐射理论以后,人们便开始了对无线电导航定位系统研究。
基于自适应卡尔曼滤波的机动目标跟踪算法

年 , lr r s a 在文 献[ ] Wae Go m n t s 1 中提出 了混合坐标 系的概念 ,
结合了两个坐标系 的优点 , 即在直角坐 标系 中进行 目标轨迹
ቤተ መጻሕፍቲ ባይዱ收稿 日期 : 1 — 6— 3 修 回日期 : 1 — 7 1 2 1 0 1 0 0 2 1 0—3
之间的关系如图1 所示 , 其中0 为目标高低角, 为目标方位
o d p ie K ma l rc mb n d w t a e in c o d n t y tm n p e c l o r i ae s se naat a v l n f t o i e i C r sa o r i ae s se a d s h r a o d n t y tm.T e ag r h i e h t i c h o t m l i a o d h h n e o o s tt t a e u a t e ut d fo c o i ae s s mst n fr t n,a d t e t h v i s te c a g fn ie sai i l g lr y r s l r m o r n t y t a somai sc r i e d e r o n o d a w h t e li
统计模 型 , 机 机 动 加 速度 可 以表 示 为一 个 时 间 相 关 过 随
程 J即 : ,
+ 2, y ) 目标方位 角为 口=ac n xy 。V k 是 零均 ra(/ ) ( ) t
值 白噪声 , 其协方差矩阵 E[ ( ) rj ] V k V () =R(} 。此时 的 J j ) 测量方程是关 于 置 ( 的线性方程。 )
结果验证 了该算法 的有效性 。
卡尔曼滤波在目标跟踪中的应用

卡尔曼滤波在目标跟踪中的应用卡尔曼滤波是一种常用的目标跟踪算法,它通过预测和更新两个步骤,能够有效地估计目标的状态,对于实时目标跟踪有着重要的应用。
在目标跟踪中,我们通常需要根据已有的观测数据,来预测目标的未来位置或状态。
然而,由于观测数据往往存在噪声和不确定性,仅仅依靠单个观测值进行预测往往会引入较大的误差。
卡尔曼滤波通过对系统的动态模型和测量模型进行建模,能够准确地预测目标的状态,并根据新的观测数据进行更新,从而提高目标跟踪的精度。
卡尔曼滤波的核心思想是通过融合先验估计和观测数据,得到后验估计,从而更准确地估计目标的状态。
在预测步骤中,利用系统的动态模型和先验估计,通过状态转移方程对目标的状态进行预测。
在更新步骤中,根据观测数据和测量模型,通过测量方程对预测值进行修正,得到更准确的后验估计。
卡尔曼滤波的核心是卡尔曼增益,它用于衡量观测数据的权重。
卡尔曼增益越大,观测数据的权重越大,反之亦然。
卡尔曼增益的计算依赖于系统噪声和测量噪声的协方差矩阵,以及先验估计和观测数据之间的协方差矩阵。
通过调整卡尔曼增益,可以在系统噪声和观测噪声之间取得一个平衡,从而实现对目标状态的准确估计。
卡尔曼滤波在目标跟踪中有着广泛应用。
例如,在无人机跟踪目标的场景中,通过传感器获取目标的位置和速度信息,可以利用卡尔曼滤波对目标的运动进行预测,并根据新的观测数据对预测值进行修正,从而实现对目标的精确跟踪。
另外,在自动驾驶领域,卡尔曼滤波也被广泛应用于车辆的目标检测和跟踪,通过对车辆状态的准确估计,可以实现自动驾驶系统的精确控制。
除了目标跟踪,卡尔曼滤波还在其他领域有着重要的应用。
例如,在导航系统中,卡尔曼滤波可以用于优化地图匹配和位置估计,提高导航的精度和鲁棒性。
在信号处理中,卡尔曼滤波可以用于降噪和提取有效信号,从而改善信号质量。
在机器人领域,卡尔曼滤波可以用于机器人的定位和建图,实现自主导航和环境感知。
卡尔曼滤波在目标跟踪中有着广泛的应用。
一种基于卡尔曼滤波的运动目标跟踪方法

来 预 测每 帧 中波 门的位置 和 大小 。常用 的预测 跟踪
方法有 线 性预测 、 卡尔曼 滤 波预测 、 子滤 波等 。下 粒 面介 绍基 于卡 尔曼 滤 波 的位 置 预 测算 法 , 做 出算 并 法 的仿真 。
Ke r : a g tt a ki y wo ds t r e r c ng; l a it rng; a e t a ki Ka m n fle i g t r c ng
0 引 言
所谓 目标 跟 踪 , 就是 在 一 段 序列 图像 的 每 帧 图
像 中找到感 兴 趣 的运动 目标所 处 的位 置 。运动 目标
有效性 。
关 键 词 : 标 跟踪 ; 尔曼滤波 ; 目 卡 波门跟踪
中图分 类号 : N 5 T 93
文 献标识 码 : A
文章编 号 : N 211(0 10—07 4 C 3—4321)3 6一 0 o
A n f M o i e Ta g t a ki g M e h d Ba e n Ka m a le i Ki d o tv r e s Tr c n t o sd o l n Fit rng
( )基 于模 型 的方法 。基 于模 型 的跟 踪算 法 一 2 般需 要对 被跟 踪 目标 建 立 一 定 的模 型 , 目前 应 用 是 比较 广泛 和有 效 的 方 法 。模 型 包 括 目标 的几 何 特
性、 区域特 性等 。由于在 序列 图像 的跟踪 过 程 中, 这 些 目标 的特 征模 型 具 有 很 强 的相 关 性 , 以这种 基 所 于模 型 的跟 踪模 式 结 合 了 目标 识 别 的 诸 多思 想 , 如
研究生数学建模竞赛机动目标的跟踪与反跟踪

参赛密码(由组委会填写)第十一届华为杯全国研究生数学建模竞赛学校参赛队号队员姓名1. 2. 3.参赛密码(由组委会填写)第十一届华为杯全国研究生数学建模竞赛题目机动目标的跟踪与反跟踪摘要:目标跟踪理论在军事、民用领域都有重要的应用价值。
本文对机动目标的跟踪与反跟踪相关问题进行了研究,取得了以下几方面的成果。
1.建立了对机动目标的跟踪模型通过对原始数据进行处理,观察到目标运动模式大致为机动与非机动的混合模式,于是决定先采用基于卡尔曼滤波的多模滤波VD算法来建立跟踪模型。
当目标处于机动状态时采用普通卡尔曼滤波进行处理,机动模式采用非线性卡尔曼滤波处理。
滤波出来的航迹图和拟合出来的航迹匹配很好。
然后利用Matlab的拟合工具cftool对目标的各个轴向的运动进行了拟合,分析出了目标的运动方式,大致估计出了目标的航迹。
对建立的航迹方程进行预测,成功的估计出了目标的着落点。
2.实现了转换坐标卡尔曼滤波器实际情况下目标的状态往往是在极坐标或者球坐标情况下描述的。
状态方程和量测方程不可能同时为线性方程,本文把极坐标系下的测量值经坐标转换到直角坐标系中,用统计方法求出转换后的测量值误差的均值和方差,然后利用标准卡尔曼滤波器进行滤波,精度较高。
3.完成了多目标的数据关联,区分出了相应的轨迹4.以最近邻法原理为基础,采用线性预估与距离比较的方法制定出了相应的区分规则,成功的将原始数据的两个目标轨迹区分出来。
5.分析各个目标的机动变化规律并成功识别了机动发生的时间利用得到的目标运动轨迹,对位置信息进行二次求导得出了目标的加速度变化曲线,分析三个平面上的加速度变化趋势得到了目标在空间的机动情况,当位置与速度变化剧烈的时候也是机动发生的时候,于是通过对加速度随时间变化的分析,合理的设定加速度变化率的门限,当加速度变化率超过门限即认为目标处于机动状态并通过程序算法对机动点进行标记,结果和对目标的经验判断相符合。
在整个过程中对各个时间点目标的加速度大小和方向进行了统计并输出到txt文档中。
移动目标跟踪的算法研究及其应用

移动目标跟踪的算法研究及其应用第一部分:前言随着技术的发展和智能化的进步,移动目标跟踪的应用越来越广泛。
移动目标跟踪的核心是找到目标并跟踪它,因而算法的优劣直接决定着跟踪结果的好坏。
在本文中,我们将探讨一些常见的移动目标跟踪算法,以及它们在实际应用中的情况。
第二部分:常见的移动目标跟踪算法1. 卡尔曼滤波器算法卡尔曼滤波器是一种线性滤波器,可以用来估计系统的状态。
在移动目标跟踪中,卡尔曼滤波器的应用主要是用来估计目标的轨迹和速度等状态参数。
卡尔曼滤波器算法具有简单、实用、鲁棒性强的特点,在很多应用中得到了广泛的应用。
2. 粒子滤波器算法粒子滤波器算法是一种非参数滤波器,与卡尔曼滤波器相比具有更好的适应性和精度。
在移动目标跟踪中,粒子滤波器算法用来估计目标的状态,可以有效地解决一些卡尔曼滤波器无法解决的问题,如非线性系统和非高斯噪声。
3. CAMShift算法CAMShift算法是一种基于颜色直方图的目标跟踪算法,它的核心思想是通过更新目标直方图的方式来实现目标跟踪。
CAMShift算法具有实时性好、可靠性高、鲁棒性强等特点,在很多应用场景中得到了广泛的应用。
第三部分:移动目标跟踪算法的应用1. 智能监控移动目标跟踪算法在智能监控领域有广泛的应用。
通过对监控视频中的移动目标进行跟踪,可以实现对物品的自动识别、实时监控、监控报警等功能,提高监控系统的安全性和智能化程度。
2. 交通管控移动目标跟踪算法在交通管控领域同样有着广泛的应用。
通过对交通视频中的车辆进行跟踪,可以实现对交通流量、拥堵等情况的实时统计,帮助交通部门进行交通治理,提高道路的通行效率和安全性。
3. 智能机器人移动目标跟踪算法在智能机器人领域也有很大的应用潜力。
通过对机器人视觉信息的处理,可以实现机器人的导航、目标抓取、环境识别等功能,为机器人的智能化发展打下基础。
第四部分:总结总的来说,移动目标跟踪算法是计算机视觉领域中的重要研究方向之一,也是实际应用中必不可少的一种算法。
无迹卡尔曼滤波在目标跟踪中的应用

本科毕业设计论文题目无迹卡尔曼滤波在目标跟踪中的应用专业名称学生姓名指导教师毕业时间毕业任务书一、题目无迹卡尔曼滤波在目标跟踪中的应用二、指导思想和目的要求利用已有的专业知识,培养学生解决实际工程问题的能力;锻炼学生的科研工作能力和培养学生的团结合作攻关能力;三、主要技术指标1、熟悉掌握无迹卡尔曼滤波的基本原理;2、对机动目标进行跟踪;四、进度和要求第01周----第02周:英文翻译;第03周----第04周:了解无迹卡尔曼滤波的发展趋势;第05周----第06周:学习无迹卡尔曼滤波基本原理;第07周----第09周:掌握Matlab编程,熟悉开发环境;第10周----第11周:学习常用目标的机动模型;第12周----第13周:编写程序,调试验证;第14周----第16周:撰写毕业设计论文,论文答辩;五、参考文献和书目1. 张勇刚,李宁,奔粤阳,等. 最优状态估计-卡尔曼及非线性滤波[M],国防工业出版社,2013。
2. 冯志全,孟祥旭,蔺永政,等.UKF滤波器的强跟踪性研究[J].小型微型计算机系统, 2006, 27(11): 2142-2145。
3. 潘泉,杨峰,叶亮,等.一类非线性滤波器-UKF综述[J].控制与决策, 2005, 20(5): 481-489。
4.宋迎春. 动态定位中的卡尔曼滤波研究[D]. 博士学位论文;长沙:中南大学, 2006。
5.贺觅知.基于卡尔曼滤波原理的电力系统动态状态估计算法研究[D].西安:西安交通大学,2006。
6.孙清,张陵,张爱社,伍晓红,等.基于扩展卡尔曼滤波(EKF)的结构动态物理参数识别[A];第十届全国结构工程学术会议论文集第Ⅲ卷[C];2001年。
7.黄铫.一种扩维无迹卡尔曼滤波.电子测量与仪器学报[J].2009,2009增刊:56-60。
8.柴霖,袁建平,罗建军,等。
非线性估计理论的最新进展[J].宇航学报,2005,26(3):380-384。
目标追踪的雷达原理与信号处理

目标追踪的雷达原理与信号处理目标追踪是雷达应用领域中的重要问题之一。
雷达技术凭借其高分辨率、远距离探测和全天候工作等特点,在军事、民用和科研领域广泛应用。
本文将介绍目标追踪的雷达原理和信号处理技术,帮助读者更好地理解雷达的工作原理和应用。
首先,我们来了解一下雷达的原理。
雷达系统由发射器、接收器和信号处理器组成。
发射器通过发射一束电磁波(通常是射频波)向目标物体发送信号。
当这束信号遇到目标物体时,部分信号将被反射回来,并由接收器接收。
接收到的信号经过放大和滤波等处理后,交由信号处理器进行进一步的处理和分析。
目标回波信号是雷达进行目标追踪的关键。
雷达系统通过分析目标回波信号的时域、频域和空域特征,确定目标的位置、速度和形状等信息。
在信号处理过程中,常用的算法包括匹配滤波、卡尔曼滤波、最小二乘法和神经网络等。
匹配滤波是一种常见的雷达信号处理方法。
它基于估计目标回波信号和雷达系统的输出信号之间的相似度来实现目标的检测与跟踪。
匹配滤波器的设计需要考虑目标的特征和噪声的统计特性。
通过适当地选择滤波器的参数,可以提高雷达系统的性能。
卡尔曼滤波是一种最优滤波算法,常用于雷达目标追踪。
它通过不断地根据目标回波信号和雷达系统的测量信息来估计目标的状态。
卡尔曼滤波器具有高效、快速和稳定的特点,在实际应用中被广泛采用。
最小二乘法是一种拟合曲线的方法,适用于雷达信号处理中的目标追踪。
它通过最小化目标回波信号与拟合曲线之间的误差来确定目标的位置和速度。
最小二乘法能够有效地减小由于噪声和杂波引起的误差,提高雷达系统的探测和跟踪性能。
神经网络是一种模拟人脑神经元网络的数学模型,近年来在雷达信号处理中得到了广泛应用。
神经网络通过学习和训练,可以自动地提取目标回波信号的特征,并实现目标的检测和跟踪。
神经网络具有较强的自适应性和非线性处理能力,在目标追踪中具有独特的优势。
除了上述信号处理算法,雷达目标追踪还可利用多普勒效应和脉冲压缩等技术。
基于卡尔曼滤波的目标跟踪

卡尔曼滤波的基本概念
卡尔曼滤波是一种线性二次估算算法,通过建立 系统模型,对系统状态进行最优估计。
卡尔曼滤波器能够从一系列的不完全的和含有噪 声的测量中,估计动态系统的状态。
卡尔曼滤波器被广泛应用于目标跟踪、导航、控 制系统等领域。
卡尔曼滤波的数学模型
预测模型用于根据系统的前一时刻状态,预测当前时刻 的状态。
初始化
根据目标的初始位置、速度、加速度等参数 ,对卡尔曼滤波器的状态估计进行初始化。
更新
根据观测数据和运动模型,使用卡尔曼滤波 算法更新状态估计,同时更新跟踪参数,如 更新目标的速度、加速度等。
05
CATALOGUE
实验结果与分析
实验数据与环境设置
数据集
本实验采用了真实场景下的数据集,包含目标物 体的位置、速度、加速度等观测信息。
建立观测模型
观测模型描述了目标状态与观 测数据之间的关系,如光学观 测、雷达观测等。
判断是否跟踪成功
根据状态估计结果,判断目标 是否被成功跟踪。
目标检测与特征提取
目标检测
通过图像处理技术,检测出目标的位置 和形状。
VS
特征提取
从目标图像中提取出用于识别和区分目标 的特征,如颜色、形状、纹理等。
跟踪参数的初始化与更新
卡尔曼滤波算法
总结词
卡尔曼滤波算法是一种经典的线性系统预测和估计方法,具有高精度、低计算量和实时性好的优点。
详细描述
卡尔曼滤波算法通过建立线性系统模型,利用系统的输入和输出数据,结合先验知识进行预测和估计 ,得到目标的最优估计值。该算法适用于对目标位置、速度和加速度等参数的精确跟踪,常应用于航 天、军事和导航等领域。
卡尔曼滤波的数学模型可以用状态空间方程来表示。
雷达目标跟踪的转换坐标卡尔曼滤波算法

雷达目标跟踪的转换坐标卡尔曼滤波算法雷达目标跟踪是指在雷达系统中利用距离、角度和速度等量测信息对目标进行检测、分类、定位和跟踪,是雷达应用中的重要问题。
为了实现高精度的目标跟踪,需要应用一些有效的滤波算法。
本文将介绍一种基于转换坐标卡尔曼滤波的雷达目标跟踪算法。
1. 转换坐标卡尔曼滤波转换坐标卡尔曼滤波(CTKF)是一种Kalman滤波的变种,它采用一种新的坐标系,把系统状态转换为一组正交的分量,以实现分离不同分量之间的影响。
在CTKF中,系统状态被表示为一个n维向量x,同时我们将x表示为分别在y和z方向上的两个n/2维向量y和z的连接:x = [y^T z^T]^T坐标转换后,系统状态可以分别表示为两个独立的过程方程:y_k+1 = f_y(y_k,w_k) + v_k, z_k+1 = f_z(z_k,w_k) + u_k其中,wk表示过程噪声,vk和uk分别表示在y和z方向上的观测噪声。
由于y和z的方向独立,它们可以分别应用Kalman滤波来估计目标的状态。
因此,CTKF算法先应用正常的Kalman滤波来对y和z进行状态估计,然后通过一个关系矩阵H来合成系统状态x的估计值。
2. 雷达目标跟踪的CTKF算法在雷达目标跟踪中,通常需要采用四元素模型来描述目标的运动。
我们可以将系统状态表示为一个7维向量x,其中前部分代表位置和速度,后部分代表四元素:x = [x y z vx vy vz q1 q2 q3 q4]^T雷达测量产生的观测向量为z=[r,az,el,Vr]^T,其中r是距离,az和el是方位和仰角角度,Vr是径向速度。
通过对雷达反演模型进行改进,可将观测向量转换为状态向量的某些部分。
同时,通过将状态向量进行坐标转换,可以将4维偏移参数q转换为3维转换向量t和1维缩放因子s,从而提高算法的效率和稳定性。
在CTKF算法中,即可将系统状态表示为x=[y; z],同时拆分为两个独立的过程方程:y_k+1 = f_y(y_k,w_k) z_k+1 = f_z(z_k,w_k)其中,f_y和f_z表示y和z的状态转移方程,wk表示过程噪声,v和u分别表示在y和z方向上的观测噪声。
卡尔曼滤波算法在雷达目标定位跟踪中的应用

卡尔曼滤波算法在雷达目标定位跟踪中的应用摘要:本文阐述了雷达跟踪系统中滤波器模型的建立方法,介绍了卡尔曼滤波器的工作原理,通过仿真方法,用卡尔曼滤波方法对单目标航迹进行预测,即搜索目标并记录目标的位置数据,对观测到的位置数据进行处理,自动生成航迹,并预测下一时刻目标的位置。
基于此方法的仿真实验获得了较为满意的结果,可以应用于雷达目标跟踪定位。
关键词:卡尔曼滤波;滤波模型;定位跟踪中图分类号:TN9591.引言雷达目标跟踪是整个雷达系统中的关键环节。
跟踪的任务是通过相关和滤波来确定目标的运动路径[1]。
在雷达中,人们通常只对跟踪目标感兴趣,但对目标位置、速度和加速度的测量随时都会产生噪声。
卡尔曼滤波器利用目标的动态信息去除噪声的影响,对目标位置进行较好的估计。
其可以是当前目标位置的估计滤波器、未来位置的预测、过去位置的插值或平滑。
随着计算机硬件技术和计算能力的迅速提高,卡尔曼滤波逐渐取代其他滤波方法成为ATC自动系统跟踪滤波的标准方法[2]。
卡尔曼滤波不需要独立于跟踪滤波过程的目标机动或跟踪效果检测,而是对其作统一处理,提高了算法的归一化程度。
卡尔曼滤波还可以将高度跟踪和水平位置跟踪结合起来,以考虑高度和水平方向之间可能存在的耦合。
本文从理论推导和仿真验证两方面探讨了卡尔曼滤波在单目标航迹预测中的应用,通过仿真对实验结果进行评价:卡尔曼滤波具有最佳的目标定位和跟踪精度。
1.Kalman滤波跟踪1.Kalman滤波模型•目标运动的动力学模型目标状态转移方程如下:状态转移方程描述了如何从当前时间目标的状态变量计算下一次的状态变量。
方程中的目标运动转移矩阵,反映了目标运动规律的基本部分,模型误差,反映了目标运动规律中不能被准确表达的随机偏差,是目标运动动力学模型的数学表达式。
•测量模型一般来说,传感器(雷达)可以直接检测到的目标参数并不是描述目标动力学的最合适的状态变量。
例如,二次雷达直接测量目标的俯仰角、方位角和斜距,而描述目标动力学最合适的状态变量是三维笛卡尔坐标及其导出量。
目标跟踪算法综述

目标跟踪算法综述目标跟踪算法综述目标跟踪是计算机视觉中一项重要的任务,它旨在识别并跟踪视频序列中的特定目标。
随着计算机视觉和图像处理技术的不断发展,目标跟踪算法也得到了巨大的改进和突破。
本文将综述当前常见的目标跟踪算法,包括传统的基于特征的目标跟踪算法和基于深度学习的目标跟踪算法。
一、传统的基于特征的目标跟踪算法传统的目标跟踪算法主要基于目标的外观特征进行跟踪,常用的特征包括颜色、纹理和形状等。
其中,最经典的算法是卡尔曼滤波器(Kalman Filter)算法和粒子滤波器(Particle Filter)算法。
卡尔曼滤波器是一种基于状态空间模型的滤波器,通过预测目标的位置和速度,并根据观测数据进行修正,从而实现目标的跟踪。
它的优势在于对于线性系统能够得到最优估计,并且具有较低的计算复杂度。
但是,卡尔曼滤波器对于非线性系统和非高斯噪声的处理能力较差,容易导致跟踪误差的累积。
粒子滤波器是一种基于蒙特卡洛采样的目标跟踪算法,通过生成一组粒子来表示目标的可能位置,并根据观测数据和权重对粒子进行更新和重采样。
粒子滤波器具有较好的鲁棒性和适应性,能够有效处理非线性系统和非高斯噪声。
但是,由于需要采样大量的粒子,并且对粒子进行权重更新和重采样操作,使得粒子滤波器的计算复杂度较高,难以实时应用于大规模目标跟踪。
二、基于深度学习的目标跟踪算法随着深度学习技术的飞速发展和广泛应用,基于深度学习的目标跟踪算法也取得了显著的进展。
深度学习算法通过在大规模标注数据上进行训练,能够学习到更具有区分性的特征表示,并且具有较好的泛化能力和鲁棒性。
目前,基于深度学习的目标跟踪算法主要分为两类:基于孪生网络的在线学习方法和基于卷积神经网络的离线训练方法。
基于孪生网络的在线学习方法通过将目标的当前帧与模板帧进行比较,计算相似度分数,并根据分数进行目标位置的预测和更新。
该方法具有较好的实时性和鲁棒性,但是需要大量的在线训练数据,对于目标的变化和遮挡情况较为敏感。
基于模糊卡尔曼滤波器的机动目标跟踪算法

科技资讯科技资讯S I N &T NOLOGY I NFORM TI O N2008N O .09SC I ENC E &TEC HN OLO GY I NFO RM ATI O N高新技术本文给出了一种模糊自适应的跟踪算法,利用量测新息和量测新息的变化率来自适应的调整“当前统计模型”的系统参数a m a x 和-a m a x ,从而间接达到实时调整系统方差的目的。
1当前统计模型目标状态方程如下:(1)式中:为目标的状态;W (k )为系统状态噪声,为离散白噪声序列,且;();a 为目标机动频率;目标状态转移矩阵为(2)输入矩阵为(3)目标观测方程为 (4)其中当仅有含噪声的目标位置数据可观测时,有H (k)=(100) (5)V(k)是均值为零、方差为R(k)的高斯观测噪声。
2基于“当前”统计模型的传统跟踪算法根据式(1)和(4),利用标准卡尔曼滤波递推关系则可得到基于“当前”统计模型的机动目标跟踪算法,如下:(6)(7)(8)(9)(10)由并结合(2)、(3)以及(7)式可得加速度的均值自适应算法:(11)其中(12)同样利用和之间的关系,即可得加速度方差自适应算法:当“当前”加速度为正时,有(13)当“当前”加速度为负时,有(14)再根据公式:可以发现,当采样周期T ,a 以及观测噪声R(k)确定后,影响跟踪精度的主要参数为最大机动加速度a max ;要产生良好的跟踪效果必须恰当的选择a max 。
事实上一旦目标机动加速度的值超过该设定值时,其跟踪性能会明显恶化,加上实际环境中目标发生的最大、最小机动加速度一般是不可知的,从而造成跟踪机动加速度的相对动态范围就较小[2][7]。
3模糊理论在机动目标跟踪领域中的应用[3-8]模糊理论在目标跟踪领域中已获得广泛应用。
本文均假定滤波器为线性的卡尔曼滤波器,将模糊技术与线性卡尔曼滤波算法结合起来,采用较为简单的一级模糊系统,把残差和残差的变化率作为模糊系统的输入,输出为最大加速度的调整系数,然后将调整后的最大加速度送回卡尔曼滤波器的方差自适应方程,进行循环递推。
卡尔曼滤波在目标跟踪中的研究与应用

本文主要研究对机 动 目标进行 建模 , 目标发 当
・-・ — —
作者简介 :刘静( 96一 , , 18 ) 男 助理工程师 , 研究方 向为雷达装备性 能测试 与故障诊断 。
1 4 -— 7 — . —
统及非平稳随机过程 , 是线性系统的最优估计理论。
2 1 年第 0 0 1 1期
中图分类号 :N 5 T 93 文献标识码 : A 文章编号 :0 9— 52(0 1 1 0 7 0 10 2 5 2 1 )0— 14— 4
卡 尔 曼 滤 波在 目标 跟踪 中的研 究 与应 用
刘 静, 姜 恒 ,石晓原
(2 6 7 4 5部队 , 济南 2 02 ) 5 0 2
1 目标 跟踪 的基本 内容及算法
1 1 机 动 目标跟踪 的基 本 内容 .
12 卡尔曼滤波理论 . 卡尔曼滤波理论突破 了经典维纳滤波理论和方
法 的局 限性 , 引人 了 系统 的状 态 变量 和 状 态 空 间 的
目标跟踪 基本 上 包 含 量测 数 据 形 成 与处 理 、 机
动 目标建模、 机动检测与机动辨识 、 滤波 与预测、 跟 踪坐标系的选取 、 跟踪门规则、 数据关联 、 航迹起始
与终 止 等 内容 。机 动 目标 跟踪 系统 的基本 框 图如 图
1所示 。
概念 , 出了时域上 的状态空间方法 , 提 标志着现代控 制理论的诞生。它给出了~套在计算机上容易实时 实现的递推滤波算法 , 适合处理多变量系统 、 时变系
(2 6 ro so L Jn n20 2 C ia 74 5T o p f A,ia 5 02, hn ) P
Ab t a t T e Kama l r g a g r h i e mo t u e i o tg n r d r sg a r c s i g sr c : h l n f t i lo i m s t s s n n w s e i a a in l p o e sn . i en t h a
目标跟踪算法中的卡尔曼滤波

⽬标跟踪算法中的卡尔曼滤波在使⽤多⽬标跟踪算法时,接触到卡尔曼滤波,⼀直没时间总结下,现在来填坑。
1. 背景知识在理解卡尔曼滤波前,有⼏个概念值得考虑下:时序序列模型,滤波,线性动态系统1. 时间序列模型时间序列模型都可以⽤如下⽰意图表⽰:这个模型包含两个序列,⼀个是黄⾊部分的状态序列,⽤X表⽰,⼀个是绿⾊部分的观测序列(⼜叫测量序列、证据序列、观察序列,不同的书籍有不同的叫法,在这⾥统⼀叫观测序列。
)⽤Y表⽰。
状态序列反应了系统的真实状态,⼀般不能被直接观测,即使被直接观测也会引进噪声;观测序列是通过测量得到的数据,它与状态序列之间有规律性的联系。
上⾯序列中,假设初始时间为t1, 则X1,Y1是t1时刻的状态值和观测值,X2,Y2是t2时刻的状态值和观测值...,即随着时间的流逝,序列从左向右逐渐展开。
常见的时间序列模型主要包括三个:隐尔马尔科夫模型,卡尔曼滤波,粒⼦滤波。
2. 滤波时间序列模型中包括预测和滤波两步预测:指⽤当前和过去的数据来求取未来的数据。
对应上述序列图中,则是利⽤t1时刻X1,Y1的值,估计t2时刻X2值。
滤波:是⽤当前和过去的数据来求取当前的数据。
对应上述序列图中,则是先通过上⼀步的预测步骤得到X2的⼀个预测值,再利⽤t2时刻Y2的值对这个预测值进⾏纠正,得到最终的X2估计值。
(通俗讲,就是通过X1预测⼀个值, 通过传感器测量⼀个值Y2, 将两者进⾏融合得到最终的X2值)3.线性动态系统卡尔曼滤波⼜称为基于⾼斯过程的线性动态系统(Linear Dynamic System, LDS), 这⾥的⾼斯是指:状态变量X t和观测变量Y t都符合⾼斯分布;这⾥的线性是指:X t可以通过X t−1线性表⽰,Y t可以通过X t线性表⽰;如果⽤数学表达式来表达这两层含义如下:X t=FX t−1+w t−1,w t−1∼N(0,Q)上⾯表达式中F是⼀个矩阵,常称作状态转移矩阵,保证了X t和X t−1的线性关系(线性代数中,矩阵就是线性变换);w t−1常称作噪声,其服从均值为0,⽅差为Q的⾼斯分布,保证了X t服从⾼斯分布(因为⾼斯分布加上⼀个常数后依然是⾼斯分布)。
卡尔曼滤波在雷达目标跟踪中的应用

卡尔曼滤波在雷达目标跟踪中的应用文档下载说明Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 卡尔曼滤波在雷达目标跟踪中的应用can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!卡尔曼滤波(Kalman Filter)是一种用于估计系统状态的数学方法,它能够有效地处理由不确定性和噪声引起的问题。
在雷达目标跟踪中,卡尔曼滤波被广泛应用,因为它能够提供对目标位置和速度等状态的最优估计,同时考虑了测量误差和系统动态的不确定性。
雷达目标跟踪是指通过雷达系统对目标进行监测和跟踪,以获取目标的位置、速度和其他相关信息。
扩展卡尔曼滤波在目标跟踪中的应用研究

摘 要 :扩展卡 尔曼滤波在非平稳矢量信 号和噪声环境 下具有广泛的应 用,针对机动 目 标运动 模型的特点 ,采用基于扩展卡尔曼滤波的算法对运动 目 标进行跟踪处理 ,该算法首先建立了运
动 目标 的状 态模 型 和观 测模 型 ,然后 对观 测 数 据进 行 滤 波和 误 差估 计 处 理 ,最后 通过 计 算 机 的 蒙特 卡洛 仿真 得到 了滤 波轨迹 和 运 动 目标 的距 离和 角度误 差 ,仿 真 结果 表 明 ,扩展 卡 尔曼滤 波
Z HANG Ai . mi n
( C o mmu n i c a t i o n T r a j I l i n g B a s e o f P L A Ge n e r a l S t a f He a d q u a r t e r s , X u a n h u a 0 7 5 1 0 0 , He b e i P r o v i n c e , C h i n a )
2 0 1 3 牟¥1 0 期
文章编号 : 1 0 0 9— 2 5 5 2 ( 2 0 1 3 ) 1 0— 0 0 9 5— 0 3 中 图分 类号 : T N 9 1 1 . 7 2 文献标识码 : A
扩展 卡 尔曼 滤 波 在 目标 跟 踪 中 的应 用研 究
张爱 民
( 总参谋部通信训练基地 , 河北 宣化 0 7 5 1 0 0 )
算 法具有目 标跟踪 ; 蒙特卡洛仿真
Re s e a r c h o n t a r g e t t r a c k i n g o f e x t e n d e d Ka l ma n il f t e r ’ a n d i t s a p p l i c a t i o n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机数字信号处理期末大作业(报告)基于卡尔曼滤波器的雷达目标跟踪Radar target tracking based on Kalman filter学院(系):创新实验学院专业:信息与通信工程学生姓名:李润顺学号:21424011任课教师:殷福亮完成日期:2015年7月14日大连理工大学Dalian University of Technology摘要雷达目标跟踪环节的性能直接决定雷达系统的安全效能。
由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。
本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。
最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。
关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB仿真1 引言1.1 研究背景及意义雷达目标跟踪是整个雷达系统中一个非常关键的环节。
跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。
雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。
因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。
鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。
机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。
在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪滤波、加权最小二乘滤波、β理论中占据了主导地位。
雷达跟踪需要处理的信息种类多种多样。
除了目标的位置信息外,一般还要对目标运动速度进行估计,个别领域中的雷达还要对目标运动姿态进行跟踪。
雷达跟踪的收敛速度、滤波精度和跟踪稳定度等是评估雷达跟踪性能的重要参数。
因此提高雷达跟踪的精度、收敛速度和稳定度也就一直是改善雷达跟踪性能的重点。
随着科技的发展,各类目标的运动性能和材质特征有了大幅度的改善和改变,这就要求雷达跟踪能力要适应目标特性的这种变化。
在不断提高雷达跟踪性能的前提下,降低雷达跟踪系统的成本也是现代雷达必须考虑的问题。
特别是在民用领域中由于雷达造价不能过高,对目标跟踪进行快收敛性、高精度和高稳定性的改良在硬件上是受到一些制约的,因此雷达跟踪算法的研究就越来越引起学者们的关注。
通过跟踪算法的改进来提高雷达的跟踪性能还有相当大的挖掘潜力。
考虑到雷达设备的造价,民用雷达的跟踪系统首要的方法就是对于雷达的跟踪算法进行开发。
1.2 雷达目标跟踪滤波算法研究现状当运动目标模型建立之后,就要对目标跟踪算法进行设计,这也是雷达跟踪系统中核心的部分。
对目标的跟踪最主要的还是对目标的距离信息,方位角信息,高度角信息,以及速度信息进行跟踪,估计和预测目标的运动参数以及运动状态,这样有利于我们针对特定目标拿出特定应对方案。
基本的跟踪滤波与预测方法是跟踪系统最基本的要素,也是形成自适应跟踪滤波的前提和基础。
这些方法包括线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、βα- 滤波和卡尔曼滤波。
其中线性自回归滤波、两点外推滤波、维纳滤波由于限制性强而在现阶段的雷达中很少应用,但是维纳滤波在滤波算法上有着里程碑的标志。
现阶段最常用的就是加权最小二乘滤波、βα-滤波和卡尔曼滤波[1]。
1.2.1 加权最小二乘滤波采用何种滤波方法,主要取决于事先能掌握多少先验信息。
当先验统计特性一无所知时,一般采用最小二乘滤波。
如果仅仅掌握测量误差的统计特性,可以采马尔可夫估计,即加权阵为)(1k R -的最小二乘滤波,其中)(1k R -是测量噪声的协方差矩阵。
忽略状态噪声的影响,测量噪声)(k V 是均值为0,协方差矩阵为)(k R 的高斯白噪声向量序列;)(k R 为对角阵,则加权最小二乘滤波公式为[])1/(ˆ)()()()1/(ˆ)/(ˆ--+-=k k X k H k Z k k k k X k k X(1) )1/1(ˆ)1/()1/(ˆ---=-k k X k k k k X φ (2) )()()1/()(1k R k H k k P k K T --= (3))1/()()()1/()/(---=k k P k H k k k k P k k P (4)其中)(k K 、)/(k k P 和)1/(-k k P 分别为滤波增益矩阵、协方差矩阵和预测协方差矩阵。
1.2.2 βα-滤波当目标作等速直线运动时,描述目标运动状态X 是两维向量,即T x x X ]',[=,这里的x 和x '分别是位置和速度的分量。
设目标状态方程为)1()1()(-+-=k Gw k X k X φ (5)其中⎥⎦⎤⎢⎣⎡=101T φ,⎥⎦⎤⎢⎣⎡=T T G 2/2,式中状态噪声w 为均值为0的高斯白噪声序列。
测量方程为)()()()(k v k X k H k Z += (6)其中]0,1[=H ,式中)(k v 是0均值的高斯白噪声。
βα-滤波方程为[])1/(ˆ)()()1/(ˆ)/(ˆ--+-=k k X k H k Z k k k X k k X(7) )1/1(ˆ)1/(ˆ--=-k k X k k X φ (8) ⎥⎦⎤⎢⎣⎡=T k /βα (9) 近几十年来,基于以上滤波算法的变形算法发展非常迅速,尤其是自适应的卡尔曼算法更是占据了现代雷达中跟踪算法的主导地位。
对于卡尔曼滤波算法将在下一节中详细叙述。
1.3 目标跟踪技术的困境1.3.1 卡尔曼滤波的稳定性和准确性数据偏差是普遍存在的,这就是导致了滤波稳定性的问题。
卡尔曼滤波的稳定性问题是滤波器能否应用的一个关键问题。
由于卡尔曼滤波不但存在对系统模型的强依赖性与鲁棒性差的缺陷,而且在系统达到平稳状态时将丧失对突变状态的跟踪能力,因此该方法对机动目标的跟踪能力有限。
而丧失对突变状态的跟踪能力,就是一种很严重的算法丢跟踪状态。
如果实际滤波过程中,在某一过程或者某种条件下测量值出现奇值,那么滤波结果会受到很大干扰。
有时直接导致以后的滤波值不收敛,以至目标跟踪丢失。
因此,如何解决好目标跟踪的稳定性(即滤波过程的稳定性)也是我们所面临的问题。
1.3.2 收敛速度的问题卡尔曼滤波算法中都很注意滤波的收敛速度问题,滤波收敛快慢直接影响到目标跟踪的稳定度和对目标的锁定速度,因此,滤波的收敛速度是评价一个滤波器性能的重要指标。
1.3.3 滤波过程中系统偏差的问题在相同的测量条件下做一系列观测,若误差的大小及符号表现出系统性,或者按照一定的规律变化,这类误差为系统偏差。
系统偏差对测量结果影响很大,且一般具有积累性,应该尽可能消除或者限制到最小程度,我们一般解决这个问题的方法都是用离线或者称为后处理的方法,所以不能在线处理误差。
非线性滤波问题往往用状态变量方程来描述,从而可采用卡尔曼滤波的方法,并由此带来了一系列的方便。
若该系统偏差事先已经知道,只要观测值减去该偏差然后再进行滤波即可。
但如果该偏差存在而且未知,就需要在线处理这些系统偏差。
2 卡尔曼滤波理论2.1 卡尔曼滤波的基本算法卡尔曼滤波在近20年来取得了长足的发展。
把目标的位置,速度和加速度作为目标状态矢量,通过目标的动力学方程来描述目标状态的变化,利用递推的计算方法,目标的状态可以方便的估计出来,这样目标的航迹就可以建立起来[2-3]。
建立在非线性运动模型上的卡尔曼滤波称为扩展的卡尔曼滤波。
在雷达跟踪系统中,我们所用到的是离散型卡尔曼滤波。
离散卡尔曼滤波的状态方程、测量方程以及推广方程如下[4-5]:状态方程:)1()1/()1()1/()(--Γ+--=k w k k k X k k k X φ (10)测量方程:)()()()(k v k X k H k Z += (11)上两式中,)(k X 为k 时刻系统状态,)1/(-k k φ和)1/(-Γk k 为状态转移矩阵,)(k w 为协方差矩阵为Q 的状态噪声,)(k Z 为k 时刻的测量状态,)(k H 为测量转移矩阵,)(k v 为协方差矩阵为R 的测量噪声。
状态预测方程:)1/1(ˆ)1/()1/(ˆ---=-k k X k k k k Xφ (12) 其中)1/(ˆ-k k X是上一状态的预测结果,)1/1(ˆ--k k X 是上一状态的最优结果。
预测估计值协方差矩阵:)1/()1()1/()1/()1/1()1/()1/(-Γ--Γ+----=-k k k Q k k k k k k P k k k k P T T φφ(13) 卡尔曼增益矩阵:[]1)()()1/()()()1/()(-+--=k R k H k k P k H k H k k P k k T T (14)滤波估计值: [])1/(ˆ)()()()1/(ˆ)/(ˆ--+-=k k X k H k Z k k k k X k k X (15) 滤波估计值协方差矩阵:)1/()()()1/()/(---=k k P k H k k k k P k k P (16)在卡尔曼滤波过程中,只有确定了状态估计初始值)0(ˆX和滤波估计值协方差矩阵的初始值)0(P ,整个滤波过程才能启动。
一般情况下,我们将初始估计值的值定为整个系统的第一次观测值)0(Z ,将滤波估计值的协方差矩阵)0(P 的初始值可以拟订为一个对角阵,虽然大多数实际情况并非如此,但是这样做也是符合理论要求的,并且对于我们的运算也有简化作用。
整个滤波循环过程如下图:图1 卡尔曼滤波循环过程2.2 卡尔曼滤波器的性质由卡尔曼滤波器的推导过程可知,卡尔曼滤波器具有以下性质:(1)被估计值系统的第k +1时刻的状态值)1(+k X 的卡尔曼滤波值)1/1(ˆ++k k X,就是)1(+k X 的无偏的最小方差估计。
而且,滤波误差方差阵)1(+k P 是基于)1(+k X 的所有线性估计中的最小均方误差阵。
(2)对于一维的情况,测量噪声协方差矩阵增大时,增益矩阵k 变小。
这就表明,如果测量噪声越大,该增益取的越小,以减弱测量噪声对估计值的影响,而使预测值所占最后的结果比重加大。
(3)从这5个推导公式中可以看出,当矩阵)1/(-k k P ,Q ,R ,同乘以一个常数时,增益矩阵K 的值不变。
(4)由推导过程我们还可以看出,当)1/1(--k k P 或者Q 矩阵变小,或者同时变小的时候,)1/(-k k P 也变小,K 矩阵也减小。