数学实验与数学建模实验报告

合集下载

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的和背景本次实验旨在运用数学建模方法,解决一个与实际生活相关的问题。

通过建立数学模型,分析问题,提出解决方案,并通过实验数据验证模型的可行性和准确性。

二、实验内容本次实验的题目是“公司送货员最优路径规划”。

公司有多名送货员需要在城市中进行货物的配送工作。

公司希望通过合理的路径规划,使得送货员能够在最短的时间内完成所有的配送任务。

在实验中,需要考虑的主要因素包括送货员之间的配送范围、道路交通状况、道路长度等。

三、实验步骤1.收集相关数据:收集城市道路网络的地理数据,包括道路长度、道路交通状况等信息。

2.确定目标函数和约束条件:由于目标是使得送货员在最短的时间内完成配送任务,因此可以将送货员的路径总长度作为目标函数,并设置配送时间限制作为约束条件。

3.建立数学模型:根据收集到的数据和确定的目标函数、约束条件,建立数学模型,将问题转化为一个最优化问题。

4.进行求解:使用数学建模常见的求解方法,如遗传算法、模拟退火算法等,对数学模型进行求解,得到最优的路径规划方案。

5.实验验证:将求解得到的路径规划方案应用于实际情境中,通过实践进行验证,观察实际效果与模型预测结果的一致性。

四、实验结果与分析通过对数学模型进行求解,得到了送货员的最优路径规划方案。

将该方案应用于实际情境中,观察实际效果与模型预测结果的一致性。

通过与其他非最优路径规划方案进行对比,可以发现,最优路径规划方案能够使得送货员在最短的时间内完成配送任务,提高工作效率。

五、结论和展望本次实验成功地运用了数学建模方法,解决了公司送货员最优路径规划问题。

通过建立数学模型,可以快速地得到最优的路径规划方案,提高了送货员的工作效率。

未来可以进一步改进模型,考虑更多实际情况,如车辆限行、路况实时变化等因素,提供更加精确和实用的路径规划方案。

总结:本次实验通过对公司送货员最优路径规划问题的建模和求解,展示了数学建模的应用价值和解决问题的能力。

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

A 题 飞机的降落曲线在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。

根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。

如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。

出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。

(1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。

B 题 铅球的投掷问题众所周知,铅球的投掷运动是运动员单手托住7.264kg(16磅)重的铅球在直径为2.135m 的投掷圆内将铅球掷出并且使铅球落入开角为45o 的有效扇形区域内。

以铅球的落地点与投掷圆间的距离度量铅球投掷的远度,并以铅球投掷远度的大小评定运动员的成绩。

在铅球的训练和比赛中,铅球投掷距离的远与近是人们最关心的问题。

而对于教练和运动员最为关心的问题是如何使铅球掷得最远。

影响铅球投掷远度的因素有哪些?建立一个数学模型,将预测的投掷距离表示为初始速度和出手角度的函数。

最优的出手角度是什么?如果在采用你所建议的出手角度时,该运动员不能使初始速度达到最大,那么他应该更关心出手角度还是出手速度?应该怎样折中?哪些是影响远度的主要因素?在平时训练中,应该更注意哪些方面的训练?试通过组建数学模型对上述问题进行分析,给教练和运动员以理论指导。

参考数据资料如下:实验报告:一、问题分析在研究飞机下落过程中,需要分析飞机下降的降落曲线,根据经验应该是一条五次多项式。

以降落点为原点O建立直角坐标系。

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模优秀实验报告

数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。

本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。

二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。

通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。

2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。

通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。

(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。

(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。

(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。

通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。

(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。

针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。

三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。

2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。

数学建模实验报告

数学建模实验报告

数学建模实验报告实验报告:数学建模引言:数学建模是一门独特且灵活的学科,它将现实问题转化为数学模型,并利用数学工具和方法来分析和解决这些问题。

通过实践和研究,我们可以发现数学建模在各个领域都有广泛的应用,如物理学、生物学、经济学等。

本实验报告旨在介绍数学建模的基本理论与方法,并展示一个实际问题的建模与求解过程。

一、数学建模的基本理论与方法1.1模型的建立数学建模的第一步是建立数学模型。

一个好的模型应具备以下要素:准确描述问题的前提条件,明确问题的目标,确定可变参数和约束条件,考虑问题的实际需求。

1.2模型的求解模型的求解是数学建模的核心环节。

根据模型的形式和要求,我们可以选择适合的求解方法,如数值方法(如微积分、线性代数等)和符号计算方法(如差分方程、偏微分方程等)等。

1.3模型的分析与验证在模型求解的基础上,我们需要对模型进行分析和验证。

分析主要是从数学角度研究模型的性质和规律,验证则是将模型的结果与实际数据进行比对,以评估模型的准确性和可靠性。

二、实际问题的建模与求解考虑以下实际问题:公司准备推出一款新产品,为了提高产品的市场竞争力,他们决定在一部分商品上采用价格优惠的策略。

为了确定优惠的程度,他们需要建立一个数学模型来分析不同优惠方案的效果,并选择最优的方案。

2.1模型的建立首先,我们需要明确问题的前提条件和目标。

假设该产品的市场价格为P,成本价格为C,单位销售量为Q。

我们的目标是最大化销售利润。

于是,我们可以建立以下数学模型:利润函数:利润=销售额-成本利润=(P-D)*Q-C其中D为优惠的价格折扣。

2.2模型的求解为了确定最优的优惠方案,我们需要将问题转化为一个数学优化问题。

我们可以选用辅助函数法或拉格朗日乘子法来求解最优值。

在这里,我们选择辅助函数法。

我们将利润函数分别对P和D求偏导数,并令其等于0,得到以下方程组:d(利润)/dP=Q-2D=0d(利润)/dD=P-C=0解这个方程组可以求得最优解P=C,D=Q/22.3模型的分析与验证在分析这个模型之前,我们需要验证模型的准确性。

淮阴工学院数学建模实验报告1

淮阴工学院数学建模实验报告1

淮阴工学学院
数理学院 数学建模与实验课程 实验报告
实验名称 一、Matlab 程序设计与绘图 实验地点 26#114 日期 2012-09-12
姓名 张磊磊 仇素涛 班级 计科1101 学号 1104101130 1104101129 成绩 [1] 熟悉MATLAB 绘图命令;
[2] 掌握MATLAB 图形处理命令。

[3] 掌握MATLAB 语言的几种循环、条件和开关选择结构。

通过该实验的学习,使学生能灵活应用MATLAB 软件解决一些简单问题。

【实验要求】
[1]独立完成各个实验任务;
[2]实验的过程保存成 .m 文件,以备检查;
[3]完成实验报告。

【实验内容】
一、绘图
1、作出分段函数33cos ,0,(),03,9,3x x x h x e x x e x ≤⎧⎪=<≤⎨⎪+-≥⎩
的图形.
2、. 画出曲面
z =
,在xy 平面投影是单位圆,并且去掉该曲面的1/4部分。

二、编程
1. 随机产生一个1到100的45⨯矩阵,编程求出其最大值及其所处的位置.
5、求三角形的面积。

程序要求:
(1) 通过屏幕输入三角形的三条边.
(2) 如果构成三角形, 计算其面积,如果构不成三角形,则在屏幕上显示“不能构成一个三角形,请重新输入三角形的三条边”。

此时,要求重新输入三角形的三条边。

(3) 如果连续3次输入的三角形的三条边都够不成三角形,则在屏幕上显示“你的输入
不合法,程序终止”, 此时终止程序。

《数学建模与数学实验》上机实验报告

《数学建模与数学实验》上机实验报告

成都信息工程大学《数学建模与数学实验》上机实验报告专业信息与计算科学班级姓名学号实验日期成绩等级教师评阅日期[问题描述]下表给出了某一海域以码为单位的直角坐标Oxy 上一点(x,y)(水面一点)以英尺为单位的水深z,水深数据是在低潮时测得的,船的吃水深为5英尺,问在矩形区域(75,200)x (-50,150)里那些地方船要避免进入。

[模型]设水面一点的坐标为(x,y,z),用基点和插值函数在矩形区域(75,200)*(-50,150)内做二维插值、三次插值,然后在作出等高线图。

[求解方法]使用matlab求解:M文件:water.mx=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5];y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.584 -33.5];z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9];cx = 75:0.5:200;cy = -50:0.5:150;[cx,cy]=meshgrid(cx,cy);作出曲面图:代码如下:>> water>> cz=griddata(x,y,z,cx,cy,'cubic');>> meshz(cx,cy,cz)>> xlabel('X'),ylabel('Y'),zlabel('Z')>>作出等高线图:代码如下:>> water>> cz=griddata(x,y,z,cx,cy,'cubic');>> figure(2)>> contour(cx,cy,cz,[-5,-5],'r')>> hold on>> plot(x,y,'*')>> xlabel('X'),ylabel('Y')[结果]插值结果等值图:[结果分析及结论]根据等值图可看出:红色区域为危险区域,所以船只要避免进入。

建模实验报告

建模实验报告

建模实验报告摘要:本实验主要针对建模方法进行研究与探索,分别采用了数学模型、统计模型和物理模型进行建模实验。

实验结果表明,不同的建模方法对于问题的解决和分析具有不同的优势和适用性,选择合适的建模方法能够有效提高问题的解决效率和精确度。

1.引言建模是指将实际问题转化为数学模型、统计模型或物理模型等形式的一种方法。

通过建模,我们可以抽象出实际问题中的关键因素和变量,进一步分析和解决问题。

本实验将重点研究数学模型、统计模型和物理模型的建模方法,并通过实验验证其有效性和适用性。

2.数学模型的建模方法数学模型是以数学的形式描述实际问题的模型。

在本实验中,我们采用了几种常见的数学建模方法,包括代数方程模型、微分方程模型和最优化模型。

2.1 代数方程模型代数方程模型是一种通过代数方程来描述问题的模型。

我们可以采用一系列代数方程来表示问题中的变量和关系,进而通过求解方程组来得到问题的解。

在实验中,我们以一个简单的线性方程组作为例子,通过代数方程模型计算方程组的解。

2.2 微分方程模型微分方程模型是一种通过微分方程来描述问题的模型。

微分方程可以描述问题中的变量和其变化率之间的关系。

在实验中,我们以一个经典的弹簧振动模型为例,通过微分方程模型求解系统的振动频率和振幅。

2.3 最优化模型最优化模型是一种通过寻找最优解来描述问题的模型。

最优化模型可以用于解决各种优化问题,如线性规划、整数规划等。

在实验中,我们以一个简单的线性规划问题为例,通过最优化模型求解问题的最优解。

3.统计模型的建模方法统计模型是一种通过统计理论和方法来描述问题的模型。

在本实验中,我们主要研究了回归分析和时间序列分析两种常见的统计建模方法。

3.1 回归分析回归分析是一种通过建立变量之间的回归关系来描述问题的模型。

在实验中,我们以一个销售数据的回归分析为例,通过建立销售额和广告投入之间的回归关系,预测未来的销售额。

3.2 时间序列分析时间序列分析是一种通过统计和数学方法来描述时间序列的模型。

数学建模装船实验报告

数学建模装船实验报告

一、实验目的通过本次数学建模实验,掌握数学建模的基本步骤和方法,提高运用数学知识解决实际问题的能力。

本次实验以装船问题为背景,分析问题、建立数学模型、求解模型,最终得到最优装船方案。

二、实验内容1. 问题背景某港口码头有一批货物需要装船运输,共有m种货物,每种货物的体积为Vi(立方米),重量为Wi(吨)。

船的载重能力为T(吨),载重体积为V(立方米)。

要求在满足载重和载重体积限制的条件下,使装船的货物总体积最小。

2. 模型假设(1)货物可任意排列,不考虑货物的形状和摆放方式;(2)货物的体积和重量均为已知,且每种货物的体积和重量均小于船的载重体积和载重能力;(3)货物的体积和重量之间成线性关系。

3. 模型构建(1)定义变量:设第i种货物的数量为xi(i=1,2,...,m),则总体积为:S = ∑(Vi xi)总体重为:W = ∑(Wi xi)(2)建立约束条件:载重限制:W ≤ T载重体积限制:S ≤ V(3)目标函数:最小化总体积,即:min S = ∑(Vi xi)4. 模型求解采用遗传算法对模型进行求解。

遗传算法是一种模拟自然界生物进化过程的优化算法,通过迭代优化求解最优解。

(1)初始化种群:随机生成一定数量的染色体,每个染色体代表一种装船方案,包括m种货物的数量。

(2)适应度函数:根据约束条件计算每个染色体的适应度值,适应度值越高表示方案越优。

(3)选择:根据适应度值对染色体进行选择,选择适应度值较高的染色体进入下一代。

(4)交叉:将选中的染色体进行交叉操作,产生新的染色体。

(5)变异:对染色体进行变异操作,增加种群的多样性。

(6)迭代:重复步骤(3)至(5),直到满足终止条件。

5. 结果分析与解释(1)结果分析:通过遗传算法求解得到最优装船方案,包括每种货物的数量。

(2)结果解释:根据最优装船方案,可以计算出每种货物的装船数量,从而实现总体积最小化。

三、实验总结通过本次数学建模实验,我们掌握了数学建模的基本步骤和方法,提高了运用数学知识解决实际问题的能力。

专业数学建模实验[1]

专业数学建模实验[1]

《数学建模与数学实验》实验报告实验1 种群生存模型专业、班级 信息1002 学号 201010010205 姓名 董伟星 课程编号 81010240实验类型 验证性学时2实验(上机)地点 教七楼数学实验中心 完成时间 2012年5月24日任课教师谷根代评分一、实验目的及要求1.掌握数学软件Matlab 的基本用法和一些常用的规则,能用该软件进行编程; 2.能够借助数学软件进行常微分方程初始问题的求解和分析;3.理解种群生存的相互竞争、相互依存和弱肉强食的数学模型和机理。

二、借助数学软件,研究、解答以下问题(一)在两种群的相互竞争模型中,给定1212,,,r r N N ,讨论121212,,σσσσσσ=<>的情况下的竞争结果,并给出解释。

【解】: 有甲乙两个种群,当他们独立在一个自然环境中生存时他们的数量服从Logistic 规律即.12111112.12222212()(1)()(1)x x x t r x N N x xx t r x N N σσ⎧⎪=--⎪⎨⎪=--⎪⎩这里1σ表示单位数量的乙消耗的供养甲的食物量为单位数量甲消耗供养甲的食物数量的1σ的倍,2σ表示单位数量的甲消耗的供养乙的食物量为单位数量乙消耗的供养乙的食物数量的2σ倍,当11>σ表示消耗甲供养的资源中乙消耗的多于甲,即乙的竞争力强于甲,一般可假定121==σσ,211σσ>>,211σσ<<三种情况,令N1=150,N2=200,r1=1,r2=0.5。

当12σσ<时,不妨取6.15.021==σσ,的情况 先定义函数:function dy=jz1(t,x) dy=zeros(2,1);N1=150;N2=200;r1=1;r2=0.5; s1=0.5;s2=1.6;dy(1)=r1*x(1)*(1-x(1)./N1-s1*x(2)./N2); dy(2)=r2*x(2)*(1-s2*x(1)./N1-x(2)./N2); end再调用函数,画出图形:[T,Y]=ode45('jz1',[0 40],[10 40]); subplot(1,2,1)plot(T,Y(:,1),'r*-',T,Y(:,2),'bh'),xlabel('t'),ylabel('x(t)') title('竞争模型(竞争力甲强于乙)'),legend('x1(t)','x2(t)') subplot(1,2,2)plot(Y(:,1),Y(:,2),'r'),title('相轨线的图形') 结果如图所示:结果解释:从数学表达式方面:由上图可知,种群乙数量的变化先增加后减少,开始时种群甲、乙数量都很小,使122121x x N N σ-->0,导致种群乙数量不断增加,在种群甲、乙数量变化过程中一直有121121x x N N σ-->0,所以种群甲数量一直增加,当122121x x N N σ--<0时,种群乙数量减少,最终种群乙灭亡,此时121121x x N N σ--趋近于0,种群甲数量基本不变;从生态学解释:刚开始种群甲、乙数量很少,资源相对充足,种群甲、乙数量增加,由于甲的竞争能力大于乙,所以种群甲的数量增长较快,当增长到一定程度,资源相对种群数量匮乏,竞争能力弱的就会逐渐死亡,竞争能力强的生存下来,最后种群甲的数量相对于资源达到动态平衡。

数学建模全部实验报告

数学建模全部实验报告

一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

2. 提高数学建模能力,培养创新思维和团队合作精神。

3. 熟练运用数学软件进行数据分析、建模和求解。

二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。

请为公司制定招聘计划。

3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。

请建立模型分析居民出行方式选择的影响因素。

三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。

2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。

3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。

4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。

5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。

四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。

(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。

(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。

(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。

(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。

2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。

数学建模 实验报告

数学建模 实验报告
-7.6785
0.5151
-27.0424
14.9336
-1.0552
rint =
-22.6123 32.7016
-29.0151 28.0174
-3.0151 44.6125
-25.5842 31.0708
-41.2961 11.7646
-17.4529 26.8291
-30.9763 25.7415
由于置信水平a=0.05,处理结果p=0.00,p<0.05
R²=0.9747,指因变量Y的97.47%可由模型确定,Y与X1存在二次关系。
,所以得到回归模型:
Y=0.5239+1.7886*X1+0.0302*X1^2;
结果表明年均收入和人寿保险额之间存在二次关系。
接下来处理两个自变量X1,X2对Y是否有交互效应。
序号
y
X1
X2
1
196
66.290
7
2
63
40.964
5
3
252
72.996
10
4
84
45.010
6
5
126
57.204
4
6
14
26.852
5
7
49
38.122
4
8
49
35.840
6
9
266
75.796
9
10
49
37.408
5
11
105
54.376
2
12
98
46.186
7
13
77
46.130
4
14
14
-21.2462 34.3845

数学建模实验报告

数学建模实验报告
{46,0.6180339887498948482},{47,0.6180339887498948482},{48,0.6180339887498948482},
{49,0.6180339887498948482},{50,0.6180339887498948482}}
做散点图为:
观察分析实验结果:n增大或减小时,数列极限结果不变,随k逐渐增大,结果越清晰明了。
小结
函数极限与数列极限的关系(即归结原则):
设f(x)在x0的某空心邻域内有定义,那么在x趋于x0时f(x)的极限存在的充要条件是对任何以x0为极限且含于该空心邻域的数列,当n趋于无穷大时,极限f(xn)都存在且相等。
备注或说明
缺点:实验数据不够多,变量取值应更为多样化,这样才能使结果更为清晰。
总结:通过这项实验,理解到了mathematics的作用。通过变值去研究函数图像,
rn=(5^(1/2)-1)/2-f[i-1]/f[i];Rn=f[i-1]/f[i];dn=f[i-1]/f[i]-f[i-2]/f[i-1];
Print[i," ",rn," ",Rn," ",dn];
t=Table[{i,f[i-1]/f[i]},{i,3,n}]
ListPlot[t]
3、函数极限与数列极限的关系
{8,3.141557608},{9,3.141583892},{10,3.141590463},{11,3.141592106},{12,3.141592517},{13,3.141592619},
{14,3.141592645},{15,3.141592651}}
做散点图为:
——————————————————————————————————————————————

初中数学建模实验报告(3篇)

初中数学建模实验报告(3篇)

第1篇一、实验背景随着科学技术的飞速发展,数学建模作为一种重要的科学研究方法,越来越受到人们的重视。

初中数学建模实验旨在培养学生运用数学知识解决实际问题的能力,提高学生的创新思维和团队协作能力。

本实验以某市居民出行方式选择为研究对象,通过建立数学模型,分析不同因素对居民出行方式的影响。

二、实验目的1. 理解数学建模的基本概念和步骤。

2. 学会运用数学知识分析实际问题。

3. 培养学生的创新思维和团队协作能力。

4. 提高学生运用数学知识解决实际问题的能力。

三、实验方法1. 收集数据:通过网络、调查问卷等方式收集某市居民出行方式选择的相关数据。

2. 数据处理:对收集到的数据进行整理、清洗和分析,为建立数学模型提供依据。

3. 建立模型:根据数据分析结果,选择合适的数学模型,如线性回归模型、多元回归模型等。

4. 模型求解:运用数学软件或编程工具求解模型,得到预测结果。

5. 模型验证:将预测结果与实际数据进行对比,验证模型的准确性。

四、实验过程1. 数据收集:通过问卷调查的方式,收集了500份某市居民的出行方式选择数据,包括出行距离、出行时间、出行目的、出行方式等。

2. 数据处理:对收集到的数据进行整理和清洗,剔除无效数据,得到有效数据490份。

3. 建立模型:根据数据分析结果,选择多元回归模型作为本次实验的数学模型。

4. 模型求解:利用SPSS软件对多元回归模型进行求解,得到以下结果:- 模型方程:Y = 0.05X1 + 0.03X2 + 0.02X3 + 0.01X4 + 0.005X5 + 0.002X6 + 0.001X7 + 0.0005X8- 其中,Y为居民出行方式选择概率,X1至X8分别为出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等自变量。

5. 模型验证:将模型预测结果与实际数据进行对比,结果显示模型具有较高的预测准确性。

五、实验结果与分析1. 模型预测结果:根据模型预测,出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等因素对居民出行方式选择有显著影响。

乘法_数学建模实验报告(3篇)

乘法_数学建模实验报告(3篇)

第1篇一、实验背景数学建模是数学与其他学科交叉的一种研究方法,它通过建立数学模型来描述现实世界中的现象,从而为解决实际问题提供理论依据。

乘法作为基础的数学运算之一,广泛应用于各个领域。

本实验旨在通过数学建模的方法,探讨乘法运算在解决实际问题中的应用,提高学生对数学知识的理解和运用能力。

二、实验目的1. 了解数学建模的基本方法,掌握建立乘法模型的基本步骤。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生对乘法运算的理解和应用水平。

三、实验内容1. 问题提出假设某公司生产一种产品,每件产品成本为20元,售价为30元。

公司计划在一段时间内销售1000件产品,请建立数学模型预测公司在该时间段内的利润。

2. 模型建立(1)定义变量设公司销售产品的数量为x件,则公司获得的利润为y元。

(2)建立关系式根据题意,每件产品的利润为售价减去成本,即10元。

因此,公司销售x件产品的总利润为10x元。

(3)确定模型利润y与销售数量x之间的关系可以表示为:y = 10x。

3. 模型求解(1)确定模型参数根据题意,公司计划销售1000件产品,即x = 1000。

(2)代入参数求解将x = 1000代入模型y = 10x,得到y = 10 × 1000 = 10000。

(3)结果分析通过计算可知,公司在该时间段内的利润为10000元。

4. 模型验证为了验证模型的准确性,我们可以根据实际情况调整销售数量,重新计算利润,并与实际结果进行比较。

四、实验结果与分析通过本实验,我们成功建立了乘法模型,并预测了公司销售产品的利润。

实验结果表明,乘法模型能够有效地解决实际问题,为决策提供理论依据。

五、实验总结1. 数学建模是解决实际问题的重要方法,通过建立数学模型,我们可以将实际问题转化为数学问题,并运用数学知识进行求解。

2. 乘法模型在解决实际问题中具有广泛的应用,我们可以通过乘法模型预测、分析各种现象。

3. 在进行数学建模时,需要注意以下几点:(1)准确理解问题,明确模型的目标和变量。

数学实验与数学建模MATLAB实验报告78

数学实验与数学建模MATLAB实验报告78

数学实验与数学建模MATLAB实验报告78数学实验与数学建模实验报告学院:信息科学与⼯程学院专业班级:姓名:学号:习题七1.求下列微分⽅程的通解(1)x y x y dx dy -+=(2)yxx y y +=cos ' (3)(xcosy+sin2y )y`=1 (4)x ey y y x2cos 3=-'+''(5) x y e y y x 2cos 3'''=-+解:(1)dsolve('Dy=(y+x)/(y-x)','x')(2)dsolve('Dy=cos(y/x)+x/y','x')(3)dsolve('(x*cos(y)+sin(2*y))*Dy=1','x')(4)dsolve('D2y+3*Dy-y=exp(x)*cos(2*x)','x')(5)dsolve('D2y+3*Dy-y=exp(x*cos(2*x))','x')ans=exp(1/2*(-3+13^(1/2))*x)*C2+exp(-1/2*(3+13^(1/2))*x)*C1-1/13*13^(1/2)*(-Int(exp (1/2*x*(3-13^(1/2)+2*cos(2*x))),x)*exp(x*13^(1/2))+Int(exp(1/2*x*(3+13^(1/2)+2*cos(2*x))),x))*exp(-1/2*(3+13^(1/2))*x) 2.求下列初值问题的解(1)==-++-+=10)2(212222y x y y x x dx dy xy xy (2)????===++==V dt dx x x a t t x dt dx n dt x d 000222,02解:(1) dsolve('x^2+2*x*y-y^2+(y^2+2*x*y-x^2)*Dy=0','y(1)=1','x')(2) dsolve('D2x+2*n*Dx+a^2*x=0','x(0)=x0','Dx(0)=V0','t')ans =1/2*(n*x0+(n^2-a^2)^(1/2)*x0+V0)/(n^2-a^2)^(1/2)*exp((-n+(n^2-a^2)^(1/2))*t )-1/2*(n*x0-(n^2-a^2)^(1/2)*x0+V0)/(n^2-a^2)^(1/2)*exp((-n-(n^2-a^2)^(1/2))*t)3.求微分⽅程组=--=++t te y x dtdy e y x dtdx 235的通解.解:[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=exp(2*t)','t')x =-4*exp((-1+15^(1/2))*t)*C2+exp((-1+15^(1/2))*t)*C2*15^(1/2)-4*exp(-(1+15^(1/2))*t)*C1-exp(-(1+15^(1/2))*t)*C1*15^(1/2)+2/11*exp(t)+1/6*exp(2*t) y =exp((-1+15^(1/2))*t)*C2+exp(-(1+15^(1/2))*t)*C1-1/11*exp(t)-7/6*exp(2*t) 4.求下列初值问题的解(1)⽅程组+=+=11x dtdy y dt dx满⾜=-=0)0(2)0(y x 的特解。

数学建模实验报告经典实例

数学建模实验报告经典实例

《数学建模》实验报告计算过程如下, 结果如下:画图程序命令如下:函数图象如下:实验题目二: 编写利用顺序Guass消去法求方程组解的M-函数文件,并计算方程组的解解: M-函数文件如下:方程组的计算结果如下:实验题目三: 编写“商人们安全过河”的Matlab程序解: 程序如下:function foot=chouxiang%%%%%%%%%%%%%%%%%%%%%% 程序开始需要知道商人数, 仆人数, 船的最大容量n=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');if nn>nn=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 决策生成jc=1; % 决策向量存放在矩阵“d”中, jc为插入新元素的行标初始为1for i=0:nnnfor j=0:nnnif (i+j<=nnn)&(i+j>0) % 满足条件D={(u,v)|1<=u+v<=nnn,u,v=0,1,2}d(jc,1:3)=[i,j 1]; %生成一个决策向量后立刻将他扩充为三维(再末尾加“1”)d(jc+1,1:3)=[-i,-j,-1]; % 同时生成他的负向量jc=jc+2; % 由于一气生成两个决策向量,jc指标需要往下移动两个单位endendj=0;end再验证:程序结果说明在改变商人和仆人数目, 其他条件不变的条件下。

可能无法得到结果。

程序结果说明在改变商人和仆人数目,其他条件不变的条件下。

可能无法得到结果。

暑假数学建模社会实践报告

暑假数学建模社会实践报告

暑假数学建模社会实践报告一、实践背景暑假期间,我参加了学校组织的数学建模社会实践活动。

该活动是为了使学生通过实践,真正将数学知识应用于实际生活中,培养学生的实践能力和社会责任感。

我通过实际行动,深入了解了数学建模在社会中的应用,并结合实际情况进行数学建模实践,提高了自己的综合能力。

二、实践过程在实践过程中,我的团队选择了城市交通拥堵问题进行研究和分析。

我们首先搜集了大量的相关资料,了解了交通拥堵的原因和解决方法。

然后,我们运用了数学建模的方法,建立了数学模型,对城市交通拥堵问题进行了研究。

我们首先对城市道路交通流量进行了统计和分析,确定了交通流量的分布规律。

然后,我们分析了交通信号灯的调节方式,通过数学建模的方法,优化了交通信号灯的设置,使交通流量得到了更有效的分配,从而减少了交通拥堵的发生频率和时间。

最后,我们对新的交通信号灯设置方案进行了实际测试,并分析了测试结果。

测试结果表明,新的交通信号灯设置方案能够有效地减少交通拥堵的发生,提高交通效率。

这为城市的交通规划和交通管理提供了有力的参考。

三、实践收获通过这次实践活动,我收获了很多。

首先,我了解了数学建模的基本原理和方法,学会了如何将数学知识应用于实际生活中。

其次,我培养了团队合作精神和独立思考能力,通过与队友合作,分工合作,充分发挥每个人的特长,取得了良好的实践成果。

最后,我增强了自己的实践能力和社会责任感,明白了作为一名数学建模者的重要性和使命感。

四、实践感悟通过这次实践活动,我深刻理解了数学建模在社会中的重要性和应用价值。

数学建模不仅可以帮助我们解决实际问题,提高生活质量,还可以为社会发展提供有力的支持和指导。

同时,我也意识到数学建模需要广泛的知识储备和实践经验,需要不断学习和提高自己的能力。

总结起来,这次暑假数学建模社会实践活动让我收获颇丰。

我通过实践了解了数学建模的理论和实践,锻炼了自己的综合能力和团队合作能力,培养了社会责任感。

我相信,在今后的学习和工作中,我会继续努力,发挥数学建模的优势,为社会的发展做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学实验与数学建模实验报告学院:湘雅医学院专业班级:不告诉你姓名:郝甍学号:完成时间:2012年6月22日承诺书本人承诺所呈交的数学实验与数学建模作业都是本人通过学习自行进行编程独立完成,所有结果都通过上机验证,无转载或抄袭他人,也未经他人转载或抄袭。

若承诺不实,本人愿意承担一切责任。

承诺人:2012年 6 月20 日注意事项如下:1、2012年6月22日(第十八周星期五)之前,将电子文档发送到邮箱:xuanyunqin@(word文档命名:姓名+学号+数学实验作业)2、2012年6月22日(第十八周星期五),将实验报告电子打印稿交到物理楼数学实验室办公室,过时不再受理。

谢谢同学们合作!!!数学实验学习体会(每个人必须要写1500字以上,占总成绩的20%)通过几周的学习,我对MATLAB数学实验与建模有了更生的认识。

我感受到MATLAB强大的运算能力和实用性。

但最深刻的感受就是:要不断地用它。

MATLAB是个好工具,但如果不用他来解决问题,只知道一点语法,那是连皮毛都没有学到的。

还有就是程序设计,对于程序的运行效率非常有帮助。

有的时候,编出来的程序能够运行,但是耗时太长,程序虽然没有错,但是不是和实际应用。

这就需要对程序的结构和算法问题进行改进,要时刻思考多动脑,找到十一的解题途径。

还有就是学习MATLAB要多动手,找一个习题实际操作一下或者找一个实际的程序来动手编一下,才能更好地对MATLAB有所了解,进一步巩固知识。

要在编程的过程中学习,程序需要什么只是再去补充,变成是一点一点积累的,需做一些随手笔记,我就是在这个时候有所懈怠才发懵的。

当然,除了要去用它以外,辅导书可以很大程度上提高我们的知识与技能,通过模仿别人编写的程序,可以大大加快我们掌握它的进度,并且学到一些课堂中所没有的知识.实验一图形的画法1. 做出下列函数的图像:(1))2sin()(22--=xxxxy,22≤≤-x(分别用plot、fplot)(2)22/9/251x y+=(用参数方程)(3) 在同一图形窗口中,画出四幅不同图形(用subplot命令):1cos()y x=,2sin(/2)y x pi=-,23cos()y x x pi=-,sin()4xy e=(]2,0[π∈x)(1)>> x=-2:0.001:2;>> y=x.^2.*sin(x.^2-x-2);>> plot(x,y)>> fplot('x.^2.*sin(x.^2-x-2)',[-2,2])(2)>> t=0:0.001:2*pi;>> x=9*cos(t);>> y=25*sin(t);>> plot(x,y)(3)>> x=0:0.01:2*pi;>> figure(1);>> subplot(2,2,1);>> y1=cos(x);>> plot(y1);>> subplot(2,2,2);>> y2=sin(x-pi/2);>> plot(y2);>> subplot(2,2,3);>> y3=(x.^2).*cos(x-pi);>> plot(y3);>> subplot(2,2,4);>> y4=exp(sin(x));>> plot(y4)2作出极坐标方程为)cos1(2tr-=的曲线的图形.>> t=linspace(-2*pi,2*pi,1000);>> r=2*(1-cos(t));>> plot(r) 图1.1.1 图1.1.2图1.1.33 作出极坐标方程为10/t e r =的对数螺线的图形.>> t=0:0.01:2*pi; >> polar(t,exp(t/10))4 绘制螺旋线⎪⎩⎪⎨⎧===t z t y t x ,sin 4,cos 4在区间[0,π4]上的图形.在上实验中,显示坐标轴名称。

>> t=linspace(0,4*pi,1000); >> x=4*cos(t); >> y=4*sin(t); >> z=t;>> plot3(x,y,z)>> xlabel('x');ylabel('y');zlabel('z') >> grid on5 作出函数22y x xye z ---=的图形.>> x=-3:0.01:3; >> y=x;>> [x,y]=meshgrid(x,y);>> z=-x.*y.*exp(-x.^2-y.^2); >> mesh(x,y,z)6 作出椭球面1194222=++z y x 的图形.(该曲面的参数方程为,cos ,sin sin 3,cos sin 2u z v u y v u x === (ππ20,0≤≤≤≤v u ).)>> syms u v;>> u=0:0.01:pi; >> v=0:0.01:2*pi;>> [u,v]=meshgrid(u,v); >> z=cos(u);>> y=3*sin(u).*sin(v); >> x=2*sin(u).*cos(v); >> mesh(x,y,z)图1.3图1.4图1.57 作双叶双曲面13.14.15.1222222-=-+z y x 的图形.(曲面的参数方程是,csc 3.1,sin cot 4.1,cos cot 5.1u z v u y v u x ===其中参数πππ<<-≤<v u ,20时对应双叶双曲面的一叶, 参数πππ<<-<≤-v u ,02时对应双叶双曲面的另一叶.)>> axis([-15,15,-15,15,-15,15]);>> ezmesh('1.5*cot(u).*cos(v)','1.4*cot(u).*sin(v)','1.3*csc(u)',[0,pi/2,-pi,pi]); >> hold on;>> ezmesh('1.5*cot(u).*cos(v)','1.4*cot(u).*sin(v)','1.3*csc(u)',[-pi/2,0,-pi,pi]);8 作出圆环v z u v y u v x sin 7,sin )cos 38(,cos )cos 38(=+=+=,(πππ22/,2/30≤≤≤≤v u ) 的图形.>> syms u v;>> u=0:0.01:(3*pi)/2; >> v=pi/2:0.01:2*pi; >> [u,v]=meshgrid(u,v); >> z=7*sin(v);>> y=(8+3*cos(v))*sin(u); >> x=(8+3*cos(v))*cos(u); >> mesh(x,y,z)此题有问题,图形不是环状,若将V 换为U ,U 换为V 则可出环状图图 1.7 图1.89 作出球面22222=++z y x 和柱面1)1(22=+-y x 相交的图形. >> syms u v;>> u=0:0.01:2*pi; >> v=0:0.01:2*pi;>> [u,v]=meshgrid(u,v); >> x=2*sin(u).*cos(v); >> y=2*sin(u).*sin(v); >> z=2*cos(u); >> x0=sin(u)+1;>> y0=cos(u)/sqrt(2); >> z0=sin(v); >> mesh(x,y,z); >> hold on;>> surf(x0,y0,z0);10 作出锥面222z y x =+和柱面1)1(22=+-y x 相交的图形. >> syms u v;>> u=0:0.01:2*pi; >> v=0:0.01:2*pi;>> [u,v]=meshgrid(u,v); >> x=sin(u).*sin(v); >> y=sin(u).*cos(v); >> z=sin(u); >> x0=sin(u)+1; >> y0=cos(u); >> z0=sin(v); >> mesh(x,y,z); >> hold on;>> surf(x0,y0,z0)11用动画演示由曲线],0[,sin π∈=z z y 绕z 轴旋转产生旋转曲面的过程. (该曲线绕z 轴旋转所得旋转曲面的方程为,sin 222z y x =+ 其参数方程为])2,0[],,0[(,,sin sin ,cos sin ππ∈∈===u z z z u z y u z x )这题用MATLAB 做不出来吧!?!?!12. 画出变上限函数⎰xdt t t 02sin 及其导函数的图形.>> dt=0.01; >> t=0:dt:5; >> d=0.01; >> t=0:d:5; >> f=t.*sin(t.^2); >> s=dt*cumtrapz(f); >> plot(t,s,'r',t,f,'b')图 1.9图1.10实验二一元函数微分学1. 在命令窗口中键入表达式44222x yz x y x e xy y+=+----,并求1,3x y==时z的值。

>> syms x u z;>> z=x^4+y^4-x^2-exp(x+y)-2*x*y-y^2; >> x=1;y=3;>> zd=eval(z)zd =11.40182.已知多项式532()6251f x x x x=+-+,431()2336g x x x x=+-+,求:(1))(xf的根; (2) )(xg在闭区间[-1,2]上的最小值;(3))()(xgxf+,)()(xgxf⋅和)()(xgxf;(4))(xf的导数。

相关文档
最新文档