小学周末数学测试题(九)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周末数学(九)姓名
(一)倍数和因数:
1、如果数a能被数b整除,b不等于零,a就叫做b的倍数,b就叫做a的因数。
2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
4、2的倍数特征:个位上是0、2、4、6、8的数。
5、5的倍数特征:个位上是0或5的数。
6、3的倍数特征:一个数的各位上的数的和能被3整除。
7、能被2整除的数叫偶数,不能被2整除的数叫奇数。
注意:0也是偶数,自然数按能否被2整除的特征可以分为奇数和偶数。
8、一个数如果只有1和它本身两个约数,这样的数叫做质数。
一个数,如果除了1和它本身还有别的约数这样的数叫做合数。
注意:1不是质数也不是合数。
(二)旋转:
(1)生活中的旋转:电风扇、车轮、纸风车
(2)旋转要明确绕点,角度和方向。
旋转的性质:
(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;
(2)其中对应点到旋转中心的距离相等;
(3)旋转前后图形的大小和形状没有改变;
(4)两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;
(5)旋转中心是唯一不动的点。
旋转要注意:顺时针、逆时针、度数
(三)打电话规律——人人不闲着,每人都在传。(技巧:已知人数依次× 2)(1)逐个法:所需时间最多。(2)分组法:相对节约时间。
(3)同时进行法:最节约时间。
(四)统计图:我们学过——条形统计图、复式折线统计图。
条形统计图优点:条形统计图能形象地反映出数量的多少。
折线统计图优点:
折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。
注:(①画图时注意:一“点”(点)、二“连”(连线) 三“标”(标数据)。
②要用不同的线段分别连接两组数据中的数。
一、填空题
1、20以内的质数有(),共()个,它们的和是();20以内的合数有()个;既是偶数又是质数的是(),既是奇数又是合数的是()。
2、1025至少减去()就是3的倍数,1706至少加上()就是5的倍数。
3、已知a=b+1,(ab都是不为零的自然数),则a和b的最大公因数是()最小公倍数是()。
4、两个质数的和是13,积是22,这两个质数分别是()和()。
5、如果b÷a=2(a≠0)那么,a和b的最大公因数是(),最小公倍数是()。
6、一袋糖分给9个小朋友多3颗,分给12个小朋友也多3颗,这袋糖至少有()颗。
7、时针从“7”绕点O顺时针旋转到90°后指向“()”,时针从“()”绕点O顺时针旋转90°指向“7”。
8、李老师用电话紧急通知31名学生到学校参加活动,如果每通知一名学生用一分钟。以此类推,通知到31名学生至少需要()分钟。
二、判断题。
1、所有的偶数都是合数。()
2、两个不同的质数的公因数只有1。()
3、一个数的因数一定比它的倍数小。()
4、两个数的乘积一定是它们的最小公倍数。()
5、所有的自然数不是奇数就是偶数。()
6、两个非零的不同自然数,它们的最小公倍数一定比他们的最大公约数大。
7、如果甲数除以乙数商是15,那么甲数一定是乙数的倍数。()
8、一个四位数,841()同时是2和3的倍数,()里最小填2。()
9、a、b都是非零自然数,如果a大于b,那么1/a>1/b。()
10、边长是自然数的正方形,它的周长一定是合数。()
三、选择题。
1、两个数在以下情况不一定为互质数的是()
A、两个连续的自然数
B、两个不同的质数
C、两个不同的奇数
2、在3,4,8,9这四个数中,每两个数是互质数的有()对。
A、3
B、4
C、6
D、8
3、已知三位数4()1,正好是三个连续自然数的和,括号里的数字可能是()。
A、4
B、3
C、6
D、5
4、两个数的最大公因数是4,最小公倍数是24,这两个数不可能是()
A、4和24
B、8和12
C、8和24
5、8是 24和56的()。
A、倍数
B、公倍数
C、最大公因数
6、下列各组中()是4的倍数。
A、1234
B、3456
C、5678
D、6789
四、解决问题。
1、五年级一班全班学生排练舞蹈12个人一列,18个人一列都刚好排成队列,五年级一班至少有学生多少人?
2、一批面包数不超过50个,3个一袋或5个一袋都正好装完,这批面包最多有多少个?最少有多少个?
3、五年级一、二、三班同学在操场上进行排练,如果每列22人或每列33人都刚好可以排完。取这三个班的总人数多100人,然而不到150人,这三个班一共有多少人?
4、果果将一些巧克力装入礼盒,如果每个礼盒装15块,巧克力最后余4个,如果每个礼盒装18块,最后差14块,这些巧克力至少有多少块?