初中数学竞赛辅导-因式分解
八年级数学竞赛专题复习 因式分解的常用方法(无答案)
![八年级数学竞赛专题复习 因式分解的常用方法(无答案)](https://img.taocdn.com/s3/m/46381d4fdd36a32d737581f3.png)
因式分解的常用方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.【例1】分解因式322x x x -- 解:原式()221x x x =--二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=- 写出结果.【例2】分解因式2244a ab b ++ 解:原式()22a b =+三、分组分解法.(一)分组后能直接提公因式 【例3】分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。
【例4】分解因式:bx by ay ax -+-5102解法一:第一、二项为一组 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --练习1:分解因式255m n mn m +--解:原式()()()()255555m m mn n m m n m m n m =--+=---=--(二)分组后能直接运用公式 【例5】分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
七年级数学尖子生培优竞赛专题辅导第一讲因式分解的常用方法和技巧(含答案)
![七年级数学尖子生培优竞赛专题辅导第一讲因式分解的常用方法和技巧(含答案)](https://img.taocdn.com/s3/m/1d8843b979563c1ec5da71e2.png)
第一讲因式分解的常用方法和技巧趣题引路】你知道如何分解因式^-+X9+/+/+1吗?试作一代换:若令疋= ),,贝IJ原式=h + ),3+y2 + y+l,指数为连续整数,可考虑用公式/-l = (^-l)(/ + / + / + y+l),则原式=V4 + V3 + V2 + V + 1 = —(y5 -1))‘一1x-l x2 + X + 1= (x4 + x3 +x2 +x+ l)(x8 -x7 +x5 +x3 -x + 1)一个代换,把一个复杂的问题转化为一个较简单的问题,这是数学方法之美.多项式的因式分解是数学中恒等变形的一种重要方法,它在初等数学乃至高等数学中都有广泛的应用,因式分解的方法很多,技巧性强,认真学好因式分解,不仅为以后学习分式的运算及化简、解方程和解不等式等奠定良好的基础,而且有利于思维能力的发展.知识拓展】因式分解与整式乘法的区别是:前者是把一个多项式变成几个整式的积,后者是把几个整式的积变成一个多项式,因式分解初中可在有理数域或实数域中进行,高中还可在复数域中进行.因式分解后每个因式应在指定数域中不能再分.“例如X4-A在有理数域内可分解为(X+2)(/-2),其中每个因式就不能再分,不然分解式的系数会超过有理数的范围;在实数域中,它的分解式是(X2+2)(X+>/2)(X->/2):在复数域中,它的分解式是因式分解的方法很多,除了数学教材中的提取公因式法、运用公式法、分组分解法和十字相乘法以外, 还有换元法、待定系数法、拆项添项法和因数定理法等.本讲在中学数学教材的基础上,对因式分解的方法、技巧作进一步的介绍.一、用换元法分解因式换元法是指将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来进行运算,从而使运算过程简单明了.换元法是中学数学中常用的方法之一.例1 (1999年希望杯题)分解因式(X2-1)(X +3)(X+5)+12.解析若全部展开,过于复杂,考虑局部重新组合.注意到在(x + l)(x + 3) = X + 4x + 3和(X-1)(X+5)= X2+4X-5中出现了相同部分X2+4X ,可考虑引入辅助元y = x2+4x分解(也可设y = F+4x + 3,y = x'+4x-l 等).解原式=[(x + l)(x + 3)][(A-1)(X + 5)] +12=(x2 +4x+ 3)(x2 + 4x-5)+12设y = x2 +4x f贝!I原式= (y+3)(y-5)+12= r-2y-3= (y-3)(y + l)=(x2+4x+ 3)(x2 +4x-l)点评换元法体现了数学中的整体代换思想,它是化繁为简的重要手段这里y取(x2 +4X + 3)和(x2 + 4X-1)的平均值时分解过程最为简便例2 (2001年天津初二题)分解因式(弓-1)= + (x+_ 2)(x+ > - 2xy).解析题中巧和卄y多次出现启发我们换元分解:设xy=d, x+y=b.解设xy=a, x+y=b,则,原式=(a -1): + (b - 2)(b - 2a)=cr -2a + l+br -2b-2cib+4a=a2 +b2 +l+2a-2ab-2b=(a-b+[)2注:这里用到公式a,+b2 +c2 + 2ab + 2bc + lac = (a + b +c)2.点评换元必须考虑多项式的结构特征:当代数式中出现相同、相近或相关联(如:互为相反数,互为倒数)的部分时都可以考虑换元.二、用待定系数法分解因式待定系数法是初中数学中的又一重要方法,其应用很广泛.在因式分解时,只要假定一个多项式能分解成某几个因式的乘积,而这些因式中某些系数未定,可用一些字母来表示待定的系数•根据两个多项式恒等的性质,即两边对应项的系数必相等,可列出关于待定系数的方程或方程组,解此方程(组)即可求出待定系数.这种因式分解的方法叫做待定系数法.例3 (第9届五羊杯初二题)设x3 + 3x2-2xy + kx-4y可分解为一次与二次因式之积,则k= ______________________ .解析首先确定两个因式的结构:因多项式中疋的系数是1,常数项是0,以及没有护项,所以分解所得因式可设为x+a 和x2+bx + cy,其中e b, c为待定系数.解设x3 + 3x2 - 2xy + kx-4y可分解为(x+a)(x2 +bx+cy),贝ijx3 + 3x2 -2xy + kx-4y = x3 +(a + b)x2 + cxy + abx + acy比较系数,得a+b=3 ,a +b = 3消去c,得\ab = -k ,消去a,b,解得k=-2.ab = -ka = 2ac = -4 i点评用待定系数法分解因式,关健在于确定因式分解的最终形式.三、用公式法分解因式初中教材中出现的公式有平方差公式,完全平方公式,在因式分解中还常用到下列公式:立方和公式:a3 +b3 = (a + b)(a2 -ab + b2)立方差公式:a3 -b3 =(a-b)(a2 +ab+b2)和的立方公式:(a + b)3 =a3 + 3a2b + 3ab2 + b3差的立方公式:(a - b)3 =a3 - 3crb + 3ab2 -b3三数和的平方公式:(tz + b + c)' =a2 +b2 +c2 + 2ab 4- lac + 2bc两数n 次方差公式:a” -b n =(a-b)(a n~l + a n~2b + • • • + ab"~2 + b n~l)三数立方和公式:a3 +b3+c‘ = (a + b +c)3 -3(a + b)(b + c)(a + c)在具体问题中要根据代数式的结构特征来选用适当的公式.例4 分解因式x l5+x l4+x l3+-+x2+x+l.解析对于指数成连续整数的多项式我们可以考虑公式a" - b n =(a- + a"~2b + ab"~2 + b n~l),令b=l,得a" = + a n~2 + …+ a + l).为化繁为简,及能用公式,给原式乘以x-1解原it= (x15 +x14 +X13 + - -X2 +X+1) -_ =- ---------------------- --x-l x-l=(土 + 1)(疋 + 1)(F + l)(x + 1)(— 1)=(x8 + l)(x4 + l)(x2 + l)(x + 1)点评这里原式乘以吕很必要,这种先乘以再除以(或先加上再减去)同一个式子的变形技能经常用到.例5 (昆明市初中数学竞赛题)分解因式(c-a)2-4(b-c)(a-b).解析把拾号展开后重新组合.解原式=c? 一 2ac十/ 一 4ab + 4ac — 4bc + 4b‘=c2 + lac + a2 - Aab一4bc + 4b2=(c2 + 2ac + a2)-4b(a + c) + (2b)2= (a + c- 2b)2点评欲进先退,这是为了更清楚地认识代数式的结构特征.例6 分解因式(x+2y_77),+ (3x_4y + 6zF_(4x_2y_z)B解析本题与三个数的立方和有关.联想到公式a3 + + c5 = (a + b + c)(«2 + b2 +c2 -ab-be- ca)+ 3abc , 而(x + 2y- 7z)+(3x - 4y + 6乙)+ (- 4x + 2y+ z)= 0.故原式可分解为3(x + 2y - 7z)(3x - 4y + 6乙)(-4x + 2y + z) ■四、用拆项添项法分解因式在对某些多项式分解因式时,需要对某些项作适当的变形,使其能分组分解,添项和拆项是两种重要的技巧例7分解因式:x3-9x+8.解析多项式有三项,若考虑拆项,有三种选择.注意只有让分解能继续的拆法才是可取的.若考虑添项,式中无二次项,可添加-F + F.解法1将常数项拆成一1+9,原式=/3_9大_] + 9 =疋_1_9(尤_1) = (—1)(疋+尤_8)解法2 将一次项-9兀拆成-x-3x ,原式=X3-X-3X +3=(X3-X)- 8(x-l)=x(x + l)(x-1)-8(x-1) = (x - l)(x: +x-8)解法3 将三次项/拆成9疋-8疋,原式=9X3-8X3-9X +8=(9X3-9X)+(-8X3+8)=9x(x + l)(x-1)-8(x - l)(x2 + x + l)=(X-1)(X2+ X-8)解法4添加-x2+x2,原式=x3 -x2 +x2 -9x+8= X2(X-1)+(X-8)(X-1)= (x-l)(x2 +x-8)点评一题四种解法,可谓“横看成岭侧成峰,左添右拆都成功”.拆项、添项是因式分解中技巧性最强的一种例8己知x2 + x+l = O ,试求X8 + x4 +1的值.解析设法使疋+疋+1变成含x2+x+l的式子,因x8 = (x4)2,可考虑完全平方公式,将十拆成2x4-%4.解原式=^8+2X4+1-X4=(X4+1)-(x2)2 =(x2+x + IX%2 -x + 1)因为疋+"1 = 0,所以原式的值为0.五、利用因式定理分解因式因式定理的内容:如果x=a时,多项式的值为零,即f(a) = 0 ,则/'(x)能被x-a整除,即/(兀)一定有因式x-d・运用因式定理和综合除法可以解决一些较复杂的多项式分解问题.例9 分解因式X4+2?-9X:-2X+8.解析设f(x) = x4 + 2x3-9x2-2x + 3,可知/(1) = 0, /(-1) = 0,因此/⑴有因式(x+l)(x-l),用综合除法可求另外因式.解依题意知y(l) = /(-l) = 0,故/'(x)有因式x-1, x+1,作综合除法:12-9-2811 3 -6 -813-6-80—]—1 — 2 812-80因此f(x) = (x- l)(x + l)(x2 + 2x- 8),则原式=(x- 1)(A-+l)(x一2)(A-+4) •好题妙解】佳题新题品味例1 (2001年呼和浩特市中考题)要使二次三项式x^rnx-6能在整数范围内分解因式,则加可取的整数为.解析该式可用十字相乘法分解.那么m等于一6的两个整因数之和.而—6=lx ( —6) = ( — 1) x6=2x ( —3) = ( —2) x3,因而m 可能的值为一5, 5, —1, 1. 点评本题训练逆向思维及枚举法.例2 (2003年江苏初中竞赛)若a, b, c为三角形三边,则下列关系式中正确的是()A. a2-b2-c2-2bc>QB. a2-b2-c2-2bc = QC. a2-b2-c2-2bc<0D. a2 -b2-c2-2bc<0解析因a' -b1 -c2 -2bc = a2 -(b2 +c2 + 2bc) = a2 -(b + c)1 =(a + b + c)(a-b-c)而在三角形中,a<b+c ,即a~b—c<Q,故选C.点评注意隐含条件:三角形中两边之和大于第三边中考真题欣赏例1 (武汉中考题)分解因式a2-l+b2-2ab= _________________________ .解析将a2 +b2 -2ab作一组恰为(«-b)2与1构成平方差,应填(a—b+1) (a—b—1).例2 (北京朝阳区)分解因式m3-2m2-4m+8.解析第一、二项作一组可提公因式沪,后两项作一组可提公因数4,于是m3 -2nr一4m+3 = m2(m-2)-4(m-2) = (m2一4)(m-2) = (m—2):(m+2).点评分解因式一定分解到不能再分解为止.例3 (1999年北京中考题)多项式x2 + axy + by1 -5x+ y + 6的一个因式是x+y-2,试求d+b的值.解析 利用待定系数法,设原式=(x+y-2)(x+^y-3)展开比较系数得号; 解得 a=~l, b=~2,因此 a+b=—3.竞赛样题展示例1 (江苏省第十七届初中数学竞赛)如果是ax 3+bx 2+l 的一个因式,则b 的值为()A.-2B.-lC.OD.2解析 运用待定系数法,依题可设另一因式为ax-1,比较系数可得b=—2,选A.(23 -1)(33 ~1)(43 -1) - (1003 -1)(23 +1](33 +1J43 +1)---(1003 +1)a 3 -1 _(a ~ 1)3 + a + l) _ fl-1 (a +1)3 +1 (a + 2)(a 2 4-ti + l) a + 2故呼式=(2-1X3-1)…(99-山00,-1) 収 玖 (23 +1)(3 +1X4+ 1)-(100-1)1X 2X 3X (1OO 3-1) 3367 小― (23 +1)x99x100x1015050例3设多项式与多项式F+x-a 有非常数公因式,贝仏= ______________________________ . 解析 0或6.因为(兀3-X-d ) - (F+x-d ) = x (x+l )(x-2),所以,X’-X-d 与 F +兀-4 的公因式必为 X 、兀+1、X-2中的一个.当公因式为x 或x+1时,£7=0;当公因式为X —2时,a = 6.例4 (2003年太原市初中数学竞赛)已知直角三角形的各边长为正整数,它的周长为80.则三边长分 别是 •解析涉及直角三角形问题勾股定理举足轻重! 解 30、 16、 34.设直角三角形的三边长分别为4、b 、c.由题设得a 2+b 2^c 2且a+b+c=80.将 c=SQ-a~b 代入a 2+b 2=c 2,整理得 6400—80a — 80b+ab=3200,即(80—。
七年级数学尖子生培优竞赛专题辅导专题09 因式分解及其运用
![七年级数学尖子生培优竞赛专题辅导专题09 因式分解及其运用](https://img.taocdn.com/s3/m/379eced20b1c59eef9c7b461.png)
专题09 因式分解及其运用专题解读】因式分解是在整式运算的基础上的后续学习内容,因式分解的理论依据就是多项式乘法的“逆”变形。
它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。
因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义. 思维索引例1.已知下列等式:(1)32-12=8,(2)52-32=16,(3)72-52=24,… (1)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立;(2)利用(1)中发现的规律计算:8+16+24+…+792+800.例2.有若干块长方形和正方形硬纸片如图①所示,用若干块这样的硬纸片可以拼成个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个数学等式,例如图②可以得到(a +b )2=a 2+2ab +b 2.小明拼成了如图③的图形,请解答下列问题:(1)根据图中面积关系,写出图③所表示的数学等式 .(2)小明同学打算用x 张边长为a 的正方形,y 张边长为b 的正方形,z 张相邻两边长为分别为a 、b 的长方形纸片拼出了一个面积为(5a +8b )(7a +4b )长方形,那么他总共需要多少张纸片?(3)若小明拼成的图③中的大长方形面积为310cm 2,其中每块小长方形硬纸片的面积为22cm 2,试求该大长方形的周长.图③图②图①aba bbbba aaba素养提升1.下列各式从左到右的变形属于因式分解且分解正确的是( ) A .2(1)(1)1x x x +-=- B .222(2)(2)x y x y x y -=+-C .221(2)1a a a a ++=++D .2244(2)a a a -+-=--2.已知215x kx --能分解成系数为整数的两个一次因式的积,则整数k 的取值有( ) A .4个 B .5个 C .6个 D .7个3.小强是一位密码编译爱好者,在他的密码手册里,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2,a 2-b 2分别对应下列六个字:苏、爱、我、江、游、美,现将222222()()a x y b x y ---因式分解结果呈现的密码信息可能是( ) A .我爱美 B .江苏游 C .我爱江苏 D .美我江苏4.现有一列式子:①225545-;②22555445-;③2255554445-;…,则第⑧个式子的计算结果用科学计数法可表示为( )A .161.111111110⨯B .171.111111110⨯C .271.111111110⨯D .561.111111110⨯5.设N =23x +92y 为完全平方数,且不超过2392,则满足上述条件的一切正数对(x ,y )共有( ) A .13对 B .27对 C .32对 D .36对6.若x 2-5x +b =(x -2)(x -a ),则ab 的值是 .7.已知关于x 的多项式2x 2-11x +m 分解因式后有一个因式是x -3,根据这个条件,则m 的值是 .8.已知x 2+y 2-4x +6y +13=0,则x 2-6xy +9y 2的值是 .9.分解因式231(1)(1)(1)x x x x x x x +++++++,并根据你发现的规律,直接写出多项式211(1)(1)(1)n x x x x x x x -++++++++(n ≥2且n 为正整数)分解因式的结果是 .10.设y =kx ,是否存在实数k ,使得代数式2222222()(4)3(4)x y x y x x y --+-能化简为4?x 若能,则满足条件的k 2的值是 .11.将下列多项式因式分解: (1)2131545n n n a a a +++-; (2)21203456x x -+;(3)22(42(46)4x x x x -+-++); (4)4224a a b b ++.12.在因式分解的学习中,我们采用了构造几何图形的方法研究问题,借助直观、形象的几何模型,加深对因式分解的认识和理解,从中感悟数形结合的思想方法,感悟几何与代数内在的统一性.根据课堂学习的经验,解决下列问题:(1)如图①,边长为(k +3)的正方形纸片,剪去一个边长为k 的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),则这个长方形的面积是 (用含k 的式子表示);(2)有3张边长为a 的正方形纸片,4张边长分别为a 、b (a <b )的长方形纸片,5张边长为b 的正方形纸片,现从其中取出若干张纸片(每种纸片至少取一张),拼成一个正方形(不重叠无缝隙),则所拼成的正方形的边长最长可以为 ;(3)一个大正方形和4个大小完全相同的小正方形按图②,图③两种方式摆放.求图③中,大正方形中未被4个小正方形覆盖部分的面积(用含m 、n 的式子表示).图 ③图 ②图 ①13.拓展创新:已知a ,b ,c 是△ABC 的三边.(1)若满足,a 2+b 2=10a +8b -41,且c 是△ABC 中最长的边,求c 的取值范围; (2)若a 2+2b 2+c 2=2ab +2bc ,请你判断△ABC 的形状? (3)请你直接说明:(a 2+b 2-c 2)2-4a 2b 2<0.14.观察阅读:33212(12)9+=+=;3332123(123)36++=++=;33331234(123+++=++24)100+=;(1)请你写出等式的结果:3333331234510++++++= ; (2)根据上述规律,猜想下列等式的结果,333333312345(1)n n ++++++-+ = ; (3)利用(2)中得到的结论计算: ①333333695760+++++; ②3333135(21)n ++++-15.当我们看到下面这个数字算式333337133724++=37133724++=5061时,大概会觉得算题的人错用了运算法则吧,因为我们知道3333a b c d ++≠a bc d++;但是,如果你动手计算一下,就会发现上式并没有错,不仅如此,我们还可以写出任意多个这种等式:33333132++=3132++,33335253++=5253++,33337374++=7374++,3333107103++=107103++,…你能发现以上等式的规律吗?专题09因式分解及其运用思维索引】例1.(1)(2n +1)2-(2n -1)2=8n ; (2)原式=32-12+52-32+72-52+…+2012-1992=40400 例2.(1)(2a +b )(a +2b )=2a 2+5ab +2b ², (2)那么他总共需要143张纸片.(3)大长方形的周长=2(2a +b +a +2b )=6(a +b )=72(cm). 素养提升】1.D ; 2.A ; 3.C ; 4.B ; 5.B ; 6.8; 7.15; 8.121; 9.(1+x )n ; 10.3或5; 11.(1)3a n (a 2+5a -15); (2)(x -48)(x -72); (3)(x -2)4; (4)()()2222a ab b a ab b ++-+; 12.(1)长方形的面积是(k +3) 2-k 2=6k +9; (2)D ; (3)未被小正方形覆盖部分的面积=22424m n m n mn +-⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭;13.(1)5<c <9; (2)等边三角形; (3)略;14.(1)(1+2+3+…+10)2=552=3025; (2)14n 2(n +1)2; (3)①1190700; ②2n 4-n 2;15.()()()()()()()()22333322()a b a ab b a b a ba ab a a b a a b a a a b a b +-+++==+-+-+---+-;。
第五讲1因式分解培优竞赛专题辅导
![第五讲1因式分解培优竞赛专题辅导](https://img.taocdn.com/s3/m/db4e96ee710abb68a98271fe910ef12d2af9a90e.png)
第五讲1因式分解培优竞赛专题辅导第五讲因式分解培优专题辅导初中数学教材中主要介绍了提公因式法、公式法。
⽽在竞赛上,⼜有⼗字相乘法,分组分解法,换元法,拆项和添减项法,双⼗字相乘法,对称多项式轮换对称多项式法,求根公式法,余数定理法,长除法,除法等。
因式分解⼀些注意点:(1)必须分解到每个因式都不能为⽌,即分解要彻底;(2)结果应该是的形式,(3)如果结果有相同的因式,必须写成的形式;(4)最后结果只有⼩括号;(5)最后结果中多项式⾸项系数为正(例如:()1332--=+-x x x x )。
因式分解⼀般要遵循的步骤:“⼀提⼆⽤三分四查”即先考虑能否提公因式,再考虑能否运⽤公式或⼗字相乘法,最后考虑分组分解法.对于⼀个还能继续分解的多项式因式仍然⽤这⼀步骤反复进⾏.以上步骤可⽤⼝诀概括如下:“⾸先提取公因式,然后考虑⽤公式、⼗字相乘试⼀试,分组分解要合适,四种⽅法反复试,结果应是乘积式”.⼀、因式分解的定义把⼀个多项式公成⼏个整式的积的形式,这种变形叫做把这个多项式。
分解因式与整式乘法的关系:分解因式与整式乘法是的恒等变形。
例1:下列各式从左边到右边的变形,哪些是分解因式,哪些不是?(1))11(22xx x x +=+; (2)3)1(4x 222+-=+-x x (3)22))((n m n m n m -=-+ (4)22)2(44+=++x x x(5))23(232y x x x xy x -=+- (6)32)1)(3(2--=+-x x x x⼆、因式分解的⽅法:(⼀)提公因式法:ab +ac =a (b +c)确定公因式的⽅法(1)系数公因式:应取多项式中各项系数为 ;(2)字母公因式:应取多项式中各项字母为 .常见的两个⼆项式幂的变号规律:①22()()n n a b b a -=-;②2121()()n n a b b a ---=--.(n 为正整数)例2、把下列各式分解因式(1))a 1(-)1(--n a m =(2))2(4)2(3)2(2y x c x y b y x a -----=(3)32)2()2(2x y b y x a -+-=(4)32)3(25)3(15a b b a b -+-=(⼆)、公式法乘法公式逆变形(1)平⽅差公式:22b a -=(2)完全平⽅公式:222b ab a ++= 222-b ab a +=例3.1、如果2592++kx x 是⼀个完全平⽅式,那么k 的值是()A 15B 15±C 30D 30±2、下列多项式,不能运⽤平⽅差公式分解的是()A 、42+-mB 、22y x --C 、122-y xD 、()()22a m a m +-- 例4 :利⽤平⽅差公式进⾏因式分解: ))((22b a b a b a -+=-(1)12-x = (2)2294-b a += (3)22)(16z y x +- =(4)221164a b -= (5)22)2()2(b a b a --+ =(6)4348x - =(7)117218-+-n n x x =(8)4()()2223362a b a b +-- =例5:利⽤完全平⽅公式进⾏因式分解:完全平⽅公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- (1)442+-m m = (2)2269y xy x ++=(3)24x -9162+x = (4)36)(12)(2++-+b a b a =(5)225101x x -+-= (6)222212123m n m n m -+=(三)、***⼗字相乘法:对于⼆次项系数为1的⼆次三项式因式分解⼗字相乘法⼝诀:⾸尾分解,交叉相乘,求和凑中例6:利⽤⼗字相乘法进⾏因式分解:(1)892++x x = (2)、x 2-5x -6=(2)、x 2-5x +6= (4)8652-+x x =(5)3x 2-11xy -14y 2 = (6)6(x+y)2 -7(x+y)-3=(四)、***分组分解法:把⼀个多项式分成⼏组,先对各组分别分解因式,使其能够具有公因式或应⽤公式来分解.这种分解因式的⽅法叫分组分解法.(1)运⽤分组分解因式的关键是要能预见到分组之后能否进⼀步⽤其他⽅法(如提公因式法、公式法等)来分解,难点是恰当地分组.(2)分组分解法不是⼀种独⽴的分解因式的⽅法,⽽且适当的分组也没有固定的形式,但要掌运⽤分组分解法分解因式常⽤以下⼀些⽅法:①分组后能提取公因式;②分组后能运⽤公式;③重新分组例7:运⽤分组分解法分解因式:(⼀)分组后能直接提公因式分解因式1、bc ac ab a -+-2 2、1+--y x xy(三)分组后能直接运⽤公式:分解因式:ay ax y x +--22 2222c b ab a -+-(五)、配⽅法对于某些不能利⽤公式法的多项式,可以将其配成⼀个完全平⽅式,然后再利⽤平⽅差公式,就能将其因式分解,这种⽅法叫配⽅法。
九年级数学竞赛资料专题(二)——因式分解的9种方法
![九年级数学竞赛资料专题(二)——因式分解的9种方法](https://img.taocdn.com/s3/m/4c5a21c4b0717fd5370cdc0c.png)
因式分解的多种方法----知识延伸,向竞赛过度1、提取公因式:这种方法比较常规、简单,必须掌握。
常用的公式:完全平方公式、平方差公式 例一:0322=-x x解:()032=-x x ,01=x ,232=x 这是一类利用因式分解的方程。
总结:要发现一个规律:当一个方程有一个解a x =时,该式分解后必有一个()a x -因式,这对我们后面的学习有帮助。
2、公式法常用的公式:完全平方公式、平方差公式。
注意:使用公式法前,部分题目先提取公因式。
3、十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。
注意:它不难。
这种方法的关键是把二次项系数a 分解成两个因数1a ,2a 的积21a a ⋅,把常数项c 分解成两个因数1c ,2c 的积21c c ⋅,并使1221c a c a +正好是一次项b ,那么可以直接写成结果例二: 把3722+-x x 分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数): 2=1×2=2×1;分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况:经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 原式=(x-3)(2x-1).总结:对于二次三项式()02≠++a c bx ax ,如果二次项系数a 可以分解成两个因数之积,即21a a a =,常数项c 可以分解成两个因数之积,即21c c c =,把1a ,2a ,1c ,2c ,排列如下:1a 1c╳2a 2c1221c a c a +按斜线交叉相乘,再相加,得到1221c a c a +,若它正好等于二次三项式c bx ax ++2的一次项系数b ,即1221c a c a +b =,那么二次三项式就可以分解为两个因式11c x a +与22c x a +之积,即 c bx ax ++2()()2211c x a c x a ++=这种方法要多实验,多做,多练。
第五讲 1因式分解培优竞赛专题辅导
![第五讲 1因式分解培优竞赛专题辅导](https://img.taocdn.com/s3/m/953751012f60ddccda38a08d.png)
第五讲 因式分解培优专题辅导初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有十字相乘法,分组分解法,换元法,拆项和添减项法,双十字相乘法,对称多项式轮换对称多项式法,求根公式法,余数定理法,长除法,除法等。
因式分解一些注意点:(1)必须分解到每个因式都不能 为止,即分解要彻底 ;(2)结果应该是 的形式,(3)如果结果有相同的因式,必须写成 的形式;(4)最后结果只有小括号;(5)最后结果中多项式首项系数为正(例如:()1332--=+-x x x x )。
因式分解一般要遵循的步骤:“一提二用三分四查”即先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.一、因式分解的定义把一个多项式公成几个整式的积的形式,这种变形叫做把这个多项式 。
分解因式与整式乘法的关系:分解因式与整式乘法是 的恒等变形。
例1:下列各式从左边到右边的变形,哪些是分解因式,哪些不是?(1))11(22xx x x +=+; (2)3)1(4x 222+-=+-x x (3)22))((n m n m n m -=-+ (4)22)2(44+=++x x x(5))23(232y x x x xy x -=+- (6)32)1)(3(2--=+-x x x x二、因式分解的方法:(一)提公因式法:ab +ac =a (b +c)确定公因式的方法(1)系数公因式:应取多项式中各项系数为 ;(2)字母公因式:应取多项式中各项字母为 .常见的两个二项式幂的变号规律:①22()()n n a b b a -=-; ②2121()()n n a b b a ---=--.(n 为正整数)例2、把下列各式分解因式(1))a 1(-)1(--n a m =(2))2(4)2(3)2(2y x c x y b y x a -----=(3)32)2()2(2x y b y x a -+-=(4)32)3(25)3(15a b b a b -+-=(二)、公式法乘法公式逆变形(1)平方差公式:22b a -=(2)完全平方公式:222b ab a ++= 222-b ab a +=例3.1、如果2592++kx x 是一个完全平方式,那么k 的值是( )A 15B 15±C 30D 30±2、下列多项式,不能运用平方差公式分解的是( )A 、42+-mB 、22y x --C 、122-y xD 、()()22a m a m +-- 例4 :利用平方差公式进行因式分解: ))((22b a b a b a -+=-(1)12-x = (2)2294-b a += (3)22)(16z y x +- =(4)221164a b -= (5)22)2()2(b a b a --+ =(6)4348x - =(7)117218-+-n n x x =(8)4()()2223362a b a b +-- =例5:利用完全平方公式进行因式分解:完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- (1)442+-m m = (2)2269y xy x ++= (3)24x -9162+x = (4)36)(12)(2++-+b a b a =(5)225101x x -+-= (6)222212123m n m n m -+=(三)、***十字相乘法:对于二次项系数为1的二次三项式因式分解十字相乘法口诀:首尾分解,交叉相乘,求和凑中例6:利用十字相乘法进行因式分解:(1)892++x x = (2)、x 2-5x -6=(2)、x 2-5x +6= (4)8652-+x x =(5)3x 2-11xy -14y 2 = (6)6(x+y)2 -7(x+y)-3=(四)、***分组分解法:把一个多项式分成几组,先对各组分别分解因式,使其能够具有公因式或应用公式来分解.这种分解因式的方法叫分组分解法.(1)运用分组分解因式的关键是要能预见到分组之后能否进一步用其他方法(如提公因式法、公式法等)来分解,难点是恰当地分组.(2)分组分解法不是一种独立的分解因式的方法,而且适当的分组也没有固定的形式,但要掌运用分组分解法分解因式常用以下一些方法:①分组后能提取公因式; ②分组后能运用公式;③重新分组例7:运用分组分解法分解因式:(一)分组后能直接提公因式分解因式1、bc ac ab a -+-2 2、1+--y x xy(三)分组后能直接运用公式:分解因式:ay ax y x +--22 2222c b ab a -+-(五)、配方法 对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。
初中数学竞赛精品标准教程及练习19因式分解
![初中数学竞赛精品标准教程及练习19因式分解](https://img.taocdn.com/s3/m/8e65d9b2a1116c175f0e7cd184254b35eefd1aaf.png)
初中数学竞赛精品标准教程及练习19因式分解因式分解是数学中一个非常重要的概念和方法,它在初中数学竞赛中也是经常出现的题型之一、掌握因式分解的方法对于解题有很大的帮助。
下面是一篇关于因式分解的精品标准教程及练习,共1200字以上。
一、因式分解的概念因式分解是指将一个代数式写成若干个因式的乘积的过程。
通俗地说,就是找到一个式子的“因子”,使得式子能够被“因子”相乘得到。
例如,对于一个简单的算式12=2×2×3,我们可以将12写成2×2×3的形式,这就是因式分解的过程。
二、基本的因式分解方法基本的因式分解方法主要有两种:公因式提取和配方法。
1.公因式提取公因式提取是指将一个代数式中的公因式分解出来。
例如:将4x+12分解为4(x+3)4是4x和12的公因式,x+3是剩余部分。
2.配方法配方法是指将一个代数式按照指定的分法进行拆分,然后再将拆分后的各部分进行因式分解。
例如:将x²+3xy+2y²分解为(x+y)(x+2y)第一步,我们观察到第一项是x²,第二项是3xy,第三项是2y²,我们希望通过拆分得到两个相同的式子,这就需要把x²拆分成两个相同的项,即(x+y)(x+2y)。
三、因式分解的练习题练习1:将6x+9分解为3(2x+3)练习2:将x²-4y²分解为(x+2y)(x-2y)练习3:将3x³-27y³分解为3(x-3y)(x²+3xy+9y²)练习4:将x²+7xy+12y²分解为(x+4y)(x+3y)练习5:将6a²b²c-18a²b²分解为6a²b²(c-3)练习6:将x³+y³分解为(x+y)(x²-xy+y²)练习7:将16x²-40xy+25y²分解为(4x-5y)²练习8:将8x³y+12x²y²分解为4xy(2x²+3xy)以上就是因式分解的精品标准教程及练习,掌握了这些基本的方法和技巧,相信大家能够在初中数学竞赛中取得不错的成绩。
(完整)初中数学竞赛因式分解专题.doc
![(完整)初中数学竞赛因式分解专题.doc](https://img.taocdn.com/s3/m/52470e21daef5ef7bb0d3c63.png)
初中数学竞赛专题——因式分解多式的因式分解是代数式恒等形的基本形式之一,它被广泛地用于初等数学之中,是我解决多数学的有力工具.因式分解方法灵活,技巧性,学些方法与技巧,不是掌握因式分解内容所必需的,而且于培养学生的解技能,展学生的思能力,都有着十分独特的作用.初中数学教材中主要介了提取公因式法、运用公式法、分分解法和十字相乘法.本及下一在中学数学教材基上,因式分解的方法、技巧和用作一步的介.1.运用公式法在整式的乘、除中,我学若干个乘法公式,将其反向使用,即因式分解中常用的公式,例如:(1)a 2-b2=(a+b)(a -b) ;(2)a 2± 2ab+b2=(a ± b) 2;(3)a 3 3 2 2 +b =(a+b)(a -ab+b ) ;(4)a 3 3 2 2 -b =(a -b)(a +ab+b ) .下面再充几个常用的公式:(5)a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;(6)a 3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a -b)(a n-1 +a n-2 b+a n-3b2+⋯ +ab n-2 +b n-1 ) 其中 n 正整数;(8)a n n n-1 n-2b+an-3 2 n-2n-1) ,其中 n 偶数;-b =(a+b)(a -a b -⋯ +ab -b(9)a n+b n=(a+b)(a n-1 -a n-2 b+a n-3 b2 -⋯ -ab n-2+b n-1) ,其中 n 奇数.运用公式法分解因式,要根据多式的特点,根据字母、系数、指数、符号等正确恰当地公式.例 1 分解因式:(1)-2x5n-1 y n+4x3n-1 y n+2-2x n-1 y n+4;(2)x 3-8y3-z3-6xyz ;(3)a 2+b2+c2-2bc+2ca -2ab;7 5 2 2 57(4)a -a b +a b -b .解(1) 原式 =-2x n-1 y n(x 4n-2x2ny2+y4)=-2x n-1 y n[(x 2n) 2 -2x 2ny2+(y 2) 2]=-2x n-1 y n(x 2n-y2) 2n-1 nn 2 n 2=-2x y (x -y) (x +y) .(2) 原式 =x3+( -2y) 3+( -z) 3-3x( -2y)( - Z)=(x -2y-z)(x 2+4y2+z2+2xy+xz -2yz) .(3) 原式 =(a 2 -2ab+b 2)+( -2bc+2ca)+c 21=(a -b) 2+2c(a -b)+c 2=(a -b+c) 2.本小可以稍加形,直接使用公式(5) ,解法如下:原式 =a2+( - b) 2+c2+2( -b)c+2ca+2a( -b)=(a -b+c) 2(4) 原式 =(a 7 5 2 2 5 7 -a b )+(a b -b )=a 5(a 2-b2)+b 5(a 2-b2) =(a 2-b2)(a 5+b5)=(a+b)(a4 3 2 2 3 4 - b)(a+b)(a -a b+a b -ab +b )2 43 2 2 3 4=(a+b) (a - b)(a - a b+a b -ab +b )例2 分解因式: a3+b3+c3-3abc.本上就是用因式分解的方法明前面出的公式(6) .分析我已知道公式(a+b) 3=a3+3a2b+3ab2+b3的正确性,将此公式形3 3 3a +b =(a+b) -3ab(a+b) .个式也是一个常用的公式,本就借助于它来推.3 3解原式 =(a+b) -3ab(a+b)+c -3abc= [ (a+b)3+c 3] -3ab(a+b+c)=(a+b+c) [ (a+b) 2 -c(a+b)+c 2] -3ab(a+b+c)=(a+b+c)(a 2+b2+c2 -ab-bc -ca) .明公式 (6) 是一个用极广的公式,用它可以推出很多有用的,例如:我将公式 (6) 形3 3 3a +b +c -3abc3 3 3;当 a+b+c> 0 3 3 3 3 3 3然,当 a+b+c=0 , a +b +c =3abc , a +b +c -3abc ≥ 0,即 a +b +c ≥3abc,而且,当且当 a=b=c ,等号成立.如果令x=a3≥ 0, y=b3≥ 0, z=c3≥ 0,有等号成立的充要条件是 x=y=z .也是一个常用的.例 3 分解因式: x15 +x14+x13+⋯+x2+x+1.2分析个多式的特点是:有 16 ,从最高次 x15开始, x 的次数次减至 0,由此想到用公式 a n -b n 来分解.解因x16-1=(x -1)(x 15+x14+x 13+⋯ x2+x+1) ,所以明在本的分解程中,用到先乘以(x -1) ,再除以 (x -1) 的技巧,一技巧在等式形中很常用.2.拆、添法因式分解是多式乘法的逆运算.在多式乘法运算,整理、化常将几个同合并一,或将两个符号相反的同相互抵消零.在某些多式分解因式,需要恢复那些被合并或相互抵消的,即把多式中的某一拆成两或多,或者在多式中添上两个符合相反的,前者称拆,后者称添.拆、添的目的是使多式能用分分解法行因式分解.例4 分解因式: x3 -9x+8.分析本解法很多,里只介运用拆、添法分解的几种解法,注意一下拆、添的目的与技巧.解法 1 将常数8 拆成 -1+9.33=(x -1) - 9x+92=(x -1)(x +x+1) -9(x -1)2=(x -1)(x +x-8) .解法 2 将一次 -9x 拆成 -x-8x .原式 =x3-x-8x+83=(x -x)+( -8x+8)=x(x+1)(x -1) -8(x -1)2解法 3 将三次x3拆成 9x3-8x3.原式 =9x 3 3-8x -9x+8=(9x 3 3+8)- 9x)+( -8x2=9x(x+1)(x -1) - 8(x -1)(x+x+1)2=(x -1)(x +x-8) .3解法 4 添加两项 -x 2+x 2. 原式 =x 3 -9x+8322=x -x +x -9x+8 =x 2 (x - 1)+(x -8)(x -1) =(x -1)(x 2+x-8) .说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规, 主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例 5 分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2 -1)+4mn ;(3)(x+1)4+(x 2-1) 2+(x -1) 4;(4)a 3b-ab 3+a 2+b 2 +1.解 (1) 将 -3 拆成 -1-1-1.96 3原式 =x +x +x - 1- 1-1=(x 963-1)+(x -1)+(x -1)=(x 363333-1)(x +x +1)+(x -1)(x +1)+(x-1)=(x 3-1)(x6+2x3+3)=(x -1)(x 2+x+1)(x 6+2x 3+3) . (2) 将 4mn 拆成 2mn+2mn .22原式 =(m -1)(n -1)+2mn+2mn2 222=mn -m-n +1+2mn+2mn2222=(m n +2mn+1)-(m -2mn+n)=(mn+1) 22-(m-n)=(mn+m-n+1)(mn -m+n+1).(3) 将 (x 2-1) 2 拆成 2(x 2-1) 2-(x 2-1) 2.原式 =(x+1) 4+2(x 2222+(x -1) 4 -1) -(x -1)=[ (x+1) 422422+2(x+1) (x -1) +(x -1) ] - (x -1)=[ (x+1) 22222+(x - 1) ] -(x -1)22222+1)(x 2+3) .=(2x +2) -(x - 1) =(3x (4) 添加两项 +ab-ab .332 2原式 =a b-ab +a +b +1+ab-ab=(a 3b- ab 3)+(a 2-ab)+(ab+b 2+1)=ab(a+b)(a -b)+a(a -b)+(ab+b 2+1)42=a(a -b) [ b(a+b)+1]+(ab+b+1)2=[a(a -b)+1](ab+b+1)=(a 2 2+ab+1) .-ab+1)(b说明 (4) 是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式: (x 2+x+1)(x 2+x+2) -12.分析将原式展开,是关于x 的四次多项式,分解因式较困难.我们不妨将x2+x 看作一个整体,并用字母y 来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设 x2+x=y,则原式 =(y+1)(y+2)- 12=y2+3y-10=(y -2)(y+5)=(x2+x-2)(x2+x+5)=(x -1)(x+2)(x2+x+5).说明本题也可将2看作一个整体,比如今2x +x+1 x +x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例 7 分解因式:(x 2+3x+2)(4x 2+8x+3) -90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式 =(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x 2+5x+3)(2x 2+5x+2) -90.令y=2x2+5x+2,则原式 =y(y+1) -90=y 2+y-90=(y+10)(y -9)=(2x 2+5x+12)(2x 2+5x-7)=(2x 2+5x+12)(2x+7)(x -1) .说明对多项式适当的恒等变形是我们找到新元(y) 的基础.例 8 分解因式:(x 2+4x+8)2+3x(x 2+4x+8)+2x 2.解设 x2+4x+8=y ,则5原式 =y2+3xy+2x 2=(y+2x)(y+x)=(x 2+6x+8)(x 2 +5x+8)=(x+2)(x+4)(x 2+5x+8) .说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9 分解因式: 6x4+7x3-36x2-7x+6.解法 1 原式 =6(x 4+1) + 7x(x 2 -1) -36x24 2 2 2 2=6[(x -2x +1)+2x ] +7x(x -1) -36x=6[(x 2 2]+7x(x2 2 - 1)2+2x -1) -36x=6(x 2 2+7x(x2 2 -1) -1) -24x=[2(x 2- 1) -3x][ 3(x 2-1)+8x]=(2x 2 -3x-2)(3x 2+8x-3)=(2x+1)(x -2)(3x -1)(x+3) .2说明本解法实际上是将 x -1 看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法 2原式 =x2 [6(t 2+2)+7t -36]=x2 (6t 2+7t -24)=x 2(2t - 3)(3t+8)=x2 [2(x -1/x) -3][3(x - 1/x)+8]2 2+8x-3)=(2x - 3x-2)(3x=(2x+1)(x -2)(3x -1)(x+3).例10 分解因式: (x 2+xy+y 2) -4xy(x 2+y2 ) .分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令 u=x+y ,v=xy ,用换元法分解因式.解原式 =[(x+y) 2 2 2.令 x+y=u, xy=v ,则-xy] -4xy[(x+y) -2xy]2 2 2原式 =(u -v) -4v(u -2v)=u4-6u2v+9v22 2=(u -3v)6=(x 2+2xy+y 2 -3xy) 2=(x 22 2.-xy+y )7。
初二因式分解奥数竞赛题
![初二因式分解奥数竞赛题](https://img.taocdn.com/s3/m/5f989d74842458fb770bf78a6529647d272834d7.png)
初二因式分解奥数竞赛题引言初二因式分解是数学中的一个重要概念,也是奥数竞赛中常见的考点之一。
通过因式分解,我们可以将复杂的代数表达式简化为更简单的形式,从而更好地理解和处理问题。
本文将介绍初二因式分解奥数竞赛题的相关知识和解题技巧。
基本概念因式分解在代数中,因式分解是将一个多项式表达式表示为若干个乘积形式的过程。
其中每个乘积称为一个因子。
例如,对于多项式表达式2x^2 + 4x,可以进行因式分解为2x(x + 2)。
在这个例子中,2x和(x + 2)就是该多项式的因子。
一元二次方程一元二次方程是指只含有一个未知数,并且该未知数的最高次幂为二次方的方程。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c是已知系数。
例如,对于方程3x^2 - 4x - 4 = 0,可以进行因式分解为(3x + 2)(x - 2) = 0。
在这个例子中,(3x + 2)和(x - 2)就是该方程的因子。
解题技巧查找公因式在进行因式分解时,首先要尝试查找公因式。
公因式是指能够同时整除多个表达式的因子。
例如,对于表达式6x^2 - 9x,可以发现3是6和9的公因子,而x是x^2和x的公因子。
因此,可以将该表达式进行因式分解为3x(2x - 3)。
利用特殊公式有些特殊的代数表达式可以利用特殊公式进行因式分解。
常见的特殊公式包括平方差公式、平方和公式等。
例如,对于表达式a^2 - b^2,可以利用平方差公式进行因式分解为(a + b)(a - b)。
同样地,对于表达式a^2 + b^2,可以利用平方和公式进行因式分解为(a + b)^2 + 2ab + b^2。
分组法在某些情况下,我们可以通过合理地将多项式进行分组来进行因式分解。
例如,对于表达式ax + ay + bx + by,我们可以将其进行分组为(ax + ay) + (bx + by),然后提取公因式得到a(x + y) + b(x + y),最后进行合并得到(a + b)(x+ y)。
初中数学因式分解(含答案)竞赛题精选1
![初中数学因式分解(含答案)竞赛题精选1](https://img.taocdn.com/s3/m/266cba167fd5360cbb1adb31.png)
初中数学因式分解(一)因式分解是代数式恒等变形的基本形式,是解决数学问题的有力工具.是掌握因式分解对于培养学生解题技能,思维能力,有独特作用.1.运用公式法整式乘法公式,反向使用,即为因式分解(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.分解因式,根据多项式字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例2 分解因式:a3+b3+c3-3abc.例3 分解因式:x15+x14+x13+…+x2+x+1.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.例5 分解因式:(1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.例9分解因式:6x4+7x3-36x2-7x+6.例10 分解因式:(x2+xy+y2)-4xy(x2+y2).练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1; (2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.初中数学因式分解(一)答案多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.。
人教版八年级数学竞赛专题复习 因式分解的常用方法(无答案)
![人教版八年级数学竞赛专题复习 因式分解的常用方法(无答案)](https://img.taocdn.com/s3/m/f04e94cbf705cc17552709d6.png)
因式分解的常用方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.【例1】分解因式322x x x -- 解:原式()221x x x =--二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=- 写出结果.【例2】分解因式2244a ab b ++ 解:原式()22a b =+三、分组分解法.(一)分组后能直接提公因式 【例3】分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。
【例4】分解因式:bx by ay ax -+-5102解法一:第一、二项为一组 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --练习1:分解因式255m n mn m +--解:原式()()()()255555m m mn n m m n m m n m =--+=---=--(二)分组后能直接运用公式 【例5】分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
(完整版)因式分解竞赛题
![(完整版)因式分解竞赛题](https://img.taocdn.com/s3/m/86c3154a5022aaea988f0f0c.png)
因式分解【例 1】 分解因式:2222(48)3(48)2x x x x x x ++++++提示:将248x x u ++=看成一个字母,可利用十字相乘【例 2】 (“希望杯”培训试题)分解因式:22(52)(53)12x x x x ++++-【解析】 方法1:将25x x +看作一个整体,设25x x t +=,则方法2:将252x x ++看作一个整体,设252x x t ++=,则方法3:将253x x ++看作一个整体,【巩固】 分解因式:(1)(3)(5)(7)15x x x x +++++ (1)(2)(3)(4)24a a a a ----- 22(1)(2)12x x x x ++++-【例 3】 证明:四个连续整数的乘积加1是整数的平方.【巩固】 若x ,y 是整数,求证:()()()()4234x y x y x y x y y +++++是一个完全平方数.【例 4】 (湖北黄冈数学竞赛题)分解因式2(25)(9)(27)91a a a +---【巩固】 分解因式22(32)(384)90x x x x ++++-【例 5】 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.【巩固】 分解因式:2(2)(2)(1)a b ab a b ab +-+-+-【巩固】 分解因式:21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-【例 6】 (重庆市竞赛题)分解因式:44(1)(3)272x x +-+-练习:1 .分解因式x x 3234+-2.求证:多项式的值一定是非负数3.分解因式:()()()a b c a b b c ++-+-+23334.在∆ABC 中,三边a,b,c 满足a b c ab bc 222166100--++=.求证:a c b +=25.已知:6.若x 为任意整数,求证:()()()7342---x x x 的值不大于100。
七年级数学竞赛讲座:因式分解(含答案详解)
![七年级数学竞赛讲座:因式分解(含答案详解)](https://img.taocdn.com/s3/m/6930ba32182e453610661ed9ad51f01dc2815776.png)
初中数学竞赛辅导资料因式分解甲内容提要和例题我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。
下面再介紹两种方法1.添项拆项。
是.为了分组后,能运用公式(包括配方)或提公因式例1因式分解:①x4+x2+1②a3+b3+c3-3abc①分析:x4+1若添上2x2可配成完全平方公式解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x)②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-ac-bc)例2因式分解:①x3-11x+20②a5+a+1①分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。
(注意这里16是完全平方数)②解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4)=x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5)③分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1=a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1)2.运用因式定理和待定系数法定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a⑵若两个多项式相等,则它们同类项的系数相等。
例3因式分解:①x 3-5x 2+9x -6 ②2x 3-13x 2+3①分析:以x=±1,±2,±3,±6(常数6的约数)分别代入原式,若值为0,则可找到一次因式,然后用除法或待定系数法,求另一个因式。
初中数学竞赛精品标准教程及练习19因式分解
![初中数学竞赛精品标准教程及练习19因式分解](https://img.taocdn.com/s3/m/e749fd1eae45b307e87101f69e3143323968f530.png)
初中数学竞赛精品标准教程及练习19因式分解因式分解是初中数学竞赛中的一个重要内容,也是学生们在数学学习过程中经常遇到的难题之一、因此,我们需要对因式分解进行深入的学习与理解。
一、因式分解的基本概念因式分解是将一个多项式表示成多个较简单的因子相乘的形式。
通常,我们将一个多项式的各项进行因式分解,然后将这些因子相乘,得到多项式的因式分解式。
二、因式分解的方法1.提取公因式法利用公因式分解,将多项式中的各项提取出它们的公因式,得到因式分解式。
2.分组分解法将多项式的各项进行适当的分组,使每组相加的结果具有相同的因子,再进行提取公因式,得到因式分解式。
3.二次平方差公式利用二次平方差公式,将一个二次多项式表示成两个一次多项式相乘的形式,得到因式分解式。
4.判别式法对于二次多项式,我们可以利用判别式来判断其因式分解式是否存在实数根,从而进行因式分解。
5.完全平方公式对于二次多项式,如果其因式分解中含有两个相同的因子,则可以利用完全平方公式进行因式分解。
三、因式分解的练习题1.求以下多项式的因式分解:(1)$2x^2+5x$;(2)$4x^2-12x$;(3)$6x^2-5$;(4)$9x^2-4$。
2.求以下多项式的因式分解:(1)$x^2-5x+6$;(2)$x^2+5x+6$;(3)$x^2-x-2$;(4)$x^2+6x+9$。
3.判断以下多项式的因式分解是否存在实数根:(1)$x^2-7x+12$;(2)$x^2-5x+4$;(3)$x^2-6x+8$;(4)$x^2+4x-1$。
四、因式分解的解题技巧1.在进行因式分解时,可以利用公式或常见的因式进行合理的分解,简化计算过程。
2.对于二次多项式的因式分解,可以先判断是否存在实数根,再利用二次平方差公式进行分解。
3.在进行分组分解法时,要注意各项的分组方式,以及提取公因式的规律。
4.在进行因式分解时,可以利用配方法将多项式表示成较简单的形式,然后再进行因式分解。
竞赛专题-因式分解
![竞赛专题-因式分解](https://img.taocdn.com/s3/m/f078fbd73186bceb19e8bbba.png)
初中数学竞赛辅导 专题一:因式分解 班级 姓名因式分解是中学数学中最重要的恒等变形之一,可以化和为积,因式分解的基本方法有: (1)提公因式法;(2)公式法;(3)分组分解法;即“一提,二套,三分组”因式分解的技巧包括:十字相乘法、双十字相乘法、换元法、添项(拆项)法、待定系数法、利用因式定理分解等.乘法公式: 2222221[()()()]2a b c ab bc ca a b b c c a ++---=-+-+- 33322222213()()()[()()()]2a b c abc a b c a b c ab bc ca a b c a b b c c a ++-=++++---=++-+-+-一、基本方法:1.220091(1)(1)(1)x x x x x x x ++++++++2.分解因式:66a b - 3.分解因式: 326116x x x +++4.分解因式:632827x x -+ 5. (252)(472)(692)(8112)(199419972)(142)(362)(582)(7102)(199319962)⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+6. 444444(34)(74)(394)(54)(94)(414)++++++=类似4444444444(10324)(22324)(34324)(46324)(58324)(4324)(16324)(28324)(40324)(52324)++++++++++=444441111144444444441111144444(2)(4)(6)(8)(10)(1)(3)(5)(7)(9)++++++++++=7. (1)已知3330,0a b c a b c ++=++=,求151515a b c ++的值.(2)33332009200920092009,,a b c d a b c d a b c d +=++=++=+已知求证8.求证:在,m n 都是大于1的整数时,444m n +是合数。
七年级数学尖子生培优竞赛专题辅导第三讲 因式分解的应用(含答案)
![七年级数学尖子生培优竞赛专题辅导第三讲 因式分解的应用(含答案)](https://img.taocdn.com/s3/m/affeef9a6137ee06eef91848.png)
第三讲 因式分解的应用趣题引路】考考你:333311111222231*********++等于多少? 想一想立方和公式,设a =22223,b =11112,a -b =11111,故原式=3333)(b a a b a -++=))(2())((2222b ab a b a b ab a b a +--+-+=b a b a -+2=11112444461111222223-+=3333433335.这是因式分解的魔力!想知道因式分解在哪些方面有用吗?怎样用好这个工具?本讲将告诉你答案.知识拓展】因式分解是代数变形的重要工具.它在数值计算、代数式的化简、恒等式的证明、不定方程、几何证明等方面都有广泛应用.下面举例说明. 一、利用因式分解化简求值例1 若a 是方程x 2-3x +1=0的一个根,试求2a 5-5a 4+2a 3-8a 2+3a 的值.解析 依题意有a 2-3a +1=0,设法弄清所求代数式与a 2-3a +1的联系,通过分解可使原式变成包含a 2-3a +1的代数式.解:∵a 是x ²-3x +1=0的根, ∴a 2-3a +1=0.原式=2a 3(a 2-3a +1)+a 4-8a 2+3a=2a 3(a 2-3a +1)+a 2(a 2-3a +1)+3a (a 2-3a +1) =0.点评:本题也可将a ²-3a =-1反复代入原式化简求之.例2 化简: 200019981998200022-+·420011998199719972-⨯-.解析 式子中出现1997,1998,2000,2001,如设其中一个为x ,则其余三个均用含x 的式子表示,从而将问题转化为含x 的代数式化简问题. 解:设1998=x ,则原式=)43)(2()23)(45(2222-+--+-++x x x x x x x x =)4)(1)(2)(1()2)(1)(4)(1(+--+--++x x x x x x x x =1.点评:这是一种换元的思想.换元时通常取几个数(或式)的算术平均数较为简单.二、利用因式分解证明等式(不等式)例3 设a ,b ,c ,d 满足a ≤b ,c ≤d ,a +b =c +d ≠0,a 3+b 3=c 3+d 3,求证;a =c ,b =d . 解析 由a 3+b 3=c 3+d 3使人想起立方和公式,展开后两边约去a +b 和c +d ,问题简化. 证明:由a 3+b 3=c 3+d 3得(a +b )(a 2-ab +b 2)=(c +d )(c 2-cd +d 2). 由于a +b =c +d ≠0, 故a 2-ab +b 2=c 2-cd +d 2. 配方(a +b )2-3ab =(c +d )2-3cd . 从而ab =cd .于是(a 2-ab +b 2)-ab =(c 2-cd +d 2)-cd . 即(a -b )2=(c -d )2. 而a ≤b ,c ≤d ,故b -a =d -c ,与已知式a +b =c +d 比较得b =d ,a =c .例4 设a 、b 、c 是三角形三条边,求证:a 2-b 2-c 2-2bc <0.解析 利用因式分解将所证不等式左边进行变形从而得到三边的易判断的关系. 证明:∵a 2-b 2-c 2-2bc =a 2-(b +c )2=(a +b +c )(a -b -c ). ∴需证(a +b +c )(a -b -c )<0. 又∵a ,b ,c 是三角形三条边,∴a +b +c >0,a <b +c .∴(a +b +c )(a -b -c )<0,原式得证.三、利用因式分解解方程(组)例5 (2001年北京初二竞赛试题)已知实数x ,y 满足方程组⎪⎩⎪⎨⎧=++=++623222y x y xy x ,则:|x +y +1|= .解析 方程中出现x +y ,xy ,x 2+y 2,使人想到完全平方公式,将x +y 看作整体处理,消去xy ,分解因式得x +y .通常:若ab =0,则a =0或b =0.解:由x 2+y 2=6得(x +y )2=6+2xy . ① 由x +xy +y =2+32得xy =2+32-(x +y ). ② 将②代人①得(x +y )2+2(x +y )-(10+62)=0. 即(x +y )2+2(x +y )-(4+2)(2+2)=0. 故(x +y +4+2)(x +y -2-2)=0. ∴x +y =-4-2或x +y =2+2∴|x +y +1|=3+2.点评:10+62=8+62+2=(4+2)(2+2)很关键.例6 (上海竞赛题)求方程6xy +4x -9y -7=0的整数解.解析 利用整数性质,将方程左边化成两个因式的乘积再分情况讨论. 解:方程可化为 2x (3y +2)-3(3y +2)-1=0, (2x -3)(3y +2)=1.∴⎩⎨⎧=+=-123132y x 或⎩⎨⎧-=+-=-123132y x .解得x =1,y =-1.四、利用因式分解研究整除问题例7 (1999年全国联赛试题)某校在向“希望工程”捐款活动中,甲班的m 个男生和11个女生的捐款总数与乙班的9个男生和n 个女生的捐款总数相等,都是(mn +9m +11n +145)元,已知每人的捐款数相同,且都是整数,求每人的捐款数.解析 涉及整数问题常常要对已知式进行因式分解. 解 依题意mn +9m +11n +145=(m +11)(n +9)+46 可知:(m +11)整除(mn +9m +11n +145), (n +9)整除(mn +9m +11n +145)且m +11=n +9, 故 m +11和n +9均整除46, 而46=46×1=23×2.所以,m +11=n +9=46或m +11=n +9=23 由此可得每人捐款数为47元或25元. 好题妙解】佳题新题品味例1 (江苏第17届初二竞赛试题)已知a ,b ,c 是正整数,a >b ,且a 2-ab -ac +bc =7,则a -c 等于( )A.-1B.-1或-7C.1D.1或7解析 将已知等式分解为(a -b )(a -c )=7,因a >b ,故a -b 和a -c 均为正整数,因而a -c 等于1或7,选D.例2 (2003年太原市竞赛试题)已知m 2+2mn =384,3mn +2n 2=560.则2m 2+13mn +6n 2-444的值是( )A.2001B.2002C.2003D.2004解析 采用局部分解:2m 2+13mn +6n 2-444=2(m 2+2mn )+3(3mn +2n 2)-444=2×384+3×560-444=2004,选D.例3 计算20052-20042+20032-20022+…+32-22= .解析 反复运用平方差公式展开得(2005+2004)×1+(2003+2002)×1+…+(3+2)×1=(20052)20042011014.2+⨯=例4 (2002年黄冈题)观察:1×2×3×4+1=52 2×3×4×5+1=112 3×4×5×6+1=192 …(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2000×2001×2002×2003+1的结果(用一个最简式子表示).解析 注意到给定式子均为四个连续整数之积,右边为完全平方数,且5=1×4+1,11=2×5+1,19=3×6+1…恰好是第一和第四个整数之积加1,第n 个式子应为n (n +3)+1.解 (1)对于自然数n ,有n (n +1)(n +2)(n +3)+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.(2)由(1)得2000×2001×2002×2003+1=(20002+3×2000+1)2=40060012中考真题欣赏例1 (北京)观察下列顺序排列的等式: 9×0+1=1 9×1+2=11 9×2+3=21 9×3+4=31 9×4+5=41 …猜想第n 个等式(n 为正整数)应为 .解析 注意第n 个式子与式子中数字间的关联.9不变,第二个数比n 小1,第三个数等于n ,第四个数为10(n -1)+1,故第n 个式子为:9(n -1)+n =10n -9.例2 (2003年北京崇文区)观察下列每组算式,并根据你发现的规律填空:4520,3618,⨯=⎧⎨⨯=⎩ 5630,4728,⨯=⎧⎨⨯=⎩6742,5840.⨯=⎧⎨⨯=⎩已知122×123=15006,则121×124= .解析 15004,注意到121×124与122×123仅有末位数字不同,因而结果仅末位不同竞赛样题展示例1 (奥林匹克训练题)适合(y -2)x 2+yx +2=0的非负整数对(x 、y )的个数是( ) A.1 B.2 C.3 D.4解析 由题设得y (x 2+x )-2(x ²-1)=0,即(x +1)[yx -2(x -1)]=0 因为x ≥0,故有yx =2(x -1),显然x ≠0,所以x >0,2(1)22x y x x-==-,于是x =1或2,即只有两组解,选B.例2 (2003年全国初中联赛试题)满足等式2003的正整数对(x ,y )的个数是( )A.1B.2C.3D.4解析 由-2003=0可得0=.00.故xy =2003.又因为2003为质数,因此必有12003x y =⎧⎨=⎩ 20031x y =⎧⎨=⎩或 故选B.例3 (希望杯竞赛题)已知n 是正整数,且n 4-16n 2+100是质数,求n 的值. 解析 利用质数的因数只有1和本身,将已知式分解因式讨论求解.解 n 4-16n 2+100=n 4+20n 2+100-36n 2=(n 2+10)2-36n 2=(n 2+6n +10)(n 2-6n +10). 因n 2+6n +10≠1,而n 4-16n 2+100为质数且n 为正整数. 故n 2-6n +10=1,即(n -3)2=0,得n =3.例4 按下面规则扩充新数:已有两数a 、b ,可按规则c =ab +a +b 扩充一个新数,在a 、b 、c 三个数中任取两数,按规则又可扩充一个新数,……,每扩充一个新数叫做一次操作.现有数1和4(1)求按上述规则操作三次得到扩充的最大新数; (2)能否通过上述规则扩充得到新数1999,并说明理由.解析 (1)第一次只能得到1×4+4+1=9,因为要求最大新数,所以,第二次取4和9,得到4×9+4+9=49,同理,第三次取9和49,就得到扩充三次的最大数为499.(2) 因c =ab +a +b =(a +1)(b +1)-1,故c +1=(a +1)(b +1),取数a 、c ,可得新数d =(a +1)(c +1)-1=(a +1)(b +1)(a +1)-1=(a +1)2(b +1)-1,即d +1=(a +1)2(b +1);取数b 、c 同理可得e =(b +1)(c +1)-1=(b +1)(a +1)(b +1)-1,e +1=(b +1)2(a +1).设扩充后的新数为x ,则总可以表示为x +1=(a +1)m ·(b +1)n ,又因1999+1=2000=24×53,故1999可以通过上述规则扩充得到.过关检测】A 级1.已知724-1可被40至45之间的两个整数整除,这两个整数是( ) A.41,48 B.45,47 C.43,48 D.41,472.已知a 、b 、c 、d 为非负整数,且ac +bd +ad +bc =1997,则a +b +c +d = .3.已知两个不同的质数p 、q 满足下列关系:p 2-2001p +m =0,q 2-2001q +m =0,m 是适当的整数,那么p 2+q 2的数值是( )A.4004006B.3996005C.3996003D.40040044.计算3322782278782222+=-⋅+ . 5.求证:对于任何自然数n ,323122n n n ++都是3的倍数.6.已知:x ²-x -1=0,则-x 3+2x 2+2002的值为 .7.设方程x 2-y 2=1993的整数解为,αβ,则αβ= .8.整数a 、b 满足6ab =9a -10b +303,则a +b = .B 级1.设a <b <c <d ,如果x =(a +b )(c +d ),y =(a +c )(b +d ),z =(a +d )(b +c ),那么x 、y 、x 的大小关系为( )A.x <y <zB.y <z<xC.z<x <yD.不能确定2.在方程组33336x y z x y z ++=⎧⎨++=-⎩中x 、y 、z 是互不相等的整数,那么此方程组的解的个数为( ) A.6 B.3 C.多于6 D.少于33.设y =x 4-4x 3+8x 2-8x +5,其中x 为任意数,则y 的取值范围是( ) A.一切数 B.一切正数C.一切大于或等于5的数D.一切大于或等于2的数4.一个自然数a 恰好等于另一个自然数b 的平方,则称自然数a 为完全平方数,如64=82,64就是一个完全平方数,若a =19982+19982×19992+19992,求证:a 是一个完全平方数.5.设a 、b 、c 、d 是4个整数,且使得m =(ab +cd )2-14(a 2+b 2-c 2-d 2)2是个非零整数,求证:m 一定是个合数.6.求证:存在无穷多个自然数k ,使得n 4+k 不是质数.7.解方程组:33323,2().x y z xyz x y z ⎧--=⎪⎨=+⎪⎩()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又∵a, b都是整数,
A级
★★1.分解因式 =___________。
★★2.分解因式 =___________。
★★★3.a, b, c是△ABC的三条边,则代数式 的值=_________。(填大于0,小于0或等于0)。
★★★4.分解因式 。
B级
★★5.方程 的整数解的个数有_______个。
解:原式
★★★例3分解因式
思路1拆常数项2为1+1,再用公式。
解法1原式
思路2拆常数项2为3-1,再分组分解。
解法2原式
思路3拆 再分组分解。
解法3原式
思路4同思路3。
解法4原式
说明:由于合并同类项的结果是唯一的,而反过来的拆项方法则不是唯一的,这就是拆项、添项困难和方法灵活多样的一个原因。
★★★★例4分解因式 。
思路:直接无法分解,观察到原式可变形为 ,故考虑添上中间项,添成完全平方公式。
解:原式
说明:添项法也是一种重要的因式分解方法。
例5分解因式
思路1直接无法分解,把常数项2折成3-1,然后进行分组分解。
解法1原式
思路2拆一次项
解法2原式
思路3添二次项 ,再进行分组分解。
解法3原式
说明:若多项式不能直接进行因式分解时,这时就要对这个多项式进行适当的变形,拆项法、添项法是比较常见的方法。
★★6.若 能被60与70之间的两个整数整除,则这两个数是_____。
★★★7.分解因式 =________。
★★★★8.求证:有无穷多个自然数a,使得数 对于任意自然数n均为合数。
★★9.分解因式 。
参考答案
A级
1. 。
提示:原式=
2. 。
提示:原式=
3.小于0。
提示:原式= ,由a, b, c是△ABC的三条边知 ,故 ,所以原式的值小于0。
4.
简解:原式=
B级
5.4个。
提示:
∵x, y是整数,
解得
6.63与65。
提示:
∴这两上数分别为65和63。
7. ,
提示:原式=
8.设 (k为自然数),则
由k(k为自然数)的任意性,可知有无穷多个自然数a,使Z为合数。
9.注意这是关于a, b, c的四次轮换多项式,显见 是它的三个一次因式,且另外一个因式应是 ,故令
学科:奥数
教学内容:因式分解
【内容综述】
本讲主要介绍因式分解的概念,方法和技巧。
【要点讲解】
1.因式分解的概念和基本要求
把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式,因式分解的基本方法有:提公因式法;运用公式法;分组分解法;十字相乘法,难点是如何灵活的运用这些基本方法。在进行多项式的因式分解时,要注意以下几点:
★★★★例6分解因式
分析若把原式全部展开,则会出现次数高、项数多,从而使我们难于处理,观察到原式中有1+4=2+3,从而得如下的:
解:原式
说明本题中把 看作一个整体,运用十字相乘法来因式分解。
★★★★例7求所有满足 的 , 的整数值。
解:
由 、 是整数,经讨论共有四个解:
★★★例8分解因式
分析注意到这是轮换对称式,可考虑使用因式定理及待定系数法。
解:记 ,
,可见 都是多项式 的因式,又因这是轮换对称式,可知 也是原多项式样的因式,故可令
原式 。
分别取a=0,b=1,c=-1,可解得k=-1,于是原式=-(a-b)(b-c)(c-a)
★★★例9分解因式
分析这是三次多项式的因式分解,可考虑因式定理。
解ቤተ መጻሕፍቲ ባይዱ 是30的因数,经检验可知 故可 是多项式因子,令 =k(x+2)(x+3)(x-5),可解得 ,
且 ,可解得 ,于是
2.例题选讲
★★例1.分解因式 。
思路1用平方差公式。
解法1原式
思路2因为 也可改写成 ,所以也可考虑用立方差公式。
解法2原式=
说明这题启发我们形如 是整数,且 在因式分解时,要通过合适变形后,利用公式法来分解因式,请同学们自己试着分解因式 。
★★例2分解因式 。
思路:观察题目的特征可看出不能直接利用公式或分组分解,这时可先把原式展开进行重新组合。
(1)如果多项式的各项含有公因式,那么要先提出这个公因式,再进一步分解因式。
(2)分解因式时,必须进行到每一个多项式因式都不能再分解为止。
(3)因式分解过程的每一步必须都是恒等变形。
这一部分中,通过一系列的由易到难的题目的解决过程的讲解,同学们不但要体会因式分解的基本方法的灵活运用,而且还将学习到拆项法、添项法等其它的因式分解方法。