角平分线的判定教案
八年级数学下册《角平分线的性质》教案、教学设计
4.作业完成后,认真检查,确保答案正确。
4.布置课后作业,要求学生巩固所学知识,并进行适当的拓展延伸。
五、作业布置
为了巩固学生对角平分线性质的理解和应用,提高学生的解题能力,特布置以下作业:
1.请同学们完成课本第chapter页的练习题,重点关注以下题目:
(1)题目编号A:运用角平分线性质解决实际问题。
(2)题目编号B:证明角平分线上的点到角两边的距离相等。
在教学过程中,教师应关注学生的学习状况,及时调整教学策略,使学生在轻松愉快的氛围中掌握角平分线的性几何图形观察能力,掌握了基本的几何概念和性质,能够运用简单的逻辑推理进行问题分析。在此基础上,学生对角平分线的性质的学习将更为顺利。然而,学生在空间想象、逻辑推理和问题解决方面仍存在一定的困难,需要教师在教学过程中给予关注和引导。
2.学生在运用角平分线性质解决具体问题时,是否能够熟练运用。
3.学生在团队合作中,能否主动发表自己的观点,倾听他人意见。
4.学生在遇到困难时,是否具备寻求帮助和解决问题的能力。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握角平分线的定义及性质。
2.学会运用角平分线的性质解决实际问题。
3.培养学生的逻辑思维能力和空间想象力。
3.教师针对学生的错误,进行讲解,帮助学生查漏补缺。
4.教师挑选部分优秀作业进行展示,让学生互相学习,共同提高。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结角平分线的性质及解题方法。
2.学生分享学习心得,教师点评并给予鼓励。
3.教师强调角平分线在实际问题中的应用价值,激发学生学习数学的兴趣。
七年级数学上册《角平分线》教案、教学设计
1.概念讲解:介绍角平分线的定义。
教师讲解:“角平分线是指从一个角的顶点出发,将这个角分成两个相等角的线段。”
2.尺规作图:演示和讲解如何用尺规作图方法作出角的平分线。
教师演示并讲解:“首先,画出角的两边;然后,在角的顶点处分别作两条射线,使这两条射线分别与角的两边相交;最后,连接这两个交点,即可得到角的平分线。”
5.自主学习能力:鼓励学生在课后进行拓展学习,提高对角平分线知识的理解和应用。
(三)情感态度与价值观
1.培养学生的几何审美观念,让他们感受到几何图形的美;
2.培养学生勇于探索、积极思考的学习态度,激发学生对数学学科的兴趣;
3.培养学生严谨、踏实的科学态度,让他们认识到数学知识的严密性和逻辑性;
4.培养学生的创新意识,鼓励他们在解决问题时尝试不同的方法和思路;
3.教师点评:对学生的讨论成果给予肯定和指导。
(四)课堂练习
1.设计练习题:针对本节课所学内容,设计具有梯度性的练习题。
练习题包括:基本概念题、尺规作图题、性质应用题等。
2.学生独立完成练习题,教师巡回指导。
3.选取部分学生进行板演,展示解题过程。
4.针对学生的解答,教师进行点评和讲解。
(五)总结归纳
2.教学策略:
(1)情境创设:以实际问题为背景,创设教学情境,让学生感受角平分线的应用;
(2)逐步引导:从简单的例子入手,逐步引导学生理解和掌握角平分线的性质;
(3)分层教学:针对不同学生的学习水平,设计不同难度的题目,使每个学生都能在原有基础上得到提高;
(4)总结反思:在课后组织学生进行总结反思,巩固所学知识,提高学生的自主学习能力。
2.创设情境:以校园环境为背景,提出实际问题。
证明角平分线的性质教案
证明角平分线的性质教案证明角平分线的性质教案1一、教学目标1.了解推理、证明的格式,掌握平行线判定公理和第一个判定定理.2.会用判定公理及第一个判定定理进行简单的推理论证.3.通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:独立思考,主动发现.三、重点·难点及解决办法(一)重点在观察实验的基础上进行公理的概括与定理的推导.(二)难点判定定理的形成过程中逻辑推理及书写格式.(三)解决办法1.通过观察实验,巧妙设问,解决重点.2.通过引导正确思维,严格展示推理书写格式,明确方法来解决难点、疑点.四、课时安排l课时五、教具学具准备三角板、投影胶片、投影仪、计算机.六、师生互动活动设计1.通过两组题,复习旧知,引入新知.2.通过实验观察,引导思维,概括出公理及定理的推导,并以练习进行巩固.3.通过教师提问,学生回答完成归纳小结.七、教学步骤(-)明确目标教学建议1、教材分析(1)知识结构:由平行线的画法,引出公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.(2)重点、难点分析:本节的重点是:公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是判断两直线平行的依据,也为下一节,学习-平行线的性质打下了基础.本节内容的难点是:理解由判定公理推出判定定理的证明过程.学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理.2、教学建议在平行线判定公理的教学中,应充分体现一条主线索:“充分实验—仔细观察—形成猜想—实践检验—明确条件和结论.”教师可演示教材中所示的教具,还可以让每个学生都用三角板和直尺画出平行线.在此过程中,注意角的变化情况.事实充分,学生可以理解,如果同位角相等,那么两直线一定会平行.公理后,有些同学可能会意识到“内错角相等,两直线也会平行”.教师可组织学生按所给图形进行讨论.如何利用已知和几何的公理、定理来证明这个显然成立的事实.也可多叫几个同学进行重复.逐步使学生欣赏到数学证明的严谨性.另一个定理的发现与证明过程也与此类似.教学设计示例1一、教学目标1.了解推理、证明的格式,掌握平行线判定公理和第一个判定定理.2.会用判定公理及第一个判定定理进行简单的推理论证.3.通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:独立思考,主动发现.三、重点·难点及解决办法(一)重点在观察实验的基础上进行公理的概括与定理的推导.(二)难点判定定理的形成过程中逻辑推理及书写格式.(三)解决办法1.通过观察实验,巧妙设问,解决重点.2.通过引导正确思维,严格展示推理书写格式,明确方法来解决难点、疑点.四、课时安排l课时五、教具学具准备三角板、投影胶片、投影仪、计算机.六、师生互动活动设计1.通过两组题,复习旧知,引入新知.2.通过实验观察,引导思维,概括出公理及定理的推导,并以练习进行巩固.3.通过教师提问,学生回答完成归纳小结.七、教学步骤(-)明确目标掌握平行线判定公理和第一个判定定理及运用其进行简单的推理论证.(二)整体感知以情境设计,引出课题,以模型演示,引导学生观察,、分析、总结,讲授新知,以变式训练巩固新知,在整节课中,较充分地体现了逻辑推理.(三)教学过程创设情境,引出课题师:上节课我们学习了平行线、平行公理及推论,请同学们判断下列语句是否正确,并说明理由(出示投影).1.两条直线不相交,就叫平行线.2.与一条直线平行的直线只有一条.3.如果直线、都和平行,那么、就平行.学生活动:学生口答上述三个问题.【教法说明】通过三个判断题,使学生回顾上节所学知识,第1题在于强化平行线定义的前提条件“在同一平面内”,第2题不仅回顾平行公理,同时使学生认识学习几何,语言一定要准确、规范,同一问题在不同条件下,就有不同的结论,第3题复习巩固平行公理推论的同时提示学生,它也是判定两条直线平行的方法.师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗?根据什么?学生:能判定垂直,根据垂直的定义.师:在同一平面内不相交的两条直线是平行线,你有办法测定两条直线是平行线吗?学生活动:学生思考,如何测定两条直线是否平行?教师在学生思考未得结论的情况下,指出不能直接利用手行线的定义来测定两条直线是否平行,必须找其他可以测定的方法,有什么方法呢?学生活动:学生思考,在前面复习-平行公理推论的情况下,有的学生会提出,再作一条直线,让,再看是否平行于就可以了.师:这种想法很好,那么,如何作,使它与平行?若作出后,又如何判断是否与平行?学生活动:学生思考老师的提问,意识到刚才的回答,似是而非,不能解决问题.师:显然,我们的问题没有得到解决,为此我们来寻找另外一些判定方法,就是今天我们要学习的(板书课题).[板书]2.5(1).【教法说明】由垂线定义可以来判断两线是否垂直,学生自然想到要用平行线定义来判断,但我们无法测定直线是否不相交,也就不能利用定义来判断.这时,学生会考虑平行公理推论,此时教师只须简单地追问,就让学生弄清问题未能解决,由此引入新课内容.探究新知,讲授新课教师给出像课本第78页图2–20那样的两条直线被第三条直线所截的模型,转动,让学生观察,转动到不同位置时,的大小有无变化,再让从小变大,说出直线与的位置关系变化规律.【教法说明】让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论.图1学生活动:转动到不同位置时,也随着变化,当从小变大时,直线从原来在右边与直线相交,变到在左边与相交.师:在这个过程中,存在一个与不相交即与平行的位置,那么多大时,直线呢?也就是说,我们若判定两条直线平行,需要找角的关系.师:下面先请同学们回忆平行线的画法,过直线外一点画的平行线 .学生活动:学生在练习本上完成,教师在黑板上演示(见图1).师:由刚才的演示,请同学们考虑,画平行线的过程,实际上是保证了什么?图2学生:保证了两个同位角相等.师:由此你能得到什么猜想?学生:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行.师:我们的猜想正确吗?会不会有某一特定的时刻,即使同位角不等,而两条直线也平行呢?教师用计算机演示运动变化过程.在观察实验之前,让学生看清角和角(如图2),而后开始实验,让学生充分观察并讨论能得出什么结论.学生活动:学生观察、讨论、分析.总结了,当时,不平行,而无论取何值,只要,、就平行.图3教师引导学生自己表达出结论,并告诉学生这个结论称为公理.[板书]两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.即:∵ (已知见图3),∴ (同位角相等,两直线平行).【教法说明】通过实际画图和用计算机演示运动—变化过程,让学生确信公理的正确.尝试反馈,巩固练习(出示投影).图41.如图4,,,吗?2. ,当时,就能使 .【教法说明】这两个题目旨在巩固所学的判定公理,对于第2题是已知结论,找出使它成立的题设,这是证明问题时应掌握的一种思考方法,要求学生逐步学会执因导果和执果索因的思考方法,教师在教学时要注意逐渐培养学生的这种数学思想.(出示投影)直线、被直线所截.图51.见图5,如果,那么与有什么关系?2. 与有什么关系?3. 与是什么位置关系的一对角?学生活动:学生观察,思考分析,给出答案:时,,与相等,与是内错角.师:与满足什么条件,可以得到 ?为什么?学生活动:,因为,通过等量代换可以得到 .师:时,你进而可以得到什么结论?学生活动: .师:由此你能总结出什么正确结论?学生活动:内错角相等,两直线平行.师:也就是说,我们得到了判定两直线平行的另一个方法:[板书]两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.【教法说明】通过教师的启发、引导式提问法,引导学生自己去发现角之间的关系,进而归纳总结出结论,主要采用探讨问题的方式,能够培养学生积极思考、善于动脑分析的良好学习习惯.师:上面的推理过程,可以写成∵ (已知),(对顶角相等),∴ .[∵ (已证)],∴ (同位角相等,两直线平行).【教法说明】这里的推理过程可以放手让学生试着说,这样才能使中国学习联盟胆尝试,培养他们勇于进取的精神.教师指出:方括号内的“∵”,就是上面刚刚得到的“∴”,在这种情况下,方括号内这一步可以省略.尝试反馈,巩固练习(出示投影)1.如图1,直线、被直线所截.(1)量得,,就可以判定,它的根据是什么?(2)量得,,就可以判定,它的根据是什么?2.如图2,是的延长线,量得 .(1)从,可以判定哪两条直线平行?它的根据是什么?(2)从,可以判定哪两条直线平行?它的根据是什么?图1 图2学生活动:学生口答.【教法说明】这组题旨在巩固公理和判定方法的掌握,使学生熟悉并会用于解决简单的说理问题.变式训练,培养能力(出示投影)1.如图3所示,由,可判断哪两条直线平行?由,可判断哪两条直线平行?2.如图4,已知,,吗?为什么?图3 图4学生活动:学生思考后回答问题.教师给以指正并启发、引导得出答案.【教法说明】这组题不仅让学生认识变式图形,加强识图能力,同时培养学生的发散思维,也就是培养学生从多角度、全方位考虑问题,从而得到一题多解.提高了学生的解题能力.(四)总结扩展2.结合判一定理的证明过程,熟悉表达推理证明的要求,初步了解推理证明的格式.八、布置作业课本第97页习题2.2A组第4、5、6(1)(2)题.证明角平分线的性质教案2一、教学目标【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。
角的平分线的性质教案
角的平分线的性质教案教案:角的平分线的性质一、知识背景1.平分线的存在性:对于任意一个角,都存在且唯一一条通过其顶点的平分线。
2.平分线的性质:平分线上的任意一点都与角的两边的端点连线所得的两条边相等。
二、教学目标1.知识目标:了解角的平分线的定义和性质。
2.能力目标:能够应用平分线的性质,解决与角的平分线相关的问题。
三、教学重难点1.教学重点:角的平分线的定义和性质。
2.教学难点:能够应用平分线的性质解决问题。
四、教学过程1.导入新知识:通过展示一张图示例,在黑板上画出一个角,并说明角的概念和角的顶点、边等基本要素。
2.角的平分线的定义:向学生介绍角的平分线的概念和定义,并说明平分线的存在性。
3.平分线的性质:通过展示一个新的角,并在其顶点处画出一条平分线,向学生解释平分线上任意一点与角的两边的连线等长的性质,并引导学生猜测平分线的性质。
4.定理的证明:通过几何推理,给出平分线的性质的证明,从而使学生对角的平分线的性质有更深刻的理解。
5.例题讲解:给出一些具体的角和平分线的问题,引导学生应用平分线的性质解决问题,例如:已知角A的平分线BC,求角ABC的度数。
6.练习与解答:让学生自己完成一些练习题,巩固和运用所学的知识。
7.拓展延伸:给学生一些更复杂的问题,让学生运用平分线的性质解决问题,例如:已知平面内有三条互不相交的直线,任意两线的交角都相等,求证这三条直线共点。
五、教学方法1.讲授法:通过讲解和示例,向学生介绍角的平分线的定义和性质。
2.演练法:让学生自己完成一些练习题,巩固和应用所学的知识。
3.启发法:通过给出具体的问题和图示,引导学生发现平分线的性质,并进行推理思考。
六、教学评价与反思1.教学评价:通过学生的参与和表现,观察他们对角的平分线的理解和运用。
2.教学反思:根据教学评价的结果,总结学生的差异化学习需求,找到改进教学的方法和策略。
七、教学延伸1.角的平分线在三角形中的运用:通过引导学生观察,发现角平分线在三角形中的运用,比如说角平分线与三角形的中位线、高、垂心等的关系。
华师大版数学八年级上册《角平分线》教案
华师大版数学八年级上册《角平分线》教案一、教学内容本节课选自华师大版数学八年级上册第七章第二节《角平分线》。
内容包括:角平分线的定义、性质及判定,教材第7.2节。
二、教学目标1. 知识目标:理解角平分线的概念,掌握角平分线的性质和判定方法。
2. 技能目标:能运用角平分线性质解决相关问题,提高逻辑思维能力和解题技巧。
3. 情感目标:培养学生对数学的兴趣和探索精神,增强团队合作意识。
三、教学难点与重点1. 教学难点:角平分线性质的证明和应用。
2. 教学重点:角平分线的定义和性质。
四、教具与学具准备1. 教具:三角板、量角器、直尺、圆规。
2. 学具:三角板、量角器、直尺、圆规。
五、教学过程1. 实践情景引入通过展示实际生活中角平分线的应用,如剪纸、拼接图形等,引导学生思考角平分线的意义。
2. 知识讲解(1)角平分线的定义:从角的顶点出发,将角分成两个相等的角的线段。
(2)角平分线的性质:角的平分线上的点到角的两边的距离相等。
(3)角平分线的判定:如果一个点在角平分线上,那么它到角的两边的距离相等。
3. 例题讲解例1:求证:角的平分线上的点到角的两边的距离相等。
例2:已知∠ABC=80°,点D在∠ABC的平分线上,求∠ABD和∠CBD的度数。
4. 随堂练习练习1:已知∠A=100°,求∠A的平分线上的点B到∠A的两边的距离。
练习2:判断点P是否在∠ABC的平分线上。
六、板书设计1. 定义:角的平分线2. 性质:角的平分线上的点到角的两边的距离相等3. 判定:点到角的两边的距离相等,则该点在角的平分线上七、作业设计1. 作业题目:(1)求证:角的平分线上的点到角的两边的距离相等。
(2)已知∠A=120°,求∠A的平分线上的点B到∠A的两边的距离。
2. 答案:(1)证明:略(2)答案:距离相等,均为∠A的一半,即60°。
八、课后反思及拓展延伸1. 反思:通过本节课的教学,发现学生对角平分线的性质和判定方法掌握较好,但在应用方面还有待提高。
角的平分线的判定(导学案)-八年级数学上册同步备课系列
12.3.2角的平分线的判定导学案一、学习目标:1.理解角平分线的判定定理.2.掌握角平分线判定定理内容的证明方法并应用其解题.3.学会判断一个点是否在一个角的平分线上.重点:角的平分线的判定定理的证明及应用.难点:角的平分线的判定.二、学习过程:课前自测角平分线的性质定理:文字语言:__________________________________________________.几何符号:________________________________________________________________________合作探究思考:我们知道,角平分线上的点到角的两边的距离相等.那么到角的两边的距离相等的点是否在角的平分线上呢?(先独立思考,然后在组内交流分享,通过观察动画演示,确定猜想)猜想:__________________________________________________.把猜想转化成具体数学问题,认真填写一下已知和求证:已知:__________________________________________________________.求证:________________________________________________.※角的平分线的判定:文字语言:________________________________________________.几何语言:____________________________________________________________________思考:如图,要在S区建一个集贸市场,使它到公路,铁路距离相等,离公路与铁路交叉处500米.这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?【针对练习】如图,在直线MN 上求作一点P ,使点P 到射线OA 和OB 的距离相等.典例解析例1.如图,△ABC 的角平分线BM ,CN 相交于点P .求证:点P 到三边AB ,BC ,CA 的距离相等.例2.如图,在△AB C 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等.若∠A =40°,则∠BOC 的度数为()A .110°B .120°C .130°D .140°例3.如图,PA 、PC 分别是△ABC 外角∠MAC 与∠NCA 的平分线,它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.【针对练习】如图,△ABC 的∠ABC 的外角的平分线BD 与∠ACB 的外角的平分线CE 相交于点P .求证:点P 到三边AB ,BC ,CA 所在直线的距离相等.例4.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:(1)AM 平分∠DAB ;(2)AD =AB +CD.达标检测1.如图,PD ⊥OA 于D ,PE ⊥OB 于E ,PD =6cm ,当PE =____cm 时,点P 在∠AOB 的平分线上.2.如图,已知P A ⊥ON 于A,PB ⊥OM 于B,且PA =PB,∠MON =50°,∠OPC =30°,则∠PCA=______.3.如图,直线l 1,l 2,l 3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有____处.4.如图所示,已知△ABC 的周长是10,OC 、OB 分别平分∠ABC 和∠ACB ,OD 上BC 于D ,且OD =1,则△ABC 的面积是_______.5.如图,某市有一块由三条马路围成的三角形绿地,现准备在绿地中建一小亭供人小憩,使小亭中心到三条马路的距离相等,试确定小亭的中心位置.6.如图,有一块三角形的闲地,其三边长分别为30m 、40m 、50m ,现要把它分成面积比为3:4:5的三部分,分别种植不同的花,请你设计一种方案,并简要说明理由.7.如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=D C.求证:AD是∠BAC的平分线.。
八年级数学上册《角平分线的性质和判定定理》教案、教学设计
-如果一个角的平分线同时也是这个角的垂直平分线,那么这个角有什么特殊的性质?请给出证明;
-如果一个角的平分线同时也是另一个角的平分线,那么这两个角之间有什么关系?请给出证明。
4.实践活动:
-与同学合作,设计一个关于角平分线的数学小报,内容包括定义、性质、判定定理以及生活中的应用等;
-利用所学知识,尝试解决实际生活中的问题,如测量角度、划分土地等,并撰写解题报告。
2.学生在运用角平分线判定定理解决问题时的逻辑思维能力和解题技巧;
3.学生在合作交流、动手操作等方面的学习习惯和团队协作能力。
针对学情,教师应采取以下策略:
1.设计富有启发性的问题,引导学生主动探究角平分线的性质;
2.创设生活情境,让学生在实际问题中体会角平分线判定定理的应用;
3.注重个体差异,给予学生个性化的指导,提高学生的自主学习能力;
4.加强课堂讨论与交流,培养学生的团队合作意识和解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:角平分线的性质及其应用,角平分线的判定定理。
2.难点:理解并灵活运用角平分线的性质和判定定理解决实际问题。
(二)教学设想
1.创设情境,激发兴趣:
-通过引入生活中的实例,如折纸、剪纸等,让学生感受角平分线的存在和应用,激发学生的学习兴趣;
作业要求:
1.请同学们认真完成作业,书写规范,保持卷面整洁;
2.作业完成后,进行自查,确保解题过程和答案正确;
3.遇到问题时,与同学讨论,或向老师请教,及时解决疑问;
4.作业提交时间:课后第二天。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了角的初步知识,如角的分类、角的度量等。在此基础上,学生对角平分线的性质和判定定理的学习具备了一定的基础。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解角平分线的性质和判定定理方面存在困难。
人教版八年级数学上册(教案).2角平分线的判定
5.培养学生的团队合作精神:在小组讨论、交流过程中,培养学生相互协作、共同解决问题的能力。
三、教学难点与重点
1.教学重点
-重点一:角平分线的定义及性质
-学生需要理解并掌握角平分线的定义,即从一个角的顶点出发,把这个角分成两个相等的角的射线。
-强调角平分线的性质,即它将角分成两个相等的角,这是后续解决问题的基础。
-重点二:角平分线的判定定理
-学生需要掌握如果一个射线把一个角分成两个相等的角,那么这个射线就是该角的平分线。
-通过实例讲解,让学生明白判定定理的应用,并在解题过程中加以运用。
-重点三:角平分线在实际问题中的应用பைடு நூலகம்
-学生需要学会将角平分线的概念和判定定理应用于解决实际问题,如几何图形的构造等。
此外,学生小组讨论的成果分享环节也暴露出一些问题。有些小组在分享时表达不够清晰,逻辑性不强。为了提高学生的表达能力和逻辑思维能力,我计划在接下来的课程中增加一些针对性的训练,如组织辩论赛、演讲比赛等。
在总结回顾环节,我发现部分学生对角平分线的应用还是有些模糊。在今后的教学中,我需要多举一些实际例子,让学生更好地理解角平分线在实际问题中的应用。
然而,在新课讲授环节,我发现有些学生对角平分线判定定理的理解不够深入。在今后的教学中,我需要更加注重引导学生通过实际操作和案例分析来掌握这个定理。此外,对于难点部分,我应该增加一些对比和变式的练习,帮助学生更好地突破难点。
在实践活动环节,分组讨论和实验操作进行得比较顺利,学生们也积极参与其中。但我觉得在引导与启发环节,我的问题设置还可以更加开放和有针对性,以激发学生的思维,提高他们的讨论效果。
八上角平分线的性质和判定(教案)
八上-角平分线的性质和判定(教案)第一章:角平分线的定义教学目标:1. 理解角平分线的定义。
2. 能够正确地画出角的平分线。
教学内容:1. 引入角平分线的概念,引导学生思考如何将一个角平分成两个相等的角。
2. 讲解角平分线的定义,即从角的顶点出发,将角分成两个相等的角的线段。
3. 演示如何画出角的平分线,并引导学生尝试自己画出角的平分线。
教学活动:1. 引导学生回顾之前学过的角的概念,引导学生思考如何将一个角平分成两个相等的角。
2. 教师讲解角平分线的定义,并演示如何画出角的平分线。
3. 学生跟随教师的演示,尝试自己画出角的平分线。
第二章:角平分线的性质教学目标:1. 掌握角平分线的性质。
2. 能够运用角平分线的性质解决相关问题。
教学内容:1. 引入角平分线的性质,引导学生思考角平分线与角的关系。
2. 讲解角平分线的性质,即角平分线将角分成两个相等的角,且角平分线与角的两边成等角。
3. 演示如何运用角平分线的性质解决相关问题,并引导学生尝试自己运用角平分线的性质解决问题。
教学活动:1. 引导学生回顾之前学过的角平分线的定义,引导学生思考角平分线与角的关系。
2. 教师讲解角平分线的性质,并演示如何运用角平分线的性质解决相关问题。
3. 学生跟随教师的演示,尝试自己运用角平分线的性质解决问题。
第三章:角平分线的判定教学目标:1. 掌握角平分线的判定方法。
2. 能够运用角平分线的判定方法证明一条线段是角平分线。
教学内容:1. 引入角平分线的判定,引导学生思考如何证明一条线段是角平分线。
2. 讲解角平分线的判定方法,即如果一条线段平分一个角的两边,则这条线段是该角的平分线。
3. 演示如何运用角平分线的判定方法证明一条线段是角平分线,并引导学生尝试自己运用角平分线的判定方法证明一条线段是角平分线。
教学活动:1. 引导学生回顾之前学过的角平分线的性质,引导学生思考如何证明一条线段是角平分线。
2. 教师讲解角平分线的判定方法,并演示如何运用角平分线的判定方法证明一条线段是角平分线。
角的平分线性质教案
角的平分线性质教案教案标题:角的平分线性质教案教案目标:1. 了解角的平分线的定义和性质;2. 能够应用角的平分线性质解决相关问题;3. 培养学生的逻辑思维和证明能力。
教学准备:1. 教学课件或黑板、白板等;2. 角度模型或示意图;3. 角的平分线的定义和性质的教学材料;4. 练习题和解答。
教学步骤:引入:1. 引导学生回顾角的定义和相关概念;2. 引入角的平分线的概念,简要介绍角的平分线的定义。
探究:1. 展示一个角度模型或示意图,引导学生观察角的平分线;2. 提问学生,角的平分线有什么特点和性质?讲解:1. 介绍角的平分线的性质:a. 角的平分线将角分成两个相等的角;b. 角的平分线上的任意一点到角的两边的距离相等;c. 角的平分线是角的内部角平分线。
示例:1. 给出一个具体的角度模型或示意图,引导学生找出角的平分线;2. 让学生自己尝试证明角的平分线的性质。
练习:1. 分发练习题,让学生独立或小组完成;2. 学生互相交流、讨论解题思路和方法。
总结:1. 确认学生对角的平分线的定义和性质的理解;2. 强调角的平分线在几何证明中的重要性;3. 鼓励学生继续探索和应用角的平分线的性质。
拓展:1. 提供更多的角的平分线相关问题,让学生进一步巩固和应用所学知识;2. 引导学生思考角的平分线在实际生活中的应用。
教学反思:1. 教师应根据学生的实际情况,调整教学步骤和难度;2. 鼓励学生积极参与讨论和思考,培养其逻辑思维和证明能力;3. 及时给予学生反馈和指导,帮助他们解决问题和提高学习效果。
八上角平分线的性质和判定(教案)
八上-角平分线的性质和判定(教案)一、教学目标:1. 知识与技能:使学生掌握角平分线的性质和判定方法;2. 过程与方法:培养学生利用角平分线解决实际问题的能力;3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
二、教学内容:1. 角平分线的定义:介绍角平分线的概念,即从一个角的顶点出发,把这个角平分成两个相等的角的线段;2. 角平分线的性质:探讨角平分线上的点到角的两边的距离相等的性质;3. 角平分线的判定:学习如何判断一条线段是角平分线的方法。
三、教学重点与难点:1. 教学重点:角平分线的性质和判定方法;2. 教学难点:角平分线的判定方法的灵活运用。
四、教学方法:1. 采用问题驱动法,引导学生探索角平分线的性质和判定方法;2. 利用多媒体课件,直观展示角平分线的性质和判定过程;3. 组织学生进行小组讨论,培养学生的团队合作精神。
五、教学过程:1. 导入新课:通过复习上一个章节的知识,引入本节课的主题——角平分线的性质和判定;2. 探索角平分线的性质:引导学生通过画图、观察、推理等方式,发现角平分线上的点到角的两边的距离相等的性质;3. 学习角平分线的判定方法:讲解如何通过已知条件判断一条线段是角平分线;4. 巩固知识:通过例题和练习题,让学生加深对角平分线性质和判定方法的理解;5. 拓展与应用:引导学生运用角平分线的性质和判定方法解决实际问题;6. 总结与反思:对本节课的知识进行归纳总结,强调重点和难点;7. 布置作业:布置一些有关角平分线的练习题,巩固所学知识。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 练习题评价:通过学生完成的练习题,评估学生对角平分线性质和判定方法的掌握程度;3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作意识、沟通交流等能力。
七、教学反思:1. 反思教学内容:检查教学内容是否符合学生认知水平,是否需要调整;2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果;3. 反思教学评价:分析教学评价结果,找出学生掌握不足的地方,为下一步教学提供参考。
角的平分线的性质教案
角的平分线的性质教案教案:角的平分线的性质一、教学内容本节课的教学内容来自初中数学教材第四章“几何图形”的第二节“角的平分线”。
本节课主要讲解角的平分线的性质,包括:1. 角的平分线上的点到角的两边的距离相等;2. 角的平分线与角的对边相交,交点将对边分为两段,这两段长度相等。
二、教学目标1. 让学生理解角的平分线的性质,并能运用性质解决问题;2. 培养学生的观察能力、推理能力和动手能力;3. 培养学生合作学习、积极探究的学习态度。
三、教学难点与重点1. 教学难点:角的平分线性质的理解和运用;2. 教学重点:角的平分线性质的推导和证明。
四、教具与学具准备1. 教具:黑板、粉笔、直尺、圆规;2. 学具:练习本、直尺、圆规、三角板。
五、教学过程1. 实践情景引入:让学生拿出三角板,观察并描述三角板上的角的平分线。
2. 讲解角的平分线的定义:角的平分线是将一个角平分成两个相等角的线段。
3. 推导角的平分线性质:通过画图和逻辑推理,引导学生发现角的平分线上的点到角的两边的距离相等。
4. 证明角的平分线性质:运用几何知识,引导学生证明角的平分线与角的对边相交,交点将对边分为两段,这两段长度相等。
5. 例题讲解:运用角的平分线性质解决实际问题,如:在三角形中,如何找到一个角的平分线。
6. 随堂练习:让学生独立完成练习题,巩固角的平分线性质的理解。
7. 作业布置:布置练习题,要求学生回家后练习,巩固所学知识。
六、板书设计角的平分线的性质:1. 角的平分线上的点到角的两边的距离相等;2. 角的平分线与角的对边相交,交点将对边分为两段,这两段长度相等。
七、作业设计1. 题目:已知直角三角形ABC,∠C为直角,AB为斜边,求证:CD是∠ABC的平分线。
答案:略2. 题目:在三角形ABC中,AB=AC,求证:∠BAD是∠BAC的平分线。
答案:略八、课后反思及拓展延伸本节课通过角的平分线的性质的学习,让学生掌握了角的平分线的基本性质,并能运用性质解决实际问题。
角平分线的性质教案
角平分线的性质教案一、教学目标1. 知识与技能:(1)理解角平分线的定义;(2)掌握角平分线的性质定理;(3)学会运用角平分线解决实际问题。
2. 过程与方法:(1)通过观察、思考、交流,探索角平分线的性质;(2)运用角的平分线性质定理,提高解题能力。
3. 情感态度价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
二、教学重点与难点1. 教学重点:(1)角平分线的定义;(2)角平分线的性质定理。
2. 教学难点:(1)角平分线性质定理的证明;(2)运用角平分线解决实际问题。
三、教学过程1. 导入:回顾上节课所学的角的概念,引出角平分线的定义。
2. 新课讲解:(1)介绍角平分线的定义;(2)讲解角平分线的性质定理;(3)运用角平分线性质定理解决实际问题。
3. 课堂练习:(1)判断题:判断角平分线是否平分角;(2)填空题:填空完成角平分线性质定理的证明;(3)应用题:运用角平分线解决实际问题。
四、课后作业1. 复习角平分线的定义和性质定理;2. 完成课后练习题,巩固所学知识;3. 预习下一节课内容。
五、教学反思本节课通过讲解角平分线的定义和性质定理,使学生掌握了角平分线的基本性质。
在教学过程中,注意引导学生观察、思考、交流,培养学生的逻辑思维能力和解题能力。
通过课后作业的布置,帮助学生巩固所学知识,为后续课程的学习打下基础。
六、教学拓展1. 对比分析:(1)角平分线与线段中垂线的联系与区别;(2)角平分线与高的联系与区别。
2. 探索问题:(1)角的平分线是否一定是直线?(2)角的平分线在几何中的应用。
七、课堂小结1. 回顾本节课所学内容,总结角平分线的定义、性质定理及应用;2. 强调角平分线在几何中的重要性。
八、测试与评价1. 课堂测试:(1)判断题:判断角平分线与线段中垂线的联系与区别;(2)选择题:选择正确的角平分线性质定理;(3)应用题:运用角平分线解决实际问题。
2. 评价:(1)学生自我评价:总结自己在课堂学习中的收获;(2)同伴评价:评价他人的解题方法和思路;(3)教师评价:对学生的学习情况进行总结和评价。
角的平分线教案设计
角的平分线教案设计第一章:角的平分线定义与性质1.1 教学目标了解角的平分线的定义掌握角的平分线的性质1.2 教学内容角的平分线的定义:介绍角的平分线的概念,即角的平分线是将一个角平分成两个相等角的直线。
角的平分线的性质:讲解角的平分线上的点到角的两边的距离相等的性质。
1.3 教学方法使用图形和实物进行讲解,帮助学生直观地理解角的平分线的定义和性质。
进行角平分线的实际操作,让学生通过实践加深对角平分线的理解。
1.4 教学评估进行角的平分线定义和性质的测试,以评估学生对知识点的掌握程度。
第二章:角的平分线的作图2.1 教学目标学会使用直尺和圆规作出角的平分线理解角的平分线作图的原理2.2 教学内容角的平分线作图方法:介绍使用直尺和圆规作出角的平分线的方法和步骤。
角的平分线作图原理:解释角的平分线作图的原理,即通过构造辅助线和运用角的平分线性质来作出角的平分线。
2.3 教学方法演示角的平分线作图的步骤,让学生跟随老师的演示进行练习。
提供角的平分线作图的练习题,让学生通过实践提高作图能力。
2.4 教学评估进行角的平分线作图的练习,以评估学生对作图方法的掌握程度。
第三章:角的平分线与三角形3.1 教学目标了解角的平分线在三角形中的性质和作用学会运用角的平分线解决三角形问题3.2 教学内容三角形的角的平分线性质:介绍三角形中角的平分线的性质,如角的平分线相交于三角形的内心等。
运用角的平分线解决三角形问题:讲解如何运用角的平分线解决三角形的不等式、角度计算等问题。
3.3 教学方法通过图形的演示和实例,讲解角的平分线在三角形中的性质和作用。
提供角的平分线解决三角形问题的练习题,让学生通过实践掌握解题方法。
3.4 教学评估进行角的平分线在三角形中的性质和解决问题的测试,以评估学生对知识点的掌握程度。
第四章:角的平分线与圆4.1 教学目标了解角的平分线与圆的关系学会运用角的平分线解决与圆相关的问题4.2 教学内容角的平分线与圆的关系:介绍角的平分线与圆的关系,如圆的平分线也是圆的切线等。
角的平分线的性质人教版数学八年级上册教案
角的平分线的性质人教版数学八年级上册教案角平分线是指从一个角的顶点引出一条射线,把这个角分成两个完全一样的角,这条射线叫做这个角的角平分线。
三角形三条角平分线的交点叫做三角形的内心。
以下是我整理的角的平分线的心质人教版数学八年级上册教案,欢送大家借鉴与参考!12.3角的平分线的性质教案一、创设情景,明确目标1.不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么方法?2.假如前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?二、自主学习,指向目标学习至此:请完成《学生用书》相应局部.用尺规作确定角的平分线的方法活动一:教材P48思索展示点评:相等的边有哪些?图形中隐含的条件是什么?作确定角的平分线的方法?为什么要用“大于MN的一半为半径画弧”?小组探讨:平分角的仪器的原理依据是什么?反思小结:理论依据是三角形全等的判定“SSS”.针对训练:见《学生用书》相应局部角平分线的性质与证明活动二:同学们结合折纸活动,猜测一下角平分线有怎样的性质呢?猜测:角平分线上的点到角的两边的距离相等.展示点评:请同学们证明上述猜测(写出确定、求证):通过证明我们得出角平分线性质:________.用数学语言翻译描述上述性质:小组探讨:第一次对折可以得到什么结论?其次次为什么要折出一个直角?角平分线的性质内容?确定和求证分别是什么?如何证明?如何用几何语言表达?根本图形是什么?反思小结:角平分线上的点到角两边的距离相等.针对训练:见《学生用书》相应局部角平分线的运用活动三:如图,OC平分∠AOB,点P为OC上随意一点,PD⊥OA于D,PE⊥OB于E,猜测PD与PE 的数量关系,并证明.展示点评:由角平分线可以得到哪些角相等?由垂直可以得到哪些角相等?由图形可挖掘什么条件?由三角形全等可以得到什么结论?如何写证明过程?小组探讨:此题有哪些不同的证明方法,哪种方法更简便?反思小结:用角平分线的性质证明线段相等比用全等三角形证明线段相等更便利.针对训练:见《学生用书》相应局部四、总结梳理,内化目标本节课学习了那些学问?有哪些运用?1.角平分线的性质定理:在角平分线上的点到角的两边的距离相等.2.角平分线的性质定理是证明角相等、线段相等的新途径.五、达标检测,反思目标1.三角形中,到三边距离相等的点是( C )A.三条高线交点B.三条中线交点C.三条角平分线交点D.三边垂直平分线交点12.3角平分线的性质:测试一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.12.3角的平分线的性质:精选练习7.确定Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,假设BC=32,且BD:CD=9:7,那么D到AB边的距离为( )A.18B.16C.14D. 128.如图6,AE⊥BC于E,CA为∠BAE的角平分线,AD=AE,连结CD,那么以下结论不正确的选项是( )A.CD=CEB.∠AC D= ∠ACEC.∠CDA =90°D.∠BCD=∠ACD9.在△ABC中,∠B=∠ACB,CD是∠ACB的角平分线,确定∠ADC=105°,那么∠A的度数为( )A.40°B.36°C.70°D.60°10.在以下结论中,不正确的选项是( )A.平面内到角的两边的距离相等的点必须在角平分线上B.角平分线上任一点到角的两边的距离必须相等C.一个角只有一条角平分线D.角的平分线有时是直线,有时是线段角的平分线的性质人教版数学八年级上册教案。
角平分线华东师大版八年级数学上册优质教案
角平分线华东师大版八年级数学上册优质教案一、教学内容本节课选自华东师大版八年级数学上册,主要内容为第六章《三角形的初步认识》中的6.4节“角平分线”。
具体内容包括:角平分线的定义、性质、判定及在实际问题中的应用。
二、教学目标1. 理解并掌握角平分线的定义,能准确判断角的平分线;2. 掌握角平分线的性质,并能在实际问题中灵活运用;3. 会用角平分线解决一些简单的几何问题。
三、教学难点与重点教学难点:角平分线的性质及在实际问题中的应用。
教学重点:角平分线的定义、性质及判定方法。
四、教具与学具准备1. 教具:三角板、量角器、直尺、圆规;2. 学具:三角板、量角器、直尺、圆规、练习本。
五、教学过程1. 实践情景引入:展示一个三角形,提出如何将一个角平均分成两个相等的角,引导学生思考。
2. 例题讲解:(1)什么是角平分线?引导学生通过观察、讨论,得出角平分线的定义;(2)角平分线的性质:通过画图、观察、推理,引导学生发现并证明角平分线的性质;(3)判定角的平分线:通过实例,引导学生掌握判定角的平分线的方法。
3. 随堂练习:针对本节课所学内容,设计一些练习题,让学生独立完成,并及时给予反馈。
六、板书设计1. 角平分线的定义;2. 角平分线的性质;3. 判定角的平分线的方法;4. 课堂练习题及答案。
七、作业设计1. 作业题目:(1)求证:角的平分线上的点到角的两边的距离相等;(2)已知:在三角形ABC中,AD是角BAC的平分线,求证:AB=AC。
2. 答案:略。
八、课后反思及拓展延伸1. 反思:对本节课的教学过程进行反思,分析学生的掌握情况,找出存在的问题,为下一步教学提供依据。
2. 拓展延伸:(1)探索:角的平分线与三角形的中位线有何关系?(2)拓展:如何利用角平分线解决实际问题?(3)提高:研究角平分线在多边形中的应用。
重点和难点解析1. 教学目标中关于角平分线的性质和应用的要求;2. 教学难点中角平分线性质的应用;3. 教学过程中的实践情景引入、例题讲解和随堂练习;4. 板书设计中关于角平分线性质和判定方法的展示;5. 作业设计中的证明题和解题方法;6. 课后反思及拓展延伸中的探索和拓展问题。
初中数学角的平分线教案
初中数学角的平分线教案一、教学目标1.让学生掌握角的平分线的定义、性质及判定方法。
2.培养学生运用角的平分线知识解决实际问题的能力。
3.培养学生的逻辑思维能力和空间想象能力。
二、教学重点与难点1.重点:角的平分线的定义、性质及判定方法。
2.难点:运用角的平分线知识解决实际问题。
三、教学过程1.导入新课(1)复习旧知识:让学生回顾角的定义、分类及性质。
(2)提出问题:如何将一个角平分成两个相等的角?2.角的平分线定义(1)引导学生观察角的平分线模型,让学生直观感受角的平分线。
(2)给出角的平分线定义:从角的顶点出发,将这个角平分成两个相等的角的射线,叫做这个角的平分线。
(3)让学生举例说明角的平分线。
3.角的平分线性质(1)引导学生观察角的平分线性质,让学生直观感受角的平分线性质。
(2)给出角的平分线性质:角的平分线上的点到这个角的两边的距离相等。
(3)让学生举例说明角的平分线性质。
4.角的平分线判定方法(1)引导学生探究角的平分线判定方法。
(2)给出角的平分线判定方法:如果一条射线将一个角平分成两个相等的角,那么这条射线就是角的平分线。
(3)让学生举例说明角的平分线判定方法。
5.应用举例(1)让学生独立完成课本上的例题,巩固角的平分线知识。
(2)引导学生运用角的平分线知识解决实际问题,如求角度、证明角相等。
6.练习与巩固(1)让学生完成课后练习,巩固角的平分线知识。
(2)教师批改练习,及时反馈,指导学生掌握角的平分线知识。
7.课堂小结(2)教师点评学生表现,鼓励学生积极思考、参与课堂。
8.课后作业(1)完成课后练习。
(2)预习下节课内容,了解角的平分线在生活中的应用。
四、教学反思本节课通过直观的模型、生动的实例,让学生掌握了角的平分线的定义、性质及判定方法。
在教学过程中,注重培养学生的逻辑思维能力和空间想象能力。
通过课后作业,巩固所学知识,为下节课的学习打下坚实基础。
附:课后练习1.判断题:角的平分线上的点到这个角的两边的距离相等。
八年级数学上册《角平分线》教案、教学设计
(3)单元测试:通过测试,了解学生对角平分线知识点的掌握情况,以及运用知识解决问题的能力;
(4)课后访谈:了解学生在学习过程中遇到的困难和问题,及时调整教学策略。
4.教学资源:
(1)教材:充分利用课本资源,结合教学目标进行教学设计;
(2)反思自己在学习过程中的收获和不足,为下一节课的学习做好准备。
作业要求:
1.认真完成作业,保持卷面整洁;
2.思考题要结合所学知识,进行深入分析和研究;
3.遇到问题及时与同学、老师交流,提高解决问题的能力;
4.作业提交时间:下周一下午放学前。
(4)应用:设计有针对性的例题和练习,让学生运用角平分线知识解决问题,巩固所学;
(5)拓展:引导学生思考角平分线在其他几何问题中的应用,培养学生的发散思维;
(6)总结:对本节课的知识点进行梳理,强调重难点,帮助学生巩固记忆。
3.教学评价:
(1)课堂表现:关注学生在课堂上的参与程度、积极性和合作精神;
(五)总结归纳
1.教学活动设计:
(1)对本节课的知识点进行梳理,强调重点和难点;
(2)学生分享学习收获和感受,教师给予鼓励和评价;
(3)布置课后作业,巩固所学知识。
2.教学内容:
(1)总结角平分线的定义、性质和判定方法;
(2)回顾尺规作图的方法,强调注意事项;
(3)明确角平分线在实际问题中的应用价值。
五、作业布置
为了巩固本节课所学知识,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.必做题:
(1)完成课本第十五章第二节课后练习题1、2、3;
(2)运用尺规作图,作出给定角的平分线,并简要说明作图过程;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线的判定教案【篇一:角平分线的性质与判定教学设计】角平分线的性质与判定教学设计教材:人教版教材八年级(上)11.3. 执教:【教学目标】1.使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题.2.通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力.【教学重点】角平分线的性质定理和判定定理的探索与应用.【教学难点】角平分线判定定理的证明与应用【教学方法】启发探究式.【教学过程】一、复习引入: 1.角平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫这个角的平分线.数学语言:如图1,∵ oc是∠aob的平分线, 1∴∠1=∠2(或∠aob=2∠1=2∠2或∠1=∠2= ∠aob).图122.角平分线的画法:你能用什么方法作出∠aob的平分线oc?(可由学生任选方法画出oc).可以用量角器量或用折纸的方法3.如果手头只有圆规和直尺,纸又不能折该怎么办呢?如图2,是一个角平分仪,其中om=on,md=nd。
将点o放在角的顶点,om和on沿着角的两边放下,沿od画一条射线oe,oe就是角平分线,你能说明它的道理吗?4.学生通过角平分仪的演示,小组合作想出尺规作角平分线的方法。
5. 平分平角∠aob1)通过上面的步骤,得到射线oc以后,把它反向延长得到直线cd,直线cd与直线ab是什么关系?2)结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。
6. 创设探究角平分线性质的情境:(拼法1)(拼法2)(拼法3)选择第一种拼法提出问题:(1) p是∠doe平分线上一点,pd、pe与∠doe的边有怎样的位置关系?(2)点p到∠doe两边的距离可以用哪些线段来表示?(3)pd、pe有怎样的数量关系?二、探究新知:(一)探索并证明角平分线的性质定理: 1.实验与猜想:引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的距离.通过度量、观察并比较,猜想它们有怎样的数量关系?引导学生用语言阐述自己的观点,得出猜想:命题1 在角平分线上的点,到这个角的两边的距离相等. 2.证明与应用:(学生独立书写过程)已知:如图4,oc是∠aob的平分线,p为oc上任意一点,pd⊥oa于d,pe⊥ob于e.求证:pd=pe.(证明过程略)图4由此得到:定理1 在角平分线上的点,到这个角的两边的距离相等.(角平分线的性质定理)数学语言:如图4,∵ p是∠aob的平分线oc上一点, pd⊥oa于d,pe⊥ob于e,∴ pd=pe.练习(1)判断正误,并说明理由:①如图5,②如图6,∵ p是∠aob的平分线∵ pd⊥oa于d,oc上任意一点, pe⊥ob于e,∴ pd=pe.∴ pd=pe.图5 图6图7 定理1说明:“在角平分线上的点”都具有“到角的两边距离相等”的性质,即角平分线上没有不具备此性质的点.那么,反过来会怎么样呢?(引出逆命题)(二)探索并证明角平分线的判定定理: 1、写出逆命题命题2 到一个角的两边距离相等的点,在这个角的平分线上. 2.证明与应用:(学生自己完成)已知:如图8, pd⊥oa于d,pe⊥ob于e,pd=pe.求证:点p在∠aob的平分线上.(证明过程略)图8由此得到:定理2 到一个角的两边距离相等的点,在这个角的平分线上.(角平分线的判定定理)数学语言:如图8,∵ pd⊥oa于d,pe⊥ob于e,pd=pe,∴点p在∠aob的平分线上.练习1、如图9,已知△abc中,d是bc上一点,且de⊥ab,df⊥ac,de=df 求证:∠1=∠2图92、如图 10,在直线l上找出一点p,使得p到∠aob的两边oa、ob 的距离相等定理2说明:具有“到角的两边距离相等”性质的点,无一例外都在“角的平分线上”(不会漏掉一个具有这样性质的点).师生共同小结两个定理的区别与联系:两个定理互为逆定理.它们的应用不同,定理1用于证明两条线段相等,定理2用于证明两个角相等.三、综合应用:已知:如图11,∠1=∠2,cd⊥ab于d,be⊥ac于e,be、cd交于点o.求证:oc=ob.证明:∵∠1=∠2,cd⊥ab,be⊥ac,∴ oe=od(角平分线上的点到角两边的距离相等).在△eoc和△dob中,∠3=∠4(对顶角相等), oe=od(已证),∴ oc=ob(全等三角形对应边相等).题目拓展若∠1=∠2与oc=ob互换,怎么证明?四、师生共同总结:图111.通过本节课的实验、观察、比较、猜想、论证,得出了角平分线的性质定理和判定定理.并学会了运用在角平分线上任意选取一点的方法证明角平分线性质定理.2.我们知道了能够运用角平分线的性质定理和判定定理证明两条线段相等或两个角相等.3.通过把实际问题转化为数学问题,可以培养我们应用数学的意识.【篇二:角平分线教案设计】人教版八年级上册第十二章12.3角平分线的性质一、教材分析:本节课主要探究角平分线的性质与判定,而角平分线的性质对学生后期的三角形的全等起到很重要的作用,学生可以利用角平分线的性质和判定探索问题中的线段的数量关系与三角形全等的证明,实现承上启下的作用。
二、学情分析:学生刚刚经历了三角形的全等证明,对证明线段的长度关系有了探索的方向,本节课主要通过动手实践,摸索角平分线的性质与判定,再利用三角形全等的证明来求证角平分线的性质与判定,进而了解和掌握角平分线的性质与判定。
三、教学目标:①知识技能:了解角平分线的画法,了解和掌握角平分线的性质,理解角平分线的判定。
②数学思考:经历角平分线的作法的实践活动,理解角平分线的性质和角平分线的判定。
③问题解决:作角平分线,运用角平分线的性质与判定解决实际应用中的全等证明。
④情感态度:在合作探究中体验数学知识来源于生活,在学习过中中体验成功的乐趣,锻炼克服困难的意志,培养严谨的科学态度。
三、教学重点与难点:①教学重点:理解如何作角的平分线(尺规作图),角平分线的性质及运用。
②教学难点:作角平分线中注意为什么要大于线段长的一半,由角平分线的性质得出角平分线的判定。
四、课时安排:1课时。
五、教学方法:合作探究法、引导法。
六、教学过程:(一):交流预习:预习教材p48-50的内容,展示收获。
(教师巡视,师友相互交流,将自己的收获与师傅或学友分享)(二)互助探究:探究①角平分线的画法。
教师用课件展示思考1(教材p48):师友利用预习的知识加以说明,两组师友展示画法并说明:(教师在师傅的讲解时突出强调为什么要大于de)探究②角平分线上的点到角两边的距离的关系。
教师展示课件教材思考2(p48)12师友互助,展示结果并讲解:(教师补充:这题我们先应确定已知条件是什么,求证是什么。
)已知:点c在∠aob的角平分线上,,求证:cd=ce.证明: oc平分∠aob,∴∠doc=∠eoc, cd⊥oa,ce⊥ob,∴∠cdo=∠ceo=90?, 在?doc 与?eoc中,∠doc=∠eoc(已求)∠cdo=∠ceo(已求)oc=oc (公共边)∴?doc??eoc(aas)∴cd=ce师友共同总结这一结论:角平分线上的点到角的两边的距离相等。
此时让师友总结证明几何命题的步骤:1、明确命题中的已知和求证;2、根据题意画出图形,并用数学符号表示已知和求证;3、经过分析,找出由已知推出要证的结论的途径,写出证明过程。
探究角平分线的判定。
公路教师展示课件教材思考3(p49)师友共同探讨,教师巡视,加以引导。
展示师友比较优秀的做法并总结:角的内部到角的两边的距离相等的点在角的平分线上教师引导学生找出已知条件和求证,并让师友合作探讨,给出证明。
选取一组师友的结果并展示:已知:如图,qd⊥oa,qe⊥ob,点d、e为垂足,qd=qe,求证: s点q在∠aob的平分线上。
证明: qd⊥oa,qe⊥ob(已知)∴∠qdo=∠qeo=90?(垂直的定义)在rt?qdo与rt?qeo中,qo=qo(公共边)qd=qe(已知)∴rt?qdo?rt?qeo(hl)∴∠qod=∠qoe∴点q在∠aob的平分线上。
教师引导师友总结:在角的内部到角两边相等的点在角的角平分线上。
(突出强调数学符号形式)数学符号语言表示为:qd⊥oa,qe⊥ob,qd=qe∴点q在∠aob的平分线上(三)分层提高:教师利用课件展示练习:如图,已知?abc的外角∠cbd的角平分线和∠bce的角平分线相交于点f,求证:点f在∠dae的角平分线上。
学友在师傅的指导下,师友共同完成本题,教师巡堂,帮助有困难的师友,然后展示较好的作业。
师友作业展示如下:证明:过f作fg⊥ae交ae于点g,fh⊥ad交ad于点h,fm⊥bc交bc于点m, f在∠bce的平分线上,fg⊥ae,fm⊥bc,∴fg=fm又 f在∠cbd的平分线上,fh⊥ad,fm⊥bc,∴fm=fh∴fg=fh∴点f在∠dae的角平分线上。
(四)总结归纳:本节课你有哪些收获?你还有什么困惑?通过本次课的学习,你会勾画知识框图吗?你还想学习什么内容?(师友共同完成,学友回答,师傅可作补充)(五)巩固反馈:(师友合作探讨交流)如图,?abc的角平分线bm,cn相交于点p,求证:点p到三边ab,bc,ac的距离相等。
(请两组师友加以证明,完成过程)【篇三:角平分线的判定教学设计与教学反思】12.3 角的平分线的性质(2)一、教学目标(一)知识与技能1.了解角的平分线的判定定理;2.会利用角的平分线的判定进行证明与计算.(二)过程与方法在探究角的平分线的判定定理的过程中,进一步发展学生的推理证明意识和能力.(三)情感、态度与价值观在探究作角的平分线的判定定理的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.二、教学重点、难点重点:角的平分线的判定定理的证明及应用;难点:角的平分线的判定.三、教法学法自主探索,合作交流的学习方式.四、教学过程(一)引入新课问题1 如图,要在s 区建一个广告牌p,使它到两条高速公路的距离相等,离两条公路交叉处500 m,请你帮忙设计一下,这个广告牌p 应建于何处(在图上标出它的位置,比例尺为1:20000)?(1).集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以角平分线的判定:到角的两边的距离相等的点在角的平分线上.①推导已知:点p是∠mon内一点,pa⊥om于a,pb⊥on于b,且pa=pb.求证:点p在∠mon的平分线上.证明:连结op在rt△pao和rt△pbo中,∴rt△pao≌rt△pbo(hl)∴∠1=∠2∴op平分∠mon即点p在∠mon的平分线上.②几何表达:(到角的两边的距离相等的点在角的平分线上.)如图所示,∵pa⊥om,pb⊥on,pa=pb∴∠1=∠2(op平分∠mon)【典型例题】例如图所示,已知△abc的角平分线bm,cn相交于点p,那么ap 能否平分∠bac?请说明理由.由此题你能得到一个什么结论?分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点p到三边的垂线段.解:ap平分∠bac.结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.理由:过点p分别作bc,ac,ab的垂线,垂足分别是e、f、d.∵bm是∠abc的角平分线且点p在bm上,∴pd=pe(角平分线上的点到角的两边的距离相等).同理pf=pe,∴pd=pf.∴ap平分∠bac(到角的两边的距离相等的点在这个角的平分线上).(三)展示点评练习:第2题(四)课堂小结请你说说本届课的收获与困惑.(五)当堂检测(满分100分)1.到角的两边距离相等的点在2.到三角形三边的距离相等的点是三角形()a.三条边上的高线的交点;b. 三个内角平分线的交点;c.三条边上的中线的交点;d.以上结论都不对。