上海交通大学版大学物理学习题答案之20光的偏振习题思考题
题解3-光的偏振
4、 B
tan iB n2 / n1 和折射定律 sin iB / sin B n2 / n1 可知,自然光的入射角为布儒斯特角 iB 时,
根据布儒斯特定律
折射光为部分偏振光,且折射角为:
B 90 iB 90 60 30
5 、B
根据布儒斯特定律
6 、D
横波
三、计算题
I透 1、解:(1) I入 1 2 2 I (1 10%) cos 60 I透 2 0 1 81 (2) 10.1% I入 I0 8 100 1 2 2 I cos 30 cos 30 0 I透 9 2 (3) 28.1% I入 I0 32 1 3 2 2 I (1 10%) cos 30 cos 30 0 I透 2 I入 I0 9 9 3 ( ) 20.5% 32 10
根据已知条件和全反射定律,有: n1 n1 1 sin 45 n2 n2 2
iB
n1 1
n2 1
再根据布儒斯特定律,有: n2 tgiB 2 iB 54.70 n1
二、填空题
1、 2、
线偏振光
光矢量振动
偏振化
自然光或圆偏振光 线偏振光
部分偏振光或椭圆偏振光
3、 波动
1 I 0 cos 2 60 1 2 12.5% I0 8
1 1 ( I0) 2 2 1 1 ( I0) 2 2
2
1 2 I 0 cos 0.716I 0 2 1 2 I 0 cos 0.375I 0 2
cos 0.932 1 cos 4
2
ቤተ መጻሕፍቲ ባይዱ
光的偏振--题解
一、选择题
光的偏振习题、答案及解法(2016.11.22)【最新资料】
光的偏振习题、答案及解法一、 选择题1. 在双缝干涉实验中,用单色自然光照色双缝,在观察屏上会形成干涉条纹若在两缝封后放一个偏振片,则(B )A 、 干涉条纹的间距不变,但明纹的亮度加强;B 、 干涉条纹的间距不变,但明纹的亮度减弱;C 、干涉条纹的间距变窄,但明纹的亮度减弱;D 、 没有干涉条纹。
2.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片,若以入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的7倍,那么入射光束中自然光与线偏振光的光强比值为(B )A 、 21 ;B 、 31 ;C 、 41 ;D 、 1 。
参考答案:()θηη200cos 12-+=I I I ()ηη-+=1200max I I I η20min I I = ()7212000min max=-+=ηηηI I I I I ηη-=27 31=η 3.若一光强为0I 的线偏振光先后通过两个偏振片1P 和2P 。
1P 和2P 的偏振化方向与原入射光矢量振动方向的夹角分别为090和α,则通过这两个偏振片后的光强I (A )A 、 )2(sin 4120a I ;B 、 0 ;C 、a I 20cos 41 ; D 、 a I 20sin 41。
参考答案: ⎪⎭⎫ ⎝⎛-=απα2c o s c o s 220I I )2(sin 4120a I I =4.一光强为0I 的自然光垂直通过两个偏振片,且两偏振片偏振化方向成030则穿过两个偏振片后的光强为(D )A 、 430I ;B 、 40I ;C 、 80I ;D 、 830I 。
参考答案: 836c o s 2c o s 202020I I I I ===πα 5.一束光强为0I 自然光,相继通过三个偏振片321P P 、、P 后,出射光的光强为80I I =。
已知1P 和3P 的偏振化方向相互垂直,若以入射光线为轴,旋转2P ,要使出射光的光强为零,2P 最少要转过的角度(D )A 、 030 ;B 、 090 ;C 、 060 ;D 、 045 。
大学物理 光的偏振习题
n 石晶体中 o 光折射率比 e 光折射率大,故入射角相同时,由折射定律 n o sin i = sin γ o ,
n e sin i = sin γ e 知 o 光折射角比 e 光折射角大(因 n o > ne ),晶体外 o 光、e 光折射光
i 线的方向如图所示。
h 三、计算题
z 1.如图,已知:一束自然光入射到折射率 n 2
= I1 cos2 30� cos2 60� − 30�
=
1 2
I
0
cos2
30 �
cos2
60�
− 30�
9
.= 32 I0
I0 I1 I2 I3
w(若取θ
=)
P1 P3 P2
ww3.如图, P1 、 P2为偏振化方向间夹角为α 的两个偏振片。光
强为 I 0 的平行自然光垂直入射到 P1 表面上,则通过 P2 的光强 I
A
光轴 e光
法线 o光
e光波面
面,此题垂直于纸面)内,由双折射规律知:此时晶体内 o 光、e 光的主平面(折射光线
n 和光轴组成的平面)与主截面重合,o 光的振动方向垂直于 o 光的主平面(纸面内)、e
光的振动方向在 e 光的主平面内(垂直于纸面),如图所示。从图中可以看出,o 光和 e
a 光传播方向相同,光振动方向互相垂直。当 o 光、e 光从晶体内出射到晶体外时,因方解
透射光束的折射角 γ = 90� − i0 = 90� − 60� = 30�
zh 再由布儒斯特定律 tg i0
=
n2 n1
得
i0
n1
γ
n2
玻璃的折射率 n2 = n1 tg 60� = 1.73
光的偏振习题(附答案)
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
大学物理实验光的偏振思考题答案
大学物理实验光的偏振思考题答案(总1页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、首先,光强的计算并不是利用合成矢量来计算的,光强与振幅的平方成正比,振幅即矢量的模;其次,不论是人眼还是探测器,都不可能接收瞬时光强,即光矢量的振幅大小;最重要的一点,矢量的合成是有条件的,这一点物理光学中有很详细的解释,即必须是相干光才能合成,而自然光一般为非相干光。
非相干光的光强叠加只是不同光线光强的简单叠加。
因而,只要有光线,光强恒大于0。
但相干光与此不同,会有等于0的情况。
2、因为其不是偏振光,所以光强I不发生变化。
3、光的偏振实验中,如果在一组相互正交的偏振片之间插入一块半波片,使其光轴和起偏器的偏振轴平行,则透过检偏器的光斑还是暗的。
因为经过起偏器后的线偏振光的偏振方向与波片光轴平行,与波片光轴垂直方向没有分量,此时不发生双折射效应,经过波片后仍然是原方向振动的线偏振光,所以消光。
将检偏器旋转90度后,光斑的亮暗有变化,变亮,因为经过波片后仍然是原方向振动的线偏振光,检偏器旋转90度后正好与线偏振光振动方向一致。
这个问题的关键在于波片的光轴和起偏器偏振轴平行,线偏振光经过后不改变偏振方向。
我们知道线偏振光经过1/2波片偏振方向是要关于光轴(或者快轴,或者慢轴)对称的。
当线偏振光偏振方向平行或者垂直与快轴或者慢轴时,波片不起改变偏振态的作用,不仅1/2波片如此,其它波片也这样。
4、用一个偏振片就能分辨。
当自然光通过偏振片时,无论偏振片怎么旋转或者是静止(以光的传播方向为轴)光的强度都不会发生变化。
当圆偏振光通过偏振片时,保持偏振片不动,你会发现光的强度呈周期性变化,而且会出现消光。
当圆偏振光与自然光的混合光通过偏振片时,保持偏振片不动,你也会发现光的强度呈周期性变化,但不会出现消光。
2。
光的偏振习题(附答案)
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
大学物理A 练习题 第8章《光的偏振》答案
第8章 光的偏振一、选择题1(B),2(B),3(B),4(A),5(B),二、填空题(1). 2, 1/4(2). 1/ 2(3). I 0 / 2, 0(4). 1.48 tan560(5). 遵守通常的折射,不遵守通常的折射. 传播速度,单轴三、计算题1. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏 振片后的光强 I 1=I 0 / 2.透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5°2. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230°=3 I 0 / 4透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16(2) 原入射光束换为自然光,则I 1=I 0 / 2I 2=I 1cos 260°=I 0 / 83. 如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).解:(1) 经P 1后,光强I 1=21I 0 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 0 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16得 cos α=1 / 2 即 α =60°4.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33;tg i 2=n 2 / n 1=1.57 / 1.333,由此得 i 1=53.12°,i 2=48.69°.由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8°.四研讨题1. 为了得到线偏振光,就在激光管两端安装一个玻璃制的“布儒斯特窗”(见图),使其法线与管轴的夹角为布儒斯特角。
光的偏振答案
思 考 题 答 案6-1解:自然光的振动无论哪个方向都一致,形成一个轴对称分布,如讲义中图5-4所示。
应此从光的合成振动角度看,其平均值为零。
光强则是光的平均能流密度,根据定义它是指光投射在单位面积上的光通量,即光照度。
这就是说,我们这里的光强实际上就是指光的照度,因此光强包含有能量的定义,这样的自然光的光能不为零。
自然光与圆偏振光主要区别在于二个等幅垂直振动之间的位相关系。
对于自然光而言,无任何位相差存在,对于圆偏光,它们之间必须具备恒定的位相差。
6-2解:三个偏振片的透振方向如图所示。
设入射的自然光光强为0I ,透过1P 的光强为02I ,根据马吕斯定律,透过2P 的光强为:22002101cos cos 454222o I I I I I θ==∗=∗=, 透过3P 的光强为:22003201cos cos 45442o I I I I I θ==∗=∗=若将第二个偏振片抽走,这时透过1P 的光强仍为02I ,透过3P 的光强为 231cos 900o I I ==6-3解:一般来说,当光入射到两种透明媒质分界面上时,会同时发生反射,透射现象,或者全反射(无透射)现象。
只有当入射光束为平行于入射界面的振动分量(即P 分量)沿布儒斯特角入射时,只有透射光而无反射光存在(见思考题2的(b))。
因此科学幻想小说中的隐身法时候成问题的。
且不谈人体变得无色透明谈何容易,即使反射光不存在,透射光总是存在的;或者即使透射光不存在(全反射时),则反射光又必将存在。
除非入射到人体内的全部光能吸收掉,又不存在反射的情况,这样才能达到隐身之目的。
6-4解:先用一个偏振片分别让三束光依次通过,能消光者为平面偏振光。
不能消光,且光强无变化的,则可能为自然光或圆偏振光。
然后再用一个4λ片,分别让自然光和圆偏振光通过4λ片,再用检偏器检查,能消光的则为圆偏振光,留下的最后一个一定是自然光。
6-5答:6-6答:在正交偏振片之间放一块波晶片,以自然光入射,会产生偏振光干涉,干涉合光强为22222(cos cos sin sin 2cos cos sin sin cos '')I A θϕθϕθϕθϕδ=++式中θ、φ分别为偏振片P 1 、 P 2透振方向与波片光轴夹角,2''()o e n n d πδπλ=−+。
光的偏振习题详解
9光的偏振习题详解(总6页) -本页仅作为预览文档封面,使用时请删除本页-1习题九一、选择题1.自然光从空气连续射入介质1和介质2(折射率分别为1n 和2n )时,得到的反射光a 和b 都是完全偏振光。
已介质1和介质2的折射率之比为31,则光的入射角i 0为[ ](A )30︒; (B )60︒; (C )45︒; (D )75︒。
答案:A解:由题意知,光在两种介质介面上的入射角都等于布儒斯特角,所以有1201tan ,tan tan 1n ni i r n '===,090r i +=︒ 所以 201tan tan(90)3n r i n =︒-== 由此得09060i ︒-=︒,030i =︒2.一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后出射光强为I 0 /8。
已知P 1和P 3的偏振化方向相互垂直。
若以入射光线为轴旋转P 2,要使出射光强为零,则P 2至少应转过的角度是 [ ] (A )30°; (B ) 45°; (C )60°; (D ) 90°。
答案:B解:设开始时P 2与另两者之一的夹角为,则根据马吕斯定律,出射光强为2222000cos cos (90)cos sin 228I I I I αααα=⋅︒-=⋅= 即2sin 21α=,45α=︒ 说明当P 2转过45°角度后即与另两者之一平行,从而出射光强为零。
3.一束自然光自空气射向一块平板玻璃(如图),入射角i 0等于布儒斯特角,则在界面2的反射光 [ ](A )光强为零;(B )是完全偏振光,且光矢量的振动方向垂直于入射面; (C )是完全偏振光,且光矢量的振动方向平行于入射面;(D )是部分偏振光。
答案:B1 i 0 2i 1n 2n r bai '2解:根据起偏时的特性和布儒斯特定律可证明,当光由介质A 入射于介质B 时入射角为起偏振角,则其由介质B 入射于介质A 的角度也是起偏角。
4-3光-光的偏振 大学物理作业习题解答
种介质射到第二种介质时,起偏角为i12,从第二种介质射到第
一种介质时,起偏角为i21.若i12 > i21 ,问那一种介质是光密介
质? i12 + i21 等于多少?
4
解 两起偏角应分别满足
tan i12
n2 n1
和
tan i21
n1 n2
.
因为i12 > i21
在 0 ~ 范围,正切函数为增函数.所以有
在什么情况下 o光的主平面和e光的主平面都在入射面内?
答:(1)晶体中存在寻常光线折射率与非常光线折射率相同
(或o光光速与e光速相同)的方向,光在晶体中沿这个方向传
播不发生双折射,这个方向叫做晶体的光轴.光线与光轴组成
的平面叫做主平面.
5
沿光轴入射的光进入晶体后一般不再沿光轴传播,因此会产生双 折射.只有光轴与界面法线的夹角等于折射角时,光进入晶体后 才沿光轴传播,才不会发生双折射.
Ae A cos 350 0.819A, Ao A sin 350 0.574A.
(2)由于波长片对分解的o光e光产生2的相位差 ,所以任何
光通过波长片后,偏振态都不变化.线偏振光过波长片后仍
为线偏振光,且振动方向不变.所以在与起偏振器垂直的检
偏振器后光强为零.
14
补充3.2 在实验室内,用一块偏振片和钠光灯,如何鉴别下列片 外观相同的偏振器件:(1)偏振片;(2) 1/4波片;(3)1/2波片.
解:(1)由马吕斯定律,自然光通过两偏振器后,光强变为:
I I0 cos2 600 I0 . 出、射光强之比为
2
8
I 1. I0 8
(2)若中间的偏振片与两偏振片均成30o角,由马吕斯定律得出
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题20
20-1.从某湖水表面反射来的日光正好是完全偏振光,己知湖水的折射率为33.1。
推算太阳在地平线上的仰角,并说明反射光中光矢量的振动方向。
解:由布儒斯特定律
�5333.1arctan arctan
1
2===n n α�
372=−απ在反射光中振动方向为与入射面垂直。
20-2.自然光投射到叠在一起的两块偏振片上,则两偏振片的偏振化方向夹角为多大才能使:
(1)透射光强为入射光强的3/1;
(2)透射光强为最大透射光强的3/1.(均不计吸收)
解:设夹角为α,则透射光强α
20cos I I =通过第一块偏振片之后,光强为:1/2I 0,通过第二块偏振片之后:α20cos 21I I =由题意透射光强为入射光强的3/1得
I=I 0/3则
α),α=35.26°同样由题意当透射光强为最大透射光强的3/1时,也就是透射光强为入射光强的1/6,可得:α=54.74°
20-3.设一部分偏振光由一自然光和一线偏振光混合构成。
现通过偏振片观察到这部分偏振光在偏振片由对应最大透射光强位置转过�60时,透射光强减为一半,试求部分偏振光中自然光和线偏振光两光强各占的比例。
解:10max 2
1I I I +=�
60cos 2
1210max I I I +=即得1
110::=I I 20-4.由钠灯射出的波长为nm 0.589的平行光束以�
50角入射到方解石制成的晶片上,晶片光轴垂直于入射面且平行于晶片表面,已知折射率65.1o =n ,486.1e =n ,求
(1)在晶片内o 光与e 光的波长;
(2)o 光与e 光两光束间的夹角.
解:由n
c v c n λλ==∴nm n c 97.35665
.10.58900===λλnm n e c e 37.396486.10.589===λλO
O n ϕsin 50sin �=�
�
66.2750sin arcsin ==O
O n ϕ��03.3150sin arcsin ==e e n ϕΔφ=3.37°
20-5.在偏振化方向正交的两偏振片1P ,2P 之间,插入一晶片,其光轴平行于表面且与起偏器的偏振化方向成�35,求
(1)由晶片分成的o 光和e 光强度之比;
(2)经检偏器2P 后上述两光的强度之比。
解:(1)由晶片分成的o 光的振幅:θsin A A O =e 光的振幅:θ
cos A A e =强度之比为振幅的平方比,所以:49.0cos sin 2221==θ
θI I (2)经检偏器后上述两光中o 光的振幅:θ
θcos sin A A O =e 光的振幅:θ
θsin cos A A e =也就是振幅相同,所以强度之比为1:1。
20-6.把一个楔角为�33.0的石英劈尖(光轴平行于棱)放在偏振化方向正交的两偏振片之间。
用nm 3.654=λ的红光垂直照射,并将透射光的干涉条纹显示在屏上。
已知石英的折射率5509.1,5419.1e 0==n n ,计算相邻干涉条纹的间距。
解:选择劈尖的暗条纹,则条纹位置为:
ππλ
π)()(122+=+−k d n n O e λ
k d n n O e =−)(
那么这样的劈尖的相邻干涉条纹的间距:mm n n d O e 6.12=−=∆θ
λ)(思考题
20-1.用偏振片怎样来区分自然光、部分偏振光和线偏振光?
答:将光通过偏振片,光强无变化的为自然光;光强有变化但不会出现完全消光的为部分偏振光;光强有变化且在某个方向为零的为线偏振光。
20-2.如图所示,玻璃片堆A 的折射率为n ,二分之一波片C 的光轴与y 轴夹角为030,偏振片P 的偏振化方向沿y 轴方向,自然光沿水平方向入射。
(1)欲使反射光为完全偏振光,玻璃片堆A 的倾角θ应为多少?在图中画出反射光的偏振态;
(2)若将部分偏振光看作自然光与线偏振光两部分的叠
加,则经过C 后线偏振光的振动面有何变化?说明理由;
(3)若透射光中自然光的光强为I ,偏振光的光强为I 3,
计算透过P 后的光强。
答:(1)根据马吕斯定律:απθα−=
=2
arctan ,n 。
(2)椭圆偏振光
(3)可用相干叠加公式计算。
(略)20-3.在图示的装置中,1P 、2P 为两个正交的偏振片,C 为四分之一波片,其光轴与1P 的偏振化方向间夹角为0
60,强度为I 的单色自然光垂直入射于1P 。
(1)试述①、②、③各区光的偏振态;
(2)计算①、②、③各区的光强。
答:(1)①区:为线偏振光;②区为椭圆偏振光;③区为椭圆偏振光。
(2)①区光强:02
1I ②区的光强:O 光的光强:0208
3sin 21I I I O ==
θe 光的光强:0208
1cos 21I I I e ==θ③区的光强:022323cos sin 21I I O ==θθ02232
3cos sin 21I I e ==θθ两者发生干涉现象,并且干涉加强:0163I I I I e O =+=
20-4.如图所示的偏振光干涉装置中,C 是劈尖角很小的双折射晶片,折射率0e n n >,1P 、2P 的偏振化方向相互正交,与光轴方向皆成045角。
若以波长为λ的单色自然光垂直照射,试讨论:
(1)通过晶片C 不同厚度处出射光的偏振态;
(2)经过偏振片2P 的出射光干涉相长及相消位置与劈尖厚度d 之间的关系,并求干涉相长的光强与入射光光强之比;
(3)若转动2P 到与1P 平行时,干涉条纹如何变化?为什么?
答:(1)通过晶片C 不同厚度处出射光的偏振态为圆偏振光。
(2)这是一个劈尖干涉的情况,所以列式:
ππλ
πk d n n O e 22=+−)((明条纹)ππλ
π)()(122+=+−k d n n O e (暗条纹)干涉相长时的光强:022224
1cos sin 21cos sin 21I I I I e O =+=+=θθθθ干涉相长的光强与入射光光强之比为:1:4
(3)若转动2P 到与1P 平行时,相位差中的π就没有了,所以干涉条纹中明暗条纹互换位置。