对偶问题及对偶单纯形法完整.
单纯形法与对偶问题
k
d '1 k d '2 k = ... d ' mk
,则 B
∆b -1 ∆b = ∆b ... ∆b
k k
∗ d' ∗ d' ∗ d'
2k 3k
k
mk
X B1 ∆b k ∗ d'1k X B 2 ∆b k ∗ d'2k 新的最优解为 X' B, X' B = 有 + ... ... X ∆b ∗ d' mk Bm k
学
S2 0 0 1 0 0 0
S3 0 -1 1 1 50 -50
b 50 50 250 27500
2
22
§1 单纯形表的灵敏度分析
我们对b1进行灵敏度分析,因为在第一个约束方程中含有松弛变量S1,
所以松弛变量在最终单纯形表中的系数列(, 2, T就是B-1的第一列。 1 − 0)
x 50 因为d'11 = 1 > 0, d'21 = −2 < 0, X1 = 50, X 2 = 50, 可以Max − Bi | d 'i1 > 0 = − = −50 1 d i1 x − 50 而Min − Bi | d 'i1 < 0 = = 25, 故有当 − 50 ≤ ∆b1 ≤ 25, 即250 ≤ b + ∆b ≤ 325第一个 d i1 −2 约束条件的对偶价格不变。
2
X1 S2 X2 ZJ CJ -ZJ
50 0 100
1 0 0 50 0
从上表我们可以发现各个松弛变量的Zj值,正好等于相应变量的对偶价格。
运筹学 对偶单纯形法
=min{j’ / akj’┃akj’<0}=r’/akr’那么 xr为进基变量,转4; 4.以akr’为转轴元,作矩阵行变换使其变为1,该
列其他元变为0,转2。
2.对偶单纯形法
例3.2:求解线性规划问题:
1.线性规划对偶问题
对称形式: (P) Max z = cT x s.t. Ax ≤ b x ≥0 “Max -- ≤ ”
互为对偶 (D) Min f = bT y s.t. AT y ≥ c y ≥0 “Min-- ≥”
线性规划的对偶模型
原问题(或对偶问题) 约束条件右端项 目标函数变量的系数 目标函数 max 约 束 条 件 m个 ≤ ≥ = n个 变 量 ≥0 ≤0 无约束 对偶问题(或原问题) 目标函数变量的系数 约束条件右端项 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 约 束 条 件 变 量
否
所有aik
计算
0
否
是
Hale Waihona Puke 0 bi be min aik 0 aik aek
计算
j min aej 0 k < aej aek
以为中心元素进行迭代
以为中心元素进行迭代
单纯形法和对偶单纯形法步骤
2.对偶单纯形法 对偶单纯形法的适用范围 对偶单纯形法适合于解如下形式 的线性规划问题
0 x4 0 1 0 0 0 1 0 0 0 1 0 0
0 x5 0 0 1 0 -1 -1 1 -100 -1 1 1 -50
I
θ i 300 400 250 50 75
(完整版)对偶单纯形法详解
一、什么是对偶单纯形法?
对偶单纯形法是应用对偶原理求解原始 线性规划的一种方法——在原始问题的单 纯形表格上进行对偶处理。
注意:不是解对偶问题的单纯形法!
二、对偶单纯形法的基本思想 1、对“单纯形法”求解过程认识的提升— —
从更高的层次理解单纯形法 初始可行基(对应一个初始基本可行解)
3 4
x1, x2 , x3, x4, x5 0
以此形式进行列表求解,满足对偶单纯形 法的基本条件,具体如下:
CB
XB
0
x4
0
x5
cj -2 -3 -4 0 0
xj b
x1 x2 x3 x4 x5
-3
-1 -2 -1 1 0
-4
-2 1 -3 0 1
-Z
0
-2 -3 -4 0 0
比
值 -2/-2 --- -4/-3 --- ---
2/5
11/5
-2 -3 -4 0 0 x1 x2 x3 x4 x5
0 1 -1/5 -2/5 1/5 1 0 7/5 -1/5 -2/5
cj-zj
0
0 0 -3/5 -8/5 -1/5
最优解: X*=(11/5,2/5, 0, 0, 0)T,
最优值: minW= -maxZ* = -[11/5×(-2)+2/5×(-3)]= 28/5
将三个等式约束两边分别乘以-1,然后
列表求解如下:
CB
XB
0
y3
0
y4
0
y5
-Z
比
cj yj b
-3 -9 0 y1 y2 y3
00 y4 y5
-2
-1 -1 1 0 0
第二章 对偶问题
3 x2 9 设备 I产品 x1 , x2 0
II产品
总有效台时
则有
CX 。 Yb
三、最优性定理
ˆ,Y ˆ 分别是(1)和(2)的可行解,且 如果 X ˆ Y ˆb,则 X ˆ,Y ˆ 分别是(1)和(2)的最优解. 有 CX
原问题 max Z CX
对偶问题 min Yb
YA C s.t. (4) Y自由变量
AX b s.t. (3) X 0
0 6 1 1 0 1. 得到原问题的基本可 A 行解的同时,其检验 5 2 1 0 1
例: max( ) 15y1 松弛变量 24 y2 5 y 0 y 4 0 y5 3 ←→ 决策变量
5 x2 15 ←→剩余变量 6 y2 y 4y 2 6 y2 2决策变量 3 y 4 3y 6 x 1 2 x2 24 基变量 ←→非基变量 y12 y2 y y y 1 5 y15 y y 1 2 3 5 2 3 5 x x 5 2 1 非基变量 ←→ 基变量 y 0 , i 1 , 2 , , 5 i 0, i 1, 2, ,5 y i x1 , x2 0
x1 2 x 2 2 x3 3 x 4 20 2 x1 x 2 3 x3 2 x 4 20 x 0 ( j 1,2,3,4) j
其对偶问题为: minW 20y1 20y 2
y1 2 y 2 1 2 y y 2 1 2 2 y1 3 y 2 3 3 y 2 y 4 2 1 y1 , y 2 0
[经济学]单纯形法与对偶问题
c1≤50时,也就是x1的 目标函数c1’在0≤c1’≤100时最优解不变。
j ' min a 1 j 0 50 。这样可以知道当-50≤Δ a ' 1 j
3 50 j ' 50,有 max a 0 1 j 50 同样有 a13 1 a'1 j
δj δj Max a'kj 0 ΔCk Min a'kj 0(其中 k是某个固定的值, j是1到n的所有数) a' a' kj kj
管 理 运 筹 学
7
§1
单纯形表的灵敏度分析
例: 目标函数:Max z=50X1+100X2 约束条件:X1+X2≤300 2X1+X2≤400 X2≤250 X1,X2≥0 最优单纯形表如下 迭代次数 基变量 X1 S2 X2 ZJ CJ -ZJ
管 理 运 筹 学
2
第六章 单纯形法的灵敏度分析与对偶问题
• §1 • §2 • §3 • §4
单纯形表的灵敏度分析 线性规划的对偶问题 对偶规划的基本性质 对偶单纯形法
管
理
运
筹
学
3
单纯形表
管
理
运
筹
学
4
§1
单纯形表的灵敏度分析
一、目标函数中变量系数Ck灵敏度分析(在什么范围内变化, 最优解不变,与第二章,第三章联系起来) 在线性规划的求解过程中,目标函数系数的变动将会影响检 验数的取值,但是,当目标函数的系数的变动不破坏最优判 别准则时,原最优解不变,否则,原最优解将发生变化,要 设法求出新的最优解。下面我们具体的分析 1.在最终的单纯形表里,X k是非基变量 由于约束方程系数增广矩阵在迭代中只是其本身的行的初等 变换与Ck没有任何关系, 所以当Ck变成Ck+ Ck时,在最终单纯形表中其系数的增广 矩阵不变,又因为Xk是非基变量,所以基变量的目标函数的 系数不变,即CB不变,可知Zk也不变,只是Ck变成了Ck+ Ck。这时 K= Ck-Zk就变成了 Ck+ Ck- Zk= K+ Ck。 要使原来的最优解仍为最优解,只要 K+ Ck≤0即可,也 就是Ck的增量 Ck≤ - K。
对偶与对偶单纯形法的应用
y1+2y2
≥50
y1 + y2+y3 ≥100
其中y1,y2,y3均≥0
其对偶问题是?
17
• Max z=50x1 +100x2 • x1 +x2 ≤300 • 2x1+x2 ≤400 • x2 ≤250 • x1,x2≥0
18
(二)若原问题为(弱对偶性定理) maxZ=CX AX ≤b X ≥0 其对偶问题为 Minw=Yb YA ≥C Y ≥0 若X为原问题任一可行解,Y为对偶问题任一 可行解,则必有CX ≤Yb
3}=-3;
确定进基变量:θ=min{δ/akj,akj<0}={-15/-5} 从而确定主元素akr,以此为中心做初等行变换。
39
对偶单纯性表2
ci
-12 -16 -15 0 0
CB B b y1 y2 y3 y4 y5
0 y4 -2 -2 -4 0 1 0
-15 y3 3/5 2/5 0 1 0 -1/5
9
记忆宝典: 1、Max——Min 2、C ——b
3、无约束等于0,个数m变n。 4、max就反正,min就正反。(约束条 件——变量)
10
示例:转化为对偶问题
mz a 3 x x 1 4 x 2 6 x 3
2 x1 3 x 2 6 x3 440 , 6 x1 4 x 2 x3 100 , 5 x1 3 x 2 x3 200 , x1 , x 2 , x3 0
δ -6 -16 0 0 -3
确定出基变量:bk=min{bi , bi<0}=min{15}=-15;
确定进基变量:θ=min{δ/akj,akj<0}={-6/-2, -16/-4}=3
应用运筹学基础:线性规划(4)-对偶与对偶单纯形法
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
第三章对偶单纯形法
··
≥ (c1,c2,…,cn)
y1,y2,…,ym≥0
m个变量,n个约束条件
2﹒约束条件全部为“=”的对偶
原问题:
max z=CX
max z=CX
max z=CX
AX=b
等价
AX≤b AX≥b
AX≤b 等价 -AX≤-b
X≥0
min ω=(Y1,Y2) A
(Y1,Y2) -A Y1,Y2≥0
b -b
承租
出让代价应不低于 用同等数量的资源 自己生产的利润。
厂家能接受的条件:
出 用同让6等代y数价2量应的不y资低3 源于 2 5 y自1 己生2产y2的利y润3。 1
收购方的意愿:
min w 15 y 24 y 5 y
1
2
3
Ⅰ
Ⅱ
D
设备A
0
设备B
6
调试工序
1
5 15时 2 24时 1 5时
利润(元) 2
x1 0, x2 , x3 0, x4无限制max变S量个数5n y1 约4束y方2 程个6数yn3
2、求下列问题的对偶问题 min Z 2x1 3x2 5x3 x4
4x1 x2 3x3 2x4 5
s.t
3x1 2x2 7x4 2x1 3x2 4x3
4 x4
6
s.t
3﹒约束条件为“≥”的对偶
原问题:
max z=CX
max z=CX
对
AX≥b
等价
-AX≤ - b
偶
X≥0 min ω=Yb
对偶 问题
X≥0
问
题
min ω=Y1 (- b)
YA ≥C Y≤0
令Y= - Y1
对偶单纯形法
1.对偶问题模型2.对偶例子,总结特点3.对偶的相关性质定理4.对偶单纯形法1.对偶问题模型例:某化工厂利用R1、R2、R3三种原料,生产Q1、Q2两种产品,生产每公斤产品所需的各单位原料、工厂所拥有的个资源最大量及每公斤产品销售利润如下表所示,问每天应生产多少公斤Q1、Q2才能使利润最大。
原料-产品-利润表设每天生产Q1、Q2的产品量为x1,x2,可得到约束方程Max s=0.7 x1 +1.2 x23x+ 10x2≤3004x1 + 5x2≤2009x1 + 4x2≤360x1≥0, x2≥0现在的问题是,如果另一个化工厂想全部购买该厂R1、R2、R3三种原料,那么该厂在什么条件下出售这三种原料,才能使该厂在经济收入上不低于用等量的三种原料生产Q1、Q2产品获得的最大利润。
设三种原料出售单价分别为u1, u2, u3, 可得到约束方程Min W= 300 u1 +200u2 +360 u3+4u2 +9 u3≥0.73 u10 u1 +5 u2 +9u3≥ 1.2u1≥0, u2≥0, u3≥0一半钱这问题成为L,后者为其对偶问题成为D比较两个线性规划模型,其特征有目标函数的要求上两者相反,s求max,w求min右端向量和目标函数的价值系数两者对调约束方程两者符号相反,s是“≤”,w是“≥”由s的约束方程书引入了同等数量的另一组非负变量u=( u1, u2, u3)T,且作为w的决策变量,约束方程数由m个变为n个2.对偶问题及其转化方对偶问题在理论和实践方面有着广泛的应用在某些情况下线性规划的对偶问题比原解问题更容易对偶变量对原问题的解提供了重要的经济意义在处理一般型初始模型时可以不引入人工变量而采用对偶单纯形法直接处理,减少计算量推证出若干重要性质和定理作为线性规划灵敏度分析的重要工具例:求下列线性规划的对偶问题:Max s= x1 +2 x2s.t. x1 -2x2≤2x1≤9-x1 + x2≤5x1≥0, x2≥0解:其对偶问题为:min w=2y1+9y2+5y3s.t. y1+y2-y3≥1-2y2+y3≥2y1≥0, y2≥0, y3≥0需要注意的是,如果原问题的目标函数为求极小,其目标函数的系数需要乘-1变成求极大,如果某些约束为“≥”,则这些约束需乘-1,变成“≤”,才能产生相应的对偶问题。
对偶问题及对偶单纯形法完整
(二)非对称型对偶问题
c3 x3 c3 x3 max z c1 x1 c2 x2 a13 x3 a13 x3 b1 s.t. a11 x1 a12 x2 a23 x3 a23 x3 b2 a21x1 a22 x2 a ax a ax b a a ax 21 ax 1x 2x 3x 3x 21 1 22 22 2 23 23 3 23 23 3 2b2 a33 x3 a33 x3 b3 a31x1 a32 x2 , x3 , x3 0 x1, x2 b2 y2 b3 y3 min w b1 y1 b2 y2
第 6页
二、原问题与对偶问题的对应关系
P
max z 3x1 4x2 s.t. x1 x2 6 y 1
x 2x 8 1 2 x2 3 x1 , x2 0
D
y2 y3
矩阵形式: s.t. 1 1
x1 max z (3 4) x2
a12 y1 a22 y2 a32 y3 c2 a13 y1 a23 y2 a33 y3 c3 y2无约束, y3 0 y1 0,
变 量
约 束 条 件
第12页
(一)对称型对偶问题
max z 3x1 4x2 s.t. x1 x2 6
x 2x 8 1 2 x2 3 x1 , x2 0
第 2页
一、对偶问题的提出
对同一问题从不同角度考虑,有两种对立的描述。
周长一定面积最大的矩形是正方形 : 面积一定周长最短的矩形是正方形 某企业生产甲、乙两种产品,要用 A、B、C三种不同的原料。每生产 1 吨甲产品,需耗用三种原料分别为1,1,0单位;生产1吨乙产品,需耗用三 种原料分别为1,2,1单位。每天原料供应的能力分别为6,8,3单位。又知 道每生产1吨甲产品企业利润为300元,每生产1吨乙产品企业利润为400元。
第七章 对偶问题和对偶单纯形法
三、对偶规划的性质
3、最优性: 、最优性: 分别是原问题和对偶问题的可行解, 若x,y分别是原问题和对偶问题的可行解 分别是原问题和对偶问题的可行解 那么x,y分别为原问题和对 且cx=bTy ,那么 分别为原问题和对 偶问题的最优解。 偶问题的最优解。
三、对偶规划的性质
4、强对偶性: 、强对偶性: 若原问题和对偶问题都有可行解,则两 若原问题和对偶问题都有可行解, 者都有最优解,且最优目标函数值相等。 者都有最优解,且最优目标函数值相等。
四、对偶单纯形法
在满足对偶单纯形迭代前提条件的表上确定 主行和出基变量: 主行和出基变量:
基变 CB 量XB
x1 x2 x3 x4 50 100 0 0 x1 50 1 0 1 0 0 0 0 -2 1 x4 x2 100 0 1 0 0 0 0 0 -10 0 x6 50 100 50 0 zj 0 0 -50 0 σj
二、对偶问题和原问题的转换
LP问题和 问题和DLP问题的关系: 问题的关系: 问题和 问题的关系
规范形(LP) 规范形 Max z = cT x s.t. Ax ≤ b x ≥0 (DLP) Min f = bT y s.t. AT y ≥ c y ≥0
二、对偶问题和原问题的转换
1、对于规范型,直接按对应关系转换 、对于规范型, 例: Max z= 20x1+ 8 x2 +6 x3 s.t: 8x1+ 3x2 +2x3 ≤250 : 2x1+x2 ≤50 4x1+3x3 ≤150 x1 ,x2 ,x3 ≥0 写出该线性规划问题的对偶问题。 写出该线性规划问题的对偶问题。
三、对偶规划的性质
5、互补松弛定理: 、互补松弛定理: 在原问题的最优解中, 在原问题的最优解中,如果对应某一约束条 件的对偶变量值不为0, 件的对偶变量值不为 ,则该约束条件取严格 等式;反之,如果约束条件取严格不等式, 等式;反之,如果约束条件取严格不等式, 则其对应的对偶变量一定为0, 则其对应的对偶变量一定为 ,即 若Yi*>0,则有 ijxj*=bi ,则有∑a 若∑aijxj*<bi ,则有Yi*=0 则有
2.2运筹学 对偶问题的基本性质
y1*
x
* s1
0
y2*xs2* 0
ym*
x
s
* m
0
若y
* 1
0则x
* s1
0
若x
* s1
0则y
* 1
0
对偶变量不为0 ,原问题相应 约束式是等式
原问题约束为
已知线性规划问题
不等式,相应
min 2 x1 3 x2 5 x3 2 x4 3 x5
对偶变量为0
x1 x2 2 x3 x4 3 x5 4
(2)
2 y1 3 y2 5
(3)
y1 y2 2
(4)
3 y1 y2 3
(5)
y1 , y2 0
将
y* 1
,
y* 2
的值代入约束条件,得(2),(3),(4)为严格不等式;由互
补松弛性得 x*2 x*3 x4* 0。因 y1,y2 0;原问题的两个约束条
件应取等式,故有
x1* 3 x5* 4
B 1b C B B 1b
与-原原问问问题令题题的Y的的基=检C检解验B验(B差数数-1一对,故比负应较可号对-得-)偶---对- 偶问题YS的2=一CB个B-基1N解-C.N
YS1=0
原 问 题
对偶 问题
变量性质
检验数 基解
变量性质
基变量
非基变量
XB 0
-YS2 非基变量
XN
XS
CN-CBB-1N -CBB-1
机械设备
甲 1
原材料A 4
影子价格
原材料B 0
经济意义பைடு நூலகம் 在其它条件 不变的情况 下, 单位资源变 化所引起的 目标函数的 最优值的变 化。
运筹学之对偶问题
Max s .t
W Yb - YA C Y 0
定理2 弱对偶定理 ˆ 和Y ˆ 分别为原问题 P 及其对偶问题 D 的任意可行解, 若X 则有 ˆ Y ˆb CX 成立。
推论1:若原问题 P 和对偶问题 D 都有可行解,则必都有 最优解。 推论2:若原问题 P 有可行解,但无有限最 优解,则对偶 问题 D 无可行解。
s .t
s .t
为其对偶问题,其中yi (i=1,2,…,m) 称为对偶变量。 上述对偶问题称为对称型对偶问题。 原问题简记为(P),对偶问题简记为(D)
原始问题 Max Z=CX s.t. AX≤b X ≥0
Max C
对偶问题 Min W=Yb s.t. YAT≥C Y ≥0
Min
bT
AT m ≥ CT
第四章 线性规划的对偶理论
4.1 4.2 4.3 4.4 4.5
对偶问题 对偶问题的基本性质 对偶问题的解 影子价格 对偶单纯形法
4.1 对偶问题
(1) 对偶问题的提出
对偶理论是线性规划中最重要的理论之一,是深入了 解线性规划问题结构的重要理论基础。同时,由于问题提 出本身所具有的经济意义,使得它成为对线性规划问题系 统进行经济分析和敏感性分析的重要工具。那么,对偶问 题是怎样提出的,为什么会产生这样一种问题呢?
通过使用所有资源对外加工所获得的收益
W = 30y1 + 60 y2 + 24y3
根据原则2 ,对方能够接受的价格显然是越低越好,因此 此问题可归结为以下数学模型:
目标函数 Min W = 30y1 + 60 y2 + 24y3 y1 + 3y2 约束条件 s.t y1 , y 2 , y3 0 原线性规划问题称为原问题,此问题为对偶问题, y1 , y2 , y3为对偶变量,也称为影子价格
对偶单纯形法详解课件
终止准则
算法终止的准则有多种,如达到预设的 最大迭代次数、解的变化小于预设阈值 等。
VS
终止判断
在每次迭代后,需要判断是否满足终止准 则,如果满足则算法终止,否则继续迭代 。
04 对偶单纯形法的优化策略
预处理技术
预处理技术
通过预处理,可以消除原问题中的冗 余约束,简化问题规模,提高求解效 率。
线性规划问题的转化
对偶单纯形法详解课 件
目录
CONTENTS
• 对偶单纯形法简介 • 对偶单纯形法的基本原理 • 对偶单纯形法的实现步骤 • 对偶单纯形法的优化策略 • 对偶单纯形法的案例分析 • 对偶单纯形法的展望与未来发展方向
01 对偶单纯形法简介
对偶问题的定义
对偶问题是指原问题的一个等价形式,其目标函数和约束条 件与原问题互为对偶。在优化问题中,对偶问题通常用于求 解原问题的最优解。
对偶单纯形法的应用场景
对偶单纯形法广泛应用于各种优化问题,如线性规划、整数规划、二次规划等。 它适用于求解大规模优化问题,并且具有较高的计算效率和精度。
在实际应用中,对偶单纯形法可以与其他优化算法结合使用,如梯度下降法、共 轭梯度法等,以提高求解效率和精度。同时,对偶单纯形法也可以用于解决一些 复杂的组合优化问题,如旅行商问题、背包问题等。
对偶问题的形式取决于原问题的类型和约束条件。例如,线 性规划的对偶问题就是将原问题的目标函数和约束条件进行 线性变换,得到一个新的优化问题。
对偶单纯形法的概念
对偶单纯形法是一种求解线性规划的方法,它利用对偶问 题的性质,通过迭代和交换变量的方式,逐步逼近最优解 。
在对偶单纯形法中,每次迭代都包括两个步骤:一是根据 对偶问题的最优解更新原问题的解;二是根据原问题的最 优解更新对偶问题的解。这两个步骤交替进行,直到达到 最优解或满足一定的停止准则。
对偶问题
对偶单纯形法 思路:(max型)
单纯形法:找基B,满足B-1b0,但 C - CBB-1 A不 全 0,(即检验数)。
XB XB B
CB
XN XS b N Eb
CN 0
XB XB E
CB
XN XS B-1N B-1
CN 0
b B-1b
XB XB E
λ0
XN
XS
B-1N
B-1
CN-CB B-1N -CBB-1
b B-1b -CBB-1b
令Y=CBB-1
CN-CB B-1N≤0 -CBB-1 ≤0
YA ≥C
Y≥0
令Y=CBB-1两边右乘b,则Yb=CBB-1b=Z,有因Y≥0无上界,从 而Yb只存在最小值,得到另一个线性规划问题
x5 1 0 4 0 1 4 λj 6 -2 1 0 0 x1 1 -1/2 1 1/2 0 1 b x5 0 [1/2] 3 -1/2 1 3 λj 0 1 -5 -3 0 x1 1 0 4 0 1 4 c x2 0 1 6 -1 2 6 λj 0 0 -11 -2 -2
一个问题max
有最优解 无最优 无最优解
对(*)求偏导:
Z b
= CBB-1 = y
对偶解
y:b 的单位改变量所引起的目标函数改变量。
yi :反映bi 的边际效益(边际成本)
经济解释: b1
W=yb=(y1 … ym )
…
= b1 y1 + b2 y2 + … + bm ym
[经济学]单纯形法与对偶问题
17
§1
单纯形表的灵敏度分析
单纯形表中的Zj跟对偶价格的关系:
对于含有小于等于号的约束条件,添加松弛变量转化为标准型。这时这个 约束条件的对偶价格就和松弛变量的Zj有关。对偶价格应取松弛变量的Zj 的值。 对于含有大于等于号的约束条件,添加剩余变量化为标准型。这时 这个约束条件的对偶价格就和这个剩余变量的 z j有关了。这时约束条件的 对偶价格应取 z j值的相反数- z j 。 对于含有等于号的约束条件,其约束条件的对偶价格就和该约束方 程的人工变量有关了。其约束条件的对偶价格就等于此约束方程的人工变 量的 z j值。
管
理
运
筹
学
18
§1
约束条件 ≤ ≥
单纯形表的灵敏度分析
对偶价格的取值
最终单纯形表对于不同约束类型的对偶价格的取值。
等于这个约束条件对应的松弛变量的 等于这个约束条件对应的剩余变量的 等于这个约束条件对应的人工变量的
z j 值,即为 j 的相反数 z j 值的相反数 zj 值
=
常数项的灵敏度分析-》使对偶价格不变的bj灵敏度分析-》知道对偶价格Zj等于Cb*Pj的转置。 我们知道单纯型法是增广矩阵的行的初等变换,bj的变化并不影响系数矩阵的变化。所以Pj 是不变的。 所以要使对偶价格不变,只要使Cb不变就可以,就是最终单纯形表中的最优基不变,即最终 单纯型表中的基变量还是基变量,怎么保证基变量还是基变量?(即最优基不变,所得 到的基本解是可行解,也就是基变量的值仍然大于等于零) 所以原问题转化为:使最优解的所有基变量不变,且所得的最优解仍然是可行的Bj的变 化范围。
管
理
运
筹
学
19
§1
单纯形表的灵敏度分析
4第四章 对偶单纯形法和对偶问题
例如
原 : max Z = x1 + 2x2 −x1 + x2 + x3 ≤ 2 −2x1 + x2 − x3 ≤ 1 x , x , x ≥ 0 1 2 3
对 : min W = 2 y1 + y2 − y1 − 2 y2 ≥ 1 y + y ≥2 1 2 y1 − y2 ≥ 0 y1, y2 ≥ 0
A 工 时 材 料 单件利润
总价格最小 1 1 2
B
1 4 3
C
1 7 3
拥有量 3 9
min W=3y1+9y2 y1+y2≥2 y1+4y2≥3 y1+7y2≥3 y1≥0 y2≥0
保证获利大于A产品利润 保证获利大于 产品利润 保证获利大于 产品利润 保证获利大于B产品利润 获利大于 保证获利大于 产品利润 保证获利大于C产品利润 获利大于 售价非负
θj
对 偶 问 题
0 6 20
σj = cj-zj Cj→
CB YB Y4 Y2 Y1
Y4 Y5 Y6 1 -10 4 -4 -1 2 -4 -16
θj
σj = cj-zj
第四章 对偶问题及对偶单纯形法
§4.4 对偶单纯形法
一、原理
当一个线性规划问题是求目标函数值最 小,约束方程是≥时,求解时用大M法或两阶 段法比较麻烦,此时较有效的算法是将要介绍 的对偶单纯形法 对偶单纯形法并不是求解对偶问题解的 方法,而是利用对偶理论求解原问题的解的方 法。
(1)目标函数在一个问题中是求最大值在另 ) 一问题中则为求最小值 (2)一个问题中目标函数的系数是另一个问 ) 题中约束条件的右端项 (3)一个问题中的约束条件个数等于另一个 ) 问题中的变量数 (4)原问题的约束系数矩阵与对偶问题的约 ) 束系数矩阵互为转置矩阵
运筹学对偶单纯形法
8. 最优松紧性 设
= (XT, XTs) = ( x1 , x2 , … , xn , … , xn+m )T
T = (YT,Ys ) = ( y1 , y2 , … , ym , … , ym+n )T
分别是(P1) (D1)的可行解,那么 和 分别是(P1) (D1)最优解的充分必要条件是: ⑴ xj >0 → ym+j = 0 ⑵ ym+j>0 → xj = 0 ⑶ xn+i > 0 → yi = 0 ⑷ yi > 0 → xn+i = 0
关系3:一般对偶关系
对偶问题 目标要求
规范不等式 约束的式号
(P) max ≤ (aij)m×n
第 k 个约束 约束个数 第 k 个右端常数 (非)规范不等式约束 等式约束
(D) min ≥ (aji)n×m
第 k 个变量 变量个数 第 k 个价值系数 非负(正)变量 自由变量
系数阵 函数 约束 与 变量
(2) 对资源 i 现行分配量的评估。当资源 i 在市场上脱销时, 其总存量无法增加,但可酌情调整其在企业内部的现行分配量, 以便获得最佳经济效益。 二、 当 yi* 代表影子利润(即企业的目标是实现最大总利 润)时: (1) 对资源 i 总存量的评估。 (2) 对资源 i 现行分配量的评估。
对偶问题的经济解释
工时利润 (百元/工时) y1 y2 y3
产品 车间
单耗(工时/件)
甲
乙
最大生产能力 (工时/天)
A B C
单位利润 (百元/件)
1 0 2 3
0 2 3 2
第三章+线性规划的对偶问题
离基变量xr: r = min{bi } < 0 b
i
进基变量xk: k / yrk = min{λ j / yrj | yrj < 0} λ
j
(保持对偶可行性,yrj为r行第j列的元素)
11:04
3.3 对偶单纯形法(续2) 对偶单纯形法(
计算步骤:
(1)给定一个初始对偶可行基本解,设想应的基为B; (2)若 = B1b ≥ 0,则停止计算现行的对偶可行基本解 b , 为最优解 否则,令 br = min{bi } < 0; ,
11:04
二、例子:写出下面线性规划的 写出下面线性规划的 对偶规划模型
max x1 + x2 + x3 min 25 y1 + 2 y2 + 3 y3 s.t. x + x + 2 x ≤ 25 s.t. y y + y ≥ 1 1 2 3 1 2 3 原问题: x1 + 2 x2 x3 ≥ 2 y1 + 2 y2 y3 ≥ 1, x1 x2 + x3 = 3 2 y1 y2 + y3 = 1 x1 , x2 ≥ 0 y1 ≥ 0, y2 ≤ 0
11:04
对偶规则
若原问题是极小化问题,则对偶问题是极大化问题; ① 若原问题是极小化问题,则对偶问题是极大化问题;若 原问题是极大化问题, 原问题是极大化问题,则对偶问题是极小化问题 在原问题和对偶问题中, ② 在原问题和对偶问题中,约束右端向量与目标函数的系 数向量恰好互换 对于极小化问题的“ ”型约束(极大化问题的“ ” ③ 对于极小化问题的“≥”型约束(极大化问题的“≤”型 约束) 相应的对偶变量有非负限制; 约束),相应的对偶变量有非负限制;对于极小化问题 的“≤”型约束(极大化问题的“≥”型约束),相应的对 ”型约束(极大化问题的“ ”型约束) 偶变量有非正限制;对于原问题的“ 型约束, 偶变量有非正限制;对于原问题的“=”型约束,相应的 对偶变量无正负限制 对于极小化问题具有非负限制的变量( ④ 对于极小化问题具有非负限制的变量(极大化问题具有 非正限制的变量),在其对偶问题中,相应的约束为“ ” ),在其对偶问题中 非正限制的变量),在其对偶问题中,相应的约束为“≤” 型约束;对于极小化问题具有非正限制的变量( 型约束;对于极小化问题具有非正限制的变量(极大化 问题具有非负限制的变量),在其对偶问题中,相应的约 问题具有非负限制的变量),在其对偶问题中, ),在其对偶问题中 束为“ ”型约束;对于原问题中无正负限制的变量, 束为“≥”型约束;对于原问题中无正负限制的变量, 在其对偶问题中,相应的约束为“ 型约束 在其对偶问题中,相应的约束为“=”型约束
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s.t. a11y1 + a21 y2 + … + am1ym ≥ c1
a12y1 + a22y2 + … + am2 ym ≥ c2
(D)
……
a1ny1 + a2ny2 + … + amnym ≥ cn yi≥ 0 (i = 1,2,…,m)
其中 yi ≥ 0 (i = 1,2,…,m)称为对偶变量。
6
1 0
2 1
x1 x2
8 3
x1 x2
0
max z=CX s.t. AX ≤b
X≥0
D min w 6 y1 8y2 3y3
s.t. y1 y2 3
y1
2
y2
甲
1
1
0
3
乙
1
2
1
4
供应量
6
8
3
设 yj 表示第 j 种原料的收费单价
把生产一吨甲产品所用的原料出让,所得净收入应不低于生产一吨甲
产品的利润: y1 y2 3
乙产m品in同理w : 6 y1 y18y22 y23y3y3 4
把s企.t.业 y所1 有原y2 料出让 的3 总收入:
y3
4
y1, y2 , y3 0
yj 表示对第 j 种资源的估价
y1
min
w 6
8
3
y2
s.t.
1 1
1 2
0 1
y1 y2 y3
y3
3
4 Fra bibliotek y1
y2 y3
对偶问题(D)
第6页
二、原问题与对偶问题的对应关系
P max z 3x1 4x2
s.t. x1 x2 6 y1
x1
2 x2 x2
8 3
y2 y3
x1, x2 0
矩阵形式:
max z (3
4)
x1 x2
s.t. 1 1
第8页
(二)非对称型对偶问题
max z = c1x1 + c2x2 + c3x3 s.t. a11x1 + a12x2 + a13x3 ≤ b1
a21x1 + a22x2 + a23x3 = b2 a31x1 + a32x2 + a33x3 ≥ b3 x1≥0, x2≤0, x3无约束 分析:化为对称形式。令 x2 x2,x3 x3 x3 (x3 0, x3 0)
第2页
一、对偶问题的提出
对同一问题从不同角度考虑,有两种对立的描述。
例例如1:、平应面如中何矩安形排的面生积产与计周划长,的使关系一天的总利润最大?
周某长企一业定生面产积甲最、大乙的两矩种形产是品正,方要形用: 面A、积B一、定C周三长种最不短同的的矩原形料是。正每方生形产1 吨甲产品,需耗用三种原料分别为1,1,0单位;生产1吨乙产品,需耗用三 种原料分别为1,2,1单位。每天原料供应的能力分别为6,8,3单位。又知 道每生产1吨甲产品企业利润为300元,每生产1吨乙产品企业利润为400元。
第四章 线性规划的对偶理论
Duality Theory 线性规划的对偶问题 对偶问题的基本性质 对偶问题的经济解释——影子价格 对偶单纯形法 灵敏度分析
第1页
第四章 线性规划的对偶理论
Duality Theory 线性规划的对偶问题 对偶问题的基本性质 对偶问题的经济解释——影子价格 对偶单纯形法 灵敏度分析
0
min w =bTY s.t. ATY ≥CT
Y ≥ 0 第7页
(一)对称型对偶问题
均取变“≤量”均号具s,m.t有.a当xA非目zX=负≤C标bX约函束数,求且极约小束时条均件取:“s当m≥.t”.i目nA号w标TY=。函≥bTCY数T 求极大时
X≥0
Y≥0
max z = c1x1 + c2x2 + … + cnxn
max z = 3x1 + 4x2 s.t. x1 + x2 ≤ 6
x1 + 2x2 ≤ 8 x2 ≤ 3
x1 ≥ 0 , x2 ≥ 0
第4页
分析问题:
1、出让例每1、种资应源怎的样收制入定不收能费低标于准自才己合生理产时?的可获利润;
2、定价不能太高,要使对方能够接受。
原料
单位利润
产品
A
B
C
(百元)
原料
单位利润
产品
A
B
C
(百元)
甲
1
1
0
3
乙
1
2
1
4
供应量
6
8
3
第3页
假设该企业决策者决定不生产甲、乙产品,而是将厂
里的例现1有、资应源如外何售安。排决生策产者计应划怎,样使制一定天每的种总资源利的润收最费大?
标准才合理?
原料
单位利润
产品
A
B
C
(百元)
甲
1
1
0
3
乙
1
2
1
4
供应量
6
8
3
设 xj 表示第 j 种产品每天的产量
s.t. a11x1 + a12x2 + … + a1nxn ≤ b1
a21x1 + a22x2 + … + a2nxn ≤ b2
(P)
……
am1x1 + am2x2 + … + amnxn ≤bm xj ≥ 0 (j = 1,2,…,n)
min w = b1 y1 + b2 y2 + … +bm ym
LP1 max z 3x1 4x2
s.t. x1 x2 6
x1
2 x2 x2
8 3
x1, x2 0
原问题(P)
LP2 min w 6 y1 8y2 3y3
s.t.
y1 y1
y2 2 y2
y3
3 4
y1, y2 , y3 0
y1
2
y2
y3
4
y1,
y2 ,
y3
0
w 6 y1 8y2 3y3
只能在满足≥所有产品的 利润的条件下,其总收入尽
可能少,才能成交.
第5页
一、对偶问题的提出
任何一个求极大的线性规划问题都有一个求极小的线性 规划问题与之对应,反之亦然.
把其中一个叫原问题,则另一个就叫做它的对偶问题, 这一对互相联系的两个问题就称为一对对偶问题。
max z c1x1 c2x2 c3x3 c3x3 s.t. a11x1 a12 x2 a13x3 a13x3 b1
aaa222a111xxx2111x1 aaa222a222xxx22222x2 aaa222a333xxx23333x3 aaa222a333xxx23333x3 bbb222b2 a3a13x11x1 a3a23x22x2 a3a33x33x3 a3a33x33x3 b3b3 x1, x2 , x3, x3 0