七年级下学期数学综合测试题
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。
七年级数学下册第一单元综合测试题(北师大版)
七年级数学下册第一单元综合测试题(北师大版)一.选择题(共10小题,满分30分,每小题3分)1.下列运算正确的是()A.2a+3b=5ab B.a5÷a=a4(a≠0)C.(2a)3=6a3D.a2•a3=a62.下列运算正确的是()A.(﹣x3)2=﹣x6B.x4+x4=x8C.x2•x3=x6D.xy4÷(﹣xy)=﹣y33.如图a,边长为a的大正方形中有一个边长为b的小正方形,小明将图a的阴影部分拼成了一个矩形,如图b,这一过程可以验证()A.a2+b2﹣2ab=(a﹣b)2B.a2+b2+2ab=(a+b)2C.2a2+b2﹣3ab=(2a﹣b)(a﹣b)D.a2﹣b2=(a+b)(a﹣b)4.计算(y﹣x)(y+x)的结果是()A.x2﹣y2B.y2﹣x2C.x2+y2D.﹣x2﹣y25.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6B.6C.18D.306.要使﹣x3(x2+ax+1)+2x4中不含有x的四次项,则a等于()A.1B.2C.3D.47.下列各式:①﹣(﹣a3)4=a12②(﹣a n)2=(﹣a2)n③(﹣a﹣b)3=(a+b)3④(a﹣b)4=(﹣a+b)4其中正确的个数是()A.1B.2C.3D.48.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m 9.若(x﹣2)2=x2+mx+n,则m,n的值分别是()A.4,4B.﹣4,4C.﹣4,﹣4D.4,﹣4 10.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.D.二.填空题(共4小题,满分16分,每小题4分)11.若m﹣n=6,且m+n=4,则m2﹣n2=.12.计算:(﹣)﹣3=.13.若多项式9x2﹣Mxy+y2是完全平方式,则常数M为14.小红:如图是由边长分别为a,b的两个正方形拼成的图形;小明:阴影部分的面积等于图中两个正方形的面积和减去3个不同的直角三角形的面积.请根据小明和小红的对话,用含有a,b的式子表示如图所示的阴影部分的面积.三.解答题(共14小题,满分54分)15.计算:(每题4分,共8分)(1)1007×993;(2);16.计算:(每题4分,共16分)(1)(﹣3a4)2﹣2a3a5;(2)2(3xy+x)﹣3x(2y﹣).(3)(a+b)2﹣(a+b)(a﹣b);(4)(6x3y﹣2x2y2﹣2xy3)÷(﹣2xy)﹣(3x+2y)(y﹣x).17.(6分)已知m+n=3,mn=2.(1)当a=2时,求a m•a n﹣(a m)n的值;(2)求(m﹣n)2+(m﹣4)(n﹣4)的值.18.(8分)若m+n=7,mn=12,求①m2+n2②m﹣n的值.19.(6分)若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(4﹣x)2+(x﹣9)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.请仿照上面的方法求解下面的问题:若x满足(x﹣2018)2+(x﹣2021)2=31,求(x﹣2018)(x﹣2021)的值.20.(10分)用等号或不等号填空,探究规律并解决问题:(1)比较a2+b2与2ab的大小:①当a=3,b=3时,a2+b22ab;②当a=2,b=时,a2+b22ab;③当a=﹣2,b=3时,a2+b22ab.(2)通过上面的填空,猜想a2+b2与2ab的大小关系,并证明你的猜想;(3)如图,点C在线段AB上,以AC,BC为边,在线段AB的两侧分别作正方形ACDE,BCFG,连接AF,设两个正方形的面积分别为S1,S2,若△ACF的面积为1,求S1+S2的最小值.。
七年级数学下册第二章《整式加减》综合测试卷-人教版(含答案)
七年级数学下册第二章《整式加减》综合测试卷-人教版(含答案)( 时间:90分钟 总分:100分)一、选择题:(本大题共12小题,每小题2分,共计24分)1.下列说法中,正确的是( )A. 单项式b 的次数是0B. 是一次单项式C. 24x 3是7次单项式D. -5是单项式2.对于单项式-的系数和次数分别是( )A. -2,2B. -2,3C. -,2D. -,33.下列单项式中,书写规范的是( )A. 1aB. x ·2C. 0.5xD. 1mn4.若21213n x y --是7次单项式,则n =( ) A. 1 B. 2 C. 3 D. 45.下列说法正确的是( )A. -x +3x 三次二项式B. x -1二次二项式C. x 2-2x +34是二次三项式D. -5x 5+2x 4y 2-1是八次三项式6.一个n 次多项式(n 为正整数),它的每一项的次数是( )A. 都等于nB. 都小于nC. 都不小于nD. 都不大于n7.设M ,N 都是关于x 的五次多项式,则M +N 是( )A.十次多项式B.五次多项式C.次数不大于5的多项式D.次数不大于5的整式8.-3x 4与3y 是同类项,则mn 的值为( )A. 6B. 8C. 2D. 19.化简:ab-(2ab-3ab2)结果是()A.3a2b+3abB.-3ab2-abC.3ab2-abD.-3ab2+3ab10.若x 是两位数,y是一位数,如果把y 置于x左边所得的三位数是()A.100y+xB. 100y+10xC.10y+xD. yx11.减去2-3x等于6x2-3x-8的代数式是()A.6x2-6x-10B.6x2-10C.6x2-6D.6x2-6x-612.若a2b+4=0,则代数式3a2b-(a2b-3a2b)的值为()A. 20B. -20C. 4D. -4二、填空题:(本大题共8小题,每小题2分,共16分)13.用式子表示“数a的3倍与3的差的一半”是.14.把多项式6+2x4-3x2+7x3按各项的次数从高到低重新排列为.15.某项工程。
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。
2023年新人教版初中七年级数学下册第五单元综合能力提升测试卷(附参考答案)
2023年新人教版初中七年级数学下册第五单元综合能力提升测试卷一、选择题(共12小题,满分36分,每小题3分)1.如图,下列说法错误的是()A.∠1与∠2是对顶角B.∠1与∠3是同位角C.∠1与∠4是内错角D.∠B与∠D是同旁内角2.如图,AB∥CD∥EF,则下列各式成立的是()A.∠1+∠2+∠3=180°B.∠2+∠3﹣∠1=180°C.∠1+∠2﹣∠3=180°D.∠1﹣∠2+∠3=180°3.如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②4.如图,下列给出的条件中,能判定AC∥DE的是()A.∠A+∠2=180°B.∠1=∠A C.∠1=∠4D.∠A=∠3 5.如图,已知平行线a,b,一个直角三角板的直角顶点在直线a上,另一个顶点在直线b 上,若∠1=70°,则∠2的大小为()A.15°B.20°C.25°D.30°6.如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A.①②③④B.①②C.①③④D.①②④7.如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠58.如图,下列推理正确的是()A.∵∠2=∠4,∴AD∥BC B.∵∠1=∠3,∴AD∥BCC.∵∠4+∠D=180°,∴AD∥BC D.∵∠4+∠B=180°,∴AD∥BC9.下列图形中,∠1和∠2是同位角的是()A.B.C.D.10.如图,已知直线AB,CD被直线ED所截,AB∥CD,若∠D=40°,则∠1等于()A.140°B.130°C.120°D.100°11.如图,直线DE与BC相交于点O,∠1与∠2互余,∠COE=36°,则∠2的度数是()A.36°B.54°C.60°D.64°12.如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=58°,则∠E 等于()A.25°B.29°C.30°D.45°二、填空题(共6小题,满分18分,每小题3分)13.如图,AO⊥BO,若∠BOC=10°,OD平分∠AOC,则∠BOD的度数是°.14.一张长方形纸条折成如图的形状,若∠1=50°,则∠2=°.15.如图,已知AB∥CD,则∠A=70°,∠C=130°,∠P=.16.“内错角相等,两直线平行”的逆命题是.17.如图,直线a∥b,AC分别交直线a、b于点B、C,AC⊥DC,若∠α=25°,那么∠β=°.18.已知∠A与∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠A的度数为.三、解答题(共7小题,满分66分)19.(9分)如图,已知∠1=52°,∠2=128°,∠C=∠D.求证:∠A=∠F.20.(9分)已知:如图,EF∥CD,∠1+∠2=180°.(1)判断GD与CA的位置关系,并说明理由.(2)若DG平分∠CDB,若∠ACD=40°,求∠A的度数.21.(9分)如图,直线AB,CD相交于点O,已知∠BOC=75°,ON将∠AOD分成两个角,且∠AON:∠NOD=2:3.(1)求∠AON的度数.(2)若OM平分∠BON,则OB是∠COM的平分线吗?判断并说明理由.22.(9分)已知:如图EF∥CD,∠1+∠2=180°.(1)求证:GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠CGD的度数.23.(10分)在正方形网格中,△ABC的位置如图所示.平移△ABC,使点A移到点B的位置.(1)请画出平移后的△BDE,其中,B、D、E分别为A、B、C的对应点;(2)若图中每个小正方形的边长都为1,则△ADE的面积为.24.(10分)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.25.(10分)如图,在△ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.求证:(1)EH∥AD;(2)∠BAD=∠H.参考答案一、选择题(共12小题)1.C2.D3.A4.B5.B6.D7.B8.B9.C10.A11.B12.B;二、填空题(共6小题)13.4014.80°15.20°16.两直线平行,内错角相等17.6518.30°或110°;三、解答题(共7小题)19.证明:∵∠1=52°,∠2=128°,∴∠1+∠2=180°,∴BD∥CE,∴∠C=∠ABD,又∵∠C=∠D,∴∠ABD=∠D,∵AC∥DF,∴∠A=∠F.20.解:(1)GD∥CA.理由:∵EF∥CD,∴∠1+∠ACD=180°,又∵∠1+∠2=180°,∴∠ACD=∠2,∴GD∥CA;(2)∵GD∥CA,∴∠2=∠ACD=40°,∵DG平分∠CDB,∴∠BDG=∠2=40°,∵GD∥CA,∴∠A=∠BDG=40°.21.解:(1)∵∠AON:∠NOD=2:3,设∠AON=2x,∠NOD=3x,∴∠AOD=5x,∵∠BOC=75°,∴∠AOD=5x=75°,∴x=15°,∴∠AON=30°;(2)OB是∠COM的平分线,理由如下:∵∠AON=30°,∴∠BON=180°﹣∠AON=150°,∵OM平分∠BON,∴∠BOM=75°,∴∠BOM=∠BOC,∴OB是∠COM的角平分线.22.(1)证明:∵EF∥CD,∴∠1+∠ECD=180°,又∵∠1+∠2=180°,∴∠2=∠ECD,∴GD∥CA.(2)解:由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°,∵GD∥CA,∴∠ACB+∠CGD=180°,∴∠CGD=180°﹣∠ACB=180°﹣80°=100°.23.解:(1)如图所示:△BDE即为所求;(2)△ADE的面积为:4×8−12×2×6−12×2×4−12×2×8=14.24.解:(1)平移后的△A′B′C′如图所示;点A′、B′、C′的坐标分别为(﹣1,5)、(﹣4,0)、(﹣1,0);(2)由平移的性质可知,四边形AA′B′B是平行四边形,∴△ABC扫过的面积=S四边形AA'B'B +S△ABC=B′B•AC+12BC•AC=5×5+12×3×5=25+152=652.25.证明:(1)∵∠CDG=∠B,∴DG∥AB,∴∠1=∠BAD,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH∥AD;(2)由(1)得:∠1=∠BAD,EH∥AD,∴∠1=∠H,∴∠BAD=∠H.。
人教版七年级数学下册期末测试题及答案(共五套)
七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
数学七年级下册 期末试卷综合测试卷(word含答案)
数学七年级下册 期末试卷综合测试卷(word 含答案)一、选择题1.如图,1∠和2∠不是同旁内角的是( )A .B .C .D . 2.下列运动属于平移的是( )A .汽车在平直的马路上行驶B .吹肥皂泡时小气泡变成大气泡C .铅球被抛出D .红旗随风飘扬 3.若点P 在第四象限内,则点P 的坐标可能是( ) A .()4,3 B .()3,4- C .()3,4-- D .()3,4- 4.下列命题中,是假命题的是( )A .经过一个已知点能画一条且只能画一条直线与已知直线平行B .从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C .在同一平面内,一条直线的垂线可以画无数条D .连接直线外一点与直线上各点的所有线段中,垂线段最短5.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒ 6.下列说法正确的是( )A .64的平方根是8B .-16的立方根是-4C .只有非负数才有立方根D .-3的立方根是33-7.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-二、填空题9.如果一个正方形的面积为3,则这个正方形的边长是 _____________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,在△ABC 中,CD 是它的角平分线,DE ⊥AC 于点 E .若BC =6cm ,DE =2cm ,则△BCD 的面积为_____cm 212.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点A ,B 两点,则点A ,B 表示的数分别为__________.15.已知点()6,23A m m --,且点A 到两坐标轴的距离相等,则点A 的坐标是____. 16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n ,则A 2021的坐标是___________.三、解答题17.计算:(1)|﹣2|+(﹣3)2﹣4; (2)23252+-;(3)220183|3|27(4)(1)-+---+-.18.求下列各式中x 的值:(1)()24264x -=;(2)3338x -=. 19.请补全推理依据:如图,已知:12180∠+∠=︒,3A ∠=∠,求证:B C ∠=∠.证明:∠+∠=︒(已知)∵12180AD EF()∴//∠=∠()∴3D又∵3A∠=∠(已知)∴D A∠=∠()AB CD()∴//∠=∠()∴B C20.已知:如图,ΔABC的位置如图所示:(每个方格都是边长为1个单位长度的正方形,ΔABC的顶点都在格点上),点A,B,C的坐标分别为(−1,0),(5,0),(1,5).(1)请在图中画出坐标轴,建立直角坐标系;(2)点P(m,n)是ΔABC内部一点,平移ΔABC,点P随ΔABC一起平移,点A落在A′(0,4),点P落在P′(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积.21.数学活动课上,王老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用2﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:3的整数部分是 ;小数部分是(2)已知8+3=x+y,其中x是一个整数,且0<y<1,求出2x+(y-3)2012的值.二十二、解答题22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的边长.二十三、解答题23.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论. (3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.25.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.26.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、选择题1.B解析:B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.根据同旁内角的概念可得答案.【详解】解:选项A 、C 、D 中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角;选项B 中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角.故选:B .【点睛】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U ”形.2.A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;B 、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合; B 、吹肥皂泡时小气泡变成大气泡,不属于平移,故B 选项不符合;C 、铅球被抛出是旋转与平移组合,故C 选项不符合;D 、随风摆动的红旗,不属于平移,故D 选项不符合.故选:A .【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可.【详解】解:A 、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;B 、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;C 、一条直线的垂线可以画无数条,正确,不符合题意;D 、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意; 故选:A .【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键.5.A【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°,∴∠4=12∠ACD =34°.∵AB //CD ,PM //AB ,∴PM //CD ,∴∠3=∠4=34°,∵AP ⊥CP ,∴∠APC =90°,∴∠2=∠APC -∠3=56°,∵PM //AB ,∴∠1=∠2=56°,即:∠BAP 的度数为56°,故选:A .【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.6.D【分析】根据平方根和立方根的定义逐项判断即可得.【详解】A 、64的平方根是8±,则此项说法错误,不符题意;B 、因为()346416-=-≠- ,所以16-的立方根不是4-,此项说法错误,不符题意;C 、任何实数都有立方根,则此项说法错误,不符题意;D 3333-=3-的立方根是33故选:D .【点睛】本题考查了平方根和立方根,熟练掌握定义是解题关键.7.B【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解.【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒,70EFG CEF ∴∠=∠=︒,180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B .【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An ﹣1An =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA 1=3;A 1A 2=3×2;A 2A 3=3×3;可得规律:A n ﹣1A n =3n ,根据规律可得到A 9A 10=3×10=30,进而求得A 10的横纵坐标.【详解】解:根据题意可知:OA 1=3,A 1A 2=6,A 2A 3=9,A 3A 4=12,A 4A 5=15,A 5A 6=18•••,A 9A 10=30,∴A 1点坐标为(3,0),A 2点坐标为(3,6),A 3点坐标为(﹣6,6),A 4点坐标为(﹣6,﹣6),A 5点坐标为(9,﹣6),A 6点坐标为(9,12),以此类推,A 9点坐标为(15,﹣12),所以A 10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.二、填空题9.【分析】设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x(x>0).由题意得:x2=3.∴x=.故答案为:.【点睛【分析】设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x(x>0).由题意得:x2=3.∴x【点睛】本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A (2,4)关于x 轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x 轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.6【分析】根据角平分线的性质计算即可;【详解】作,∵CD 是角平分线,DE ⊥AC ,∴,又∵BC =6cm ,∴;故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作DF BC ⊥,∵CD 是角平分线,DE ⊥AC ,∴=2DE DF cm =,又∵BC =6cm , ∴212662BCD S cm =⨯⨯=△; 故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.12.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得13∠=∠,由折叠的性质可知34∠=∠,由平角的定义即可求得2∠.【详解】解:如图,长方形的两边平行,∴13∠=∠,折叠,∴34∠=∠,218034180545472∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.13.70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】∠=︒,解:∵∠1+2∠2=180°,140∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键.14.,【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴圆的半径为,∴点A表示的数为,点B表示的数为.故答案为:,.【点睛】本题考查了实数与数轴,熟解析:1--,1【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴∴点A表示的数为1-1-+.故答案为:1--1【点睛】本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.15.或;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为,∴,∴或,解得:或,∴点A 的坐标为:或;故答案为:或解析:()4,4--或()8,8-;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为()6,23m m --, ∴623m m -=-,∴623m m -=-或6(23)m m -=--,解得:2m =或2m =-,∴点A 的坐标为:()4,4--或()8,8-;故答案为:()4,4--或()8,8-;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点.16.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 2021÷4=505•••1,所以A 2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5)=﹣,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.18.(1)或;(2)【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1),,,或,∴或;(2),,;【点睛】本题主要考查了平方根的性质应用和解析:(1)6x =或2x =-;(2)32x =【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1)()24264x -=, ()2216x -=,24x -=±,24x -=或24-=-x ,∴6x =或2x =-;(2)3338x -=, 3278x , 32x =; 【点睛】本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键. 19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180°(已知),∴AD ∥EF (同旁内角互补,两直线平行),∴∠3=∠D (两直线平行,同位角相等),又∵∠3=∠A (已知),∴∠D =∠A (等量代换),,∴AB ∥CD (内错角相等,两直线平行),∴∠B =∠C (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.20.(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为3.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质可求得线段PC 扫过的面积.【详解】解:(1)平面直角坐标系如图所示:(2)因为点A (−1,0)落在A ′(0,4),同时点P (m ,n )落在P ′(n ,6),∴146m n n +=⎧⎨+=⎩,解得12m n =⎧⎨=⎩, ∴点P 的坐标为(1,2);如图,线段PC 扫过的面积即为平行四边形PCC ′P ′的面积,⨯=.∴线段PC扫过的面积为313【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.【详解】解:(1)∵1<<2,∴的整数部分是1;小解析:(1)13(2)19【分析】(1)根据已知的条件就可以求出;(233x,y的值,即可解答.【详解】解:(1)∵132,∴313;(2)解:∵132,∴9<310,∵3x+y,且x是一个整数,0<y<1,∴x=9,y=3931,∴2x+(32012=2×9+332012=18+1=19.【点睛】二十二、解答题22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x ,则364x =,所以4x =,即正方体的棱长为4.(2)因为正方体的棱长为4,所以AB=【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.二十三、解答题23.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x Ry x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1,∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×2=72°,5故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.25.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.26.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∠BED;∴∠F=12(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。
七年级数学综合测试卷人教版
七年级数学综合测试卷人教版一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. (1)/(2)D. -(1)/(2)2. 计算:3 + (-5)的结果是()A. -2B. 2C. 8D. -8.3. 在数轴上,距离原点3个单位长度的点表示的数是()A. 3B. -3C. 3或 -3D. 6或 -6。
4. 单项式-(2)/(3)x^2y的系数是()A. -(2)/(3)B. (2)/(3)C. -2D. 2.5. 下列式子中,是一元一次方程的是()A. x + 2y = 1B. x^2-2x + 1 = 0C. 2x - 3 = (1)/(x)D. 3x - 5 = 2x6. 若x = 2是方程3x + a = 7的解,则a的值为()A. 1B. -1C. 0D. 2.7. 化简:3(a - b)+2(b - a)的结果是()A. a - bB. a + bC. 5(a - b)D. 5(b - a)8. 一个角的度数是35^∘,则它的余角的度数是()A. 55^∘B. 45^∘C. 145^∘D. 65^∘9. 把方程(x)/(2)-(x - 1)/(3)=1去分母后,正确的是()A. 3x - 2(x - 1)=1B. 3x - 2(x - 1)=6C. 3x - 2x - 2 = 6D. 3x - 2x + 2 = 110. 某商品原价为a元,打八折后的价格是()A. 0.2a元B. 0.8a元C. a元D. (a)/(0.8)元。
二、填空题(每题3分,共15分)1. 比较大小:-3___-4(填“>”或“<”)。
2. 计算:(-2)^3=___。
3. 若x = 5,则x =___。
4. 一个多项式加上2x^2-3x + 5的和是4x^2-x + 3,则这个多项式是___。
5. 已知线段AB = 8cm,点C在直线AB上,AC = 3cm,则BC =___cm。
人教版七年级数学下册期末测试题+答案解析(共四套)
⼈教版七年级数学下册期末测试题+答案解析(共四套)⼈教版七年级第⼆学期综合测试题(⼆)、填空题:(每题3分,共15分)i.8i 的算术平⽅根是 ________ ,旷64= __________ . 2. 如果 13. 在⼛ABC 中,已知两条边a=3,b=4,则第三边c 的取值范围是 _____________4. 若三⾓形三个内⾓度数的⽐为 2:3:4,则相应的外⾓⽐是 ___________ .5.已知两边相等的三⾓形⼀边等于 ___________ 5cm,另⼀边等于11cm,则周长是.⼆、选择题:(每题3分,共15分)6?点P (a,b )在第四象限,则点P 到x 轴的距离是() A.a B.b C.| a | D. | b |7. 已知aa b A.a+5>b+5B.3a>3b;C.-5a>-5bD.>3 38. 如图,不能作为判断AB// CD 的条件是()A. / FEB=/ ECDB./ AEC ⽞ ECD; C. / BEC+Z ECD=180D. / AEG=Z DCH三、解答题:(每题6分,共18分) 11.解下列⽅程组:12.2x 5y 25,4x 3y 15.9.以下说法正确的是()A. 有公共顶点,并且相等的两个⾓是对顶⾓B. 两条直线相交,任意两个⾓都是对顶⾓C. 两⾓的两边互为反向延长线的两个⾓是对顶⾓D. 两⾓的两边分别在同⼀直线上,这两个⾓互为对顶⾓ 10.下列各式中,正确的是()13.若A(2x-5,6-2x)在第四象限,求a解不等式组,并在数轴表⽰2x 3 6 x,1 4x 5x 2.的取值范围作图题:(6分)作BC 边上的⾼作AC 边上的中线。
五.有两块试验⽥,原来可产花⽣470千克,改⽤良种后共产花⽣ 532千克,已知第⼀块⽥的产量⽐原来增加 16%,第⼆块⽥的产量⽐原来增加10%,问这两块试验⽥改⽤良种后各增产花⽣多少千克?( 8分)六,已知a 、b 、c 是⼆⾓形的⼆边长,化简:|a — b +c|+ |a — b — c| (6分)⼋,填空、如图1,已知/1 =/2, Z B =Z C ,可推得AB //CD 。
七年级数学下册_第七章《三角形》综合测试题_
凤冈县2011–2012学年第二学期七年级数学(人教版下册)第七章三角形目标检测题时间:120分钟 满分150 陆建东供题一、选择题(每题3分,共30分)1.等腰三角形两边长分别为 3,7,则它的周长为 ( ).A 、 13 .B 、 17 .C 、 13或17 .D 、 不能确定. 2.一个多边形内角和是10800,则这个多边形的边数为 ( ).A 、 6 .B 、 7 .C 、 8 .D 、 9. 3.若三角形三个内角的比为1:2:3,则这个三角形是( ).A 、 锐角三角形.B 、 直角三角形.C 、 等腰三角形.D 、 钝角三角形. 4.下图中有一条公共边三角形的个数为( ).A 、 4个.B 、 6个.C 、 8个.D 、 10个.5.如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。
那么图中与∠A 相等的角是( )A 、 ∠B . B 、 ∠ACD .C 、 ∠BCD.D 、 ∠BDC. 6. 能将三角形面积平分的是三角形的( ).第4题ED CBA第5题DCBAA 、 角平分线.B 、 高.C 、 中线.D 、外角平分线. 7. 在平面直角坐标系中,点A (-3,0),B (5,0),C (0,4)所组成的三角形ABC 的面积是( )A 、32.B 、4.C 、16.D 、8.8. 以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个.B.2个 .C.3个.D.4个.依次观察左边三个图形,并判断照此规律从左向右第四个图形是( ).10. 等腰三角形的底边BC=8 cm ,且|AC -BC|=2 cm ,则腰长AC 为( ) A.10 cm 或6 cm B.10 cm C.6 cm D.8 cm 或6 cm 二、填空(每小题4分,共32分).11.如图,从A 处观测C 处仰角∠CAD=300,从B 处观测C 处的仰角 ∠CBD=450,从C 处观测A、B 两处时视角∠ACB=度.12.已知:如图,CD ∥AB,∠A=400,∠B=600,那么∠1= , ∠2= .13.一个三角形有两条边相等,周长为20㎝,三角形的一边长为5㎝,第(12)题21 DCBA第(11)题DCBA第9题那么其它两边长分别为 .14.填表:用长度相等的火柴棒拼成如图所示的图形:15.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y .16.一个多边形的各内角都等于1200,它是 边形。
数学苏教版七年级下册期末综合测试试卷(比较难)及答案解析
数学苏教版七年级下册期末综合测试试卷(比较难)及答案解析一、选择题1.下列计算正确的是( )A .448a a a +=B .4416a a a ⋅=C .422a a a ÷=D .()448a a = 答案:C解析:C【分析】分别利用合并同类项、同底数幂的乘法、除法以及幂的乘方法则进行计算,即可得出结论.【详解】解:A 、 4442a a a +=,故此选项计算错误,不符合题意;B 、448a a a ⋅=,故此选项计算错误,不符合题意;C 、422a a a ÷=,,故此选项计算正确,符合题意;D 、()1446a a =,故此选项计算错误,不符合题意; 故选:C .【点睛】此题考查了合并同类项、同底数幂的乘法、除法及幂的乘方的运算,熟练掌握相关运算法则并能灵活运用其准确求解是解题的关键.2.如图,属于同位角的是( )A .2∠与3∠B .1∠与4∠C .1∠与3∠D .2∠与4∠ 答案:A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可.【详解】解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A 符合题意. ∠1与∠4是对顶角,因此选项B 不符合题意.∠1与∠3是内错角,因此选项C 不符合题意.∠2与∠4同旁内角,因此选项D 不符合题意.故选:A .【点睛】本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提.3.不等式250x -≤的正整数解有( )A .4个B .3个C .2个D .1个答案:C解析:C【分析】根据解一元一次不等式的方法可以解答本题.【详解】解:250x -≤,解得x <52∴正整数解为1、2,故选:C .【点睛】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法,利用不等式的性质解答.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”( )A .56B .66C .76D .86答案:C解析:C【分析】利用“神秘数”定义判断即可.【详解】解:∵76=38×2=(20+18)(20-18)=202﹣182,∴76是“神秘数”,而其余各数均不能表示为两个连续偶数的平方差,故选:C .【点睛】此题考查了平方差公式,正确理解“神秘数”的定义是解本题的关键.5.已知关于x 的不等式组13x m x m >⎧⎨+≤⎩有且只有两个整数解,则m 的取值范围是( ) A .413m <≤ B .413m ≤< C .4533m <≤ D .4533m ≤< 答案:D解析:D【分析】本题两个整数不明确,因而一般化设为n ,n +1,再利用m 这个量的交叉传递,得到n 的值,从而求解.【详解】解:不等式组整理得31x m x m >⎧⎨≤-⎩, 令整数的值为n ,n +1,则有:n -1≤m <n ,n +1≤3m -1<n +2, 故12333n m n n n m -≤<⎧⎪++⎨≤<⎪⎩, ∴n -1<33n +且23n +<n , ∴1<n <3,∴n =2, ∴124533m m ≤<⎧⎪⎨≤<⎪⎩, ∴4533m ≤<. 故选:D .【点睛】本题考查不等式组的解法及整数解的确定,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.下列命题中假命题的是( )A .两直线平行,内错角相等B .三角形的一个外角大于任何一个内角C .如果a ∥b ,b ∥c ,那么a ∥cD .过直线外一点有且只有一条直线与这条直线平行答案:B解析:B【分析】根据平行线的性质、三角形的外角性质、平行公理判断.【详解】解:A 、两直线平行,内错角相等,A 是真命题;B 、三角形的一个外角大于与它不相邻的任何一个内角,B 是假命题;C 、如果a ∥b ,b ∥c ,那么a ∥c ,C 是真命题;D 、过直线外一点有且只有一条直线与这条直线平行,D 是真命题;故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2020个格子中的数为( )3 a b c -12 … A .3 B .2 C .0 D .-1答案:A解析:A【分析】首先由已知和表格求出a 、b 、c ,再观察得出规律求出第2020个格子中的数.【详解】解:已知其中任意三个相邻格子中 所填整数之和都相等,则3+a +b =a +b +c ,a +b +c =b +c −1,所以a =−1,c =3,按要求排列顺序为,3,−1,b ,3,−1,b ,…,再结合已知表可知:b =2,所以每个小格子中都填入一个整数后排列为:3,−1,2,3,−1,2,…,即每3个数一个循环,因为2020÷3=673…1,所以第2020个格子中的数为3.故选:A .【点睛】此题考查的是数字的变化类问题,解题的关键是先由已知求出a 、b 、c ,再找出规律求出答案.8.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤ 答案:A解析:A【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;∵AC ∥DF ,点H 是BC 的中点,则有点D 为DE 的中点,则BD=AD=CH=2cm 故③正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②③④⑤.故选:A .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键.二、填空题9.计算:(﹣3ab 2)3•(a 2b )=______.解析:5727a b -【分析】先算乘方,再利用单项式乘单项式法则计算即可得到结果.【详解】解:32236257=32727=ab a b a b a b a b ﹣.故答案为:5727a b -.【点睛】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.10.命题“若22a b =,则a=b”是__________命题(填“真”或“假”)解析:假【分析】根据22a b =可得a b =,即可判断.【详解】∵22a b = ∴a b =,即a b =±∴原命题为假命题,故答案为:假.【点睛】本题考查真假命题的判断,熟练掌握平方根的基本概念是解题的关键.11.如图,△ABC ,△DBE 均为直角三角形,且D ,A ,E ,C 都在一条直线上,已知∠C =25°,∠D =45°,则∠EBC 的度数是_____.答案:D解析:20°.【分析】先根据三角形的内角和定理得:∠DEB =45°,最后根据三角形外角的性质可得结论.【详解】解:Rt △DBE 中,∵∠D =45°,∠DBE =90°,∴∠DEB =90°-45°=45°,∵∠C =25°,∴∠EBC =∠DEB ﹣∠C =45°-25°=20°,故答案为:20°.【点睛】本题考查三角形内角和和外角和定理,熟练掌握其性质是解题的关键.12.若 x ﹣y=5,xy=6,则12x 2y ﹣12xy 2 =_________;解析:15【分析】直接将原式变形,提取公因式,进而分解因式得出即可.【详解】∵x ﹣y=5,xy=6, ∴()22111165152222x y xy xy x y -=-=⨯⨯=. 故答案是15.【点睛】本题主要考查了因式分解的提取公因式法,运用公式是解题的关键.13.已知方程组4,5ax by bx ay +=⎧⎨+=⎩的解是1,2,x y =⎧⎨=⎩那么+a b 的值是__________. 解析:3【分析】把12x y =⎧⎨=⎩代入方程组4,5ax by bx ay +=⎧⎨+=⎩中可以得到关于a 、b 的方程组,解这个方程组即可求解.【详解】解:把12x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得关于a、b的方程组2425a bb a+=⎧⎨+=⎩,解得:21ab=⎧⎨=⎩,∴a+b=3,故答案为:3.【点睛】本题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.14.如图,在三角形ABC中,AC=5,BC=6,BC边上的高AD=4,若点P在边AC上(不与点A,C重合)移动,则线段BP最短时的长为_________________.答案:B解析:24 5【分析】根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,利用面积法即可求出此时BP的长.【详解】解:根据垂线段最短可知,当BP⊥AC时,BP最短,∵S△ABC=12×BC×AD=12×AC×BP,∴6×4=5BP,∴PB=245,即BP最短时的值为:245.故答案为:245.【点评】此题考查了垂线段最短,三角形的面积,熟练掌握线段的性质是解本题的关键.15.小华用三根木棒搭一个三角形,其中两根木棒的长度分别为10cm和2cm,第三根木棒的长度为偶数,则第三根的长度是_____________cm.答案:10【分析】首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步根据偶数这一条件分析.【详解】解:根据三角形的三边关系,得10-2<第三根木棒<10+2,即8<第三根木棒<12.解析:10【分析】首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步根据偶数这一条件分析.【详解】解:根据三角形的三边关系,得10-2<第三根木棒<10+2,即8<第三根木棒<12.又∵第三根木棒的长选取偶数,∴第三根木棒的长度只能为10cm.故答案为:10.【点睛】本题主要考查了三角形的三边关系以及偶数的定义,难度适中.△沿着AD翻折得到AED,若16.如图,在ABC中,点D在BC上,将ABD∠+∠的度数为______.∠=︒,则ABD BAD20CDE答案:80°【分析】根据三角形外角的性质和翻折的性质解答即可.【详解】解:由翻折得,∵又∴∵∴∴∴故答案为:80°.【点睛】本题主要考查了翻折的性质,三角形外角的性解析:80°【分析】根据三角形外角的性质和翻折的性质解答即可.【详解】解:由翻折得,ADB ADE ∠=∠∵ADE ADC CDE ∠=∠+∠又20CDE ∠=︒∴20ADE ADB ADC ∠=∠=∠+︒∵180ADB ADC ∠+∠=︒∴20180ADC ADC ∠+︒+∠=︒∴80ADC ∠=︒∴80ABD BAD ∠+∠=︒故答案为:80°.【点睛】本题主要考查了翻折的性质,三角形外角的性质以及平角的定义,求出80ADC ∠=︒是解答本题的关键.17.计算:(1)1022021--(2)()2354·3x x x + 答案:(1);(2)【分析】(1)根据零指数幂和分式的负指数幂法则进行运算;(2)根据同底数幂的乘法以及幂的乘方和积的乘方运算法则即可求解.【详解】解:(1)原式(2)原式【点睛】本题主要解析:(1)12-;(2)810x 【分析】(1)根据零指数幂和分式的负指数幂法则进行运算;(2)根据同底数幂的乘法以及幂的乘方和积的乘方运算法则即可求解.【详解】解:(1)原式11122=-=-(2)原式888910x x x =+=【点睛】本题主要考查了同底数幂的乘法以及幂的乘方和积的乘方运算,熟练掌握运算法则是解题的关键.18.因式分解:(1)34x x -;(2)()()269a b a b ++++;(3)222xy x y ---;(4)()222416x x +-. 答案:(1);(2);(3);(4).【分析】(1)先提公因式,再用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(3)先提符号,在用完全平方公式因式分解即可;(4)先利用平方差公解析:(1)()()22x x x +-;(2)()23a b ++;(3)()2x y -+;(4)()()2222x x +-. 【分析】(1)先提公因式,再用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(3)先提符号,在用完全平方公式因式分解即可;(4)先利用平方差公式因式分解,再用完全平方公式因式分解即可【详解】解:(1)()()()324422x x x x x x x -=-=+-;(2)()()()()2226933a b a b a b a b ++++=++=++⎡⎤⎣⎦;(3)()()2222222x xy y x y y xy x -=-++=-+--; (4)()()()()()2222222416444422x x x x x x x x ⎡⎤⎡⎤+-=+++-=+-⎣⎦⎣⎦. 【点睛】本题考查因式分解,掌握因式分解的方法与技巧是解题关键.19.解方程组(1)21365x y y x -=⎧⎨=-⎩(2)414314312x y x y +=⎧⎪-⎨-=⎪⎩ 答案:(1);(2).(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】解:(1)将②代入①,得解得:将代入②,得原方程组的解为:;解析:(1)217x y =-⎧⎨=-⎩;(2)62x y =⎧⎨=⎩. 【分析】(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】解:(1)21365x y y x -=⎧⎨=-⎩①②将②代入①,得()26513x x --=解得:2x =-将2x =-代入②,得()62517y =⨯--=-∴原方程组的解为:217x y =-⎧⎨=-⎩; (2)方程组化简为:4143410x y x y +=⎧⎨-=⎩①② ①+②,得424x =解得:6x =将6x =代入①得,6414y +=解得:2y =∴原方程组的解为:62x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.求不等式组513(1)131722x x x x -≥+⎧⎪⎨-≤-⎪⎩的正整数解. 答案:不等式组的正整数解为2,3,4先求出每个不等式的解集,然后求出不等式组的解集,最后求出其整数解即可.【详解】解:解不等式①得:解不等式②得:原不等式组的解集为则不等式组的正整解析:不等式组的正整数解为2,3,4【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出其整数解即可.【详解】 解:513(1)131722x x x x -≥+⎧⎪⎨-≤-⎪⎩①② 解不等式①得:2x ≥解不等式②得:4x ≤∴原不等式组的解集为24x ≤≤则不等式组的正整数解为2,3,4.【点睛】本题主要考查了解一元一次不等式组合求不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.三、解答题21.已知:如图,ABC ∆中,在CA 的延长线上取一点E ,作EG BC ⊥于点G (1)如图①,若AD BC ⊥于点,3D E ∠=∠,那么AD 是BAC ∠的平分线吗?若是,请说明理由.请完成下列证明并在下面的括号内填注依据解:是,理由如下:,AD BC EG BC ⊥⊥(已知)4590︒∴∠=∠=(垂直定义)//AD EG ∴( )1E ∴∠=∠(两直线平行,同位角相等)2∠= ( )3E ∠=∠(已知)12∠∠∴=(等量代换)AD ∴平分BAC ∠( )(2)如图②,若ABC ∆中90,BAC ABC CEG ︒∠=∠∠、的角平分线相交于点H . ①求证:180C BFE ︒∠+∠=②随着C ∠的变化,BHE ∠的大小会发生变化吗﹖如果有变化,请直接写出BHE ∠与C ∠的数量关系;如果没有变化,请直接写出BHE ∠的度数.答案:(1)同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①见详解;②.【分析】(1)根据题意及平行线的性质可直接进行求解;(2)①由题意易得∠C+∠GEC=90°,∠C解析:(1)同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①见详解;②90BHE ∠=︒.【分析】(1)根据题意及平行线的性质可直接进行求解;(2)①由题意易得∠C +∠GEC =90°,∠CEG +∠EFA =90°,则有∠C =∠EFA ,然后问题可求证;②连接CH 并延长,由题意易得11,22HEC CEG HBC ABC ∠=∠∠=∠,然后由三角形外角的性质可得,EHM HEC HCE BHM HBC HCB ∠=∠+∠∠=∠+∠,进而根据角的和差关系可进行求解.【详解】(1)解:由题意得:,AD BC EG BC ⊥⊥(已知)4590∴∠=∠=︒(垂直定义)//AD EG ∴(同位角相等,两直线平行)1E ∴∠=∠(两直线平行,同位角相等)2∠=∠3(两直线平行,内错角相等)3E ∠=∠(已知)12∠∠∴=(等量代换)AD ∴平分BAC ∠(角平分线的定义)故答案为同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义; (2)①证明:∵90,BAC EG BC ∠=︒⊥,∴90BAE EGC BAC ∠=∠=∠=︒,∴∠C +∠GEC =90°,∠CEG +∠EFA =90°,∴∠C =∠EFA ,∵180EFB EFA ∠+∠=︒,∴180C BFE ∠+∠=︒;②90BHE ∠=︒,理由如下:连接CH 并延长,如图所示:∵ABC CEG ∠∠、的角平分线相交于点H , ∴11,22HEC CEG HBC ABC ∠=∠∠=∠, 由三角形外角的性质可得,EHM HEC HCE BHM HBC HCB ∠=∠+∠∠=∠+∠,∵∠FEA +∠EFA =∠BFG +∠FBG =90°,∠EFA =∠BFG ,∴∠FEA =∠FBG ,∵,EHB EHM BHM ACB HCE HCB ∠=∠+∠∠=∠+∠, ∴119022BHE GEC ABC ACB GEC ACB ∠=∠+∠+∠=∠+∠=︒. 【点睛】本题主要考查直角三角形的性质、三角形外角的性质、平行线的性质及角平分线的定义,熟练掌握直角三角形的性质、三角形外角的性质、平行线的性质及角平分线的定义是解题的关键.22.某地上网有两种收费方式,用户可以任选其一:(A )计时制:2.8元/时;(B )包月制:60元/月;此外,每一种上网方式都加收通信费1.2元/时.(1)某用户每月上网20小时,选用哪种上网方式比较合算?(2)某用户有120元钱用于上网(一个月),选用哪种上网方式合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式.答案:(1)选择A 种方式比较合算;(2)选择B 种方式比较合算;(3)上网时间t=小时,两种方式一样合算;当上网时间t<小时,选用A 种方式合算;当上网时间t>小时,选用B 种方式合算【分析】(1)设用户上解析:(1)选择A 种方式比较合算;(2)选择B 种方式比较合算;(3)上网时间t =1507小时,两种方式一样合算;当上网时间t <1507小时,选用A 种方式合算;当上网时间t >1507小时,选用B 种方式合算 【分析】(1)设用户上网的时间为t 小时,分别用t 表示出两种收费方式,代入时间20小时,分别计算,对比分析即可.(2)将120分别代入两种收费方式的表达式中,求得各自的时间,对比分析即可. (3)令两种方式的关系式分别相等,大于或小于,分类讨论即可.【详解】解:(1)设用户上网的时间为t 小时,则A 种方式的费用为2. 8t +1.2t =4t 元;B 种方式的费用为(60 +1.2t )元,当t =20时,4t =80,60+1.2t =84,因为80< 84,所以选择A 种方式比较合算;(2)若用户有120元钱上网,由题意:14120t =,260 1.2120t +=分别解得1=30t ,2=50t因为30 <50,所以用户选择B 种方式比较合算;(3)当两种方式费用相同时,即460 1.2t t =+,解得t =1507,所以此时选择两种方式一样合算; 令460 1.2t t <+,解得1507t <,所以当上网时间t <1507时,选用A 种方式合算; 令460 1.2t t >+,解得1507t >,所以当上网时间t >1507时,选用B 种方式合算. 【点睛】本题考察一元一次不等式与一次函数在方案类问题中的实际应用,根据题意列出函数关系并讨论是解题重点.23.某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若购进了甲种钢笔80支,乙种钢笔60支,求需要多少元?(3)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种购进方案.答案:(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【分析】(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000解析:(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【分析】(1)设购进甲种钢笔每支需x元,购进乙种钢笔每支需y元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元”,即可得出关于x,y的二元一次方程组,解之即可得出甲、乙两种钢笔的单价;(2)利用总价=单价⨯数量,即可求出购进甲种钢笔80支、乙种钢笔60支所需费用;(3)设购进甲种钢笔m支,则购进乙种钢笔1(100)2m-支,根据“购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m,1(100)2m-均为正整数,即可得出进货方案的数量.【详解】解:(1)设购进甲种钢笔每支需x元,购进乙种钢笔每支需y元,依题意得:100501000 5030550x yx y+=⎧⎨+=⎩,解得:510xy=⎧⎨=⎩.答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元.(2)5801060⨯+⨯400600=+1000=(元).答:需要1000元.(3)设购进甲种钢笔m支,则购进乙种钢笔100051(100)102mm-=-支,依题意得:16(100)218(100)2m mm m⎧-⎪⎪⎨⎪-⎪⎩,解得:150160m.又m,1(100)2m-均为正整数,m∴可以为150,152,154,156,158,160,∴该文具店共有6种购进方案.【点睛】本题考查了二元一次方程组的应用、有理数的混合运算以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,找出关于m的一元一次不等式组.24.已知AB CD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.(1)若点E的位置如图1所示.①若∠ABE=60°,∠CDE=80°,则∠F= °;②探究∠F与∠BED的数量关系并证明你的结论;(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是.(3)若点E的位置如图3所示,∠CDE为锐角,且,设∠F=α,则α的取值范围为.答案:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)解析:(1)①70;②∠F=12【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70︒,即可求解;②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.【详解】(1)①过F作FG//AB,如图:∵AB∥CD,FG∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∠BED;∴∠F=12(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如图,∵∠CDE为锐角,DF是∠CDE的角平分线,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案为:.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.25.如图,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC边于点E.(1)如图1,过点A作AD⊥BC于D,若已知∠C=50°,则∠EAD的度数为;(2)如图2,过点A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度数;(3)如图3,CF平分△ABC的外角∠BCG,交AE的延长线于点F,作FD⊥BC于D,设∠ACB=n°,试求∠DFE﹣∠AFC的值;(用含有n的代数式表示)(4)如图4,在图3的基础上分别作∠BAE和∠BCF的角平分线,交于点F1,作F1D1⊥BC 于D1,设∠ACB=n°,试直接写出∠D1F1A﹣∠AF1C的值.(用含有n的代数式表示)答案:(1)10°;(2)∠C的度数为70°;(3)∠DFE﹣∠AFC的值为;(4)∠D1F1A﹣∠AF1C的值为.【分析】(1)根据∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解决问题.解析:(1)10°;(2)∠C的度数为70°;(3)∠DFE﹣∠AFC的值为1302n-︒;(4)∠D1F1A﹣∠AF1C的值为14n.【分析】(1)根据∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解决问题.(2)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,利用三角形内角和定理构建方程求出x即可解决问题.(3)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,用n,x表示出∠DFE,∠AFC,再结合三角形内角和定理解决问题即可.(4)设∠FAC=∠FAB=y.用n,x表示出∠D1F1A,∠AF1C,再结合三角形内角和定理解决问题即可.【详解】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠CAE=12∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-50°=40°,∴∠EAD=∠EAC-∠DAC=50°-40°=10°.(2)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形内角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)设∠FAC=∠FAB=x.则有∠AEC=∠DEF=180°-n-x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°-(180°-n-x)=n+x-90°,∵CF平分∠BCG,∴∠FCG=12(180°-n),∵∠AFC=∠FCG-∠FAC=12(180°-n)-x=90°-12n-x=15°,∴∠DFE-∠AFC=n+x-105°,∵2x+30°+n=180°,∴x=75°-12n,∴∠DFE-∠AFC=12n-30°.(4)设∠FAC=∠FAB=y.由题意同法可得:∠D1F1A=90°-(180°-n-32y)=n+32y-90°,∠AF1C=180°-32y-n-14(180°-n)=135°-32y-34n,∴∠D1F1A-∠AF1C=n+32y-90°-(135°-32y-34n)=74n+3y-225°,∵2y+30°+n=180°,∴y=75°-12n,∴∠D1F1A-∠AF1C=n+32y-90°-(135°-32x-34n)=74n+225°-32n-225°=14n.【点睛】本题考查了三角形内角和定理,角平分线的定义,三角形的外角的性质等知识,解题的关键是学会利用参数解决问题,本题有一定的难度.。
【精选】北师大版七年级下册数学第一章《整式的运算》综合测试卷(含答案)
【精选】北师大版七年级下册数学第一章《整式的运算》综合测试卷(含答案)一、选择题(每题3分,共30分)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.计算:20·2-3等于( )A .-18 B.18 C .0 D .83.斑叶兰的一粒种子重约0.000 000 5 g ,将0.000 000 5用科学记数法表示为( )A .5×107B .5×10-7C .0.5×10-6D .5×10-64.【2022·长沙】下列计算正确的是( )A .a 7÷a 5=a 2B .5a -4a =1C .3a 2·2a 3=6a 6D .(a -b )2=a 2-b 25.【教材P 32习题T 3变式】已知一个计算程序:n →平方→+n →÷n →-n →?若输入n =-3,则输出的“?”为( )A .1B .-1C .7D .-76.下列四个算式:① 5x 2y 4÷15xy =xy 3; ② 16a 6b 4c ÷8a 3b 2=2a 3b 2c ; ③ 9x 8y 2÷3x 2y =3x 4y ; ④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2.其中正确的有( )A .0个B .1个C .2个D .3个7.如图,将一块边长为x (x >7)的正方形木块的一边截去7,另一边截去6,则剩余部分(图中阴影部分)的面积是( )A .x 2-13x -42B .x 2+13x +42C .x 2+13x -42D .x 2-13x +428.【2022·上海交大附中闵行分校模拟】若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab 9.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b10.【直观想象】如图,在边长为2a 的正方形中央剪去一个边长为a +2的小正方形(a >2),将剩余部分沿虚线剪开密铺成一个平行四边形,则该平行四边形的面积为( )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2二、填空题(每题3分,共24分)11.【2022·甘肃】计算:3a 3·a 2=________.12.【2022·遵义】已知a +b =4,a -b =2,则a 2-b 2的值为________.13.【2022·大庆】已知代数式a 2+(2t -1)ab +4b 2是一个完全平方式,则t 的值为__________.14.计算:(-13xy 2)2·[xy (2x -y )+xy 2]=__________. 15.计算:(7x 2y 3z +8x 3y 2)÷4x 2y 2=______________.16.若x +y -3=0,则2y ×2x 的值为________.17.【教材P 35复习题T 12变式】如图,一个长方形花园ABCD ,AB =a ,AD =b ,该花园中建有一条长方形小路L MPQ 和一条平行四边形小路RSTK ,若L M =RS =c ,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.18.【传统文化】《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x =8时,多项式3x 3-4x 2-35x +8的值”,按照秦九韶算法,可先将多项式3x 3-4x 2-35x +8一步步地进行改写:3x 3-4x 2-35x +8=x (3x 2-4x -35)+8=x [x (3x -4)-35]+8.按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少.计算当x =8时,多项式的值为1 008.请参考上述方法,将多项式x 3+2x 2+x -1改写为________________;当x =8时,多项式的值为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.计算:(1)(-12ab )(23ab 2-2ab +43b );(2)(a +b )(a -b )+4ab 3÷4ab ;(3)(2x -y -z )(y -2x -z );(4)(2x +y )(2x -y )+(x +y )2-2(2x 2-xy ).20.【教材P 34复习题T 8变式】用简便方法计算:(1)102×98;(2)112×92.21.先化简,再求值:(1)(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =1;(2)(x -1)2-x (x -3)+(x +2)(x -2),其中x 2+x -5=0.22.有这样一道题:计算⎣⎢⎡⎦⎥⎤3x (2xy +1)-26x 2y 2÷2y +⎝ ⎛⎭⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 022,y=-2 023,甲同学把x=2 022,y=-2 023错抄成x=2 002,y=-2 013,但他的计算结果也是正确的.请你解释一下这是为什么.23.【教材P17习题T2变式】如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆形.(1)求剩下钢板的面积;(2)当x=2,y=4时,剩下钢板的面积是多少?(π取3.14)24.【新考法题】【2022·河北】发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2-1)2=10为偶数,请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请说明“发现”中的结论正确.。
七年级数学综合测试卷
一、选择题(每题4分,共40分)1. 下列各数中,最小的正整数是()A. -3B. 0C. 1D. 22. 如果a=3,b=-2,那么a-b的值是()A. 5B. -5C. 1D. -13. 下列各数中,有理数是()A. √4B. √-1C. πD. 0.1010010001……4. 下列各数中,无理数是()A. √9B. √-4C. πD. 2/35. 如果x=5,那么x-3的值是()A. 2B. 8C. 12D. 56. 下列各式中,正确的有()A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 2xD. 2x - 3 = 2x7. 如果a+b=5,a-b=3,那么a和b的值分别是()A. a=4,b=1B. a=3,b=2C. a=2,b=3D. a=1,b=48. 下列各式中,方程是()A. 2x + 3 = 7B. 3x - 2 = 7C. 2x + 3 = 2xD. 3x - 2 = 2x9. 如果x=2,那么2x+1的值是()A. 5B. 3C. 4D. 210. 下列各式中,比例是()A. 2x + 3 = 7B. 3x - 2 = 7C. 2x : 3 = 6 : 9D. 3x - 2 = 2x二、填空题(每题4分,共40分)11. 3的平方根是______,5的立方根是______。
12. 如果a=5,b=-3,那么a-b的值是______。
13. 下列各数中,无理数是______。
14. 下列各式中,正确的有______。
15. 如果x=4,那么2x-3的值是______。
16. 下列各式中,方程是______。
17. 如果a+b=8,a-b=2,那么a和b的值分别是______。
18. 下列各式中,比例是______。
19. 下列各数中,有理数是______。
20. 下列各式中,正确的有______。
三、解答题(每题10分,共30分)21. 解方程:3x - 2 = 7。
七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)
七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)一、选择题(本大题共10小题,共30分)1. 二元一次方程x −2y =1有无数多个解,下列四组值中不是该方程的解的是( )A. {x =0y =−12B. {x =1y =1C. {x =1y =0D. {x =−1y =−12. 若(k -2)x |k|−1-3y =2是关于x ,y 的二元一次方程,则k 2-3k -2的值为( )A. 8B. 8或−4C. −8D. −43. 方程组{2x +y =4,x −y =−1的解是( )A. {x =1y =2B. {x =−3y =−2C. {x =2y =0D. {x =3y =−14. 《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A. 160钱B. 155钱C. 150钱D. 145钱5. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−506. 用代入法解方程组时,比较容易的变形是( )A. 由 ①,得x =y+12B. 由 ①,得y =2x −1C. 由 ②,得y =3x+56D. 由 ②,得x =6y−537. 为做好防疫消毒工作,某单位制作日常消毒液.将浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%的消毒酒精溶液500g ,设甲种酒精溶液为xg ,乙种酒精溶液为yg ,则()A. {x =300y =200B. {x =250y =200C. {x =250y =250D. {x =200y =3008. 在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图,则x ,y 的值是( )A. x =1,y =−1B. x =−1,y =1C. x =2,y =−1D. x =−2,y =19. 两位同学在解方程组时,甲同学由{ax +by =2,cx −y =−4正确地解出{x =3,y =−2;乙同学因把c 写错了解得{x =−2,y =2,则a +b +c 的值为( )A. 3B. 0C. 1D. 710. 若点P (x ,y )的坐标满足方程组{x +y =k,x −y =6−3k,则点P 不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共4小题,共12分)11. 已知方程组{3x +2y =m −22x +3y =m的解适合x +y =2,则m 的值为______.12. 当m ,n 满足关系 时,关于x ,y 的方程组{x −5y =2m,2x +3y =m −n 的解互为相反数.13. 已知乙组人数是甲组人数的一半,若将乙组人数的13调入甲组,则甲组比乙组多15人,甲、乙两组的人数分别为__________.14. 已知2x -y -z =0,3x +4y -2z =0,则x−y+zx+y+z =________________.三、计算题(本大题共2小题,共12分) 15. 解方程组:(1{3x −2y +20=0,2x +15y −3=0;(2){1.5(20x +10y)=15000,1.2(110x +120y)=97200.16. 若方程组{ax +by =32ax +by =4与方程组{2x +y =3x −y =0有相同的解,求a 、b 的值.四、解答题(本大题共5小题,共46分)17. 某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数. (1)列一元一次方程求解.(2)如果设原两位数的十位数字为x ,个位数字为y ,列二元一次方程组. (3)检验(1)中求得的结果是否满足(2)中的方程组.18. 一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?19.某新长途客运站准备在国庆前建成营运.后期工程若请甲乙两个工程队同时施工,8天可以完工,需付两工程队施工费用7040元;若先请甲工程队单独施工6天,再请乙工程队单独施工12天也可以完工,需付两工程队施工费用6960元.问甲、乙两工程队施工一天,应各付施工费用多少元?20.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).21. 先阅读材料,然后解方程组.材料:解方程组{x −y −1=0,①4(x −y)−y =5.②由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1. 把y =-1代入③,得x =0. ∴原方程组的解为{x =0,y =−1. 这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用整体代入法解方程组:{2x −3y −2=0,①2x−3y+57+2y =9.②参考答案1.【答案】B【解析】 【分析】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.将x 、y 的值分别代入x -2y 中,看结果是否等于1,判断x 、y 的值是否为方程x -2y =1的解. 【解答】解:A 、当x =0,y =-12时,x -2y =0-2×(-12)=1,是方程的解; B 、当x =1,y =1时,x -2y =1-2×1=-1,不是方程的解; C 、当x =1,y =0时,x -2y =1-2×0=1,是方程的解; D 、当x =-1,y =-1时,x -2y =-1-2×(-1)=1,是方程的解. 故选B .2.【答案】A【解析】 【分析】本题主要考查了二元一次方程的概念,代数式求值,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程; 根据二元一次方程满足的条件列式求出k 的值,即可得解. 【解答】解:根据题意得:{k −2≠0|k |−1=1,解得:k =-2,∴k 2-3k -2=(-2)2-3×(-2)-2=4+6-2=8. 故选:A .3.【答案】A【解析】 【分析】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可. 【解答】 解:,①+②得:3x =3, 解得:x =1,把x =1代入①得:y =2, 则方程组的解为{x =1y =2.故选:A .4.【答案】C【解析】解:设共有x 人合伙买羊,羊价为y 钱, 依题意,得:{5x +45=y7x +3=y ,解得:{x =21y =150.故选:C .设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决. 本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.6.【答案】B【解析】观察方程组的特点可知,B 中的变形比较容易,7.【答案】C【解析】根据题意,得{x +y =500,90%x +60%y =500×75%,解得{x =250,y =250,故选C .8.【答案】B【解析】 【分析】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,根据题意列出方程组,难度一般. 根据每行每列及对角线上三个方格中的数字和都相等,可得出方程组,解出即可. 【解答】解:由题意,得{2x +3+2=2−3+4y,2−3+4y =2x +y +4y, 解得{x =−1,y =1. 故选B .9.【答案】D【解析】把{x =3,y =−2代入方程组得把{x =−2,y =2代入ax +by =2得-2a +2b =2,即-a +b =1,联立得{3a −2b =2,−a +b =1,解得{a =4,b =5,由得c =-2,则a +b +c =4+5-2=7.故选D .10.【答案】C【解析】略11.【答案】6【解析】解:两个方程相加,得 5x +5y =2m -2, 即5(x +y )=2m -2, 即x +y =2m−25=2.解得m =6.方程组中的两个方程相加,即可用m 表示出x +y ,即可解得m 的值.注意到两个方程的系数之间的关系,而采用方程相加的方法解决本题是解题的关键.12.【答案】m =34n【解析】由题可知x =-y ,代入方程组,得{−6y =2m,y =m −n,则-6m +6n =2m ,所以m =34n .13.【答案】甲组18人,乙组9人【解析】 【分析】此题主要考查了二元一次方程组的应用,找准等量关系是解决应用题的关键,特别注意第二个等量关系的理解.等量关系有:①乙组人数是甲组人数的一半;②乙组人数的三分之一调入甲组,即甲组现有(x +13y)人,乙组现有人数23y 人,此时甲组比乙组多15人,据此列方程组求解即可. 【解答】解:设甲组有x 人,乙组有y 人,根据乙组人数是甲组人数的一半,则y =12x ; 根据乙组人数的三分之一调入甲组时甲组比乙组多15人,得方程x +13y =23y +15, 可列方程组为:{y =12x x +13y =23y +15, 解得:{ x =18 y =9.所以甲组人数为18人,乙组人数为9人, 故答案是甲组18人,乙组9人.14.【答案】89【解析】【分析】此题考查的是解三元一次方程组,需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.将x 、y 写成用z 表示的代数式然后代入即可得到答案. 【解答】 解:{2x −y −z =0①3x +4y −2z =0②①×4+②得, 11x −4z −2z =0, 解得x =6z11,将x =6z 11代入①得,12z11−y −z =0, 解得y =z11, ∴原式=6z 11−z 11+z 6z 11+z 11+z =1618=89.故答案为89.15.【答案】(1)方程组整理得×15+×2得49x =-294,解得x =-6,把x =-6代入得-12+15y =3,解得y =1, ∴方程组的解为{x =−6,y =1.(2)方程组整理得 ×12-得13x =3900,解得x =300,把x =300代入得600+y =1000,解得y =400, ∴方程组的解为{x =300,y =400.【解析】略16.【答案】解:,解得该方程组的解为{x =1y =1,由题意该方程组的解也是方程组{ax +by =32ax +by =4的解,代入ax +by =3可得a +b =3③,代入2ax +by =4可得2a +b =4④,④-③可得a =1,代入③可得b =2,∴a =1,b =2.【解析】先求出第二个方程组的解,再代入第一个方程组即可求出a 、b 的值.本题主要考查二元一次方程组的解,解答此题的关键是要弄清题意,正确求出第二个方程组的解.17.【答案】解:(1)设原两位数的个位数字为m ,则十位数字为(11-m ),依题意,得:10×(11-m )+m +45=10m +(11-m ),解得:m =8,∴11-m =3.答:原两位数为38.(2)设原两位数的十位数字为x ,个位数字为y ,依题意,得:{x +y =1110x +y +45=10y +x. (3)结合(1),可知:x =3,y =8,∴x +y =11,10x +y +45=83=10y +x ,∴(1)中求得的结果满足(2)中的方程组.【解析】(1)设原两位数的个位数字为m ,则十位数字为(11-m ),根据原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设原两位数的十位数字为x ,个位数字为y ,根据原两位数两个数位上的数之和为11及原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于x ,y 的二元一次方程组,此问得解;(3)由(1)的结论可得出x ,y 的值,再将其代入(2)的方程组中验证后即可得出结论. 本题考查了一元一次方程的应用以及由实际问题抽象出二元一次方程组,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)将(1)的结论代入方程组中验证方程组是否正确.18.【答案】解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:{6(x +y)=90(6+4)(x −y)=90,解得:{x =12y =3. 答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.【解析】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程. (1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,根据路程=速度×时间,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,根据时间=路程÷速度,即可得出关于a 的一元一次方程,解之即可得出结论.19.【答案】解:设甲工程队每天需费用x 元,乙工程队每天需费用y 元,由题意得,{8x +8y =70406x +12y =6960, 解得:{x =600y =280. 答:甲工程队每天需费用600元,乙工程队每天需费用280元.【解析】设甲工程队每天需费用x 元,乙工程队每天需费用y 元,根据题意可得:甲乙合作8天完工,需付两工程队施工费用7040元;甲队单独施工6天,再请乙工程队单独施工12天完工,需付两工程队施工费用6960元,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.【答案】解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a +4b =31,∴b =31−3a 4.∵a ,b 均为正整数,∴有{a =1b =7、{a =5b =4和{a =9b =1三种情况. 故共有三种租车方案,分别为:①A 型车1辆,B 型车7辆;②A 型车5辆,B 型车4辆;③A 型车9辆,B 型车1辆.【解析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货31吨,找出3a +4b =31.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有31吨货物,即可得出3a +4b =31,即b =31−3a 4,由a 、b 均为正整数即可得出各租车方案.21.【答案】解:由①,得2x -3y =2.③把③代入②,得2+57+2y =9,解得y =4.把y =4代入③,得2x -3×4=2, 解得x =7.∴原方程组的解为{x =7,y =4.【解析】略。
2019-2020学年曲靖市名校七年级第二学期期末综合测试数学试题含解析
2019-2020学年曲靖市名校七年级第二学期期末综合测试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题只有一个答案正确)1.要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图【答案】C【解析】根据题意,得要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.2.方程组23x yx y+=∆⎧⎨+=⎩的解为1xy=⎧⎨=∇⎩,则被遮盖的∆、∇的两个数分别为()A.1,2 B.1,3 C.2,3 D.4,2【答案】D【解析】试题分析:将x=1代入②得:1+y=3,解得:y=2;将x=1,y=2代入①得:2+2=4.考点:二元一次方程组.3.用科学记数法表示0.000032=()A.B.C.D.【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000032=3.2×10-5.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.、如右图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18 个正三角形,依此递推,第10层中含有正三角形个数是……( )A .102个B .114个C .126个D .138个【答案】B【解析】 根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个.此后,每层都比前一层多12个.依此递推,第10层中含有正三角形个数是6+12×9=114个.故选B .5.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A .1313x x -<⎧⎨+<⎩B .1313x x -<⎧⎨+>⎩C .1313x x ->⎧⎨+>⎩D .1313x x ->⎧⎨+<⎩【答案】B【解析】分析:先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可. 详解:A 、此不等式组的解集为x <2,不符合题意;B 、此不等式组的解集为2<x <4,符合题意;C 、此不等式组的解集为x >4,不符合题意;D 、此不等式组的无解,不符合题意;故选:B .点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.6.若m n 1-=-,则()2m n 2m 2n --+的值是A .3B .2C .1D .―1【答案】A【解析】 试题分析:所求式子后两项提取﹣2变形后,将m n 1-=-整体代入计算即可求出值:∵m n 1-=-,∴()()()22m n 2m 2n m n 2m n 123--+=---=+=. 故选A .7.若大军买了数支 10 元及 15 元的两种圆珠笔,共花费 90 元,则这两种圆珠笔的数量可能相差 A .5 支B .4 支C .3 支D .2 支【答案】B【解析】【分析】设10元的原子笔有x 支,15元的原子笔有y 支.则10x+15y=90,求整数解可得.【详解】设10元的原子笔有x 支,15元的原子笔有y 支.则10x+15y=90,因为x ,y 均为整数,可解得x=3,y=4或x=6,y=1.所以这两种圆珠笔的数量可能相差1或4故选:B .【点睛】考核知识点:二元一次方程的应用.求出整数解是关键.8.已知点A (3,4),B (3,1),C (4,1),则AB 与AC 的大小关系是( )A .AB >ACB .AB =AC C .AB <ACD .无法判断 【答案】C【解析】【分析】根据两点间的距离公式分别计算出AB 和AC ,然后比较大小.【详解】解:∵点A (3,4),B (3,1),∴AB =4﹣1=3,∵A (3,4),C (4,1),∴AC ,∴AB <AC .故选:C .【点睛】此题主要考查长度的比较,解题的关键是熟知坐标间的长度计算.9.小芳有两根长度为6cm 和9cm 的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为( )的木条.A .2cmB .3cmC .12cmD .15cm 【答案】C【解析】【分析】设木条的长度为xcm ,再由三角形的三边关系即可得出结论.【详解】设木条的长度为xcm ,则9696x -<<+,即315x <<,故她应该选择长度为12cm 的木条.故选C【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.10.下列各点中,在第二象限的点是( )A .()3,2-B .()3,2--C .()3,2D .()3,2- 【答案】A【解析】分析:根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.详解:A 、(-3,2)在第二象限,故本选项正确;B 、(-3,-2)在第三象限,故本选项错误;C 、(3,2)在第一象限,故本选项错误;D 、(3,-2)在第四象限,故本选项错误.故选A .点睛:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题11.已知120182019a =+,120192019b =+,120202019c =+,则代数式2222()a b c ab bc ac ++---的值是_____.【答案】6【解析】【分析】根据a 、b 、c 的值,分别求出a-b=-1,b-c=-1,c-a=2,c-b=1,进而把代数式2(a 2+b 2+c 2-ab-bc-ac)分组分解,即可得出答案.【详解】 ∵120182019a =+,120192019b =+,120202019c =+, ∴a-b=-1,b-c=-1,c-a=2,c-b=1,∴2(a 2+b 2+c 2-ab-bc-ac)=[]2()()()2(2)a a b b b c c c a a b c -+-+-=--+=[]2)()236c a c b -+-=⨯=(,故答案为6.【点睛】本题考查了因式分解的应用,根据题意正确的分解因式得出(-a-b+2c)的值是解决问题的关键.12.为调查某市民的环保意识,应该采取的调查方式是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下学期数学综合测试题
一、判定题(对填A ,错填B ;每题2分,共20分) 1、 过平面内任一点有且只有一条直线与已知直线垂直 2、 以2,a +4,a +5长为边(a.>0)能组成三角形
3、 点(2,4)向下平移5个单位长后其位置在第四象限
4、 多边形每个内角都等于其外角的4倍,那个多边形为十边形
5、方程243=+y x 中用含y 的式子表示x 为y x 3
432-= 6、 关于任意实数a 、b ,若b a >,则3
3
b a > 7、 不等式-3x ≥-9的正整数解是1、2 、3 8、 若
c
b
c a >,则bc ac > 9、 一个正数的算术平方根一定大于那个正数
10、平面直角坐标系中的点与有序实数对是一一对应的关系
二、选择题(每题3分) 11、16的平方根是( )
A )4
B ) ±4
C )2
D )±2 12、若方程22=-y mx 有一个解为⎩⎨⎧==5
3
y x ,则m 的值为( )
A )
35 B ) 38- C ) 5
8
D ) 4 13、若方程组⎩
⎨⎧=-=+a y x y x 224中的x 是y 的2倍,则a 等于( )
A )-9
B ) 8
C ) -7
D )-6
14、方程x +2y =6的正整数解有( )
A )1个
B ) 2个
C ) 3个
D ) 4个
15、相同质量的铜块和铁块,其密度分别为8.96和7.87(单位:g/cm 3),它们体积V 铜和V
铁的大小关系为( )
(质量=密度×体积) A ) V 铜=V 铁 B )V 铜>V 铁 C )V 铜<V 铁 D )不能确定 16、关于x 、y 的方程2)1(22=+---y xy n x
n
m 为二元一次方程,则2mn 的值分别为( )
A )-2
B )2
C )1
D )-1
17、如图,将△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系是( )
A )∠A =∠1+∠2
B )2∠A =∠1+∠2
C )3∠A =2∠1+∠2
D )3∠A =2(∠1+∠2)
18、如图,△ABC 中,∠A =︒40,∠B =︒72,CD ⊥AB 于点D ,CE 平分∠ACB 交AB 于点E ,DF ⊥CE 于点F ,则∠CDF =( )
A )︒70
B )︒68
C )︒65
D )︒74
19、已知不等式组⎩⎨
⎧+>+>2
1
2m x m x 的解为1->x ,则m 的值为( )
A )-1
B ) -3
C )-1或-3
D )大于-3
20、甲乙两人分别从东湖的东西两岸同时动身,每人游到对岸后赶忙返回到原岸,且每人差不多上匀速游泳。
已知两人第一次相遇地点距湖西岸400米,第二次相遇地点距东岸300米则东西两岸的距离为( )
A )900 米
B ) 800 米
C )700米
D )600米
三、填空题(每题3分)
21、写一个二元一次方程,使⎩⎨⎧-==23
y x 满足此方程:_______________________
22、已知不等式组⎪⎩
⎪
⎨⎧->+≤--1324
)2(3x x a x x 的解集为41<≤x ,则a =_____________
23、如图,在△ABC 中,∠A=︒40,BP 两等分∠ABC ,CP 两等分∠ACB ,则∠BPC =
︒=︒+︒110240180,
若BP 、CP 分别n 等分∠ABC 和∠ACB ,即∠PBC =n
1∠ABC ,∠PCB =n
1
∠ABC ,当n =8时∠BPC =_____________ 24、若a a a =-+-20052004,则2
2004-a =_____________
四、解答题 化简下列算式:(每题4分)
25、 33)3223(-+ 26、32)23(⨯-
A
B
C D E
2
1 A
B
C
E F A B
C
P
D
26、列方程解应用题(6分)甲、乙两人做同样的零件,假如甲先做一天,乙再开始做,5天后两人做的零件一样多。
假如甲先做30个,乙再开始做,4天后反而比甲多做10个,求甲、乙两人每天各做多少个零件? 27、(本题8分) 如图,A 、B 两点的坐标分别是(2-,3)和(3-2,2),C 点的坐标是(12--,-1)。
(1)将△ABC 向右平移2个单位,得到△A ’B ’C ’,则A ’、B ’、C ’的坐标分别是多少?(2)求四边形A A ’B ’C ’的面积。
28、列不等式组解应用题(8分)
国际能源机构(IEA )2004年1月公布的《石油市场报告》推测2004年中国石油年耗油量在2003年的基础上连续增加,最多可达3亿吨,将成为全球第二大石油消耗大国,已知2003年中国年耗油量约为2.73亿吨,若一年按365天 计,石油的平均日耗油量以桶为单位(一吨约含7.3桶),则2004年中国石油的平均日耗油量在什么范畴?
29、(本题8分)
某体育用品商店推出“夏日清凉积分”活动,每件商品的价格(单价:元,为整数)除以10得到的整数部分作为该商品的积分点数,多件商品的积分点数可累加。
该商店的部分商品价格及点数如下:
某人采购时选了3件某种型号的游泳衣和2副某种型号的潜水镜,得积分点数为23点。
(1)请推算他所购买的游泳衣单价最多为多少元?
(2)现有一种赠品耳塞需点数35点,此人想兑换一副耳塞,他至少还需花多少钱购买游泳圈?。