2020年安徽省宣城市郎溪中学自主招生数学模拟试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年安徽省宣城市郎溪中学自主招生数学模拟试卷
一、单选题(40分)
1.(3分)如图所示为某市2020年1月7日的天气预报图,则这天的温差是()
A.﹣12°C B.8°C C.﹣8°C D.12°C
2.(3分)北部湾港1月10日晚间公告,2018年完成货物吞吐量183000000吨,同比增长
13.15%.其中数据183000000用科学记数法表示为()
A.18.3×107B.1.83×108C.1.83×109D.0.183×109 3.(3分)下列计算中,正确的是()
A.(﹣m2)3=m6B.(﹣3mn3)2=6m2n6
C.﹣m2•žm3=﹣m6D.(2m3)2=4m6
4.(3分)若关于x的不等式组有且仅有四个整数解,且关于y的分式方程+=﹣2有非负数解,则所有满足条件的整数a的值之和是()A.3B.1C.0D.﹣3
5.(3分)如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O.如果半径为4,那么⊙O 的弦AB长度为()
A.2B.4C.2D.4
6.(3分)小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有()人.
A.1080B.900C.600D.108
7.(3分)如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()
A.S1+S3=S2+S4B.S1+S2=S3+S4
C.S1+S4=S2+S3D.S1=S3
8.(3分)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()
A.=2B.=2
C.=2D.=2
9.(3分)如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC=x,PE+PB=y,图②是y关于x的函数图象,且图象上最低点Q的坐标为(4,3),则正方形ABCD的边()
A.6B.3C.4D.4
10.(3分)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=
3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后,其中有一个奇数是2019,则m的值是()
A.46B.45C.44D.43
二、填空题
11.(3分)如图,两个正方形边长分别为a、b,如果a+b=17,ab=60,则阴影部分的面积为.
12.(3分)如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为.
13.(3分)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折叠,点B落在矩形内点P处,连接AP,则tan∠HAP=.
14.(3分)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.
三、解答题(本大题两题共16分)
15.先化简,再求值:(﹣x+1)÷,其中x=﹣3.
16.(16分)根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高cm,放入一个大球水面升高cm;
(2)如果要使水面上升到50cm,应放入大球、小球各多少个?
17.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,﹣1),请解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1,点A1的坐标为;
(2)在网格内以点(1,1)为位似中心,把△A1B1C1按相似比2:1放大,得到△A2B2C2,请画出△A2B2C2;若边AC上任意一点P的坐标为(m,n),则两次变换后对应点P2的坐标为.
18.(20分)为了让乘客有良好的候车环境,某市在公交站牌旁投放大量的候车亭(如图①),其结构示意图的侧面如图②所示,其中支柱CD的长为2.1m,且支柱DC垂直于地面DG,顶棚横梁AE长为1.5m,BC为镶接柱,镶接柱与支柱的夹角∠BCD=150°,与顶棚横梁的夹角∠ABC=135°,要求横梁一端点E在支柱DC的延长线上,此时测量得镶接点B与点E的距离为0.35m.根据以上测量数据,求点A到地面DG的距离.(结果精确到
0.1m,参考数据:≈1.41,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27).
19.矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.
(1)当点F运动到边BC的中点时,求点E的坐标;
(2)连接EF,求∠EFC的正切值;
(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
20.(24分)如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.
(1)求证:AC为⊙O切线.
(2)若AB=5,DF=4,求⊙O半径长.
21.(7分)我市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).
根据以上统计图提供的信息,请解答下列问题:
(1)m=,n=.
(2)补全上图中的条形统计图.
(3)若全校共有2000名学生,请求出该校约有多少名学生喜爱打乒乓球.
(4)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,