八年级数学 几何动点问题专题

合集下载

初二数学动点练习题

初二数学动点练习题

初二数学动点练习题1. 直线上的动点问题- 题目:在直线AB上,点C是动点,当点C沿着直线AB移动时,求证∠ACB是一个恒定的角度。

2. 圆上的动点问题- 题目:圆O的半径为5,点P是圆上的动点。

求证:无论点P在圆上如何移动,OP的长度始终为5。

3. 动点与线段的关系- 题目:线段AB的长度为10,点C是线段AB上的动点。

当点C从A向B移动时,求线段AC的长度与线段BC的长度之和是否恒定。

4. 动点与三角形的面积- 题目:三角形ABC的面积为30平方单位,点D是边AB上的动点。

求证:无论点D在AB上如何移动,三角形ACD的面积始终是三角形ABC面积的一半。

5. 动点与平行四边形的对角线- 题目:平行四边形ABCD中,点E是边AB上的动点,点F是边CD 上的动点,且EF始终是平行四边形的对角线。

求证:无论点E和点F如何移动,EF的长度始终等于AB和CD的长度之和。

6. 动点与圆的切线- 题目:圆O的半径为6,点P是圆O外的一点,点Q是圆O上的动点。

当点Q沿着圆O移动时,求证:点P到圆O的切线长度始终等于点P到点Q的距离。

7. 动点与相似三角形- 题目:三角形ABC与三角形DEF相似,点G是三角形ABC的动点,点H是三角形DEF的动点,且GH始终是三角形ABC和三角形DEF的对应边的平行线。

求证:无论点G和点H如何移动,三角形AGH与三角形DEF始终相似。

8. 动点与坐标系- 题目:在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(5,6)。

点C是线段AB上的动点,其坐标为(x,y)。

求证:无论点C如何移动,x和y的和始终等于点A和点B坐标的和。

练习题答案提示:- 对于直线上的动点问题,可以利用角度的恒定性,结合直线的性质来证明。

- 对于圆上的动点问题,可以利用圆的半径性质来证明。

- 对于动点与线段的关系问题,可以利用线段长度的加法性质来证明。

- 对于动点与三角形的面积问题,可以利用三角形面积的计算公式来证明。

八年级数学动点问题专题

八年级数学动点问题专题
八年级数学动点问题专 题
汇报人: 202X-01-05
目 录
• 动点问题的基本概念 • 直线上的动点问题 • 平面直角坐标系中的动点问题 • 立体几何中的动点问题 • 动点问题的实际应用
动点问题的基本概
01

动点的定义
动点
在运动过程中位置不断变化的点 。
定义
动点问题是指在一个图形中,有 一个或多个点在运动过程中与其 他图形元素产生关系或变化的问 题。
圆柱、圆锥中的动点问题
总结词
涉及圆柱、圆锥上动点运动规律的问题
详细描述
圆柱和圆锥中的动点问题涉及到的是这两种 几何体上动点的运动规律。解决这类问题需 要掌握圆柱和圆锥的基本性质,如表面积、 体积等,以及与它们相关的几何定理。
动点问题的实际应
05

行程问题
总结词
涉及速度、时间和距离的关系
详细描述
详细描述
在解决直线上的动点问题时,我们经常需要计算点在某个距离上移动所需的时 间。这时,我们可以利用速度恒定原则,通过已知的距离和速度来计算所需的 时间。
追及问题
总结词
理解追及问题的本质是找出两个动点之间的时间差。
详细描述
在直线上的动点问题中,经常会遇到追及问题,即一个点在另一个点之前移动, 我们需要找出它们之间的时间差。解决这类问题需要我们仔细分析两个点的移动 速度和距离,以及它们之间的相对位置。
总结词
涉及最优决策和最优解
详细描述
策略优化问题中,动点问题常用来解决如资源分配、路 径规划等问题。通过建立数学模型,可以找到最优的决 策方案。
THANKS.
直线上的动点问题
02
速度与时间的计算
总结词
掌握速度、时间、距离之间的关系是 解决这类问题的关键。

八年级数学动点题型归纳

八年级数学动点题型归纳

八年级数学动点题型归纳一、动点与三角形相关题型1. 动点在三角形边上运动求线段长度或周长题目:在等腰三角形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

当公式时,求公式的长度。

解析:过点公式作公式于点公式。

因为公式,等腰三角形三线合一,所以公式。

在公式中,根据勾股定理公式。

当公式时,公式,则公式。

在公式中,根据勾股定理公式。

2. 动点运动过程中三角形面积的变化题目:在公式中,公式,公式,公式,点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,同时点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,设运动时间为公式秒公式,求公式的面积公式与公式的函数关系式。

解析:已知公式,则公式,公式。

根据三角形面积公式公式,对于公式,底为公式,高为公式。

所以公式。

二、动点与四边形相关题型1. 动点在四边形边上运动判断四边形形状题目:在矩形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

当公式时,四边形公式是什么四边形?解析:当公式时,公式,公式。

因为四边形公式是矩形,所以公式,公式。

则公式,公式。

在四边形公式中,公式(因为公式),公式,公式(此时公式运动到公式点),公式。

因为公式且公式,所以四边形公式是梯形。

2. 动点运动过程中四边形面积的变化题目:在平行四边形公式中,公式,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

求四边形公式的面积公式与公式的函数关系式。

解析:四边形公式的面积公式。

过点公式作公式于点公式,在公式中,公式,公式,则公式,公式。

所以公式。

因为公式,则公式。

公式。

所以公式。

三、动点与函数图象相关题型1. 根据动点运动情况确定函数图象题目:如图,在边长为公式的正方形公式中,点公式以每秒公式个单位长度的速度从点公式出发,沿公式的路径运动,到点公式停止。

初二几何动点问题专题

初二几何动点问题专题

初二几何动点问题专题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】1.梯形ABCD 中,AD∥BC ,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3厘米/秒的速度向B 点运动。

已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时,另一点也随之停止运动。

假设运动时间为t 秒,问: (1)t 为何值时,四边形PQCD 是平行四边形 (2)t 为何值时,四边形PQCD 是直角梯形(3)在某个时刻,四边形PQCD 可能是菱形吗为什么 (4)t 为何值时,四边形PQCD 是等腰梯形2. 如右图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点P 从A 开始沿折线A —B —C —D 以4cm/s 的速度运动,点Q 从C 开始沿CD 边1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达点D 时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD 也为矩形3:如图,在等腰直角三角形ABC 中,斜边BC=4,OA ⊥BC 于O,点E 和点F 分别在边AB 、AC 上滑动并保持AE=CF,但点F 不与A 、C 重合,点E 不与B 、A 重合。

(1)判断∆OEF 的形状,并加以证明。

(2)判断四边形AEOF 的面积是否随点E 、F 的变化而变化,若变化,求其变化范围,若不变化,求它的值.(3)设AE=x ,∆AEF 的面积为y ,求的y 与x 的关系式。

4:在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点,(1)写出点O 到△ABC 的三个顶点 A 、B 、C 距离的大小关系。

(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN =BM , 请判断△A BCD PQFEO CBAOMN 的形状,并证明你的结论。

八年级数学动点问题专题

八年级数学动点问题专题
16
解决动点问题的主要步骤
认真审题作出图形, 如果涉及特定的时刻,
化动为静
就作出特定时刻的图形
利用题目中的几何条件, 建立几何等量关系
用s=vt表示所需要的线段长
列出方程或函数表达式
对号入座,代入 几何等量关系
17
4、△ABC中,∠B=90°,AB=5cm, BC=7cm,P从A沿AB向B以1cm/s的速度移 动,Q从B沿BC向C以2cm/s的速度移动。 (1)如果P、Q分别从A、B同时出发, 几秒后△PBQ的面积等于4cm2; C
当点P在CD上运动时,设运动时间为t, 求AP、DP和CP的长
B
C
P
A
D
3
如图:梯形ABCD中,AD//BC, AD=9cm,BC=6cm,点P从点A出发,沿 着AD的方向向终点D以每秒一个单位的速 度运动,当点P在AD上运动时,设运动时 间为t,求当t为何值时,四边形APCB为 平行四边形
B
C
A
A.10
B.12
C.14
D.16
D
C
P
A
B
练习2、如图已知 ABCD中,AB=7,BC=4, ∠A=30°
(1)点P从点A沿AB边向点B运动,速度为1cm/s。
若设运动时间为t(s),连接PC,当t为何值时, △PBC为等腰三角形?
D
A 30° 7P
若△PBC为等腰三角形
C
则PB=BC
4 B
∴7-t=4
5
变式1:如图:梯形ABCD中,AD//BC,
AD=9cm,BC=6cm,梯形的高为5cm.点P
从点A出发,沿着AD的方向向终点D以每
秒一个单位的速度运动,当点P在AD上运

(完整)八年级数学动点问题专题

(完整)八年级数学动点问题专题
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式.
10.如图1,在长方形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts.
(1)出发2秒后,求△ABP的周长。
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按 的路径运动,且速度为每秒2㎝,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动。当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
(备用图)
12.如图,在△ABC中,∠B=60°,AB=12㎝,BC=4㎝,现有一动点P从点A出发,以2㎝/秒的速度沿射线AB运动,试回答下列问题:
八年级数学动点问题专题
班级姓名
1.如图:已知正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,求DN+MN的最小值是。
2.等边三角形ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC上一点,若AE=2,则EM+CM最小值为。
第1题第2题第3题
3.如图,锐角三角形ABC中,∠C=45°,N为BC上一点,NC=5,BN=2,M为边AC上的一个动点,则BM+MN的最小值是。
4.如图,在直角梯形ABCD中,∠ABC=90°,DC//AB,BC=3,DC=4,AD=5.动点P从B点出发,由B→C→D→A沿边运动,则△ABP的最大面积为()
A.10 B.12 C.14 D.16
5.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )

(完整版)初二动点问题(含答案)

(完整版)初二动点问题(含答案)

动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想类型:1。

利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4。

分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6。

动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。

当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.的长为 ;的长为 ;4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。

(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BCEFCF于点F,求证:AE=EF.AB的中点M,连接ME,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点"改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ACBAED图1NMA BCDEMN图2ACBEDNM图36、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值(1)如果点P在线段BC上以3cm/s的速度由B点向CCA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能(2)若点Q以②中的运动速度从点C来的运动速度从点B边运动,求经过多长时间点P与点Q第一次哪条边上相遇?A DFC GEB图1A DFC GEB图3A DFC GEB图2。

初二数学-八年级数学动点问题专项训练.doc

初二数学-八年级数学动点问题专项训练.doc

初二数学-八年级数学动点问题专项训练.docS ABC.1、当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S DEF S CEF122、当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请赐予证明;若不可立,S DEF、S CEF、S ABC又有怎样的数量关系?请写出你的猜想,不需证明.例3、正方形四条边都相等,四个角都是90°.如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明原因:②过点F作FH⊥MN,垂足为点H,察看并猜测线段BE与线段CH的数量关系,并说明原因;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明原因:②过点F作FH⊥MN,垂足为点H,已知GD=4,求△CFH的面积.例4,在△ABC中,∠CAB=70°。

在同一平面内,将△ABC绕点A旋转到△AB'C'的地点,使得CC'∥AB,则∠B'AB=练习1。

已知:如图,AB=16cm,动点P从点A出发,沿AB以2cm/s的速度向点B运动,设点P运动的时间为t秒,请解答下列问题:(1)用含t的式子表示线段AP,PB的长分别为()cm.A。

t;16-tB.2t: 16-2tC. 2t: 16—tD. t: 16-2t2.(上接第1题)(2)点P出发()秒抵达B点。

A. 4B.8C. 10D. 163.已知:如图,AB=18cm,动点P从点A出发,沿AB以2cm/s的速度向点B运动,动点QA运从点B出发,沿BA以1cm/s的速度向点动.P,Q两点同时出发,当点P抵达点B时,点P,Q同时停止运动,设点P运动的时间为t秒,请解答下列问题:(1)用含t的式子表示线段AP,QB长分别()cm.A. 18-2t: 2t为B. t: 18-t c. t: 2tD.2t: t。

八年级数学 几何动点问题专题

八年级数学 几何动点问题专题

几何动点问题专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

例题1.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。

已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。

假设运动时间为t秒,问:(1)t为何值时,四边形PQCD是平行四边形?(2)t为何值时,四边形PQCD是直角梯形?(4)t为何值时,四边形PQCD是等腰梯形?练习1. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C —D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD也为矩形?例2:如图,在等腰直角三角形ABC中,斜边BC=4,OA⊥BC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。

(1)判断∆OEF的形状,并加以证明。

(2)判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值.(3)设AE=x,∆AEF的面积为y,求的y与x的关系式。

八年级几何之动点问题

八年级几何之动点问题

八年级几何之动点问题中考数学动点几何问题动点求最值:例1:在正方形ABCD中,面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上有一动点P,使PD+PE的值最小,则其最小值是多少?例2:在直角梯形中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,当PA+PD取得最小值时,△APD中AP边上的高为多少?一定两动型:例3:在锐角△ABC中,AB=4√2,∠BAC=45°,∠BAC 的平分线交BC于点D,M、N分别是AD、AB上的动点,则BM+MN的最小值是多少?例4:在正方形ABCD中,边长为2,E为AB的中点,P 是AC上的一动点,连接BP,EP,则PB+PE的最小值是多少?例5:在⊙O的半径为2的圆上,点A、B、C满足OA⊥OB,∠AOC=60°,P是OB上的一动点,PA+PC的最小值是多少?例6:在∠AOB=45°的情况下,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是多少?例7:在△ABC中,∠B=60°,BA=24cm,BC=16cm,(1)求△ABC的面积;(2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动,如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,△PBQ的面积是△ABC的面积的一半;(3)在第(2)问题前提下,P、Q两点之间的距离是多少?例8:在梯形ABCD中,DC∥AB,A=90°,AD=6cm,DC=4cm,BC的坡度i=3∶4,动点P从A出发以2cm/s的速度沿AB方向向点B运动,动点Q从点B出发以3cm/s的速度沿B→C→D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC的长;(2)当t为何值时,PC与BQ相互平分;(3)连结PQ,设△PBQ的面积为y,求y与t 的函数关系式,求t为何值时,y有最大值?例9、在直角三角形$ABC$中,$\angle ACB=90^\circ$,$\angle B=60^\circ$,$BC=2$。

八年级数学动点问题专题

八年级数学动点问题专题

八年级数学动点问题专题班级 姓名1.如图:已知正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,求DN+MN 的最小值是 。

2.等边三角形ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 上一点,若AE=2,则EM+CM 最小值为 。

第1题 第2题 第3题AB CMND3.如图,锐角三角形ABC 中,∠C=45°,N 为BC 上一点,NC=5,BN=2,M 为边AC 上的一个动点,则BM+MN 的最小值是 。

4.如图,在直角梯形ABCD 中,∠ABC=90°,DC//AB ,BC=3,DC=4,AD=5.动点P 从B 点出发,由B→C→D→A 沿边运动,则△ABP 的最大面积为( )A.10B.12C.14D.165.如图,在锐角△ABC 中,AB=6,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 ( ) A .62 B . 6 C . 32 D . 3第4题 第5题6如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON=30°, (1)当∠A= 时,△AOP 为直角三角形; (2)当∠A 满足 时,△AOP 为钝角三角形. 7.如图,在Rt△ABC 中,∠C=90 °,AC=4cm ,BC=6cm ,动点P 从点C 沿CA 以1cm/s 的速度向A 运动,同时动点Q 从点C 沿CB , 以2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动。

则运动过程中所构成的△CPQ 的面积y 与运动时间x 之间的关系是 。

第6题 第7题8.如图,在梯形ABCD 中,364360AD BC AD DC AB ====︒∥,,,,∠C .动点A B DCP C ABQP出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长. (2)t 为何值时,MNC △为等腰三角形.9.已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),解答下列问题:(1)当t 为何值时,△PBQ 是直角三角形?(2)设四边形APQC 的面积为y (cm 2),求y 与t 的关系式.C (第8题图)C B10. 如图1,在长方形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB 边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为t s.(1)当t=2时,求△PBQ的面积.(2)当t =23时,试说明△DPQ是直角三角形.(3)当运动3s时,P点停止运动,Q点以原速继续向C运动,当QD=QP时,求点Q运动的总时间。

八年级数学专题复习:“动点”问题专题解析汇编(,含解析、点评和练习).doc

八年级数学专题复习:“动点”问题专题解析汇编(,含解析、点评和练习).doc

八年级数学专题复习:“动点”问题专题解析汇编八年级数学下册中的“动点”题型主要集中在《勾股定理》、《平行四边形》和《一次函数》三个章节,常常是这三个章节综合起来的题型比较多.动点问题的题型一直统考和中考的热点题型,但由于动点变化较大,所以也是学生感到比较头疼的一类题型;下面我精选了一部分含动点的典型题进行分析、解答、点评并附有少量追踪练习,希望同学们能从屮悟出一些道理,总结破题的思路,同时感受到这类题型所蕴含的数学魅力.、在动点中求最小值例1.如图,在正方形ABCD中,E为A3上的一点,BE = 2,P是AC上一动点,则PB + PE的最小值是多少?分析:如分析图所示,过B作关于4C的对称点,根据正方形的性质其对称点恰好在D点处, 连结ED交AC于点P,根据轴对称的性质、三角形三边之间的关系以及连接D、E两点之间线段最短,可以知道此时的PB+PK值最小.(这里有个“将军饮马”的故事与同学们分享.)略解:过B作关于AC的对称点,根据正方形的性质其对称点恰好在D点处,连结仞交AC于点连接PW•/ BE = 2, AE = 3BE :. AE = 6 :. AB = 8•根据正方形的性质的性质可知:= = 8, ZDAB = 9(T ・在RtZ\DAE中勾股定理易求ED 二yJAE2 +AD2 = ^62 +82 =10.・・・B和D关于AC对称,根据轴对称的性质可知:P'B = P'D,DAE:.P'B+P'E = P'D+P'E=DE=10.变式:正方形ABCD的边长为4, ZDAC的平分线交DC于点E,若P、0分别是AD和AE上的动点,则DQ+PQ的最小值是 .分析:本题和刚才的例题相比是两个动点,难度增加了不少.英实我们可以假设P先是定点, 作出D 关于AE的对称点如图根据角平分线的定义、轴对称的性质和全等三角形(即图中的△4DF9ZX4Z/F)可以知道D关于AE 的对称点D恰好落在正方形的对角线AC上;但问题是我们是把P假设为定点,实际上P为动点,那么P应该运动到什么位置上才使D到AD最短距离最短呢?显然根据垂线段最短,我们过D作的垂线段DP即可找到P、0能使DQ + P Q有最小值的位置(见图中P\ 0的位置),此时DP'最小;根据轴对称的性质可知・•・= = 根据正方形的性质可以得出ZDAC=45°,在RtA AP'D1中,ZAD'P' = 90° -45° =45° , A ZDAC = ZAD,P, A P'D'^P'A V A ADF A AD*F ・•・AD'=AD = 4在RtA4P'D r 中容易算出DPjgxQ =^8 = 2^2 .故应填2逅.例2.如图,在直角坐标系xOy中,点M(x,0)可在x轴上移动,且它到点P(5,5), 0(2, /)两点的距离分别为MP和M0, 若MP + MQ有最小值时:(1)•请作图找岀满足MP + MQ最小值的M点的位置.(保留作图痕迹,不写作法)(2).求此时点M的坐标.分析:本题的⑴问和例1的道理是一样的.;据轴对称的性质、三角形三边之间的关系以及连接P、0'两点之间线段最短,M点的位置就满足MP + MQ的值最小.木题的⑵问可以利用轴对称的性质求出Q'的坐标,在你利用待定 系数法求出P 、0两点所在直线的解析式,进而求出M 的坐标. 略解:(1).过Q 作关于x 轴的对称点0,连接P0交x 轴于M 点,连接Q'M ,此时MP + MQ 的值最小.⑵.根据轴对称的性质求出0的坐标^(2,-7) 设P0所在的直线的解析式为y= kx + b,因为P(5,5), 0(2,-7)7 、故点M 的坐标为-,0 .丿点评:在一直线上求作一点,使其到直线同一侧的两定点的距离之和最小,往往要通过作其 屮一个点关于此直线的对称点,把两定点转化到直线的两侧,连接对称点和另一定点就可以 找到这个动点的使其有最小值的位置,根据的是“两点之间,线段最短”、“垂线段最最短”. 在动点中求最小值容易和多个知识点串联以来,能较好的考查的数学的基本功和数学素养.追踪练习:1、 正方形ABCD 的面积为64, DE = gcE,P 为AC 上的一动点;求PD+PE 的最小值?2、 菱形ABCD 的对角线分别为12和16, M 、N 分別为BC 、CD 的屮点,P 是对角线BD 上的一动点,贝ij PM+PN 的最小值为 ____所以5k + b = 5 2k + b = -I 贝 ij y = 3x-73、如图,在矩形ABCD 中,AB = 4, AD = 6t E 是AB 边的中点,F 是线段BC 边上的动点,将分析: (1) .由角平分线的的定义和平行线的性质容易推出上1 = Z5,Z3二Z6 ,贝WE = OC.OF = OC ; 等量代换后0E 二OF. (2) . CO 是AECF 的EF 的中线,根据题中的提供的数据,无非△ ECF 是特殊三角形才能求出 CO ;4 EBF 沿EF 所在直线折叠得到4 EB F ,连接皮D,则30的附值是A. 2/10-2B. 6C. 2^73-2 ED. 44、如图,直线y = kx-6经过点A(4,0),直线y = -3x + 3与x 轴交 于B点,口两直线交于点C.(1).求k 的值; (2) .求△ABC 的面积;⑶•若点P 是坐标轴上的一个动点,当PB+PC 的值最小时,求P 点的坐标.• • • •二、在动点中来探究四边形的形状B F例1・如图,△ABC 中,点0是AC 边上的一个动点,过点0作直线MN 〃BC, 设MN 交ZBCA若AECF是直角三角形,一切问题解决了;根据题中交ZBCA的平分线于点E,交ZBCA的外角平分线于点F,可以证得ZECF = 90° .而点0在4C的位置是发生变化的.要证四边形AECF是矩形,已经知道ZECF = 90。

初二动点问题(含标准答案)

初二动点问题(含标准答案)

初二动点问题(含答案)作者:日期: 2动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目•解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题•关键:动中求静•数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD 中,AD // BC,/ B=90 ° , AB=14cm,AD=18cm,BC=21cm,点P 从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P, Q分别从A , C同时出发,设移动时间为t秒。

当t= _____ 时,四边形是平行四边形;6当t= _____ 时,四边形是等腰梯形• 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1 , N为对角线AC上任意一点,则DN+MN的最小值为_________ 53、如图,在只也ABC中,ACB 90°, B 60°, BC 2•点°是AC的中点,过点°的直线l从与AC重合的位置开始,绕点°作逆时针旋转,交AB边于点D •过点C作2CE // AB 交直线I 于点E ,设直线I 的旋转角为(1)①当度时,四边形EDBC 是等腰梯形,此时AD 的长为②当度时,四边形EDBC 是直角梯形,此时 AD 的长为(2)当 90°时,判断四边形 EDBC 是否为菱形,并说明理由.解:(1 [① 30, 1 :② 60, 1.5;(2)当/% =900时,四边形 EDBC 是菱形•v/a =/ACB=90°,「. BC//ED. T CE//AB,二四边形 EDBC 是平行四边形 在 Rt △ABC 中,/ ACB=900,/ B=60°,BC=2, /./ A=30°.137AC3••• AB=4,AC=2 '3. ••• A°= 2 = 3 •在 Rt △ AOD 中,/ A=30,二 AD=2.B• BD=2. • BD=BC. 又•••四边形 EDBC 是平行四边形, •四边形EDBC 是菱形 4、C ,A(1) 当直线 MN 绕点C 旋转到图1的位置时,求证:①△ ADC ◎△ CEB •,②DE=AD + BE ;⑵当直线 MN 绕点C 旋转到图2的位置时,求证: DE=AD-BE ;⑶当直线MN 绕点C 旋转到图3的位置时,试问 DE 、AD 、BE 具有怎样的等量关系?请写出这个等量 关系,并加以证明•解:(1 [① •••/ ACD= / ACB=90 •••/ CAD+ / ACD=90 /-Z BCE+ / ACD=90•••/ CAD= Z BCE •/ AC=BCADC ◎△ CEB② •/△ ADC ◎△ CEB • CE=AD , CD=BE • DE=CE+CD=AD+BE(2) T Z ADC= Z CEB= Z ACB=90°ACD= Z CBE又 ■: AC=BCACD ◎△ CBE • CE=AD , CD=BE • DE=CE-CD=AD-BE(3) 当 MN 旋转至U 图 3 的位置时,DE=BE-AD(或 AD=BE-DE , BE=AD+DE 等)•/Z ADC= Z CEB= Z ACB=90° /Z ACD= Z CBE , 又 ■: AC=BC ,ACD ◎△ CBE ,• AD=CE , CD=BE ,• DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题: 如图1,四边形ABCD 是正方形,点E 是边BC 的中点. AEF 90°,且EF 交正方形外角 DCG 的平行线CF 于点F ,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB 的中点 M 连接 ME 则 AM =EC,易证△ AME ECF ,所以 AE EF .在此基础上,同学们作了进一步的研究:(1 )小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点 E 是边BC 上(除B, C 外)的任意 一点”,其它条件不变,那么结论“ AE=EF'仍然成立,你认为小颖的观点正确吗?如果正确,写出证明 过程;如果不正确,请说明理由;(3) 若AB=5且Z ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF' 仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程; 解:(1)正确. 证明:在 AB 上取一点M ,使AM45°DCFBM BE . BME QCF 是外角平分线,AMEQ AEBBAE(2)正确.证明:在BA 的延长线上取一点 NBN BE . N PCEQ 四边形ABCD 是正方形, ADAE BEA . NAE △ ANEECF (ASA ). AE EF .ECF . BAE 90°, CEF . AEB△6、如图,射线MB 上,MB=9,A 是射线 MB 方向以1个单位/秒的速度移动,设 求(PAB 为等腰三角形的t 值;MB 外一点,AB=5且A 到射线 P 的运动时间为t.(2)△ PAB 为直角三角形的t 值; 如果不正确,请说明理由. MB 的距离为3,动点P 从图沿射线2 >过P 作PG 丄IVIN 于G VMN/7AB^NM=NP过N 作NR 丄MP^R 则有:RM=0.5FM= V宀 忑 J :Rt ANMRM^RM- y MN=」CMV3 再A — {5・X j ■亍:、x=43。

专题 全等三角形的应用---动点运动问题(30题)(解析版)

专题 全等三角形的应用---动点运动问题(30题)(解析版)

八年级上册数学《第十二章 全等三角形》专题 全等三角形的应用---动点运动问题(30题)1.(2023春•虹口区校级期末)如图,AB =8,BC =10,CD 为射线,∠B =∠C ,点P 从点B 出发沿BC 向点C 运动,速度为1个单位/秒,点Q 从点C 出发沿射线CD 运动,速度为x 个单位/秒;若在某时刻,△ABP 能与△CPQ 全等,则x = .【分析】设点P 、Q 的速度为ts ,分两种情形构建方程即可解决问题.【解答】解:设点P 、Q 的速度为ts ,分两种情形讨论:①当AB =PC ,BP =CQ 时,△ABP ≌△PCQ ,即8=10﹣t ,解得:t =2,∴2x =2×1,∴x =1;②当BP =PC ,AB =CQ 时,△ABP ≌△QCP ,即t =12×10=5,∴5x =8,x =85,综上所述,x =1或85,故答案为:1或85.【点评】本题考查全等三角形的判定、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.(2022秋•攸县期末)如图,在四边形ABCD 中,∠DAB =∠ABC ,AB =5cm ,AD =BC =3cm ,点E 在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为 cm/s.【分析】设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,由于∠DAB=∠ABC,则当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt;当AD=BF,AE=BE 时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,然后分别解方程求出x即可.【解答】解:设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,∵∠DAB=∠ABC,∴当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt,解得t=2,x=1;当AD=BF,AE=BE时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,解得t=2.5,x=1.2,综上所述,点F的运动速度为1或1.2cm/s.故答案为:1或1.2.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.3.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为 .【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.4.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=( )A.3B.4C.2或4D.2或3【分析】表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD 与CQ是对应边两种情况讨论即可.【解答】解:∵AB=AC=20cm,BC=16cm,点D为AB的中点,∴BD=12×24=12cm,设点P、Q的运动时间为t,则BP=2t,PC=(16﹣2t)c①当BD=PC时,16﹣2t=12,解得:t=2,则BP=CQ=2t=4,故点Q的运动速度为:4÷2=2(厘米/秒);②当BP=PC时,∵BC=16cm,∴BP=PC=8cm,∴t=8÷2=4(秒),故点Q的运动速度为12÷4=3(厘米/秒);故选:D.【点评】本题考查了全等三角形的对应边相等的性质,等边对等角的性质,根据对应角分情况讨论是本题的难点.5.如图,已知长方形ABCD中,AD=8cm,AB=6cm,点E为AD的中点.若点P在线段AB上以2cm/s 的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若△AEP与△BPQ全等,则点Q的运动速度是( )A.2或83B.6或83C.2或6D.1或23【分析】设Q运动的速度为xcm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【解答】解:∵长方形ABCD,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为xcm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,2y=6−2y4=8−xy,解得,x=83 y=32,即点Q的运动速度83cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,2y=8−xy4=6−2y,解得:x=6 y=1,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度83或6cm/s时能使两三角形全等.故选:B.【点评】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.6.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是( )A.2B.2.8C.3D.6【分析】分三种情况讨论得出关于t的方程,解方程求得t的值.【解答】解:当P在AC上,Q在BC上时,如图,过点P,Q,C分别作PE⊥直线l于点E,QF⊥直线l于点F,CD⊥AB于点D,∵∠ACB=90,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,∴∠EPC=∠QCF,∵△PCE≌△CQF,∴PC=CQ,∴6﹣2t=8﹣3t,解得t=2;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,6﹣2t=3t﹣8,解得t=2.8;当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,由题意得,2t﹣6=6,解得t=6.综上,当△CPE与△CQF全等时,t的值为2或2.8或6.∴t的值不可能是3.故选:C.【点评】本题考查了三角形全等的判定和性质、作图﹣基本作图、平行线之间的距离、勾股定理,根据题意得出关于t的方程是解题的关键.7.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为( )A.2B.4C.6D.2或6【分析】当点E在射线CM上时,D在CB上,BD=CE,当点E在CM的反向延长线上时DB=CE,由全等三角形的性质求出其解即可.【解答】解:∵△ABD≌△ACE,∴AD=AE,AB=AC,BD=CE.如图,当点E在射线CM上时,D在CB上,BD=CE,∵CE=t,BD=6﹣2t,∴6﹣2t=t,∴t=2.如图,当点E在CM的反向延长线上时DB=CE,∵CE=t,BD=2t﹣6,∴t=2t﹣6,∴t=6.综上所述,当t=2或6时,△ABD≌△ACE,故选:D.【点评】本题考查了全等三角形的性质的运用,等腰三角形的性质的运用,三角形的面积公式的运用,解答时分类讨论是重点也是难点.8.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为 (不考虑两三角形重合的情况).【分析】三角形PEC和三角形QFC要全等,P的对应顶点是C,有两种情况:一种是点P在AC上,点P在BC上时;另一种是点Q到达终点,而P在BC上时,先把各线段的长度表示出来,再让对应边相等,即可构造方程解出t.【解答】解:①当点P在线段AC上,点P在线段BC上时;如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=7﹣t,BQ=3t,CQ=12﹣3t;∴7﹣t=12﹣3t,解得t=2.5.②当P在线段BC上,点Q到达终点时,如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=t﹣7,CQ=7,∴t﹣7=7,解得t=14.综上所述,t的值为2.5或14.【点评】本题考查全等三角形的性质,找到全等三角形的对应边是解题的关键.9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.【分析】(1)根据点F从点B出发、点E从点A出发的速度、结合图形解答;(2)根据题意列出方程,解方程即可;(3)分点E从点A运动至点G、从点G返回两种情况,根据全等三角形的性质列式计算即可.【解答】解:(1)当0<t≤2时,BF=4t,当2<t≤4时,BF=16﹣4t;(2)由题意得,16﹣4t=2t,解得t=8 3;(3)当0<t≤2时,△ADE≌△CDF,则AE=CF,即8﹣4t=2t,解得t=4 3,当2<t≤4时,△ADE≌△CDF,则AE=CF,即4t﹣8=2t,解得t=4,则t=43或4时,△ADE≌△CDF.【点评】本题考查的是全等三角形的性质的应用,根据题意求出函数关系式、掌握全等三角形的对应边相等是解题的关键.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QPA全等.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,AP=BCPQ=AB∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,AP=ACPQ=AB,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=10cm,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,当P运动到AP=BC、点P与点C重合时,△ABC才能和△APQ全等.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.11.(2023春•吉安县期末)如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q第一次在△ABC的哪条边上追上点P?【分析】(1)根据等腰三角形的性质得到∠B=∠C,再加上BP=CQ=3,PC=BD=5,则可判断△BPD 与△CQP全等;(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解方程得到点P运动的路程为3×10=30,得到此时点P在BC边上,于是得到结果.【解答】解:(1)∵BP=3×1=3,CQ=3×1=3,∴BP=CQ,∵D为AB的中点,∴BD=AD=5,∵CP=BC﹣BP=5,∴BD=CP,在△BPD与△CQP中,BD=CP∠B=∠C,BP=CQ∴△BPD≌△CQP(SAS);(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解得:x=10,∴点P运动的路程为3×10=30,∵30=28+2,∴此时点P在BC边上,∴经过10秒,点Q第一次在BC边上追上点P.【点评】本题考查了全等三角形的判定和性质,找准对应边是解题的关键.12.如图,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C 点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?【分析】分类讨论:当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,利用三角形全等得PA=AQ,即22﹣2t=28﹣3t;当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,由PA=AQ,即2t﹣22=3t﹣28;当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,然后分别解方程求出t,再根据题意确定t的值.【解答】解:设P、Q点运动的时间为t,(1)当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,∵△PFA与△QAG全等,∴PA=AQ,即22﹣2t=28﹣3t,解得t=6,即P运动6秒时,△PFA与△QAG全等;(2)当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,解得t=10,(3)当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,∵△PFA与△QAG全等,∴PA=AQ,即2t﹣22=3t﹣28,解得t=6(舍去);当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,解得t=22,舍去.综上所述:当t等于6秒或10秒时,△PFA与△QAG全等.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.对于动点问题常利用代数的方法解决.13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.【分析】(1)证明△ABC≌△EDC(SAS),可得∠A=∠E,然后根据内错角相等两直线平行即可得出结论;(2)分两种情况讨论:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,可得AP=8﹣(2t﹣8)=(16﹣2t)cm,进而可以解决问题;(3)先证△ACP≌△ECQ(ASA),得AP=EQ,再分两种情况列方程求解即可.【解答】(1)证明:在△ABC和△EDC中,AC=EC∠ACB=∠ECD,BC=DC∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)解:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,∴AP=8﹣(2t﹣8)=(16﹣2t)cm,∴线段AP的长为2tcm或(16﹣2t)cm;(3)解:根据题意得DQ =tcm ,则EQ =(8﹣t )cm ,由(1)得:∠A =∠E ,ED =AB =8cm ,在△ACP 和△ECQ 中,∠A =∠E AC =EC ∠ACP =∠ECQ,∴△ACP ≌△ECQ (ASA ),∴AP =EQ ,当0≤t ≤4时,2t =8﹣t ,解得:t =83;当4<t ≤8时,16﹣2t =8﹣t ,解得:t =8;综上所述,当线段PQ 经过点C 时,t 的值为83或8.【点评】本题考查了全等三角形的判定与性质,列代数式,一元一次方程的应用,解决本题的关键是得到△ACP ≌△ECQ .14.如图,在等腰△ABC 中,AB =AC =6cm ,BC =10cm ,点P 从点B 出发,以2cm /s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC = cm .(用t 的代数式表示)(2)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /s 的速度沿CA 向点A 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC ﹣BP 即可得到CP 的长;(2)此题主要分两种情况①当BP =CQ ,AB =PC 时,△ABP ≌△PCQ ;当BA =CQ ,PB =PC 时,△ABP ≌△QCP ,然后分别计算出t 的值,进而得到v 的值.【解答】解:(1)依题意,得PC=(10﹣2t)(cm).故答案为:10﹣2t;(2)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=6cm,∴PC=6(cm),∴BP=10﹣6=4(cm),2t=4,解得:t=2,CQ=BP=4(cm),v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=12BC=5(cm),2t=5,解得:t=2.5,CQ=BP=6(cm),v×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP与△PQC全等.【点评】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过 秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)【分析】(1)①根据时间和速度分别求得两个三角形中BP、CQ和BD、PC边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①△BPD≌△CQP,理由如下:∵t=1秒,∴BP=CQ=1×1=1cm,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t=BP1=2秒,∴v Q=CQt=32=1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得 1.5x=x+2×6,解得x=24,∴点P共运动了24s×1cm/s=24cm.∵24×1.5=36,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.【点评】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.16.(2022秋•聊城月考)如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.(2)当点Q的运动速度为多少时,能够使△BPE与△CQP全等.【分析】(1)经过1秒后,可得BP=CQ=3厘米,则PC=8﹣3=5厘米,可证明△BPE≌△CQP;(2)由△BPE与△CQP全等可知有△BEP≌△CQP或△BEP≌△CPQ,全等可得BP=CP或BP=CQ,或可求得BP的长,可求得P点运动的时间,由CQ=BE或CQ=BP可求得Q点运动的路程,可求得其速度.【解答】解:(1)△BPE与△CQP全等,理由如下:当运动1秒后,则BP=CQ=3厘米,∴PC=BC﹣BP=8﹣3=5厘米,∵E为AB中点,且AB=10厘米∴BE=5厘米,∴BE=PC,在△BPE和△CQP中BE=PC∠B=∠CBP=CQ∴△BPE≌△CQP(SAS);(2)∵△BPE与△CQP全等,∴△BEP≌△CQP或△BEP≌△CPQ,当△BEP≌△CQP时,则BP=CP,CQ=BE=5厘米,设P点运动的时间为t秒,则3t=8﹣3t,解得t=4 3,∴Q点的运动的速度=5÷43=154(厘米/秒),当△BEP≌△CPQ时,由(1)可知t=1(秒),∴BP=CQ=3厘米,∴Q点的运动的速度=3÷1=3(厘米/秒),即当Q点每秒运动154厘米或3厘米时△BEP≌△CQP.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定是解题的关键,即SSS、SAS、ASA、AAS和HL17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P,Q是边AC,BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E,设点P,Q运动的时间是t秒(t>0).(1)若点P,Q分别从A,B两点同时出发,沿AC,BC向点C匀速运动,运动速度都为每秒1个单位,其中一点到达终点C后,另一点也随之停止运动,在运动过程中△APD和△QBE是否保持全等?判断并说明理由;(2)若点P从点C出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q仍从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t为何值时,△APD和△QBE全等?【分析】(1)根据∠C=90°,PD⊥AB,QE⊥AB,于是得到∠A+∠APD=∠A+∠B=90°,证得∠APD =∠B,∠ADP=∠QEB=90°,即可得到结论;(2)分两种情况:①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,求得t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,求得t=4.【解答】解:(1)△ADP≌△QBE,理由:∵∠C=90°,PD⊥AB,QE⊥AB,∴∠A+∠APD=∠A+∠B=90°,∴∠APD=∠B,∠ADP=∠QEB=90°,∵AP=BQ=t,在△ADP与△QBE中,∠APD=∠B∠ADP=∠QEB AP=BQ,∴△ADP≌△QBE;(2)①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4,综上所述:当t=2s或4s时,△ADP≌△QBE.【点评】本题考查了全等三角形的判定,解方程,垂直的定义,熟练掌握全等三角形的判定定理是解题的关键.18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 cm/s时,能够使△AEP与△BPQ全等.【分析】(1)①当t=1时,AP=BQ,∠A=∠B,AE=PB,从而可证明△EAP≌Rt△PBQ;②当t≤4时,AP=BQ=t,S=S梯形AEQB﹣S AEP﹣S PBQ;当4<t≤6时,点P与点B重合,S=2t;(2)如图3所示:因为△AEP≌△BQP,所以AP=PB=2,AE=BQ=3,从而可求得t=2,点Q运动的速度为=3÷2=1.5cm/秒.【解答】解:(1)①当t=1时,AP=1,BQ=1,∴AP=BQ.∵E是AD的中点,∴AE=12AD=3.∵PB=AB=AP=4﹣1=3,∴AE=PB.在Rt△EAP和Rt△PBQ中,AE=PB ∠A=∠B AP=BQ,∴Rt△EAP≌Rt△PBQ.∴∠APE=∠BQP,∵∠BQP+∠BPQ=90°,∴∠APE+∠BPQ=90°,∴∠EPQ=90°,∴PE⊥PQ;②如图1所示连接QE.图1Ⅰ、当t≤4时,AP=BQ=t,S梯形AEQB =12(AE+BQ)•AB=12×4×(3+t)=2t+6.S△AEP =12AE•PA=12×3t=32t,S△PBQ=12PB•BQ=12×(4﹣t)t=2t−12t2.∴S=2t+6−32t﹣(2t−12t2).整理得:S=12t2−32t+6,如图2所示:Ⅱ、当4<t≤6时,点P与点B重合,S=12QB•AB=12×4×t=2t.∴S与t的函数关系式为S=2−32t+6(0<t≤4)<t≤6);(2)如图3所示:∵△AEP≌△BQP,PA≠BQ,∴AP=PB=2,AE=BQ=3.∴t=AP=12AB=12×4=2.∴点Q运动的速度为=3÷2=1.5cm/秒时,△AEP≌△BQP.故答案为:1.5.【点评】此题是四边形综合题,主要考查的是全等三角形的性质和判定、相似三角形的性质和判定、矩形的性质、函数的解析式、一元一次方程的综合应用,根据题意画出符合题意的图形是解题的关键.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.【分析】(1)由AAS证明Rt△BDO≌Rt△ADC,根据对应边相等求得BO的长;(2)分情况讨论点F分别在BC延长线上或在BC之间时△AOP≌△FCQ,根据对应边相等求得t值.【解答】解:(1)∵∠BOD=∠AOE,∠CAD+∠ACD=∠CAD+∠AOE=90°,∴∠ACD=∠AOE,∴∠BOD=∠ACD.又∵∠BDO=∠ADC=90,AD=BD,∴Rt△BDO≌Rt△ADC(AAS),∴BO=AC=6.(2)①当点F在BC延长线上时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=6﹣4t,∴t=6﹣4t,解得t=1.2.②当点F在BC之间时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=4t﹣6,∴t=4t﹣6,解得t=2.综上,t=1.2或2.【点评】本题考查全等三角形的判定.这部分内容是初中几何中非常重要的内容,一定要深刻理解,做到活学活用.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.【分析】(1)①根据SAS证明:△BEF≌△ADE;②由①:△BEF≌△ADE得DE=EF,∠BEF=∠ADE,证明△DEF是等腰直角三角形可得结论;(2)分两种情况:①如图2,当△DAE≌△EBF时,②如图3,当△ADE≌△BFE时,分别根据AD=BE,AE=BF,列方程组可得结论.【解答】解:(1)①△BEF≌△ADE,理由如:当t=2时,AE=BF=2,∴BE=AB﹣AD=7﹣2=5,∵AD=5,∴BE=AD,∵∠A=∠B=90°,∴△BEF≌△ADE;②由①得DE=EF,∠BEF=∠ADE,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=180°﹣(∠BEF+∠AED)=90°,∵DE=EF∴∠EDF=∠EFD,∵∠EDF+∠EFD=90°,∴∠EDF=45°;(说明:用其他方法的,请参照此评分标准给分)(2)存在,①如图2,当△DAE≌△EBF时,∴AD=BE,AE=BF,则5=7−t t=xt∴x=1,t=2;②如图3,当△ADE≌△BFE时,AE=BE,AD=BF,则t=7−t 5=xt,∴x=107,t=72.(说明:每正确写出一对x、t的值,给1分.)【点评】本题考查四边形综合题、矩形的判定和性质、等腰直角三角形的判定、三角形全等的性质和判定及动点运动等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.【分析】(1)由PD⊥BD、∠C=90°可推出∠PDA=∠CBD,即可根据ASA判定△PDA≌△DBC;(2)由PD⊥AB,AE⊥AC可推出∠APF=∠CAB,即可根据AAS判定△APD≌△CAB,再由全等三角形的性质即可得解.【解答】(1)证明:如图①,∵PD⊥BD,∴∠PDB=90°,∴∠BDC+∠PDA=90°,又∵∠C=90°,∴∠BDC+∠CBD=90°,∴∠PDA=∠CBD,又∵AE⊥AC,∴∠PAD=90°,∴∠PAD=∠C=90°,又∵BC=6cm,AD=6cm,∴AD=BC,在△PAD和△DCB中,∠PAD=∠CAD=CB,∠PDA=∠CBD∴△PDA≌△DBC(ASA);(2)解:如图②,∵PD⊥AB,∴∠AFD=∠AFP=90°,∴∠PAF+∠APF=90°,又∵AE⊥AC,∴∠PAF+∠CAB=90°,∴∠APF=∠CAB,在△APD和△CAB中,∠APD=∠CAB∠PAD=∠C,AD=CB∴△APD≌△CAB(AAS),∴AP=AC,∵AC=8cm,∴AP=8cm,∴t=8.【点评】此题考查了全等三角形的判定与性质,根据ASA判定△PDA≌△DBC、根据AAS判定△APD≌△CAB是解题的关键.22.在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PG⊥CD于点G,QF⊥CD于点F.问两动点运动多长时间时△OPG与△OQF全等?【分析】(1)①根据全等三角形的判定定理ASA证得结论;②利用①中全等三角形的性质得到:AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时(ii)当点P、Q都在y轴上时,(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时,列方程即可得到结论.【解答】解:(1)①如图,∵∠DBO=∠ABO,OB⊥AE,∴∠BAO=∠BEO,∴AB=BE,∴AO=OE,∵∠CAy=∠BAO,∴∠CAy=∠BEO,∴∠DEO=∠CAO在△ACO与△EDO中,∠CAO=∠DEO OA=OE∠AOC=∠DOE,∴△ACO≌△EDO(ASA);②由①知,△ACO≌△EDO,∴∠C=∠D,AC=DE,∴AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=143(秒),(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合题意;当点Q提前停止时,有t﹣6=6,解得t=12(秒),综上所述:当两动点运动时间为2、143、12秒时,△OPE与△OQF全等【点评】本题考查了全等三角形的判定,坐标与图形的性质,正确的理解题意是解题的关键.23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t= 时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P 在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332,移动的时间为:332÷3=112秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=12AB,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,移动的时间为:572÷3=192秒,故答案为:112或192;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=154cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速度为154cm/s或9332cm/s.。

八年级数学动点问题专题通用课件

八年级数学动点问题专题通用课件
在研究波动现象时,动点 问题可以用来描述波的传 播和振动。
日常生活中的应用
行车路线规划
在日常生活中,动点问题 可以用于解决行车、骑车 或步行的最短路径问题。
物流配送
在物流领域,动点问题常 用于优化配送路线和时间 ,降低成本和提高效率。
时间安排
在日程安排和时间管理中 ,动点问题可以帮助我们 找到最优的时间分配方案 。
科学实验中的应用
化学反应速率
在化学反应中,动点问题可以用 来描述反应速率和反应机理。
生物种群动态
在生态学中,动点问题可以用来研 究生物种群的动态变化和演化。
天文观测
在天文学中,动点问题可以用于描 述行星、恒星的运动轨迹和观测数 据的处理。
04
动点问题的练习题和解析
基础练习题
总结词:这些题目是解决动点问 题的基础,适合初学者练习。
注意事项
在建立函数模型时,需要准确理解问题的条件和要求,并注意函数的 正确性和可解性。
03
动点问题的实际应用
物理问题中的应用
01
02
03
运动学问题
动点问题在物理运动学中 有着广泛的应用,如速度 、加速度和位移的计算。
力学问题
在力学领域,动点问题可 用于解决力的合成与分解 、牛顿运动定律等问题。
波动问题
题的效率和精确度。
注重培养学生的创新思维和实 践能力,通过解决动点问题培
养数学创新人才。
THANKS
感谢观看
注意事项
在利用几何法解决问题时,需 要准确理解几何图形的性质和 定理,并注意图形的合理性和
美观性。
函数法
总结词
通过建立函数模型,解决动点问题。
详细描述
在动点问题中,常常需要建立函数模型来表示动点的运动规律或变化 趋势,然后通过求解函数来找到动点的位置或相关参数。

初二数学动点问题专项试卷

初二数学动点问题专项试卷

一、选择题(每题3分,共30分)1. 在平面直角坐标系中,点P(a,b)在直线y=2x+1上运动,那么a与b的关系是:A. a+b=1B. a=2bC. a=2b+1D. a=2b-12. 已知点A(2,3),点B在x轴上,且AB=5,那么点B的坐标可能是:A. (7,0)B. (-3,0)C. (-7,0)D. (3,0)3. 在△ABC中,AB=AC,点D在BC上,且BD=CD,那么∠ADB与∠ADC的关系是:A. ∠ADB=∠ADCB. ∠ADB=∠BACC. ∠ADB=∠BAC/2D. ∠ADB=∠BAC/34. 在平面直角坐标系中,点M在直线y=x+1上运动,那么点M的坐标满足:A. x=y-1B. x=y+1C. y=x-1D. y=x+15. 已知直线l的方程为2x-3y+6=0,那么直线l与x轴的交点坐标是:A. (3,0)B. (-3,0)C. (0,2)D. (0,-2)6. 在△ABC中,AB=AC,点D在BC上,且BD=CD,那么∠ADB与∠ADC的关系是:A. ∠ADB=∠ADCB. ∠ADB=∠BACC. ∠ADB=∠BAC/2D. ∠ADB=∠BAC/37. 已知点P(a,b)在直线y=-2x+3上运动,那么a与b的关系是:A. a+b=3B. a=2bC. a=2b+3D. a=2b-38. 在平面直角坐标系中,点Q(m,n)在直线y=3/2x-2上运动,那么m与n的关系是:A. m=n+4B. m=2n-4C. m=n-4D. m=2n+49. 已知直线l的方程为x+4y-12=0,那么直线l与y轴的交点坐标是:A. (0,3)B. (0,-3)C. (4,0)D. (-4,0)10. 在△ABC中,AB=AC,点D在BC上,且BD=CD,那么∠ADB与∠ADC的关系是:A. ∠ADB=∠ADCB. ∠ADB=∠BACC. ∠ADB=∠BAC/2D. ∠ADB=∠BAC/3二、填空题(每题5分,共20分)11. 在平面直角坐标系中,点P(2,3)在直线y=mx+1上运动,那么m的取值范围是______。

八年级数学动点问题专项训练

八年级数学动点问题专项训练

八年级数学动点问题专项训练Revised on July 13, 2021 at 16:25 pm动点问题专项训练1.如图;在矩形ABCD 中;AB=2;1BC =;动点P 从点B 出发;沿路线B C D →→作匀速运动;那么ABP △的面积S 与点P 运动的路程x 之间的函数图象大致是2.如图1;在直角梯形ABCD 中;动点P 从点B 出发;沿BC;CD 运动至点D 停止.设点P 运动的路程为x ;△ABP 的面积为y ;如果y 关于x 的函数图象如图2所示;则△BCD 的面积是 A .3 B .4 C .5 D .63.如图;△ABC 和的△DEF 是等腰直角三角形;∠C=∠F=90°;AB=2.DE=4.点B 与点D 重合;点A;BD;E 在同一条直线上;将△ABC 沿D E →方向平移;至点A 与点E 重合时停止.设点B;D 之间的距离为x ;△ABC 与△DEF 重叠部分的面积为y;则准确反映y 与x 之间对应关系的图象是4.如图;点G 、D 、C 在直线a 上;点E 、F 、A 、B 在直线b 上;若a b Rt GEF ∥,△从如图所示的位置出发;沿直线b 向右匀速运动;直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积S 随时间变化的图象大致是5.2009年牡丹江如图;平面直角坐标系中;在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周;则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是6.如图1;在矩形ABCD 中;动点P 从点B 出发;沿BC 、CD 、DA 运动至点A 停止;设点P 运动的路程为x ;△ABP 的面积为y;如果y 关于x 的函数图象如图2所示;则矩形ABCD 的面积是图12O5 xAB P D 图2O31 1 3 Sx A . O 113 Sx O 3 Sx 3O 11 3 Sx B . C . D . 2D C P BA G D C EF A B a第4题图s t O A s t O B C s t O Ds tO 1 2 3 4 12 y s O 1 234 1 2 y s O s 1 2 3 4 1 2 y sO 1 2 3 4 1 2 y O A BC DA .10 8.16 C. 20 D .367.如图;三个大小相同的正方形拼成六边形ABCDEF ;一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动;最后到达点E .运动过程中PEF ∆的面积s 随时间t 变化的图象大致是 8.如图8;点A 、B 、C 、D 为圆O 的四等分点;动点P 从圆心O 出发;沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒; ∠APB 的度数为y 度;则下列图象中表示y 与t 之间函数关系最恰当的是 9. 13.一张正方形的纸片;剪去两个一样的小矩形得到一个“E ”图案;如图4所示;设小矩形的长和宽分别为x 、y;剪去部分的面积为20;若2≤x ≤10;则y 与x 的函数图象是: 10.如图;AB 是半圆O 的直径;点P 从点O 出发;沿OA AB BO --的路径运动一周.设OP 为s ;运动时间为t ;则下列图形能大致地刻画s 与t 之间关系的是11.锐角△ABC 中;BC =6;,12=∆ABC S 两动点M 、N 分别在边AB 、AC 上滑动;且MN ∥BC;以MN 为边向下作正方形MPQN;设其边长为x ;正方形MPQN 与△ABC 公共部分的面积为yy >0;当x = ;公共部分面积y 最大;y 最大值 = ; 6. 2012贵州遵义12分如图;△ABC 是边长为6的等边三角形;P 是AC 边上一动点;由A 向C 运动与A 、C 不重合;Q 是CB 延长线上一点;与点P 同时以相同的速度由B 向CB 延长线方向运动Q 不与B 重合;过P 作PE ⊥AB 于E ;连接PQ 交AB 于D .1当∠BQD =30°时;求AP 的长;2当运动过程中线段ED 的长是否发生变化 如果不变;求出线段ED 的长;如果变化请说明理由. 答案解:1∵△ABC 是边长为6的等边三角形;∴∠ACB =60°..∵∠BQD =30°;∴∠QCP =90°..设AP =x ;则PC =6﹣x ;QB =x ;∴QC =QB +C =6+x .. ∵在Rt △QCP 中;∠BQD =30°;∴PC =12QC ;即6﹣x =126+x ;解得x =2.. ∴当∠BQD =30°时;AP =2..2当点P 、Q 运动时;线段DE 的长度不会改变..理由如下:作QF ⊥AB ;交直线AB 的延长线于点F ;连接QE ;PF .. ∵PE ⊥AB 于E ;∴∠DFQ =∠AEP =90°.. ∵点P 、Q 做匀速运动且速度相同;∴AP =BQ .. ∵△ABC 是等边三角形;∴∠A =∠ABC =∠FBQ =60°.. ∴在△APE 和△BQF 中;∵∠A =∠FBQ ;AP =BQ ;∠AEP =∠BFQ =90°;∴△APE ≌△BQFAAS .. ∴AE =BF ;PE =QF 且PE ∥QF ..∴四边形PEQF 是平行四边形..A .B DC 第6题图 E . F . P. · PA OB s t O s O t O s tO s tA B C D∴DE =12EF .. ∵EB +AE =BE +BF =AB ;∴DE =12AB .. 又∵等边△ABC 的边长为6;∴DE =3..∴当点P 、Q 运动时;线段DE 的长度不会改变..12. 2012江苏泰州12分 如图;已知一次函数1y kx b =+的图象与x 轴相交于点A ;与反比例函数2c y x=的图象相交于B -1;5、C 25;d 两点.点Pm ;n 是一次函数1y kx b =+的图象上的动点. 1求k 、b 的值;2设31m 2-<<;过点P 作x 轴的平行线与函数2cy x=的图象相交于点D .试问△PAD 的面积是否存在最大值 若存在;请求出面积的最大值及此时点P 的坐标;若不存在;请说明理由;3设m 1a =-;如果在两个实数m 与n 之间不包括m 和n 有且只有一个整数;求实数a的取值范围.答案解:1将点B 的坐标代入2c y x=;得c51=- ;解得c=5-.. ∴反比例函数解析式为25y x=-..将点C 52;d 的坐标代入25y x =-;得5d =252=--..∴C 52;-2..∵一次函数1y kx b =+的图象经过B -1;5、C 52;-2两点;∴5k b52k b 2=-+⎧⎪⎨-=+⎪⎩;解得k=2b=3-⎧⎨⎩.. 2存在..令1y 0=;即2x 30-+=;解得3x 2=..∴A 32;0..由题意;点Pm ;n 是一次函数1y 2x 3=-+的图象上的动点;且31m 2-<<∴点P 在线段AB 上运动不含A 、B ..设P3nn 2-,.. ∵DP ∥x 轴;且点D 在25y x=-的图象上;∴D P D 5y y n x =n ==-,;即D 5n n-,..∴△PAD的面积为2113n 51349S PD OP=+n=n +222n 4216-⎛⎫⎛⎫=⋅⋅⋅-- ⎪ ⎪⎝⎭⎝⎭.. ∴S 关于n 的二次函数的图象开口向下;有最大值.. 又∵n =2m 3-+;31m 2-<<;得0n 5<<;而30n=52<<.. ∴当3n=2时;即P 3342,时;△PAD 的面积S 最大;为4916.. 3由已知;P 1a,2a+1- ..易知m ≠n ;即1a 2a+1-≠;即a 0≠.. 若a 0>;则m 1n <<..由题设;m 0n 2>≤,;解出不等式组的解为10a 2<≤.. 若a 0<;则n 1m <<..由题设;n 0m 2<≥,;解出不等式组的解为1a 02<-≤..综上所述;数a 的取值范围为1a 02<-≤;10a 2<≤..考点反比例函数和一次函数综合问题;曲线上点的坐标与方程的关系;平行的性质;二次函数的性质;不等式组的应用..分析1根据曲线上点的坐标与方程的关系;由B 的坐标求得c=5-;从而得到25y x=-;由点C 在25y x=-上求得d 2=-;即得点C 的坐标;由点B 、C 在1y kx b =+上;得方程组;解出即可求得k 、b 的值..2求出△PAD 的面积S 关于n 的二次函数也可求出关于m ;应用二次函数的最值原理即可求得面积的最大值及此时点P 的坐标..3由m ≠n 得到a 0≠..分a 0>和a 0<两种情况求解..22. 2012山东济南9分如图;已知双曲线ky x=;经过点D 6;1;点C 是双曲线第三象限上的动点;过C 作CA ⊥x 轴;过D 作DB ⊥y 轴;垂足分别为A ;B ;连接AB ;BC . 1求k 的值;2若△BCD 的面积为12;求直线CD 的解析式; 3判断AB 与CD 的位置关系;并说明理由. 答案解:1∵双曲线k y x =经过点D 6;1;∴k16=;解得k =6.. 2设点C 到BD 的距离为h ;∵点D 的坐标为6;1;DB ⊥y 轴;∴BD =6;∴S △BCD =12×6 h =12;解得h =4..∵点C 是双曲线第三象限上的动点;点D 的纵坐标为1;∴点C 的纵坐标为1-4= -3..∴63x=;解得x = -2..∴点C 的坐标为-2;-3.. 设直线CD 的解析式为y =kx +b ;则2k b 36k b 1-+=-⎧⎨+=⎩;解得1k 2b 2⎧=⎪⎨⎪=-⎩.. ∴直线CD 的解析式为1y x 22=-.. 3AB ∥CD ..理由如下:∵CA ⊥x 轴;DB ⊥y 轴;点C 的坐标为-2;-3;点D 的坐标为6;1; ∴点A 、B 的坐标分别为A -2;0;B 0;1..设直线AB的解析式为y=mx+n;则2m n0n1-+=⎧⎨=⎩;解得1m2n1⎧=⎪⎨⎪=⎩..∴直线AB的解析式为1y x12=+..∵AB、CD的解析式k都等于12相等..∴AB与CD的位置关系是AB∥CD..考点反比例函数综合题;待定系数法;曲线上点的坐标与方程的关系;平行的判定..分析1把点D的坐标代入双曲线解析式;进行计算即可得解..2先根据点D的坐标求出BD的长度;再根据三角形的面积公式求出点C到BD 的距离;然后求出点C的纵坐标;再代入反比例函数解析式求出点C的坐标;然后利用待定系数法求一次函数解析式解答..3根据题意求出点A、B的坐标;然后利用待定系数法求出直线AB的解析式;可知与直线CD的解析式k值相等;所以AB、CD平行..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学几何动点问题专题
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
关键:动中求静.
数学思想:分类思想函数思想方程思想数形结合思想转化思想
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

例题1.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。

已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。

假设运动时间为t秒,问:
(2)t为何值时,四边形PQCD是直角梯形?
(3)在某个时刻,四边形PQCD可能是菱形吗?为什么?
(4)t为何值时,四边形PQCD是等腰梯形?
练习1. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C —D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD也为矩形?
例2:如图,在等腰直角三角形ABC中,斜边BC=4,OA⊥BC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。

(1)判断∆OEF的形状,并加以证明。

(2)判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值.
(3)设AE=x,∆AEF的面积为y,求的y与x的关系式。

F
E
O C
B
A
练习2:在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点,
(1)写出点O 到△ABC 的三个顶点 A 、B 、C 距离的大小关系。

(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN =BM , 请判断△OMN 的形状,并证明你的结论。

点评: 这几题是双动点问题.动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.
例3如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;
(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.
练习3. 如图,在等腰梯形ABCD 中,AB ∥DC ,cm BC AD 5==,AB =12 cm,CD =6cm , 点
P 从A 开始沿AB 边向B 以每秒3cm 的速度移动,点Q 从C 开始沿CD 边向D 以每秒1cm
的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。

设运动时间为t 秒。

(1)求证:当t =
2
3
时,四边形APQD 是平行四边形; (2)PQ 是否可能平分对角线BD ?若能,求出当t 为何值时PQ 平分BD ;若不能,请说明理由;
(3)若△DPQ 是以PQ 为腰的等腰三角形,求t 的值。

B
P
(备用图)
例4、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;
②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?
(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?
P
E
练习4. 如图所示,有四个动点P 、Q 、E 、F 分别从正方形ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA 以同样的速度向B 、C 、D 、A 各点移动。

(1)试判断四边形PQEF 是正方形并证明。

(2)PE 是否总过某一定点,并说明理由。

(3)四边形PQEF 的顶点位于何处时,其面积最小,最大?各是多少?。

相关文档
最新文档