24考研高等数学三辅导讲义
高等数学辅导讲义
第一部分函数极限连续历年试题分类统计及考点分布本部分常见的题型1.求分段函数的复合函数。
2.求数列极限和函数极限。
3.讨论函数连续性,并判断间断点类型。
4.确定方程在给定区间上有无实根。
一、 求分段函数的复合函数 例1 (1988, 5分) 设2(),[()]1x f x e f x xϕ==-且()0x ϕ≥,求()x ϕ及其定义域。
解: 由2()x f x e =知2()[()]1x f x e xϕϕ==-,又()0x ϕ≥,则()0x x ϕ=≤.例2 (1990, 3分) 设函数1,1()0,1x f x x ⎧≤⎪=⎨>⎪⎩,则[()]f f x =1.练习题: (1)设1,1,()0,1,(),1,1,xx f x x g x e x ⎧<⎪===⎨⎪->⎩求[()]f g x 和[()]g f x ,并作出这两个函数的图形。
(2)设20,0,0,0,()(),,0,,0,x x f x g x x x x x ≤≤⎧⎧==⎨⎨>->⎩⎩求[()],[()],[()],[()]f f x g g x f g x g f x .二、 求数列的极限方法一 利用收敛数列的常用性质一般而言,收敛数列有以下四种常用的性质。
性质1(极限的唯一性) 如果数列{}n x 收敛,那么它的极限唯一。
性质2(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界。
性质3(收敛数列的保号性) 如果lim nn xa→∞=,且0a >(或0a <),那么存在0n N+∈,使得当0n n >时,都有0n x >(或0n x <).性质4(数列极限的四则运算法则) 如果,,lim lim nn n n xa yb →∞→∞==那么(1)()lim nn n xy a b →∞±=±;(2)lim nn n xy a b→∞∙=∙;(3)当0()nyn N +≠∈且0b ≠时,limn n nx a y b→∞=.例3 若 lim nn xa→∞=,则 limn n x a→∞=.注: 例3的逆命题是不对的, 例如我们取(1)nnx =-, 显然1limn n x →∞=,但数列(1)nnx=-没有极限。
考研高等数学三教材目录
考研高等数学三教材目录一、导言近年来,考研高等数学三教材在考研数学准备中扮演着重要的角色。
本文将以目录的形式介绍考研高等数学三教材的章节安排,为考生提供参考和学习方向。
二、基础篇1. 数列与极限1.1 数列的概念与性质1.2 数列的极限定义与性质1.3 重要类型数列的极限2. 函数与极限2.1 函数的概念与性质2.2 函数极限的定义与性质2.3 极限的四则运算定理三、微分篇3. 导数与微分3.1 导数的概念与性质3.2 高阶导数与洛必达法则3.3 微分的概念与性质4. 函数的应用与极值4.1 泰勒展开与函数的应用4.2 曲线的弧长与曲率4.3 函数的极值与最值四、积分篇5. 不定积分与定积分5.1 不定积分的概念与性质5.2 定积分的概念与性质5.3 积分的换元法与分部积分法6. 定积分的应用6.1 定积分的几何应用6.2 定积分与物理应用6.3 定积分与概率应用五、微分方程篇7. 常微分方程7.1 常微分方程的基本概念与性质7.2 可分离变量型与一阶线性方程7.3 高阶线性常微分方程8. 数值解法与常微分方程的应用8.1 欧拉法与改进的欧拉法8.2 常微分方程的数值解法8.3 常微分方程在物理学中的应用六、多元函数篇9. 二元函数与偏导数9.1 二元函数的概念与性质9.2 偏导数的概念与计算9.3 高阶偏导数与隐函数求导10. 多元函数的极值与条件极值10.1 多元函数的极值与最大最小值10.2 多元函数的条件极值与拉格朗日乘数法10.3 多元函数在经济学中的应用七、重积分篇11. 二重积分与三重积分11.1 二重积分的概念与性质11.2 三重积分的概念与性质11.3 空间曲线与曲面的二重与三重积分12. 重积分的应用12.1 重心与质心的计算12.2 重积分在物理学中的应用12.3 重积分在统计学中的应用八、无穷级数篇13. 极限与级数13.1 极限计算与级数的概念13.2 正项级数的判别法与求和13.3 幂级数与函数展开14. 函数项级数14.1 函数项级数的概念与性质14.2 一致收敛与逐项积分14.3 傅里叶级数的概念与性质总结:通过对考研高等数学三教材目录的整理与梳理,我们可以明确各个章节的内容,帮助考生合理安排学习进度,有针对性地复习重点知识点。
(完整word版)高等数学辅导讲义
第一部分函数极限连续历年试题分类统计及考点分布本部分常见的题型1.求分段函数的复合函数。
2.求数列极限和函数极限。
3.讨论函数连续性,并判断间断点类型。
4.确定方程在给定区间上有无实根。
一、 求分段函数的复合函数例1 (1988, 5分) 设2(),[()]1x f x e f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域。
解: 由2()x f x e =知2()[()]1x f x e x ϕϕ==-,又()0x ϕ≥,则()0x x ϕ=≤.例2 (1990, 3分) 设函数1,1()0,1x f x x ⎧≤⎪=⎨>⎪⎩,则[()]f f x =1.练习题: (1)设 1,1,()0,1,(),1,1,x x f x x g x e x ⎧<⎪===⎨⎪->⎩求[()]f g x 和[()]g f x , 并作出这两个函数的图形。
(2)设20,0,0,0,()(),,0,,0,x x f x g x x x x x ≤≤⎧⎧==⎨⎨>->⎩⎩求[()],[()],[()],[()]f f x g g x f g x g f x .二、 求数列的极限方法一 利用收敛数列的常用性质一般而言,收敛数列有以下四种常用的性质。
性质1(极限的唯一性) 如果数列{}n x 收敛,那么它的极限唯一。
性质2(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界。
性质3(收敛数列的保号性) 如果lim n n x a →∞=,且0a >(或0a <),那么存在0n N +∈,使得当0n n >时,都有0n x >(或0n x <).性质4(数列极限的四则运算法则) 如果,,lim lim n n n n x a y b →∞→∞==那么(1)()lim n n n x y a b →∞±=±;(2)lim n n n x y a b →∞•=•;(3)当0()n y n N +≠∈且0b ≠时,limn n n x a y b→∞=.例3 若lim nn xa →∞=,则lim nn xa →∞=.注: 例3的逆命题是不对的, 例如我们取(1)n n x =-, 显然1lim n n x →∞=,但数列(1)n n x =-没有极限。
2024高等数学辅导讲义零基础篇pdf
2024高等数学辅导讲义零基础篇pdf
2024高等数学辅导讲义零基础篇(PDF)是一部针对零基础者的高等
数学辅导讲义,旨在帮助这部分人及时掌握新的数学知识,更好地理
解和学习高等数学。
1.本讲义全面覆盖了高等数学的基本概念和原理,包括集合论、代数学、几何学、解析学、概率论、非标准分析和微积分学等。
2.每一章节都以问题为导向,紧扣考试大纲和学习要求,涵盖了完备的理论知识点,以简洁明了的公式、实例和例题介绍,以便更好地理解
概念。
3.讲义附有大量练习题,侧重检验题,帮助学生加深对知识点的理解和掌握,更好地掌握知识的技能。
4.本讲义分为三大块内容:数学基本概念、基本技能和实用技能。
5.数学基本概念章节介绍了数学相关必备概念,它讨论了基本概念、基本公式以及基本定理,以帮助学生更好地理解基本知识。
6.基本技能章节介绍了常见的数学知识的解决方法,包括求导和积分技巧,以及如何利用转换求解定义域上的特征方程、曲线或增减相关的
问题。
7.实用技能章节介绍了一些有用的数学方法,包括曲线拟合、算法和数值计算、抽样理论和概率分布等,这些内容将有助于学生收集数据,建立数学模型,从而分析实际问题。
本讲义是一本入门级的高等数学辅导讲义,既可以作为学习高等数学的入门教材,也可以作为复习用途,以应对高考等考试。
本讲义附有完整的知识点理论介绍和大量实例、习题,有助于学习者及时理解新的数学结论,熟练应用数学方法求解实际问题。
高等数学3知识点总结(精选3篇)
高等数学3知识点总结(精选3篇)高等数学3知识点总结篇1第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。
2.会建立简单应用问题中的函数关系式。
3.了解函数的奇偶性、单调性、周期性、和有界性。
4.掌握基本初等函数的性质及图形。
5.理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。
6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。
7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左右极限间的关系。
8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
9.掌握极限性质及四则运算法则。
10.理解无穷孝无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。
3.会求隐函数和参数方程所确定的函数以及反函数的'导数。
4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
第三章:微分中值定理与导数的应用1.熟练运用微分中值定理证明简单命题。
2.熟练运用罗比达法则和泰勒公式求极限和证明命题。
3.了解函数图形的作图步骤。
了解方程求近似解的两种方法:二分法、切线法。
4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。
第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的基本公式和性质。
2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。
4.掌握不定积分的换元积分法。
第五章:定积分1.理解定积分的概念,掌握定积分的性质及定积分中值定理。
24考研数学大纲和和23考研大纲
24考研数学大纲和和23考研大纲摘要:1.24考研数学大纲概述2.23考研数学大纲概述3.两者之间的差异和对比4.对24届考研学生的建议正文:随着24届考研的临近,广大考生们对数学大纲的关注度越来越高。
本文将对24考研数学大纲和23考研大纲进行简要概述,并对比两者之间的差异,为广大考生提供实用的备考建议。
一、24考研数学大纲概述24考研数学大纲分为两部分:数学一、数学二、数学三。
其中,数学一涵盖高等数学、线性代数、概率论与数理统计等内容;数学二主要包含高等数学、线性代数;数学三则包括高等数学、线性代数、概率论与数理统计、财经数学等。
相较于23考研大纲,24考研数学大纲在内容上没有太大变动,但部分章节的要求有所提高。
考生在备考过程中应密切关注大纲变化,确保复习方向正确。
二、23考研数学大纲概述23考研数学大纲同样分为数学一、数学二、数学三。
与24考研数学大纲相比,23考研大纲的变动较小,主要体现在部分章节的要求有所降低。
此外,23考研大纲对财经数学的部分内容进行了调整,使其更加符合实际需求。
三、24考研数学大纲与23考研大纲的差异和对比1.内容变动:24考研数学大纲与23考研大纲相比,整体内容变动不大。
但在部分章节的要求上有所提高,考生在备考时要特别关注。
2.难度调整:24考研数学大纲对部分章节的要求提高了,这意味着考试难度可能有所增加。
考生要在复习过程中加强难度训练,提高自己的解题能力。
3.考试范围:24考研数学大纲与23考研大纲基本一致,但考生仍需关注大纲中的细微变化,以确保复习全面。
四、24届考研学生备考建议1.仔细研究大纲:考生要深入研究24考研数学大纲,了解考试范围、要求及变化,为自己的复习制定有针对性的计划。
2.制定合理的学习计划:结合自身基础和需求,合理安排学习时间,确保各科目、章节的学习均衡。
3.提高解题能力:通过大量练习,提高自己在各个知识点上的解题能力。
同时,加强对难度题目的训练,以适应24考研数学大纲的要求。
(完整word版)高等数学辅导讲义.doc
第一部分函数极限连续函数、极限、连续函数极限连续函数概念函数的四种反函数与复初等函数数列极限函数极限连续概念间断点分类初等函数的连闭区间上连续特征合函数续性函数的性质函数的有界数列极限的函数极限的第一类间断有界性与最大性定义定义点值最小值定理函数的单调收敛数列的函数极限的可去间断点零点定理性性质性质函数的奇偶极限的唯一函数极限的跳跃间断点性性唯一性函数的周期收敛数列的函数极限的第二类间断性有界性局部有界性点收敛数列的函数极限的保号性局部保号性数列极限四函数极限与数则运算法则列极限的关系极限存在准函数极限四则则运算法则夹逼准则两个重要极限单调有界准无穷小的比则较高阶无穷小低阶无穷小同阶无穷小等价无穷小历年试题分类统计及考点分布考点复合函数极限四则两个重要单调有界无穷小的合计运算法则极限准则阶年份19871988 5 3 8 19891990 3 3 6 1991 5 3 8 1992 3 3 1993 5 3 8 1994 3 3 1995 3 3 1996 3 6 3 12 1997 3 3 199819992000 5 5 200120022003 4 4 8 2004 4 4 20052006 12 3 15 2007 4 4 2008 4 4 2009 4 4 2010 4 4 2011 10 10 20 合计8 18 37 32 27本部分常见的题型1.求分段函数的复合函数。
2.求数列极限和函数极限。
3.讨论函数连续性,并判断间断点类型。
4.确定方程在给定区间上有无实根。
一、 求分段函数的复合函数 例 1 (1988, 5 分) 设 f (x)e x2, f [ (x)]1 x 且 ( x) 0 求 (x) 及其定义,域。
解: 由 f (x) e x 2知 f [ ( x)] e2( x)1x ,又 (x) 0 ,则 ( x)ln(1 x), x 0 .例 2 (1990, 3 分) 设函数 f ( x)1, x1则 f [ f ( x)]10, x 1, .1, x1,练习题 : (1)设f (x)0, x1, g ( x)e x , 求f [ g( x)] 和 g[ f (x)] , 并作出这1, x 1,两个函数的图形。
最新考研数学(数学三)公认教材及考试大纲
最新考研数学(数学三)公认教材及考试大纲公认教材:高等数学:同济六版线性代数:同济五版概率论与数理统计:浙大四版推荐资料:1、李永乐考研数学三数学复习全书+习题全解(经济类)2、李永乐《数学全真模拟经典400题(数学三)》3、《李永乐考研数学历年试题解析(数学三)》4、《李永乐数学最后冲刺超越135分(数学三)》考研数学规划:课本、复习指导书、习题、模拟题、真题=成功!2013年硕士研究生入学统一考试数学考试大纲数学三考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56% 线性代数22% 概率论与数理统计22%四、试卷题型结构单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分 解答题(包括证明题) 9小题,共94分微 积 分一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性.拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。
考研数学三大纲(整理版)复习课程
一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性.最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量的分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法。
新东方24考研数学强化班主讲胡雷ppt课件
题型9.无穷小的比较或确定无穷小的阶
• (3)已知当 x0 时,函数 f(x)3sixn si3n x
与 cx k 是等价无穷小,则
(A)k=1,c=4
(B)k=1,c=-4
(C)k=3,c=4
(D)k=3,c=-4
题型10.数列极限存在的判定或证明或求解
• 1.
lni mnn11n ______.
题型11.函数极限存在1的判ys定in或x 证明或求解
• 1.设 f(x,y) y
y,x>y0> ,0
求:
1xy arctxan
(1) g(x)limf(x,y) y
(2)
lim g(x)
x0
题型12.函数连续性的讨论或证 明
• 1.设函数 x2 1, x c
f
(x)
存在,lim f (x) 存在 f(x)在开区间(a,b) xb
上有界 • (4)若 x l ix0m f(x) f(x)在含x0的区间上无界
2.函数性态
考研真题题型种类分析
• 题型1. 求 1
• 题型2. 求 0
0
• 题型3. 求 0×∞型极限 • 题型4. 求 ∞-∞型极限 • 题型5. 求 0×有界量型极限
(A)充分必要条件 (B)充分非必要条件 (C)必要非充分条件 (D)非充分也非必要条件
题型18.数列收敛性的判定或数列极限求解
• 4.①证明:对任意的正整数n,都有
1 ln1(1)1
n1
nn
成立;
②设 an11 2... .1 n ..lnn(n1,2......), 证明数列{an}收敛。
理,保号性,单调有界等)
考研真题题型种类分析
• 题型15.求n项和的数列的极限 • 题型16.求函数的表达式 • 题型17.求函数的值域 • 题型18.数列收敛性的判定或数列极限求解
考研高数讲解新高等数学上册辅导讲解——第一章上课资料
第一章函数与极限第一节映射与函数一、集合常用数集:自然数集:整数集:有理数集:实数集:开区间:闭区间:半开区间:;;;;邻域:去心邻域:二、函数定义:都有唯一与之对应,记为。
三、函数的性质讨论函数:,讨论区间:1、有界性有界:若,使得,称在区间上有界无界:对,总,使得,则称在区间上无界上界、下界:若,使得,,称在区间上有上界;若,使得,,称在区间上有下界定理:若在区间上有界在区间上有上界也有下界。
2、单调性严格单调增(减):若,且,恒有广义单调增(减):若,恒有,3、奇偶性偶函数:奇函数:常见的奇函数:等常见的偶函数:等4、周期性周期函数:,对,有,且,则称为周期为的周期函数。
常见的周期函数:等【例1】(87二)是()(A)有界函数. (B)单调函数. (C)周期函数. (D)偶函数.四、复合函数与反函数1、复合函数设的定义域为,的定义域为,值域为,且,在定义域上有复合函数。
【例2】(88一二)已知,且,求并写出它的定义域.2、反函数将函数称为直接函数,函数称为反函数。
与的图形关于直线对称。
五、初等函数第二节数列和函数的极限一、数列极限的定义数列:,,称为整标函数。
其函数值:叫做数列(序列)。
数列的每一个数称为项,第项称为数列的一般项。
简记数列为数列极限:已给数列和常数,如果对于,都,使得对于,不等式恒成立,则称当时,以为极限,或收敛于,记为或。
反之,若无极限,说发散。
二、函数极限的定义(1):设函数在内有定义,为一常数,若对于,都,使有,则称当时,以为极限,记为或。
单侧极限:左极限:。
右极限:定理:(2):设函数在充分大时有定义,为一常数,若对于,都,使都有,则称当时,以为极限,记为或。
单侧极限:;定理:【例1】设(为常数),求的值,使得存在。
三、极限的性质性质1 (极限的唯一性)数列——若存在,则极限值是唯一的。
函数——若存在,则其极限值是唯一的。
性质2 (有界性)数列——如果收敛,则一定有界。
2024考研数学李林高等数学辅导讲义解析
2024考研数学李林高等数学辅导讲义解析一、概述2024年考研数学高等数学一直是考研学子备战考试的焦点。
为帮助考生更好地掌握数学知识,提高解题能力,李林老师精心编写了高等数学辅导讲义。
本文将对李林老师的辅导讲义进行解析,帮助考生更好地理解和应用这些知识。
二、讲义内容概述李林老师的高等数学辅导讲义分为多个章节,涵盖了高等数学的各个知识点,包括微积分、多元函数、级数、常微分方程等内容。
讲义内容扎实,逻辑严谨,既包括基础知识的讲解,也包括典型例题的分析和解答,适合考生系统复习和巩固知识点。
三、微积分部分1.极限与连续讲义对极限与连续的概念进行了详细介绍,从基本概念到极限存在的条件,再到连续性的定义和性质,帮助考生理解和掌握这一重要知识点。
讲义中还包括了大量例题分析,帮助考生加深对极限与连续的理解,提高解题能力。
2.微分与微分中值定理针对微分的定义和微分中值定理等内容,讲义中提供了详细的公式推导和典型例题讲解,帮助考生掌握微分的概念和性质,熟练运用微分中值定理解决实际问题。
3.不定积分与定积分在不定积分与定积分部分,讲义重点讲解了换元积分法、分部积分法等解题技巧,并结合典型例题进行深入分析,帮助考生掌握积分的计算方法和技巧,提高解题效率。
四、多元函数部分1.多元函数的概念与性质讲义对多元函数的概念、多元函数的极限、连续性、偏导数等内容进行了系统介绍,并结合实际问题进行讲解,帮助考生理解多元函数的重要性及其在实际问题中的应用。
2.方向导数与梯度在方向导数与梯度的部分,讲义对方向导数的定义、计算方法和梯度的概念进行了详细讲解,并提供了大量例题进行分析,帮助考生掌握这一知识点的计算方法和应用技巧。
五、级数部分1.数项级数的收敛性与敛散性讲义对数项级数的收敛性与敛散性进行了全面介绍,包括正项级数的收敛判别法、一般项级数的审敛法等内容,帮助考生系统掌握级数收敛性的判别方法,提高解题能力。
2.幂级数与傅立叶级数在幂级数与傅立叶级数部分,讲义介绍了幂级数的收敛半径、函数展开成幂级数的方法,以及傅立叶级数的基本概念和性质,帮助考生理解级数在实际问题中的应用。
考研高数讲解新高等数学上册辅导讲解第一章上课资料
第一章函数与极限第 1 页第一节映射与函数一、集合常用数集:自然数集:整数集:有理数集:实数集:开区间:闭区间:半开区间:;邻域:去心邻域:二、函数定义:都有唯一与之对应,记为。
三、函数性质讨论函数:,讨论区间:1、有界性有界:假设,使得,称在区间上有界无界:对,总,使得,那么称在区间上无界上界、下界:假设,使得,,称在区间上有上界;假设,使得,,称在区间上有下界定理:假设在区间上有界在区间上有上界也有下界。
2、单调性严格单调增〔减〕:假设,且,恒有广义单调增〔减〕:假设,恒有,3、奇偶性偶函数:奇函数:常见奇函数:等常见偶函数:等4、周期性周期函数:,对,有,且,那么称为周期为周期函数。
常见周期函数:等【例1】〔87二〕是〔〕(A)有界函数. 〔B〕单调函数.〔C〕周期函数. 〔D〕偶函数.四、复合函数与反函数1、复合函数设定义域为,定义域为,值域为,且,在定义域上有复合函数。
【例2】〔88一二〕,且,求并写出它定义域.2、反函数将函数称为直接函数,函数称为反函数。
与图形关于直线对称。
五、初等函数第二节数列与函数极限一、数列极限定义数列:,,称为整标函数。
其函数值:叫做数列〔序列〕。
数列每一个数称为项,第项称为数列一般项。
简记数列为数列极限:已给数列与常数,如果对于,都,使得对于,不等式恒成立,那么称当时,以为极限,或收敛于,记为或。
反之,假设无极限,说发散。
二、函数极限定义〔1〕:设函数在内有定义,为一常数,假设对于,都,使有,那么称当时,以为极限,记为或。
单侧极限:左极限:。
右极限:定理:〔2〕:设函数在充分大时有定义,为一常数,假设对于,都,使都有,那么称当时,以为极限,记为或。
单侧极限:;定理:【例1】设〔为常数〕,求值,使得存在。
三、极限性质性质1 〔极限唯一性〕数列——假设存在,那么极限值是唯一。
函数——假设存在,那么其极限值是唯一。
性质2 〔有界性〕数列——如果收敛,那么一定有界。
考研高等数学复习完全指导
考研高等数学复习完全指导俗语说的好“好钢用在刀刃上”,比喻做事情要注意重点和要点,在关键的地方使劲,往往达到理想的效果。
在考研数学的复习当中也要注意这一点。
经常有学生遇到这样的情况,在考研数学复习的初期阶段,本着全面复习的态度认认真真、从头到尾地对每一个考点进行细致的复习,按照高等数学、线性代数、概率论的顺序进行复习。
可是,当复习线性代数的时候发现高等数学的部分内容淡忘了,复习概率论的时候又发现线性代数的部分内容记不清了,这样经过几个月的一轮的复习,最后发现留在自己脑中的知识点的已经很有限了。
这是为什么呢?如何避免这种情况呢?人的记忆效果随着时间的推移而迅速下降,这是正常的现象。
一是可以通过反复加强记忆,第二种办法就是加强要点和重点的作用,提纲挈领,从而掌握全局。
因此,建议大家在第一轮全面复习的时候同时要兼顾复习要点,让要点成为复习中的“刀刃”,起到提纲挈领、统领全局的作用。
那么,考研数学复习中的“刀刃”都有哪些呢?下面说明复习高等数学一科的“刀刃”之处。
高等数学高等数学是考研数学的重中之重,备考高等数学要特别注意以下三个方面。
一、按照大纲对数学基本概念、基本方法、基本定理准确把握。
数学是一门演绎的科学,靠侥幸押题是行不通的。
只有对基本概念有深入理解,牢牢掌握基本定理和公式,才能找到解题的突破口和切入点。
分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。
数学的概念和定理是组成数学试题的基本元件,数学思维过程离不开数学概念和定理,因此,正确理解和掌握好数学概念、定理和方法是取得好成绩的基础和前提。
二、要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。
综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。
近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。
历年考研数学高等数学基础讲义
考研数学高等数学基础讲义目录第一讲极限 (1)第二讲高等数学的基本概念串讲 (9)第三讲高等数学的基本计算串讲 (13)第四讲高等数学的基本定理串讲 (24)第五讲微分方程 (27)第六讲多元函数微积分初步 (29)1 第一讲 极限核心考点概述1.极限的定义2.极限的性质3.极限的计算4.连续与间断内容展开 一、极限的定义1. lim 是什么? lim 是什么?x →∙n →∞(1)lim 的情况:x →∙①“ x → ∙ ”代表六种情形: x → x , x → x +, x → x -, x → ∞, x → +∞, x → -∞②函数极限运算的过程性——必须保证在作极限运算的过程中函数处处有定义,否则极限过程便无从谈起,于是极限就不会存在了。
比如下面这个例子:sinx sin 1 x【例】计算lim x →0. x sin 1x事实上,在 x = 0 点的任一小的去心邻域内,总有点 x = → 0(| k | 为充分大的正整数),k πsin x s in 1 sin x s in 1 x x 使 在该点没有定义,故lim不存在. x sin 1 x x →0x sin 1x(2)lim 是什么?n →∞2.极限的定义(1)函数极限的定义:lim f (x ) = A ⇔ ∀ε > 0, ∃δ > 0, 当0 < x →x 0x - x 0< δ 时,恒有f (x ) - A < ε1n n12注:趋向方式六种(2)数列极限定义:lim x = a ⇔ ∀ε > 0, ∃N > 0, 当n > N 时,恒有 x - a < ε n →∞注:趋向方式只有一种【例】以下三个说法,(1)“ ∀ε > 0 ,∃X > 0 ,当 x > X 时,恒有件;εf (x ) - A < e 10”是“ lim x →+∞f (x ) = A ”的充要条( 2 )“ ∀ 正整数 N , ∃ 正整数 K ,当 0 <“ lim f (x ) = A ”的充要条件;x →x 0x - x 0 ≤ K时,恒有 f (x ) - A ≤ 1 ” 是 2N(3)“ ∀ε ∈ (0,1) , ∃ 正整数 N ,当n ≥ N 时,恒有| x n - a |≤ 2ε ”是“数列{x n } 收敛于a ” 的充要条件;正确的个数为()(A )0 (B )1(C )2(D )3二、极限的性质1.唯一性(1) lim e x= ∞, lim e x= 0 ,(2)limsin x 不存在(3)lim arctan x 不存在(4)lim [x ]x →+∞x →-∞x →0xx →∞x →0不存在1- π e x 1【例】设k 为常数,且 I = lim x →0+k ⋅ arctan 存在,求 k 的值,并计算极限 I 。
2024考研汤家凤高等数学辅导讲义
2024考研汤家凤高等数学辅导讲义(实用版)目录1.2024 考研汤家凤高等数学辅导讲义概述2.汤家凤辅导讲义的内容特点3.如何获取 2024 考研汤家凤高等数学辅导讲义4.汤家凤辅导讲义对考研数学的帮助正文一、2024 考研汤家凤高等数学辅导讲义概述2024 考研汤家凤高等数学辅导讲义是一本针对考研数学的高等数学辅导书籍,由著名数学教育专家汤家凤编写。
这本书旨在帮助广大考研学生更好地掌握高等数学的知识点,提高考研数学成绩。
二、汤家凤辅导讲义的内容特点1.系统性强:汤家凤辅导讲义全面覆盖了考研数学高等数学部分的所有知识点,从基本概念到复杂题目,都有详细讲解。
2.重点突出:汤家凤辅导讲义针对考研数学的考试重点进行了重点讲解,帮助学生把握考试命脉,提高答题效率。
3.技巧性强:汤家凤辅导讲义总结了大量解题技巧和方法,帮助学生快速解决各类题目,提高答题速度。
4.实用性强:汤家凤辅导讲义提供了大量实例和练习题,帮助学生巩固所学知识,提高实际解题能力。
三、如何获取 2024 考研汤家凤高等数学辅导讲义想要获取 2024 考研汤家凤高等数学辅导讲义,可以关注汤家凤的官方公众号或在线教育平台,也可以在各大书店或网络书店购买。
同时,一些考研交流群组也会分享电子版的讲义,可以加入相关群组进行获取。
四、汤家凤辅导讲义对考研数学的帮助1.提高理论水平:通过学习汤家凤辅导讲义,可以系统地掌握高等数学的理论知识,为考研数学打下坚实的基础。
2.提高解题能力:汤家凤辅导讲义中总结了大量解题技巧和方法,可以帮助学生提高解题能力,迅速提高考研数学成绩。
3.提高应试水平:汤家凤辅导讲义针对考研数学的考试重点进行了重点讲解,可以帮助学生把握考试命脉,提高答题效率和准确率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24考研高等数学三辅导讲义
(实用版)
目录
1.考研高等数学的重要性
2.24 考研高等数学三辅导讲义的主要内容
3.讲义对于考研备考的帮助
4.如何有效利用讲义进行复习
正文
作为一名准备考研的学生,高等数学是一项重要的科目,它对于考研的成功与否起着关键的作用。
因此,我们需要找到一些优秀的辅导资料来帮助我们复习和巩固高等数学的知识。
其中,24 考研高等数学三辅导讲义就是一个很好的选择。
24 考研高等数学三辅导讲义主要包括函数、极限与连续性、一元函数的微分、一元函数的积分等内容。
这些内容是高等数学的基础,也是考研的重点。
通过讲义的辅导,我们可以更好地理解这些概念,掌握这些知识点。
讲义对于考研备考的帮助是非常大的。
首先,讲义可以帮助我们系统地复习高等数学的知识,使我们的知识更加系统和完整。
其次,讲义中的例题和习题可以帮助我们加深对知识点的理解,提高我们的解题能力。
最后,讲义中的总结和提示可以帮助我们更好地掌握考试的重点和难点,提高我们的备考效率。
要想有效利用讲义进行复习,我们需要做到以下几点。
首先,我们需要认真阅读讲义中的每一个知识点,理解并掌握它们。
其次,我们需要多做讲义中的习题,通过做题来加深对知识点的理解。
最后,我们需要定期回顾讲义中的内容,以巩固我们所学的知识。
总的来说,24 考研高等数学三辅导讲义是一本非常优秀的辅导资料,它对于我们的考研备考有着很大的帮助。