2017-2018年河北省衡水中学衡水金卷高二下学期期中考试数学(理)试卷 图片版
河北省衡水市高二下学期期中数学试卷(理科)

河北省衡水市高二下学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)某研究小组在一项实验中获得一组关于y,t之间的数据,将其整理后得到如上的散点图,下列函数中,最能近似刻画y与t之间关系的是()A .B .C .D .2. (2分)已知,且A中至少有一个奇数,则这样的集合A共有()A . 11个B . 12个C . 15个D . 16个3. (2分) (2016高二上·水富期中) 现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A . ①简单随机抽样,②系统抽样,③分层抽样B . ①简单随机抽样,②分层抽样,③系统抽样C . ①系统抽样,②简单随机抽样,③分层抽样D . ①分层抽样,②系统抽样,③简单随机抽样4. (2分)设f(x)=x2﹣2x﹣3(x∈R),则在区间[﹣π,π]上随机取一个实数x,使f(x)<0的概率为()A .B .C .D .5. (2分) (2016高二上·枣阳期中) 在区间[0,2]上随机地取一个数x,则事件“﹣1≤log (x+ )≤1”发生的概率为()A .B .C .D .6. (2分)由一组样本数据(x1 , y1),(x2 , y2),…,(xn , yn),得到回归直线方程 =bx+a,那么下面说法不正确的是()A . 直线 =bx+a至少经过(x1 , y1),(x2 , y2),…,(xn , yn)中的一个点B . 直线 =bx+a必经过()C . 直线 =bx+a的斜率为D . 直线 =bx+a的纵截距为﹣b7. (2分)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A . 1B . 2C . 3D . 48. (2分)已知总体容量为101,若用随机数表法抽取一个容量为20的样本,下面对总体中的个体编号正确的是()A . 1,2,3,…,100,101B . 0,1,2,…,100C . 01,O2,03.…,100,101D . 001,002,…,100,1019. (2分) (2016高二下·宁波期末) 把7个字符1,1,1,A,A,α,β排成一排,要求三个“1”两两不相邻,且两个“A“也不相邻,则这样的排法共有()A . 12种B . 30种C . 96种D . 144种10. (2分)(2017·浙江) 已知随机变量ξi满足P(ξi=1)=pi , P(ξi=0)=1﹣pi , i=1,2.若0<p1<p2<,则()A . E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B . E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C . E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D . E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)11. (2分)如果随机变量§~N(—2,),且P(—3≤§≤—1)=0.4,则P(§≥—1)=()A . 0.7B . 0.6C . 0.3D . 0.212. (2分)已知数列对任意的p,q∈N*满足ap+q=ap+aq ,且a2=-6,那么a10=()A . -165B . -33C . -30D . -21二、填空题 (共4题;共4分)13. (1分) (2016高二下·海南期末) 设p为非负实数,随机变量ξ的分布列为:ξ012P﹣p p则D(ξ)的最大值为________.14. (1分)小明在微信中给朋友发拼手气红包,1毛钱分成三份(不定额度,每份至少1分),若这三个红包被甲、乙、丙三人抢到,则甲抢到5分钱的概率为________.15. (1分) (2016高二下·辽宁期中) 体育老师把9个相同的足球放入编号为1,2,3的三个箱中,要求每个箱子放球的个数不少于其编号,则不同的放球方法有________种.16. (1分) (2018·保定模拟) 甲、乙、丙三个各自独立地做同一道数学题,当他们都把自己的答案公布出来之后,甲说:我做错了; 乙说:丙做对了; 丙说:我做错了.在一旁的老师看到他们的答案并听取了他们的意见后说:“你们三个人中有一个人做对了,有一个说对了.” 请问他们三个人中做对了的是________三、 解答题 (共6题;共60分)17. (10分) (2016高三上·沙市模拟) 某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均课外课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.(1) 请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考公式:,其中n=a+b+c+d.参考数据:P(K2≥k0)0.100.050.0250.0100.0050.001k0 2.706 3.841 5.024 6.6357.87910.828(2)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.18. (15分)为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00~10:00间各自的点击量,得如图所示的统计图,根据统计图:(1)甲、乙两个网站点击量的极差分别是多少?(2)甲网站点击量在[10,50]间的频率是多少?(3)甲、乙两个网站哪个更受欢迎?并说明理由.19. (10分) (2017高二下·夏县期末) 已知的展开式中前三项的系数成等差数列.(1)求的值;(2)求展开式中系数最大的项.20. (5分)(2018·凯里模拟) 某地有一企业2007年建厂并开始投资生产,年份代号为7,2008年年份代号为8,依次类推.经连续统计9年的收入情况如下表(经数据分析可用线性回归模型拟合与的关系):年份代号()789101112131415当年收入(千万元)131418202122242829(Ⅰ)求关于的线性回归方程;(Ⅱ)试预测2020年该企业的收入.(参考公式:,)21. (10分)(2020·甘肃模拟) 2018年1月26日,甘肃省人民政府办公厅发布《甘肃省关于餐饮业质量安全提升工程的实施意见》,卫生部对16所大学食堂的“进货渠道合格性”和“食品安全”进行量化评估.满10分者为“安全食堂”,评分7分以下的为“待改革食堂”.评分在4分以下考虑为“取缔食堂”,所有大学食堂的评分在7~10分之间,以下表格记录了它们的评分情况:(1)现从16所大学食堂中随机抽取3个,求至多有1个评分不低于9分的概率;(2)以这16所大学食堂评分数据估计大学食堂的经营性质,若从全国的大学食堂任选3个,记表示抽到评分不低于9分的食堂个数,求的分布列及数学期望.22. (10分)(2018·榆社模拟) 根据以往的经验,某建筑工程施工期间的降水量(单位:)对工期的影响如下表:根据某气象站的资料,某调查小组抄录了该工程施工地某月前20天的降水量的数据,绘制得到降水量的折线图,如下图所示.(1)根据降水量的折线图,分别求该工程施工延误天数的频率;(2)以(1)中的频率作为概率,求工期延误天数的分布列及数学期望与方差.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、22-1、22-2、。
2017-2018学年高二(下)期中数学试卷(理科)带答案

2017-2018学年高二(下)期中数学试卷(理科)一、填空题:每题5份,共16题,总分80分,请把答案填写在答题卡相应的位置上.1.(5分)复数4+3i的虚部为.2.(5分)排列=.3.(5分)设A={1,2,3},则集合A的子集有个.4.(5分)已知复数Z=i(1﹣i),则复数Z的共轭复数为.5.(5分)复数1+3i的模为.6.(5分)设平面α,β的法向量分别为=(1,2,﹣2),=(﹣3,﹣6,6),则α,β的位置关系为.7.(5分)若Z∈C,且(3+Z)i=1(i为虚数单位),则复数Z=.8.(5分)若向量=(4,2,4),=(6,3,﹣2),则(2﹣3)•(+2)=.9.(5分)已知向量=(2,﹣1,3),=(﹣4,2,x),使⊥成立的x值为.10.(5分)若下列两个方程x2+(a﹣1)x+a2=0,x2+2ax﹣2a=0中至少有一个方程有实数根,则实数a的取值范围是.11.(5分)二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的量两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2,求该二面角的大小.12.(5分)计算+++…+=.13.(5分)已知复数Z满足|Z|=,Z2的虚部是2.设Z,Z2,Z﹣Z2在复平面上的对应点分别为A,B,C,则△ABC的面积为.14.(5分)已知空间四边形ABCD的每条边和对角线的长都等于a,点E,F分别是BC,AD的中点,则•的值为.15.(5分)已知双曲正弦函数shx=和双曲余弦函数chx=与我们学过的正弦函数和余弦函数有许多类似的性质,请类比正弦函数和余弦函数的和角公式,写出双曲正弦或双曲余弦函数的一个类似的正确结论.16.(5分)观察下列等式:①cos2α=2cos2α﹣1;②cos4α=8cos4α﹣8cos2α+1;③cos6α=32cos6α﹣48cos4α+18cos2α﹣1;④cos8α=128cos8α﹣256cos6α+160cos4α﹣32cos2α+1;⑤cos10α=mcos10α﹣1280cos8α+1120cos6α+ncos4α+pcos2α﹣1;可以推测,m﹣n+p=.二、解答题:共8题,共计120分,(17、18题,每题14分;19、20、21、22题,每题15分;23、24题,每题16分).请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.(14分)(1)(﹣2﹣4i)﹣(7﹣5i)+(1+7i)(2)(1+i)(2+i)++(1﹣i)2.18.(14分)实数m为何值时,复数Z=(m2+5m+6)+(m2﹣2m﹣15)i对应的点在:(1)实轴上;(2)在第一象限;(3)直线x+y+4=0上.19.(15分)(1)7位同学站成一排,甲、乙两同学必须相邻的排法共有多少种?(2)7位同学站成一排,甲、乙和丙三个同学都不能相邻的排法共有多少种?(3)7位同学站成一排,甲不站排头,乙不站排尾,不同站法种数有多少种?20.(15分)如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E 是棱CC1上的点,且BE⊥B1C.(1)求CE的长;(2)求证:A1C⊥平面BED;(3)求A1B与平面BDE夹角的正弦值.21.(15分)如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=2AA1,∠ABC=90°,D 是BC的中点.(Ⅰ)求证:A1B∥平面ADC1;(Ⅱ)求二面角C1﹣AD﹣C的余弦值;(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E 点位置,若不存在,说明理由.22.(15分)(1)如果a,b都是正数,且a≠b,求证:+>+(2)设x>﹣1,m∈N*,用数学归纳法证明:(1+x)m≥1+mx.23.(16分)已知数列{a n}的前n项和为S n,且满足a n+S n=2.(1)求数列{a n}的通项公式;(2)求证数列{a n}中不存在三项按原来顺序成等差数列.24.(16分)设函数f(x)=x2e x﹣1﹣x3﹣x2(x∈R).(1)求函数f(x)的单调区间;(2)当x∈(1,+∞)时,用数学归纳法证明:∀n∈N*,e x﹣1>(其中n!=1×2×…×n).参考答案与试题解析一、填空题:每题5份,共16题,总分80分,请把答案填写在答题卡相应的位置上.1.(5分)复数4+3i的虚部为3.【分析】根据复数的概念进行求解即可.【解答】解:复数4+3i的虚部是3,故答案为:3【点评】本题主要考查复数的有关概念,比较基础.2.(5分)排列=6.【分析】根据排列数的定义与公式,计算即可.【解答】解:=3×2=6.故答案为:6.【点评】本题考查了排列数的定义与公式的应用问题,是基础题目.3.(5分)设A={1,2,3},则集合A的子集有8个.【分析】根据集合子集的定义和公式即可得到结论.【解答】解:集合含有3个元素,则子集的个数为23=8个,故答案为:8【点评】本题主要考查集合子集个数的求解,含有n个元素的子集个数为2n个,真子集的个数为2n﹣1个.4.(5分)已知复数Z=i(1﹣i),则复数Z的共轭复数为1﹣i.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:∵复数Z=i(1﹣i)=i+1,则复数Z的共轭复数=1﹣i.故答案为:1﹣i.【点评】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.5.(5分)复数1+3i的模为.【分析】利用复数模的计算公式即可得出.【解答】解:复数1+3i的模==,故答案为:.【点评】本题考查了复数模的计算公式,考查了推理能力与计算能力,属于基础题.6.(5分)设平面α,β的法向量分别为=(1,2,﹣2),=(﹣3,﹣6,6),则α,β的位置关系为α∥β或重合.【分析】利用平面与法向量的关系、向量共线定理即可判断出结论.【解答】解:∵平面α,β的法向量分别为=(1,2,﹣2),=(﹣3,﹣6,6),满足:=﹣3,∴α∥β,或重合故答案为:α∥β或重合.【点评】本题考查了平面与法向量的关系、向量共线定理,考查了推理能力与空间想象能力,属于中档题.7.(5分)若Z∈C,且(3+Z)i=1(i为虚数单位),则复数Z=﹣3﹣i.【分析】利用复数的运算法则即可得出.【解答】解:∵(3+Z)i=1,∴(3+Z)i(﹣i)=﹣i,∴3+Z=﹣i,可得Z=﹣3﹣i.故答案为:﹣3﹣i.【点评】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.8.(5分)若向量=(4,2,4),=(6,3,﹣2),则(2﹣3)•(+2)=2.【分析】由已知条件利用向量坐标运算公式能求出结果.【解答】解:∵向量=(4,2,4),=(6,3,﹣2),∴(2﹣3)•(+2)=﹣3+4﹣6=+﹣6=2+24+6﹣8﹣6=2×6+32﹣6×7=2.故答案为:2.【点评】本题考查向量数量积的求法,是基础题,解题时要认真审题,注意向量坐标运算公式的合理运用.9.(5分)已知向量=(2,﹣1,3),=(﹣4,2,x),使⊥成立的x值为.【分析】利用向量垂直的性质直接求解.【解答】解:∵向量=(2,﹣1,3),=(﹣4,2,x),⊥,∴=﹣8﹣2+3x=0,解得x=.故答案为:.【点评】本题考查满足向量垂直的实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.10.(5分)若下列两个方程x2+(a﹣1)x+a2=0,x2+2ax﹣2a=0中至少有一个方程有实数根,则实数a的取值范围是(﹣∞,﹣2]∪[﹣1,+∞).【分析】先求出当两个方程x2+(a﹣1)x+a2=0和x2+2ax﹣2a=0都没有实数根时a的范围,再取补集,即得所求.【解答】解:当两个方程x2+(a﹣1)x+a2=0和x2+2ax﹣2a=0都没有实数根时,(a﹣1)2﹣4a2<0①,且4a2﹣4(﹣2a)<0 ②.解①求得a<﹣1,或a>,解②求得﹣2<a<0.可得此时实数a的取值范围为(﹣2,﹣1).故当a∈(﹣∞,﹣2]∪[﹣1,+∞)时,两个方程x2+(a﹣1)x+a2=0,x2+2ax﹣2a=0中至少有一个方程有实数根,故答案为:(﹣∞,﹣2]∪[﹣1,+∞).【点评】本题主要考查一元二次方程根的分布与系数的关系,体现了转化的数学思想,属于基础题.11.(5分)二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的量两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2,求该二面角的大小.【分析】将向量转化成=,然后等式两边同时平方表示出向量的模,再根据向量的数量积求出向量,的夹角,即可求出二面角的大小.【解答】解:由条件,知,=.∴||2=62+42+82+2×6×8cos<,>=(2)2,∴cos<,>=﹣,即<,>=120°,∴二面角的大小为60°.【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.(5分)计算+++…+=1﹣.【分析】由于=(n≥2),利用“裂项求和”方法即可得出.【解答】解:∵=(n≥2),∴+++…+=++…+=1﹣,故答案为:1﹣.【点评】本题考查了阶乘的性质、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.13.(5分)已知复数Z满足|Z|=,Z2的虚部是2.设Z,Z2,Z﹣Z2在复平面上的对应点分别为A,B,C,则△ABC的面积为4或1.【分析】写出所给的三个复数的表示式,根据代数形式的表示式写出复数对应的点的坐标,即得到三角形的三个顶点的坐标,求出三角形的面积.【解答】解:设Z=x+yi(x,y∈R),由题意得Z2=(x﹣y)2=x2﹣y2+2xyi∴故(x﹣y)2=0,∴x=y将其代入②得2x2=2,∴x=±1故或故Z=1+i或Z=﹣1﹣i;(2)当Z=1+i时,Z2=2i,Z﹣Z2=1﹣i所以A(1,1),B(0,2),C(1,﹣1)∴当Z=﹣1﹣i时,Z2=2i,Z﹣Z2=﹣1﹣3i,A(﹣1,﹣1),B(0,2),C(﹣1,3),S△ABC=×4×2=4,即△ABC的面积为4或1,故答案为:4或1,【点评】本题考查三角形面积的计算,根据条件先求出复数,结合复数的几何意义求出对应点的坐标是解决本题的关键.14.(5分)已知空间四边形ABCD的每条边和对角线的长都等于a,点E,F分别是BC,AD的中点,则•的值为a2.【分析】利用向量的三角形法则、数量积运算即可得出.【解答】解:如图所示,∵,.∴•==+==.故答案为:.【点评】本题考查了向量的三角形法则、数量积运算,属于基础题.15.(5分)已知双曲正弦函数shx=和双曲余弦函数chx=与我们学过的正弦函数和余弦函数有许多类似的性质,请类比正弦函数和余弦函数的和角公式,写出双曲正弦或双曲余弦函数的一个类似的正确结论ch(x﹣y)=chx•chy﹣shx•shy.【分析】利用双曲正弦函数和双曲余弦函数,验证ch(x﹣y)=chx•chy﹣shx•shy,即可得到结论.【解答】解:∵,=,=,∴ch(x﹣y)=chx•chy﹣shx•shy.故答案为:ch(x﹣y)=chx•chy﹣shx•shy.(填入ch(x+y)=chx•chy+shx•shy,sh(x﹣y)=shx•chy﹣chx•shy,sh(x+y)=shx•chy+chx•shy也可)【点评】本题考查类比推理,考查学生的探究能力,属于基础题型.16.(5分)观察下列等式:①cos2α=2cos2α﹣1;②cos4α=8cos4α﹣8cos2α+1;③cos6α=32cos6α﹣48cos4α+18cos2α﹣1;④cos8α=128cos8α﹣256cos6α+160cos4α﹣32cos2α+1;⑤cos10α=mcos10α﹣1280cos8α+1120cos6α+ncos4α+pcos2α﹣1;可以推测,m﹣n+p=962.【分析】本小题考查三角变换、类比推理等基础知识,考查同学们的推理能力等.观察等式左边的α的系数,等式右边m,n,p的变化趋势,我们不难归纳出三个数的变化规律,进而得到结论.【解答】解:因为2=21,8=23,32=25,…,128=27所以m=29=512;每一行倒数第二项正负交替出现,1×2,﹣2×4,3×6,﹣4×8,5×10,可推算出p=50,然后根据每行的系数和都为1,可得n=﹣400.所以m﹣n+p=962.故答案为:962.【点评】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).二、解答题:共8题,共计120分,(17、18题,每题14分;19、20、21、22题,每题15分;23、24题,每题16分).请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.(14分)(1)(﹣2﹣4i)﹣(7﹣5i)+(1+7i)(2)(1+i)(2+i)++(1﹣i)2.【分析】根据复数的代数运算法则,进行化简运算即可.【解答】(1)解:(﹣2﹣4i)﹣(7﹣5i)+(1+7i)=(﹣2﹣7+1)+(﹣4+5+7)i=﹣8+8i;(2)解:(1+i)(2+i)++(1﹣i)2=(2+3i+i2)++(1﹣2i+i2)=(1+3i)++(﹣2i)=(1+i)+(2+3i)=3+4i.【点评】本题考查了复数的代数运算与应用问题,是基础题目.18.(14分)实数m为何值时,复数Z=(m2+5m+6)+(m2﹣2m﹣15)i对应的点在:(1)实轴上;(2)在第一象限;(3)直线x+y+4=0上.【分析】求出复数对应点的坐标,根据复数的几何意义建立方程或不等式关系进行求解即可.【解答】解:(1)若z对应的点在实轴上,则m2﹣2m﹣15=0,(2分)解得m=﹣3或m=5.(5分)(2)若点在第一象限,则m2+5m+6>0且m2﹣2m﹣15>0(2分)m>5或m<﹣3(5分)(3)复数z对应的点为(m2+5m+6,m2﹣2m﹣15),∵z对应的点在直线x+y+4=0上,∴(m2+5m+6)+(m2﹣2m﹣15)+4=0,(2分)得(5分)【点评】本题主要考查复数的几何意义的应用,根据复数和点的对应关系是解决本题的关键.19.(15分)(1)7位同学站成一排,甲、乙两同学必须相邻的排法共有多少种?(2)7位同学站成一排,甲、乙和丙三个同学都不能相邻的排法共有多少种?(3)7位同学站成一排,甲不站排头,乙不站排尾,不同站法种数有多少种?【分析】对这几个事件不同排法和数的计算,根据分步原理与分类原理直接计算即可.【解答】解(1)先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有A66种方法;再将甲、乙两个同学“松绑”进行排列有A22种方法.所以这样的排法一共有A66A22=1440种.(2)将甲、乙和丙三个同学插入到除甲、乙和丙之外4人全排所形成的5个空中的3个,故有A44A53=1440种.(3)甲站排头,或乙站排尾有2A66﹣A55种不同的排法,∴甲不站排头,且乙不站排尾有:种不同的排法.【点评】本题考查排列、组合及简单计数问题,本题在计数时根据具体情况选用了捆绑法等方法,做题时要注意体会这些方法的原理及其实际意义,属于中档题.20.(15分)如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E 是棱CC1上的点,且BE⊥B1C.(1)求CE的长;(2)求证:A1C⊥平面BED;(3)求A1B与平面BDE夹角的正弦值.【分析】(1)建立空间直角坐标系,求出、,利用•=0,即可求得结论;(2)证明⊥且⊥,可得A1C⊥DB,A1C⊥BE,从而可得A1C⊥平面BED;(3)由(2)知=(﹣2,2,﹣4)是平面BDE的一个法向量,利用向量的夹角公式,即可求A1B与平面BDE夹角的正弦值.【解答】(1)解:如图所示,以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D﹣xyz.∴D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4).设E点坐标为(0,2,t),则=(﹣2,0,t),=(﹣2,0,﹣4).∵BE⊥B1C,∴•=4+0﹣4t=0.∴t=1,故CE=1.(2)证明:由(1)得,E(0,2,1),=(﹣2,0,1),又=(﹣2,2,﹣4),=(2,2,0)∴•=4+0﹣4=0,且•=﹣4+4+0=0.∴⊥且⊥,即A1C⊥DB,A1C⊥BE,又∵DB∩BE=B,∴A1C⊥平面BDE,即A1C⊥平面BED.(3)解:由(2)知=(﹣2,2,﹣4)是平面BDE的一个法向量.又=(0,2,﹣4),∴cos<,>==.∴A1B与平面BDE夹角的正弦值为.【点评】本题考查线线垂直,线面垂直,考查线面角,考查空间向量的运用,考查学生的计算能力,属于中档题.21.(15分)如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=2AA1,∠ABC=90°,D 是BC的中点.(Ⅰ)求证:A1B∥平面ADC1;(Ⅱ)求二面角C1﹣AD﹣C的余弦值;(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E 点位置,若不存在,说明理由.【分析】(Ⅰ)证明线面平行,可以利用线面平行的判定定理,只要证明A1B∥OD即可;(Ⅱ)可判断BA,BC,BB1两两垂直,建立空间直角坐标系,用坐标表示点与向量,求得平面ADC1的法向量、平面ADC的法向量,利用向量数量积可求二面角C1﹣AD﹣C的余弦值;(Ⅲ)假设存在满足条件的点E,根据AE与DC1成60°角,利用向量的数量积,可得结论.【解答】(Ⅰ)证明:连接A1C,交AC1于点O,连接OD.由ABC﹣A1B1C1是直三棱柱,得四边形ACC1A1为矩形,O为A1C的中点.又D为BC中点,所以OD为△A1BC中位线,所以A1B∥OD,因为OD⊂平面ADC1,A1B⊄平面ADC1,所以A1B∥平面ADC1.…(4分)(Ⅱ)解:由ABC﹣A1B1C1是直三棱柱,且∠ABC=90°,故BA,BC,BB1两两垂直.如图建立空间直角坐标系B﹣xyz.设BA=2,则B(0,0,0),C(2,0,0),A (0,2,0),C1(2,0,1),D(1,0,0).所以,设平面ADC1的法向量为=(x,y,z),则有所以取y=1,得=(2,1,﹣2).平面ADC的法向量为=(0,0,1).由二面角C1﹣AD﹣C是锐角,得.…(8分)所以二面角C1﹣AD﹣C的余弦值为.(Ⅲ)解:假设存在满足条件的点E.因为E在线段A1B1上,A1(0,2,1),B1(0,0,1),故可设E(0,λ,1),其中0≤λ≤2.所以,.因为AE与DC1成60°角,所以.即,解得λ=1,舍去λ=3.所以当点E为线段A1B1中点时,AE与DC1成60°角.…(12分)【点评】本题考查线面平行,考查面面角,考查存在性问题的探究,解题的关键是掌握线面平行的判定定理,正确运用向量的方法解决面面角、线线角.22.(15分)(1)如果a,b都是正数,且a≠b,求证:+>+(2)设x>﹣1,m∈N*,用数学归纳法证明:(1+x)m≥1+mx.【分析】(1)方法一,用综合法,即利用作差法;方法二,分析法,两边平方法;(2)要证明当x>﹣1时,(1+x)m≥1+mx,我们要先证明m=1时,(1+x)m≥1+mx成立,再假设m=k时,(1+x)m≥1+mx成立,进而证明出m=k+1时,(1+x)m≥1+mx也成立,即可得到对于任意正整数m:当x>﹣1时,(1+x)m≥1+mx.【解答】(1)证明方法一用综合法+﹣﹣===>0,所以+>+.方法二用分析法要证+>+,只要证++2>a+b+2,即要证a3+b3>a2b+ab2,只需证(a+b)(a2﹣ab+b2)>ab(a+b),即需证a2﹣ab+b2>ab,只需证(a﹣b)2>0,因为a≠b,所以(a﹣b)2>0恒成立,所以+>+成立.(2)证明①当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;②假设当m=k(k≥1,k∈N*)时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,因为x>﹣1,所以1+x>0.于是在不等式(1+x)k≥1+kx两边同时乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x.所以(1+x)k+1≥1+(k+1)x,即当m=k+1时,不等式也成立.综合①②知,对一切正整数m,不等式都成立.【点评】本题考查了综合法和分析法以及数学归纳法证明不等式成立的问题,掌握这些方法的步骤是关键,属于中档题.23.(16分)已知数列{a n}的前n项和为S n,且满足a n+S n=2.(1)求数列{a n}的通项公式;(2)求证数列{a n}中不存在三项按原来顺序成等差数列.【分析】(1)由条件,再写一式,两式相减,可得{a n}是首项为1,公比为的等比数列,从而可求数列{a n}的通项公式;(2)利用反证法,假设存在三项按原来顺序成等差数列,从而引出矛盾,即可得到结论.【解答】(1)解:当n=1时,a1+S1=2a1=2,则a1=1.又a n+S n=2,所以a n+1+S n+1=2,两式相减得a n+1=a n,所以{a n}是首项为1,公比为的等比数列,所以a n=.(2)证明:假设存在三项按原来顺序成等差数列,记为a p+1,a q+1,a r+1(p<q<r,且p,q,r∈N*),则2•=+,所以2•2r﹣q=2r﹣p+1.①又因为p<q<r,所以r﹣q,r﹣p∈N*.所以①式左边是偶数,右边是奇数,等式不成立,所以假设不成立,原命题得证.【点评】本题考查数列递推式,考查数列的通项,考查反证法的运用,考查学生分析解决问题的能力,属于中档题.24.(16分)设函数f(x)=x2e x﹣1﹣x3﹣x2(x∈R).(1)求函数f(x)的单调区间;(2)当x∈(1,+∞)时,用数学归纳法证明:∀n∈N*,e x﹣1>(其中n!=1×2×…×n).【分析】(1)利用导数求函数的单调区间,关键点有二,一是求对导函数,二是解不等式f′(x)>0,得到x的范围,再兼顾函数的定义域,列出当x变化时,f′(x),f(x)的变化情况表,将能很轻松的解答问题;(2)本问根据要证明的不等式:∀n∈N*,e x﹣1>.构造出函数设g n(x)=e x ﹣1﹣,在利用数学归纳法证明出当n∈N*时有假设n=k时不等式成立,即g k (x)=e x﹣1﹣>0,这还要借助于导数来解答.【解答】(1)解:f′(x)=2xe x﹣1+x2e x﹣1﹣x2﹣2x=x(x+2)(e x﹣1﹣1),令f′(x)=0,可得x1=﹣2,x2=0,x3=1.当x变化时,f′(x),f(x)的变化情况如下表:所以函数y=f(x)的增区间为(﹣2,0)和(1,+∞),减区间为(﹣∞,﹣2)和(0,1);(2)证明:设g n(x)=e x﹣1﹣,当n=1时,只需证明g1(x)=e x﹣1﹣x>0,当x∈(1,+∞)时,g1′(x)=e x﹣1﹣1>0,所以g1(x)=e x﹣1﹣x在(1,+∞)上是增函数,所以g1(x)>g1(1)=e0﹣1=0,即e x﹣1>x;当x∈(1,+∞)时,假设n=k时不等式成立,即g k(x)=e x﹣1﹣>0,当n=k+1时,因为g′k+1(x)=e x﹣1﹣=e x﹣1﹣>0,所以g k+1(x)在(1,+∞)上也是增函数.所以g k+1(x)>g k+1(1)=e0﹣>0,即当n=k+1时,不等式成立.由归纳原理,知当x∈(1,+∞)时,∀n∈N*,e x﹣1>.【点评】本题是一道好题,利用导数研究函数的性态是高考常考,重点考查的内容,本题还明确要求利用数学归纳法证明不等式,与本例中具体函数的性质结合紧密,这也是高考考题的新颖设计,在解答本题时要仔细领会其中的深意,将对自己的解题能力水平有很大帮助和提高.。
2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版

2017~2018学年第二学期高二年级期中考试数学(理)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数ii+310对应的点的坐标为( A )A .)3,1(B .)1,3(C .)3,1(-D .)1,3(-2.已知随机变量ξ服从正态分布),(2σμN ,若15.0)6()2(=>=<ξξP P ,则=<≤)42(ξP ( B )A .0.3B .0.35C .0.5D .0.7 3.设)(x f 在定义域内可导,其图象如图所示,则导函数)('x f 的图象可能是( B )4.用反证法证明命题:“若0)1)(1)(1(>---c b a ,则c b a ,,中至少有一个大于1”时,下列假设中正确的是( B )A .假设c b a ,,都大于1B .假设c b a ,,都不大于1C .假设c b a ,,至多有一个大于1D .假设c b a ,,至多有两个大于15.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,从)(*N k k n ∈=到1+=k n 时,等式左边应添加的式子是( B )A .222)1(k k +- B .22)1(k k ++ C .2)1(+k D.]1)1(2)[1(312+++k k6.3名志愿者完成4项工作,每人至少1项,每项由1人完成,则不同的安排方式共有( D )A .12种B .18种C .24种D .36种 7.在62)12(xx -的展开式中,含7x 的项的系数是( D ) A .60 B .160 C .180 D .2408.函数xe xf x2)(=的导函数是( C )A .xe xf 2'2)(= B .x e x f x 2'2)(= C .22')12()(x e x x f x -= D .22')1()(x e x x f x -=9.已知函数223)(a bx ax x x f +++=在1=x 处的极值为10,则数对),(b a 为( C )A .)3,3(-B .)4,11(-C .)11,4(-D .)3,3(-或)11,4(-10.若等差数列}{n a 公差为d ,前n 项和为n S ,则数列}{n S n 为等差数列,公差为2d.类似,若各项均为正数的等比数列}{n b 公比为q ,前n 项积为n T ,则等比数列}{n n T 公比为( C )A.2q B .2q C.q D.n q 11.将3颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率=)|(B A P ( C )A.21691 B.185 C.9160 D.2112.定义在R 上的偶函数)(x f 的导函数为)('x f ,若对任意实数x ,都有2)()(2'<+x xf x f 恒成立,则使1)1()(22-<-x f x f x 成立的实数x 的取值范围为( B )A .}1|{±≠x xB .),1()1,(+∞--∞C .)1,1(-D .)1,0()0,1( - 二、填空题(本大题共4小题,每小题5分,共20分)13.设),(~p n B ξ,若有4)(,12)(==ξξD E ,则=p 2/3 14.若函数32)1(21)(2'+--=x x f x f ,则=-)1('f -1 15.如图所示,阴影部分的面积是 32/316.已知函数)(x f 的定义域为]5,1[-,部分对应值如下表,)(x f 的导函数)('x f y =的图象如图所示,给出关于)(x f 的下列命题:②函数)(x f 在]1,0[是减函数,在]2,1[是增函数; ③当21<<a 时,函数a x f y -=)(有4个零点;④如果当],1[t x -∈时,)(x f 的最大值是2,那么t 的最小值为0. 其中所有正确命题是 ①③④ (写出正确命题的序号).三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)设复数i m m m m z )23()32(22+++--=,试求实数m 的取值,使得 (1)z 是纯虚数; (2)z 对应的点位于复平面的第二象限. 解:(1)复数是一个纯虚数,实部等于零而虚部不等于0分5302303222 =∴⎪⎩⎪⎨⎧≠++=--m m m m m (2)当复数对应的点在第二象限时,分103102303222<<-∴⎪⎩⎪⎨⎧>++<--m m m m m 18.(本小题满分12分) 在数列}{n a 中,已知)(13,2*11N n a a a a n nn ∈+==+(1)计算432,,a a a 的值,并猜想出}{n a 的通项公式; (2)请用数学归纳法证明你的猜想. 解:(1)72123213112=+⨯=+=a a a ,19213,132********=+==+=a a a a a a于是猜想出分5562-=n a n (2)①当1=n 时,显然成立;②假设当)(*N k k n ∈=时,猜想成立,即562-=k a k 则当1+=k n 时,5)1(6216215623562131-+=+=+-⨯-=+=+k k k k a a a k k k , 即当1+=k n 时猜想也成立. 综合①②可知对于一切分12562,*-=∈n a N n n 19.(本小题满分12分)“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望; (2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望. 解:(1)随机变量X 的可能取值为0,1,23821)0(22021505===C C C X P ,3815)1(22011515===C C C X P , 191)2(22001525===C C C X P , 所以随机变量X 的分布列为:分62192381380 =⨯+⨯+⨯=∴EX(2)合格机器人的件数可能是0,1,2,3,相应的不合格机器人的件数为3,2,1,0.所以ξ的可能取值为1,3,有题意知:1122213331319(1)()()()()444416P C C ξ==+=,3333331317(3)()()()()444416P C C ξ==+= 所以随机变量ξ的分布列为:分128163161)( =⨯+⨯=∴ξE 20.(本小题满分12分)编号为5,4,3,2,1的五位学生随意入座编号为5,4,3,2,1的五个座位,每位学生坐一个座位.设与座位编号相同的学生人数是X .(1)试求恰好有3个学生与座位编号相同的概率)3(=X P ; (2)求随机变量X 的分布列及均值.解:(1)恰好有3个学生与座位编号相同,这时另两个学生与座位编号不同,所以分412112010)3(5525 ====A C X P(2)随机变量X 的一切可能值为0,1,2,3,4,5. 且121)3(,00)4(,120112011)5(5555=========X P A X P A X P ; 83120459)1(,61120202)2(55155525========A C X P A C X P301112044)]5()4()3()2()1([1)0(===+=+=+=+=-==X P X P X P X P X P X P 随机变量X 的分布列为故分1211205041236281300)( =⨯+⨯+⨯+⨯+⨯+⨯=X E 21.(本小题满分12分)已知函数)(ln )(R a x ax x f ∈+=(1)若2=a ,求曲线)(x f y =在1=x 处的切线方程; (2)求)(x f 的单调区间;(3)设22)(2+-=x x x g ,若对任意),0(1+∞∈x ,均存在]1,0[2∈x ,使得)()(21x g x f <,求a 的取值范围. 解:(1)2),0(1)('=>+=a x x a x f )0(12)('>+=∴x xx f , 3)1('=∴f , 3=∴k又切点)2,1(,所以切线方程为)1(32-=-x y ,即:013=--y x 故曲线)(x f y =在1=x 处切线的切线方程为分4013 =--y x(2))0(11)('>+=+=x xax x a x f ①当0≥a 时,0)('>x f ,所以)(x f 的单调递增区间为分6),0( +∞②当0<a 时,由0)('=x f ,得ax 1-= 在区间)1,0(a -上0)('>x f ,在区间),1(+∞-a上,0)('<x f . 所以,函数)(x f 的单调递增区间为)1,0(a -,单调递减区间为分8),1( +∞-a(3)由已知,转化为]1,0[,1)1()(,)()(2max max ∈+-=<x x x g x g x f ,2)(max =∴x g 由(2)知,当0≥a 时,)(x f 在),0(+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在23)(33>+=ae e f ,故不符合题意.)当0<a 时,)(x f 在)1,0(a -上单调递增,在),1(+∞-a上单调递减, 故)(x f 的极大值即为最大值,)ln(1)1()(max a af x f ---=-=, 所以2)ln(1<---a ,解得31e a -< 综上:分1213 ea -< 22.(本小题满分12分) 已知函数2()ln(1)f x ax x =++ (1)当14a =-时,求函数()f x 的极值; (2)若函数()f x 在区间[1)+∞,上为减函数,求实数a 的取值范围 (3)当[0)x ∈+∞,时,不等式()f x x ≤恒成立,求实数a 的取值范围. 解:(1))1()1(2)1)(2(1121)('->+-+-=++-=x x x x x x x f 令0)('>x f 得11<<-x ,令0)('<x f 得1>x .)(x f ∴在)1,1(-上是增函数,在),1(+∞上是减函数. 2ln 41)1()(+-==∴f x f 极大值,)(x f 无极小值分4(2)因为函数)(x f 在区间[1)+∞,上为减函数, 所以0112)('≤++=x ax x f 对任意的),1[+∞∈x 恒成立, 即)1(21+-≤x x a 对任意的),1[+∞∈x 恒成立,4121)211(2121)21(21)1(2122-=-+-≥-+-=+-x x x分841-≤∴a(3)因为当[0)x ∈+∞,时,不等式()f x x ≤恒成立, 即0)1ln(2≤-++x x ax 恒成立,令)0()1ln()(2≥-++=x x x ax x g , 转化为0)(max ≤x g 即可.1)]12(2[1112)('+-+=-++=x a ax x x ax x g 当0=a 时,1)('+-=x x x g ,0>x ,0)('<∴x g 即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 当0>a 时,令0)('=x g 得,0=x 或121-=ax 若0121≤-a 即21≥a 时,),0(+∞∈x 有0)('>x g , 则)(x g 在),0[+∞上单调递增,0)0()(=≥g x g ,不满足题设; 若0121>-a 即210<<a 时,)121,0(-∈a x 有0)('<x g ,),121(+∞-∈ax 有0)('>x g , 则)(x g 在)121,0(-a 上单调递减,在),121(+∞-a上单调递增,无最大值,不满足题设; 当0<a 时,0>x ,0)('<∴x g即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 综上:实数a 的取值范围为分12]0,( -∞。
河北省衡水市高二下学期期中数学试卷(理科)

河北省衡水市高二下学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是().A . C4H9B . C4H10C . C4H11D . C6H122. (2分)函数f(x)的图象如图所示,下列数值排序正确的是()A . 0<f′(3)<f′(4)<f(4)﹣f(3)B . 0<f′(3)<f(4)﹣f(3)<f′(4)C . 0<f′(4)<f′(3)<f(4)﹣f(3)D . 0<f(4)﹣f(3)<f′(3)<f′(4)3. (2分) (2017高二下·河口期末) 已知函数则的值为:()A .B . 4C . 2D .4. (2分) (2017高二下·榆社期中) 复数z= 的共轭复数的虚部为()A . ﹣4iB . ﹣4C . 4iD . 45. (2分)不等式|x+3|+|x﹣1|≥a2﹣3a对任意实数x恒成立,则实数a的取值范围为()A . (﹣∞,﹣2]∪[4,+∞)B . [﹣1,4]C . [1,2]D . (﹣∞,1]∪[2,+∞)6. (2分) (2017高二下·西安期中) 已知曲线C:f(x)=x3+1,则与直线垂直的曲线C的切线方程为()A . 3x﹣y﹣1=0B . 3x﹣y﹣3=0C . 3x﹣y﹣1=0或3x﹣y+3=0D . 3x﹣y﹣1=0或3x﹣y﹣3=07. (2分)设函数,则满足的实数a的有()A . 3个B . 2个C . 1个D . 0个8. (2分)(2012·福建) 若复数z满足zi=1﹣i,则z等于()A . ﹣1﹣IB . 1﹣IC . ﹣1+ID . 1+i(x∈R)的导函数,f(0)=1,且,9. (2分) (2017高三上·赣州期末) 设函数f'(x)是函数f(x)则4f(x)>f'(x)的解集为()A .B .C .D .10. (2分) (2016高三上·辽宁期中) 设f(x)是定义在(﹣π,0)∪(0,π)的奇函数,其导函数为f'(x),且,当x∈(0,π)时,f'(x)sinx﹣f(x)cosx<0,则关于x的不等式的解集为()A .B .C .D .11. (2分)某种细菌经60分钟培养,可繁殖为原来的2倍.10个细菌经过7小时培养,细菌能达到的个数是()A . 640B . 1280C . 2560D . 512012. (2分)(2018·枣庄模拟) 已知函数,若有两个零点,则的取值范围是()A .B .C .D .二、填空题 (共4题;共13分)13. (1分)复数z1=cosθ+i,z2=sinθ﹣i,则|z1﹣z2|的最大值为________.14. (1分)已知函数f(x)=x3+2xf′(﹣1),则函数f(x)在区间[﹣2,3]的值域是________.15. (1分) (2015高二下·郑州期中) (﹣2x)dx=________.16. (10分) (2018高三上·重庆月考) 已知函数.(1)解不等式;(2)已知,若关于x的不等式恒成立,求实数a的取值范围.三、解答题: (共6题;共50分)17. (5分) (2019高二下·宁夏月考) 已知复数其中i为虚数单位.(Ⅰ)当实数m取何值时,复数z是纯虚数;(Ⅱ)若复数z在复平面上对应的点位于第四象限,求实数m的取值范围.18. (10分)(2019·长沙模拟) 设函数 .(1)求函数的极值点个数;(2)若,证明 .19. (5分)(2017·盐城模拟) 已知a,b,c为正实数,且a+b+c=3,证明: + + ≥3.20. (10分) (2017高二下·邯郸期末) 已知f(x)=ax2﹣2lnx,x∈(0,e],其中e是自然对数的底.(1)若f(x)在x=1处取得极值,求a的值;(2)求f(x)的单调区间.21. (10分) (2016高二下·威海期末) 已知数列{an}满足(an+1﹣1)(an﹣1)= (an﹣an+1),a1=2,若bn= .(1)证明:数列{bn}是等差数列;(2)令cn= ,{cn}的前n项和为Tn,用数学归纳法证明Tn≥ (n∈N*).22. (10分)(2018·商丘模拟) 已知函数 .(1)如图,设直线将坐标平面分成四个区域(不含边界),若函数的图象恰好位于其中一个区域内,判断其所在的区域并求对应的的取值范围;(2)当时,求证:且,有 .参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共13分)13-1、14-1、15-1、16-1、16-2、三、解答题: (共6题;共50分) 17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、。
2017-2018学年河北省衡水中学高二下期末考试复习卷数学(文)试题(解析版)

2017-2018学年河北省衡水中学高二下期末考试复习卷数学(文)试题(解析版)一、单选题1.已知集合2{|230}A x x x =--≤,(){|ln 2}B x y x ==-,则A B ⋂=( ) A. ()13, B. (]13, C. [)12-, D. ()12-, 【答案】C【解析】由题意可得:{}|13A x x =-≤≤,{}|2B x x =<,结合交集的定义可得:{}|12A B x x ⋂=-≤<,表示为区间的形式即:[)1,2-. 本题选择C 选项.2.如图,已知AB a = ,AC b = ,4BC BD = ,3CA CE = ,则DE =( )A. 3143b a -B.53124a b - C. 3143a b - D. 53124b a -【答案】D【解析】由题意可得:()3344DC BC b a ==- ,1133CE CA b ==-,则:()315343124DE DC CE b a b b a =+=--=- .本题选择D 选项.3.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则Sn a n=( )A. 4n −1B. 4n −1C. 2n −1D. 2n −1 【答案】D【解析】试题分析:设等比数列{a n }的公比为q ,则a 1(1+q 2)=52a 1q (1+q 2)=54,解得 a 1=2q =12,∴S n a n =a 1(1−q n )1−q a 1q n −1=2×(1−12n )1−122×(12)n −1=2n −1.故选D .【考点】1、等比数列的通项公式;2、等比数列的前n 项和公式.4.某校有高级教师90人,一级教师120人,二级教师75人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为( ) A. 10 B. 12 C. 16 D. 18 【答案】C【解析】根据分层抽样性质,设抽取的一级教师人数为m ,则120901207538m=++,解得16m =,故选择C.5.已知不等式2201x m x ++>-对一切()1x ∈+∞,恒成立,则实数m 的取值范围是( )A. 6m >-B. 6m <-C. 8m >-D. 8m <- 【答案】A【解析】不等式即:21221111m x x x x ⎛⎫>--=--++ ⎪--⎝⎭恒成立, 则max 221m x x ⎛⎫>-- ⎪-⎝⎭结合1x >可得:10x ->,由均值不等式的结论有:12112161x x ⎛⎫⎛⎫--++≤-=- ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当且仅当2x =时等号成立,据此可得实数m 的取值范围是6m >-. 本题选择A 选项.点睛:对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ; (2)a ≤f (x )恒成立⇔a ≤f (x )min .6.已知函数()cos2f x x x =-的图象在区间0,3a ⎡⎤⎢⎥⎣⎦和42,3a π⎡⎤⎢⎥⎣⎦上均单调递增,则正数a 的取值范围是( )A. 5,612ππ⎡⎤⎢⎥⎣⎦B.5,12ππ⎡⎤⎢⎥⎣⎦ C. ,4ππ⎡⎤⎢⎥⎣⎦ D. 2,43ππ⎡⎤⎢⎥⎣⎦【答案】B【解析】()cos22sin 26f x x x x π⎛⎫=-=- ⎪⎝⎭,由222262k x k πππππ-≤-≤+,得63k x k ππππ-≤≤+,因为在区间0,3a ⎡⎤⎢⎥⎣⎦和42,3a π⎡⎤⎢⎥⎣⎦上均单调递增, 533{51226a a a ππππ≤⇒≤≤≥7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A. 12B. 18C. 24D. 30【答案】C【解析】如图还原几何体,A C=3,A B=4,A A′=5,红色线表示削下去的部分,剩下的蓝色的线为三视图的几何体,∠C A B=900,所以几何体的体积是V=12×3×4×5−13×12×3×4×3=24,故选C.8.执行如图所示的程序框图,若输入的16,4a b==,则输出的n=()A. 4B. 5C. 6D. 7 【答案】B【解析】 执行该程序框图,可知第1次循环:1161624,248,22a b n =+⨯==⨯==;第2次循环:1242436,2816,32a b n =+⨯==⨯==;第3次循环:1363654,21632,42a b n =+⨯==⨯==;第4次循环:1545481,23264,52a b n =+⨯==⨯==;第5次循环:12438181,26412822a b =+⨯==⨯=, 此时a b ≤成立,输出结果5n =,故选B.9.已知函数()2x xe ef x --=,1x 、2x 、3x R ∈,且120x x +>,230x x +>,310x x +>,则()()()123f x f x f x ++的值(______)A.一定等于零.B.一定大于零.C.一定小于零.D.正负都有可能.【答案】B【解析】由已知可得()f x 为奇函数,且()f x 在R 上是增函数,由12120x x x x +>⇒>-⇒()()()122f x f x f x >-=-,同理可得()()23f x f x >-,()()()()3112f x f x f x f x >-⇒+()()()()()()()()32311230f x f x f x f x f x f x f x +>-++⇒++>.【点睛】本题考查函数的奇偶性和单调性,涉及函数与不等式思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性强,属于较难题型.由已知可得()f x 为奇函数,且是增函数,由12120x x x x +>⇒>-()()()122f x f x f x ⇒>-=-,同理可得()()23f x f x >-,()()31f x f x >-,三式相加化简即可得正解.10.已知点()M a b ,与点()01N -,在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,a b +有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是9344⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,, 正确的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】将N 点坐标代入直线方程有:04590++=>, 据此由M 点的坐标可得:3450a b -+<,说法①错误;当a>0时,结合3450a b -+<可得354a b +>,则35544a ab a ++>+>,a+b 既无最小值,也无最大值,故②错误; 很明显点N 与坐标原点位于直线的同侧,设原点到直线3x−4y+5=0的距离为d,则1d ==,而点M 与坐标原点位于直线的异侧,故221a b +>,说法③正确;当a>0且a≠1时,11b a +-表示点M(a,b)与P(1,−1)连线的斜率,如图所示: 当a=0,54b =时,1914b a +=--,又直线3x−4y+5=0的斜率为34, 故11b a +-的取值范围是9344⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,,,故④正确。
2017-2018学年高二下学期期中考试数学(理)试题 word版含答案

2017-2018学年度高二年级期中考试数学(理科)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设正弦函数y =sinx 在x =0和x =π2附近的瞬时变化率为k1、k2,则k1、k2的大小关系为( )A .k1>k2B .k1<k2C .k1=k2D .不确定2.命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,使得20x <B .不存在x R ∈,使得20x <C .存在0x R ∈,都有200x ≥D .存在0x R ∈,都有200x <3.设z 是复数,则下列命题中的假命题是( )A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <4.一物体以速度v =(3t2+2t)m/s 做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A .31mB .36mC .38mD .40m5.3.复数31iz i +=-(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.对于命题p 和q ,若p 且q 为真命题,则下列四个命题:①p 或¬q 是真命题;②p 且¬q 是真命题;③¬p 且¬q 是假命题;④¬p 或q 是假命题.其中真命题是( )A .①②B .③④C .①③D .②④7.三次函数f(x)=mx3-x 在(-∞,+∞)上是减函数,则m 的取值范围是( )A .m<0B .m<1C .m≤0D .m≤18.已知抛物线y =-2x2+bx +c 在点(2,-1)处与直线y =x -3相切,则b +c 的值为( )A .20B .9C .-2D .29.设f(x)=cos 2tdt ,则f =( )A.1B.sin 1C.sin 2D.2sin 410.“ a=b ”是“直线与圆22()()2x a y b -++=相切的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件11.设函数f(x)的图象如图,则函数y =f ′(x)的图象可能是下图中的( )12.若关于x 的不等式x3-3x2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7]二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.若曲线f(x)=x4-x 在点P 处的切线垂直于直线x -y =0,则点P 的坐标为________14.f(x)=ax3-2x2-3,若f′(1)=2,则a 等于________.15.220(4)x x dx --=⎰_______________.16.已知z C ,且|z|=1,则|z-2i|(i 为虚数单位)的最小值是________三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本题满分10分) (1) 求导数22sin(25)y x x =+ (2)求定积分:10(1)x x dx +⎰18. (本题满分12分)设:x2-8x-9≤0,q :,且非p 是非q 的充分不必要条件,求实数m 的取值范围.19.(本题满分12分)已知z 为复数,i z +和i z-2均为实数,其中i 是虚数单位. (Ⅰ)求复数z 和||z ;(Ⅱ)若immzz27111+--+=在第四象限,求m的范围.20.(本题满分12分)已知函数f(x)=-x3+3x2+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.21.(本题满分12分) 设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+4.(1)求y=f(x)的表达式;(2)求直线y=2x+4与y=f(x)所围成的图形的面积.22.(本题满分12分) 设函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,4),且在点P处有相同的切线y=4x+4.(1)求a,b,c,d的值.(2)若存在x≥-2时,f(x)≤k-g(x),求k的取值范围.20[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.21[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.22【解题指南】(1)根据曲线y=f(x)和曲线y=g(x)都过点P(0,2),可将P(0,2)分别代入到y=f(x)和y=g(x)中,再利用在点P处有相同的切线y=4x+2,对曲线y=f(x)和曲线y=g(x)进行求导,列出关于a,b,c,d的方程组求解.(2)构造函数F(x)=kg(x)-f(x),然后求导,判断函数F(x)=kg(x)-f(x)的单调性,通过分类讨论,确定k的取值范围.【解析】(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=ex(cx+d+c).故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知f(x)=x2+4x+2,g(x)=2ex(x+1).设F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,则F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0,即2(x+2)(kex-1)=0,得x1=-lnk,x2=-2.①若1≤k<e2,则-2<x1≤0,从而当x∈(-2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在x∈(-2,x1)上单调递减,在x∈(x1,+∞)上单调递增,故F(x)在[-2,+∞)上有最小值为F(x1).F(x1)=2x1+2--4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).②若当k=e2,则F′(x)=2e2(x+2)(ex-e-2),当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增,而F(-2)=0,故当且仅当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围为[1,e2].。
高二数学理2017-2018学年度第二学期中期质量检测试题

第 3页 共 4页
第4页 共4页
A. -1 B. 1 C. -5 D. 3
2. 已知函数 f x ax3 3x2 2 ,若 f ' 1 4 ,则 a
A. 10 B. 13
3
3
3. 已知 a (2, 1,3) , b
C. 16 D.
19
3
3
1, x,2 ,若 a b 0 ,则 x
A. -4 B. 8 C. -8 D. -6 4. 下列求导运算正确的是( )
22. 已知函数 f x lnx 1 ax2 2x, a R 2
(1)若 a 1 ,求曲线 y f x 在点 1, f 1 处的切线方程;
(2)若函数 f x 在定义域内是单调递增,求实数 a 的取值范围。
20.如图,四棱锥 P ABCD 中, PA 平面 ABCD ,梯形 ABCD , AD // BC , AB AD AC 3 ,
15. 已知函数 y f x x3 ax2 a 6 x 1有极大值和极小值,则 a 的取值范围是 __________ 16. 在正方体 ABCD-A1B1C1D1 中,点 E 为 BB1 的中点,则平面 A1ED与平面 ABCD所成的锐二面角的余弦 值为 ________.
三、解答题(共 6 题, 17 题 10 分, 18-22 每题 12 分,共 70 分) 17. 求下列函数的导数 (1) y ex cos x
A. a // c, b // c
B. a // b, a c C. a // c, a b D. 以上都不对
2017-2018学年衡水中学高二下期末考试复习卷数学(理)试题(解析版)

2017-2018学年衡水中学高二下期末考试复习卷数学(理)试题(解析版)一、单选题1.已知集合()2{|log 12}A x x =-<,{|6}B x a x =<<,且{|2}A B x x b ⋂=<<,则a b +=( )A. 5B. 6C. 7D. 4 【答案】C【解析】()2{|log 12}A x x =-<()={|014}1,5x x <-<=, 因为{|2}A B x x b ⋂=<<,所以2,57a b a b ==∴+= ,选C.2.若某几何体的三视图如图所示,则此几何体的体积等于( )A. 163 B. 203 C.4 D. 7 【答案】B【解析】从三视图中提供的图形信息与数据信息可知该几何体是正方体去两个相同的三棱锥(虚线表示的部分),因为正方体的体积是V =2×2×2=8,每个小的三棱锥的体积V 1=13×12×2×2×1=23,则三视图所代表的几何体的体积V 2=8−2×23=203,应选答案A 。
所以函数f (x )=e xx在x =1处取最小值f min (x )=e ,结合函数的图像可知当2a >e 且a <e ,即e2<a <e 时,方程f 2(x )+2a 2=3a |f (x )|有且仅有四个实数根,应选答案B 。
3.执行如图所示的程序框图,若输出的结果为2,则输入的正整数的可能取值的集合是( )A. {}2345,,,B. {}123456,,,,,C. {}12345,,,,D.{}23456,,,, 【答案】A【解析】循环依次为()23135,2233131a a a a +≤⇒≤++>⇒> ,所以可能取值的集合是{}2345,,,,选A. 4.若cos2sin 4απα=⎛⎫- ⎪⎝⎭,则sin cos αα+的值为( )A. -B. 12-C. 12D. 【答案】C【解析】cos22sin 4απα=-⎛⎫- ⎪⎝⎭221sin cos 22αα⇒=-⇒+= ,选C.5.已知向量a =(2 , 3),b =(−1 , 2),若ma +n b 与a −2b 共线,则mn 等于( )A. −12 B. 12 C. −2 D. 2 【答案】A【解析】试题分析:若ma+n b 与2a −b 共线,则ma +n b =λ(2a −b )∴mn=2λ−λ=−2【考点】向量共线的判定6.已知函数()sin f x x x ωω=(0ω>)的图像的相邻两对称轴间的距离为2π,则当02x π⎡⎤∈-⎢⎥⎣⎦,时,()f x 的最大值为( )A.B. 1C.D. 1-【答案】A【解析】()sin f x x x ωω=π2sin 3x ω⎛⎫=- ⎪⎝⎭ ,所以2ππ,222T T Tπω=⇒===当02x π⎡⎤∈-⎢⎥⎣⎦,时,π4πππ2,sin 23333x x ⎡⎡⎤⎛⎫-∈--∴-∈-⎢ ⎪⎢⎥⎣⎦⎝⎭⎣⎦()f x ⎡∈-⎣,()f x A.点睛:已知函数()sin (0,0)y A x B A ωϕω=++>>的图象求解析式(1)max min max min,22y y y y A B -+==. (2)由函数的周期T 求2,.T πωω=(3)利用“五点法”中相对应的特殊点求ϕ.7.设m ,n 是不同的直线,α,β,γ是不同的平面,有以下四个命题①α∥βα∥γ ⇒β∥γ;②α⊥βm ∥α ⇒m ⊥β;③m ⊥αm ∥β ⇒α⊥β;④m ∥nm ⊂α⇒m ∥α.其中正确的命题是( )A. ①④B. ①③C. ②③D. ②④ 【答案】B【解析】①利用平面与平面平行的性质定理可知:α∥β,a ∥γ,则β∥γ,故①正确;②α⊥β,m ∥α,则m 与β可能平行,也可能相交,故②错误;③m ∥β⇒∃n ⊂β,且m ∥n ,因为m ⊥α,所以n ⊥α,所以α⊥β,故③正确;④m ∥n ,n ⊂α⇒m ∥α或m ⊂α,故④错误. 综上所述,真命题是:①③.故选B .8.设,,0,2A B C π⎛⎫∈ ⎪⎝⎭,且sin sin sin A C B -=,cos cos cos A C B +=,则B A -等于( )A .3π-B .3πC .6π-D .3π或3π-【答案】A【解析】试题分析:sin sin sin A C B -= ,cos cos cos A C B +=sin sin sin A B C ∴-=,cos cos cos B A C -=,两式平方相加得()()122cos cos sin sin 1cos 2A B A B B A -+=∴-=,cos cos cos 0B AC -=>B A ∴<3B A π∴-=-【考点】三角函数化简求值点评:求角的大小通常先求角的某一三角函数值,结合角的范围求其值9.已知f ′(x )为f (x )的导函数,若f (x )=ln x2,且b1x b1d x =2f ′(a )+12b −1,则a +b 的最小值为( )A. 4 2B. 2 2C. 92 D. 92+2 2 【答案】C【解析】试题分析:f ′(x )=2x ⋅12=1x ,1x b1d x =(−12x−2)|1b=−b 22+12,所以b1x d x =2f ′(a )+12b b1−1⇔−12b −1+12b =2a +12b −1,即2a +12b =1,所以a +b =(a +b )(2a+12b)=52+2ba+a2b≥52+22ba⋅a 2b=92,当且仅当2ba=a2b ,即a =2b 时等号成立,所以则a +b 的最小值为92.【考点】1.导数运算;2.定积分运算;3.基本不等式. 【名师点睛】本题考查导数运算、积分运算及基本不等式的应用,属中档题;导数与基本不等式是高考的重点与难点,本题将两者结全在一起,并与积分运算交汇,考查学生运算能力的同时,体现了学生综合应用数学知识的能力.10.已知函数()f x 是周期为2的函数,若[]01x ∈,时,()12xf x ⎛⎫= ⎪⎝⎭,则( ) A. 1532f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭ B. 1532f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭ C. 1532f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭ D.1932f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】13f ⎛⎫- ⎪⎝⎭131132f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ ,52f ⎛⎫⎪⎝⎭1123111222f ⎛⎫⎛⎫⎛⎫==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行11.若圆222x y r +=(0r >)上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围是( )A. 01r <<B. 1r >C. 01r <<D.11r << 【答案】B【解析】圆心到直线20x y --== ,所以要有4个点到直线20x y --=的距离为1,需1r > ,选B.点睛:与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.12.已知函数247()1x x f x x ++=-+,217()ln 22g x x x =-+,实数a ,b 满足1a b <<-,若1[,]x a b ∀∈,2(0,)x ∃∈+∞,使得12()()f x g x =成立,则b a -的最大值为( )A .4B .C .D .3【答案】D【解析】试题分析:因2'11(1)(1)()x x x g x x x x x-+-=-==,则01x <<时,'()0g x >;当1x >时,'()0g x <.所以max ()(1)3g x g ==,4()2(1)1f x x x =--+++,令1(0)t x t =+<,设4()2()h t t t=--+,作函数()y f t =的图像如图所示,由()3f t =得1t =-或4t =-,b a ∴-的最大值为3.故应选D.【考点】导数的知识与函数的图象等知识的综合运用.【易错点晴】本题是以函数为背景,设置了一道考查函数的图像和基本性质的综合性问题.解答时充分借助题设中条件,合理挖掘题设条件中蕴含的有效信息:1[,]x a b ∀∈,2(0,)x ∃∈+∞使得12()()f x g x =成立.本题解答的另一个特色就是数形结合思想的运用和转化化归的数学思想的运用.求解时是先运用导数求出了函数)(x g 的最大值max ()(1)3g x g ==.然后通过解方程()3f t =(1+=x t )求出1t =-或4t =-,最终求出a b -的最大值是3)4(1=---.本题的求解体现了函数方程思想、转化化归思想、数形结合思想等许多数学思想和方法具体应用.二、填空题13.已知数列{a n }满足a 1=33,a n +1−a n =2n ,则an n 的最小值为__________. 【答案】212【解析】∵数列{a n }满足a 1=33,a n+1﹣a n =2n ,∴当n≥2时,a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1 =2(n ﹣1)+2(n ﹣2)+…+2×2+2×1+33=2×(n −1)·n2×33=n 2−n +33.上式对于n=1时也成立. ∴a n =n 2−n +33. ∴an n =n +33n−1,是一个对勾函数形式的表达式,(0, 33)减,( 33,+∞)增,故得到在 n =6.,代入得到最小值为212。
河北省衡水中学滁州分校2017-2018学年高二6月调研考试数学(理)试题+Word版含解析

2017-2018学年第二学期6月调研考试卷高二理科数学试题注意事项:1.你现在拿到的这份试卷是满分150分,作答时间为120分钟2.答题前请在答题卷上填写好自己的姓名、班级、考号等信息3.请将答案正确填写在答题卷上,写在其它地方无效.第I卷(选择题60分)一、选择题(本大题共12个小题,每小题5分,共60分。
)1.1.若,,则等于( )A. B. C. D.【答案】B【解析】由条件概率公式可得:故答案选2. 三边长均为正整数,且最大边长为11的三角形的个数为()A. 25B. 26C. 36D. 37【答案】C【解析】设三角形另外两边为X,Yx+y>11x-y<11x<11,y<11且均为整数所以x,y中有个数最大为11最小的整数为1,最大边为11x=1的时候1个x=2的时候2个x=3的时候3个x=4的时候4个x=5的时候5个x=6的时候6个x=7的时候5个x=8的时候4个x=9的时候3个x=10的时候2个x=11的时候1个所以共有1+2+3+4+5+6+5+4+3+2+1=36.故选C。
考点:本题主要考查三角形构成条件、分类计数原理的应用。
点评:结合三角形知识,将符合条件的三角形分成11类,运用分类计数原理得解。
视频3.3.已知(2-x)10=a0+a1x+a2x2+…+a10x10,则a8等于( )A. 180B. -180C. 45D. -45【答案】A【解析】根据二项式定理知,故选A.4.4.若复数满足,其中为虚数单位,则().A. B. C. D.【答案】B【解析】【分析】利用复数的乘法运算计算即可.【详解】故选B.【点睛】本题考查复数的乘法运算,属基础题.5.5.已知x,y的取值如表所示,若y与x线性相关,且线性回归方程为,则的值为()A. B. C. D.【答案】D【解析】【分析】根据所给的三组数据,求出这组数据的平均数,得到这组数据的样本中心点,根据线性回归直线一定过样本中心点,把样本中心点代入所给的方程,得到的值.【详解】根据所给的三对数据,得到∴这组数据的样本中心点是∵线性回归直线的方程一定过样本中心点,线性回归方程为,故选:D.【点睛】本题考查线性回归方程,考查数据的样本中心点,考查样本中心点和线性回归直线的关系,属基础题.6.6.设随机变量服从二项分布,且期望,,则方差等于( )A. B. C. D.【答案】C【解析】由于二项分布的数学期望,所以二项分布的方差,应填选答案C。
河北省衡水市高二下学期期中数学试卷

河北省衡水市高二下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共18分)1. (1分)(2017·奉贤模拟) 已知复数z满足z•(1﹣i)=2,其中i为虚数单位,则z=________.2. (1分) (2015高二下·盐城期中) 若空间中的三个点A(1,5,﹣2),B(2,4,1),C(a,3,b+2)共线,则a+b=________.3. (1分) (2019高二下·牡丹江月考) 从1,3,5,7四个数中选两个数字,从0,2,4三个数中选一个数字,组成没有重复数字的三位数,其中奇数的个数为________4. (1分) (2015高二上·金台期末) 双曲线的离心率e∈(1,2),则m的取值范围是________.5. (5分)设数列{ }前n项和为Sn ,则S1=________,S2=________,S3=________,S4=________,并由此猜想出Sn=________.6. (1分) (2016高一下·连江期中) 三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为________.7. (1分)已知f(x)=x2f'(1)﹣3x,则f'(2)的值为________.8. (1分)下列命题适合用反证法证明的是________.①已知函数f(x)=ax+(a>1),证明:方程f(x)=0没有负实数根;②若x,y∈R,x>0,y>0,且x+y>2,求证:和中至少有一个小于2;③关于x的方程ax=b(a≠0)的解是唯一的;④同一平面内,分别与两条相交直线垂直的两条直线必相交.9. (1分) (2017高二下·廊坊期末) 现有这么一列数,2,,,,(),,,…,按照规律,()中的数应为________.10. (1分) (2019高一下·上海月考) 甲同学碰到一道缺失条件的问题:“在中,已知,试判断此三角形解的个数."查看标准答案发现该三角形有一解.若条件中缺失边,那么根据答案可得所有可能的的取值范围是________.11. (1分) (2016高三上·浦东期中) 在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则 =+ ,由此类比:三棱锥S﹣ABC中的三条侧棱SA,SB,SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则________.12. (1分)已知复数z=i(1+i)(i是虚数单位),则|z|=________.13. (1分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于________.14. (1分)已知常数a,b∈R,且不等式x﹣alnx+a﹣b<0解集为空集,则ab的最大值为________.二、解答题 (共6题;共60分)15. (10分)计算:(1)(1﹣i)(﹣ + i)(1+i).(2) +()2010.16. (15分)(2017·黄石模拟) 如图,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四边形ACFE 为矩形,平面ACFE⊥平面ABCD,CF=1.(1)求证:BC⊥平面ACFE;(2)求二面角A﹣BF﹣C的平面角的余弦值;(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.17. (5分)已知椭圆 + =1(a>b>0)的离心率为,椭圆上任意一点到右焦点f的距离的最大值为.(I)求椭圆的方程;(II)已知点C(m,0)是线段OF上异于O、F的一个定点(O为坐标原点),是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得|AC|=|BC|,并说明理由.18. (10分) (2017高二下·洛阳期末) 如图,已知矩形BB1C1C所在平面与底面ABB1N垂直,在直角梯形ABB1N 中,AN∥BB1 ,AB⊥AN,CB=BA=AN= BB1 .(1)求证:BN⊥平面C1B1N;(2)求二面角C﹣C1N﹣B的大小.19. (10分) (2017高二上·定州期末) 某化工厂拟建一个下部为圆柱,上部为半球的容器(如图圆柱高为,半径为,不计厚度,单位:米),按计划容积为立方米,且,假设建造费用仅与表面积有关(圆柱底部不计),已知圆柱部分每平方米的费用为2千元,半球部分每平方米的费用为2千元,设该容器的建造费用为y千元.(1)求y关于r的函数关系,并求其定义域;(2)求建造费用最小时的 .20. (10分)计算题。
河北省衡水中学高二下学期期中考试(数学理).doc

河北省衡水中学高二下学期期中考试(数学理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间1第 I 卷 选择题 (共70分)一. 选择题:本大题共14个小题,每题5分,共70分。
在每小题给出的四个选项中,有且只有一个选项是符合题目要求的1. 某自然保护区有12只大熊猫,从中捕捉5只做上标记,半年后,再从此保护区捕捉1只,则恰好此只带有标志的概率为( )A 51B 121C 125D 1272.易建联在3月27日蓝网与活塞的比赛中,16投中12,保持此命中率不变,假设在下次比赛中有无限投篮权,那么他第一次投中时投篮次数的期望值为( )A 34B 1C 94D 433.6个相同的小球放入标号为1、2、3的3个小盒中,要求每盒不空,共有放法种数为( )A.8B.10C.6D.604 将一枚质地均匀的骰子掷2次,第一次出现的点数记为a ,第二次出现的点数记为b ,已知两条直线1l :8by ax =+ , 2l :42y x =+ 则两条直线相交的概率为( )A 1817B 1211C 98D 655. 379班现有同学73人,要选取6名同学参加学校组织的膳食服务座谈会,班主任老师先随机排除一个同学,然后采用系统抽样的方法,从剩下的72名学生中抽取了6名,问班长被抽到的概率为( )A 121B 721C 731D 7366. 有5张电影票,甲、乙、丙三个人分,每人最多分两张,甲若分得两张,则须为连号,则共有多少种分法 ( )A. 24B. 54C. 30D. 907. 老孙家新买两辆汽车,年初参加某种事故的保险,向保险公司交纳每辆500元的保险金,对在一年内发生此种事故的车辆可一次性赔偿5000元,已知这两辆车一年内发生此种事故的概率分别为51,101,两车是否发生事故相互独立,求一年内小李家获得赔偿的期望是( )A 10000元B 1500元C 元D 5000元8 设()*--∈++∙∙∙+++=⎪⎪⎭⎫ ⎝⎛+N n ,x a x a x a x a a 22x 2n 2n 12n 12n 22102n,则()()[]=+∙∙∙+++-∙∙∙+++-∞→212n 53122n 420n a a a a a a a a lim ( )A -1B 1C 0D 229. 已知数列{}n a 中, ⎪⎪⎩⎪⎪⎨⎧≥-≤≤=10000n ,5n n n 10000n ,1n1a 222n 则数列{}n a 的极限值( ) A.等于0 B.等于1 C.等于0或1 D.不存在10. 对于二项式()1999x 1-,下列说法正确的个数是( )① 展开式中999100019991000xC T -=; ② 展开式中非常数项的系数和为0;②展开式中系数最大的项是第1000项和第1001项;④ 当x 等于时,()1999x 1-除以的余数是1;A 1个B 2个C 3个D 4个 11.某校参加高考学生人数共人,经体检绘制视力情况频率分布直方图(如图)那么视力在0.7—1.1的学生人数估计为( )A 400人B 600人C 1000人D 1500人 12.设首项为1,公比为q (q ≥1)的等比数列前n 项和为nS ,则1n nn S lim+∞→的值为( )A 1B q 1C 1或q 1D 以上都不对13 n2x 1x ⎪⎭⎫ ⎝⎛+的展开式中的各项系数和是32,则展开式的常数项为( ) A 15 B C 0 D 不存在14. 高二某班在成人节班会上,计划从班委7人中选4人作感想发言,班长和团支书两人至少有一人发言,若两人都发言,则发言顺序不能相邻,则不同的发言种数为( )A 360B 5C 600D 7Ⅱ卷 非选择题 (共80分)二.填空题:本大题共4小题,每题5分,共把答案填在答题纸相应的位置15. 6个人分乘2辆不同的出租车,每车最多乘4人,则不同的乘车方案有。
2017-2018学年高二下学期期中数学试卷(理科)Word版含解析

2017-2018学年高二下学期期中数学试卷(理科)一、选择题(每小题5分,共60分)1.复数z1=(m2﹣2m+3)+(m2﹣m+2)i(m∈R),z2=6+8i,则m=3是z1=z2的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除3.定积分(x2+sinx)dx的值为()A. +B.﹣C.﹣D. +4.若复数z=(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是()A. i B.﹣ i C.3i D.﹣3i5.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A.B.πC.πD.24π6.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+B. +C. +D.37.已知=()A.f′(x0)B.f′(x)C.2f′(x)D.﹣f′(x)8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,则A×C=()A.6E B.78 C.5F D.C09.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)二、填空题(每小题5分,共20分)13.计算: +(3+i17)﹣= .14.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥S﹣ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则.15.过点(1,0)且与曲线y=相切的直线的方程为.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.19.设数列{an }的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.20.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x 的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y表示为x的函数;(2)如何选点M才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.2017-2018学年高二下学期期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.复数z1=(m2﹣2m+3)+(m2﹣m+2)i(m∈R),z2=6+8i,则m=3是z1=z2的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m,即可判断出结论.【解答】解:由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m=3.∴m=3是z1=z2的充要条件.故选:C.2.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除【考点】R9:反证法与放缩法.【分析】“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除.【解答】解:反证法证明命题时,应假设命题的反面成立.“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除,故选 B.3.定积分(x2+sinx)dx的值为()A. +B.﹣C.﹣D. +【考点】67:定积分.【分析】根据定积分的运算,即可求得答案.【解答】解:(x2+sinx)dx=(x3﹣cosx)=(﹣)﹣(0﹣1)=+,(x2+sinx)dx=+,故选B.4.若复数z=(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是()A. i B.﹣ i C.3i D.﹣3i【考点】A5:复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简z=,结合已知条件列出方程组,求解可得a的值,然后代入z=化简求出复数z,则复数z的共轭复数可求.【解答】解:∵z===是纯虚数,∴,解得a=6.∴z==.则复数z的共轭复数是:﹣3i.故选:D.5.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A.B.πC.πD.24π【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用定积分求体积.【解答】解:解方程组得x=4,y=4.∴几何体的体积V=π(4x﹣x2)dx=π•(2x2﹣)|=.故选B.6.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+B. +C. +D.3【考点】A4:复数的代数表示法及其几何意义.【分析】由|z+3+i|=的几何意义,即复平面内的动点Z到定点P(﹣3,﹣1)的距离为画出图形,数形结合得答案.【解答】解:由|z+3+i|=的几何意义,复平面内的动点Z到定点P(﹣3,﹣1)的距离为,可作图象如图:∴|z|的最大值为|OP|+=.故选:B.7.已知=()A.f′(x0)B.f′(x)C.2f′(x)D.﹣f′(x)【考点】6F:极限及其运算.【分析】化简,根据极限的运算,即可求得答案.【解答】解:==+=2f′(x),∴=2f′(x),故选C.8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,则A×C=()A.6E B.78 C.5F D.C0【考点】EM:进位制.【分析】本题需先根据十进制求出A与C的乘积,再把结果转化成十六进制即可.【解答】解:∵A×C=10×12=120,∴根据16进制120可表示为78.故选:B.9.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣【考点】RG:数学归纳法.【分析】只须求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【解答】解:当n=k时,左边的代数式为,当n=k+1时,左边的代数式为,故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:,故选:D.10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]【考点】63:导数的运算.【分析】求导,当x=1时,f′(1)=+=sin(θ+),由θ∈(﹣,),即可求得θ+∈(﹣,),根据正弦函数的性质,即可求得导数f′(1)的取值范围.【解答】解:f(x)=x3+x2+,f′(x)=x2+x,f′(1)=+=sin(θ+),由θ∈(﹣,),则θ+∈(﹣,),则sin(θ+)∈(﹣,1],∴导数f′(1)的取值范围(﹣,1],故选A.11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)【考点】6A:函数的单调性与导数的关系.【分析】设g(x)=,根据函数的单调性和函数的奇偶性求出不等式的解集即可.【解答】解:设g(x)=,∴g′(x)=,∵当x>0时,有xf′(x)﹣f(x)>0恒成立,∴当x>0时,g′(x)>0∴g(x)在(0,+∞)递增,∵f(﹣x)=f(x),∴g(﹣x)==﹣g(x),∴g(x)是奇函数,∴g(x)在(﹣∞,0)递增,∵f(2)=0∴g(2)==0,当x>0时,f(x)<0等价于<0,∴g(x)<0=g(2),∴0<x<2,当x<0时,f(x)<0等价于>0,∴g(x)>0=g(﹣2),∴﹣2<x<0,不等式f(x)<0的解集为(﹣2,0)∪(0,2),故选:C.12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)【考点】6B:利用导数研究函数的单调性.【分析】由f′(x)<0求出f(x)的减区间,利用对称性求得f(﹣x)的增区间,再由平移变换可得函数f(1﹣x)的单调递增区间.【解答】解:由f′(x)=x2﹣3x﹣10<0,得﹣2<x<5,∴函数f(x)的减区间为(﹣2,5),则函数y=f(﹣x)的增区间为(﹣5,2),而f(1﹣x)=f[﹣(x﹣1)]是把函数y=f(﹣x)向右平移1个单位得到的,∴函数f(1﹣x)的单调递增区间是(﹣4,3).故选:C.二、填空题(每小题5分,共20分)13.计算: +(3+i17)﹣= 4+2i .【考点】A7:复数代数形式的混合运算.【分析】利用复数的运算法则分别计算即可.【解答】解:原式=+(3+i)﹣=+3+i﹣i10=i+3+i+1=4+2i;故答案为:4+2i.14.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥S﹣ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则+.【考点】F3:类比推理.【分析】立体几何中的类比推理主要是基本元素之间的类比:平面⇔空间,点⇔点或直线,直线⇔直线或平面,平面图形⇔平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可.【解答】解:∵PA、PB、PC两两互相垂直,∴PA⊥平面PBC.设PD在平面PBC内部,且PD⊥BC,由已知有:PD=,h=PO=,∴,即.故答案为:.15.过点(1,0)且与曲线y=相切的直线的方程为4x+y﹣4=0 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】设出切点坐标,利用导数求出过切点的切线方程,再把已知点代入,求出切点横坐标,则切线方程可求.【解答】解:设切点为(),由y=,得y′=,∴,则切线方程为y﹣,把点(1,0)代入,可得,解得.∴切线方程为y﹣2=﹣4(x﹣),即4x+y﹣4=0.故答案为:4x+y﹣4=0.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.【考点】6G:定积分在求面积中的应用.【分析】题目中给出了函数图象与x轴围成的封闭图形的面积,所以我们可以从定积分着手,求出函数以及函数与x轴的交点,建立等式求解参数.【解答】解:由已知对方程求导,得:f′(x)=3x2+2ax+b.由题意直线y=0在原点处与函数图象相切,故f′(0)=0,代入方程可得b=0.故方程可以继续化简为:f(x)=x3+ax2=x2(x+a),令f(x)=0,可得x=0或者x=﹣a,可以得到图象与x轴交点为(0,0),(﹣a,0),由图得知a<0.故对﹣f(x)从0到﹣a求定积分即为所求面积,即:﹣a f(x)dx=3,﹣∫将 f(x)=x3+ax2代入得:﹣a(﹣x3﹣ax2)dx=3,∫求解,得a=﹣.故答案为:﹣.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.【考点】A4:复数的代数表示法及其几何意义;A5:复数代数形式的乘除运算.【分析】复数z+i,均为实数,可设z=x﹣i, =﹣i,可得﹣=0,z=﹣2﹣i.在复平面内,(z+ai)2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,可得4﹣(a﹣1)2>0,﹣4(a﹣1)<0,解出即可得出.【解答】解:∵复数z+i,均为实数,设z=x﹣i, ==﹣i,∴﹣ =0,∴x=﹣2.∴z=﹣2﹣i.∵在复平面内,(z+ai)2=[﹣2+(a﹣1)i]2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,∴4﹣(a﹣1)2>0,﹣4(a﹣1)<0,解得:1<a<3.∴实数a的取值范围是(1,3).18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出f′(x)=x2﹣(3a+2)x+6a,由函数f(x)在x=1处取得极值﹣,列出方程组,能求出a,b.(2)由f′(x)=x2﹣3x+2,利用导数性质能求出函数f(x)的单调递增区间.【解答】解:(1)∵f(x)=﹣x2+6ax+b,其中a,b∈R,∴f′(x)=x2﹣(3a+2)x+6a,∵函数f(x)在x=1处取得极值﹣,∴,解得a=,b=﹣1.(2)由(1)得f(x)=﹣+2x﹣1,∴f′(x)=x2﹣3x+2,由f′(x)=x2﹣3x+2>0,得x>2或x<1,∴函数f(x)的单调递增区间为(﹣∞,1],[2,+∞).19.设数列{an }的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.【考点】RG:数学归纳法;8E:数列的求和.【分析】(1)由题设求出S1=,S2=.S3=.(2)由此猜想Sn=,n=1,2,3,….然后用数学归纳法证明这个结论.【解答】解:(1)当n=1时,x2﹣a1x﹣a1=0有一根为S1﹣1=a1﹣1,于是(a1﹣1)2﹣a1(a1﹣1)﹣a1=0,解得a1=.当n=2时,x2﹣a2x﹣a2=0有一根为S2﹣1=a2﹣,于是(a2﹣)2﹣a2(a2﹣)﹣a2=0,解得a2=由题设(Sn ﹣1)2﹣an(Sn﹣1)﹣an=0,Sn 2﹣2Sn+1﹣anSn=0.当n≥2时,an =Sn﹣Sn﹣1,代入上式得Sn﹣1Sn﹣2Sn+1=0.①得S1=a1=,S2=a1+a2=+=.由①可得S3=.(2)由(1)猜想Sn=,n=1,2,3,….下面用数学归纳法证明这个结论.(i)n=1时已知结论成立.(ii)假设n=k时结论成立,即Sk=,当n=k+1时,由①得Sk+1=,可得Sk+1=,故n=k+1时结论也成立.综上,由(i)、(ii)可知Sn=对所有正整数n都成立.20.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x 的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y表示为x的函数;(2)如何选点M才使总运费最小.【考点】HT:三角形中的几何计算.【分析】(1)由题意,AB=100,BC⊥AB,BC=30,BM=x,则AM=100﹣x.MC=,可得总运费y表示为x的函数;(2)根据(1)中的关系式,利用导函数单调性,可得最值.【解答】解:(1)由题意,AB=100,BC⊥AB,BC=30,BM=x,则AM=100﹣x.MC=,∴总运费y=2×+4×MC=200﹣2x+4,.(2)由(1)可得y=200﹣2x+4,.则y′=﹣2+4××令y′=0.可得:2=4x,解得:x=10.当时,y′<0,则y在当单调递减.当时,y′>0,则y在单调递增.∴当x=10时,y取得最大值为200+60.∴选点M距离B点时才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.【考点】8G:等比数列的性质.【分析】y,z为正数,可得≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.根据a,x,b成等差数列,a,y,z,b成等比数列,a,b>0.可得2x=a+b,,z=.令=m>0, =n>0,可得2x≥y+z⇔m3+n3≥m2n+mn2⇔(m﹣n)2≥0,【解答】证明:∵y,z为正数,∴≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.∵a,x,b成等差数列,a,y,z,b成等比数列,a,b>0,∴2x=a+b,,z=.令=m>0, =n>0,则2x≥y+z⇔m3+n3≥m2n+mn2.⇔(m﹣n)2≥0,上式显然成立,因此:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.【考点】6H:利用导数研究曲线上某点切线方程;6E:利用导数求闭区间上函数的最值.【分析】(1)由题意求得a=1,得到函数解析式,构造函数g(x)=x2lnx+x﹣x2,(x≥1).利用导数可得函数在[1,+∞)上为增函数,可得g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,求其导函数,结合(1)放缩可得h′(x)≥3(x﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).然后对m分类讨论求解.【解答】(1)证明:由f(x)=ax2lnx﹣(x﹣1),得f′(x)=ax2lnx﹣(x﹣1)=2axlnx+ax ﹣1.∵曲线y=f(x)在点(1,0)处的切线方程为y=0,∴a﹣1=0,得a=1.则f(x)=x2lnx﹣x+1.设g(x)=x2lnx+x﹣x2,(x≥1).g′(x)=2xlnx﹣x+1,g″(x)=2lnx+1>0,∴g′(x)在[1,+∞)上为增函数,∴g′(x)≥g′(1)=0,则g(x)在[1,+∞)上为增函数,∴g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)解:设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,h′(x)=2xlnx+x﹣2m(x﹣1)﹣1,由(1)知,x2lnx≥(x﹣1)2+x﹣1=x(x﹣1),∴xlnx≥x﹣1,则h′(x)≥3(x﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).①当3﹣2m≥0,即m时,h′(x)≥0,h(x)在[1,+∞)上单调递增,∴h(x)≥h(1)=0成立;②当3﹣2m<0,即m>时,h′(x)=2xlnx+(1﹣2m)(x﹣1),h″(x)=2lnx+3﹣2m.令h″(x)=0,得>1,∴当x∈[1,x)时,h′(x)<h′(1)=0,)上单调递减,则h(x)<h(1)=0,不合题意.∴h(x)在[1,x综上,m.。
河北省衡水市高二下学期期中数学试卷(理科)

河北省衡水市高二下学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、单选 (共12题;共24分)1. (2分)下列说法正确的是()A . 由合情推理得出的结论一定是正确的B . 合情推理必须有前提有结论C . 合情推理不能猜想D . 合情推理得出的结论无法判定正误2. (2分)用反证法证明命题“如果a>b,那么>”时,假设的内容应是()A . =B . <C . =且<D . =或<3. (2分)若曲线在点处的切线方程为,则()A .B .C .D . 不存在4. (2分)设函数f(x)=x(ax2+bx+c)()在x=1和x=-1处均有极值,则下列点中一定在x轴上的是()C . (b,c)D . (a,b)5. (2分)(2020·厦门模拟) 已知函数,给出以下四个结论:⑴ 是偶函数;⑵ 的最大值为2;⑶当取到最小值时对应的;⑷ 在单调递增,在单调递减.正确的结论是()A . ⑴B . ⑴⑵⑷C . ⑴⑶D . ⑴⑷6. (2分) (2016高三上·西安期中) 由xy=1,y=x,x=3所围成的封闭区域的面积为()A . 2ln3B . 2+ln3C . 4﹣2ln3D . 4﹣ln37. (2分)(2018·安徽模拟) 由直线及曲线所围成的封闭图形的面积为()A . 3D .8. (2分)已知i为虚数单位,则=()A . 0B . 2C . 2iD . -2i9. (2分)(2017·浦东模拟) “﹣3<a<1”是“存在x∈R,使得|x﹣a|+|x+1|<2”的()A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件10. (2分)(2013·安徽理) 设i是虚数单位,是复数z的共轭复数,若(z• )i+2=2z,则z=()A . 1+iB . 1﹣iC . ﹣1+iD . ﹣1﹣i11. (2分)复数的虚部为()A . 2B . -2C . 2iD . -2i12. (2分)(2017·吉林模拟) 如果复数z= ,则()A . |z|=2B . z的实部为1C . z的虚部为﹣1D . z的共轭复数为1+i二、填空题 (共6题;共6分)13. (1分) (2016高二上·嘉定期中) 用数学归纳法证明等式:1+a+a2+…+an+1= (a≠1,n∈N*),验证n=1时,等式左边=________.14. (1分)已知f(x)是定义在(0,+∞)上的单调函数,f′(x)是f(x)的导函数,若对∀x∈(0,+∞),都有f[f(x)﹣2x]=3,则方程f′(x)﹣=0的解所在的区间是________15. (1分)过点的函数图象的切线斜率为________.16. (1分)(2019·萍乡模拟) 设为整数,若对任意的,不等式恒成立,则的最大值是________.17. (1分) (2017高二下·曲周期末) 设,,复数和在复平面内对应点分别为、,为原点,则的面积为________.18. (1分) (2015高二下·沈丘期中) 已知m∈R,并且的实部和虚部相等,则m的值为________.三、解答题 (共4题;共45分)19. (15分)求下列函数的导数:(1) y=x12;(2);(3).20. (5分) (2016高二下·武汉期中) 复数z1= +(10﹣a2)i,z2= +(2a﹣5)i,若+z2是实数,求实数a的值.21. (15分) (2018高二下·长春月考) 为何实数时,复数在复平面内所对应的点(1)在实轴上;(2)在虚轴上;(3)位于第四象限.22. (10分)设f(z)=z-2i,z1=3+4i,z2=-2-i.求:(1) f(z1-z2)的值;(2) f(z1+z2)的值.参考答案一、单选 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共4题;共45分) 19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、。