城市轨道交通车辆制动系统

合集下载

城市轨道交通车辆电空制动系统技术要求

城市轨道交通车辆电空制动系统技术要求

城市轨道交通车辆电空制动系统技术要求1 通用要求1.1 一般要求单节车辆采用动力转向架和非动力转向架配置或者牵引系统采用架控方式进行牵引控制的列车宜采用架控制动系统。

电空制动系统应按一列车或一个单元进行系统设计,车辆及相关系统之间接口、功能应匹配,且应避免相互干扰。

整个系统设计应具有完整性并符合故障导向安全原则。

电空制动系统应采用模块化设计,零部件应尽量集中布置,并应具有互换性,主要部件之间应留有维护空间。

电空制动系统的紧急制动的安全性应按GB/T 21562的SIL4等级进行设计,常用制动和防滑控制功能的安全性应按GB/T 21562的SIL2等级进行设计。

电空制动系统管路及其配套的管接头等部件宜采用不锈钢材质,风缸应进行防锈、防腐处理。

电空制动系统不应产生或含有对人体有毒有害的物质。

车体外部安装的制动设备,电气连接器防护等级应满足GB/T 4208—2017中IP65的要求,风源系统电机防护等级应满足IP54的要求,速度传感器防护等级应满足IP68的要求,连接器应满足IP67要求,其它部件防护等级应至少满足IP55的要求。

电空制动系统应设有与列车总线通信的多功能车辆总线(MVB)、控制器局域网(CAN)或以太网等的网络接口。

电空制动系统应能连续调节和控制制动力。

电空制动系统应具有保证运行的列车减速或停车的能力,应满足列车在规定条件下的制动减速度和制动距离要求。

电空制动系统应具有保证静止列车不溜逸的能力。

电空制动系统应能与牵引系统的电制动相互配合实现电空混合制动。

电空制动系统应能充分利用车轮与轨道之间的黏着条件,应能充分发挥制动能力。

电空制动系统应能在司机控制器、ATO或ATP等的操纵下对列车进行阶段或一次性的制动与缓解控制。

电空制动系统正常工作压力范围宜为750kPa~900kPa或800kPa~950kPa,最高工作压力不应大于1000kPa。

当电空制动系统总风管(缸)空气压力降到低于某一压力值时,列车应自动采取导向安全的措施保障列车运行安全。

城市轨道交通车辆—制动系统

城市轨道交通车辆—制动系统
1)纯滚动状态。车轮与轨道的接触点无相对滑行,车轮在钢轨上做纯滚动。这时车轮与闸瓦之间 为动摩擦,车轮与钢轨之间为静摩擦,车轮与钢轨之间可能实现的最大制动例时轮轨之间的最大 静摩擦力。只是一种难以实现的理想状态。
2)滑行状态。车轮在钢轨上滑行,此时车轮与钢轨之间的滑动摩擦力为列车制动力。这是一种必 须避免的事故状态,由于滑动摩擦系数远小于静摩擦系数,因此一旦发生滑行,制动力将大大减 少,制动距离会延长;同时车轮在钢轨上的长距离滑行,将导致车轮踏面的擦伤,危及行车安全。
制动类型
电制动
再生制动 (动能→ 牵引电机→电能→接触网)
1)再生制动。当车辆施加常用制动时,牵引电机变成发电机状态,将车辆的 动能转变成电能,电能经过整流后反馈至接触网,供列车所在的接触网供电 分区上其它车辆牵引和供本车其它系统(辅助系统等)使用,即再生制动。 再生制动取决于接触网的接收能力,也取决于网压的高低和载荷利用能力。
以电磁力为源动力的制动方式称为电制动;
空气(摩擦)制动
以压缩空气为源动力的制动方式称为空气制动,如踏面 制动、盘式制动等都为空气制动方式;
其他制动
还有机械制动、液压制动等方式。
制动源动力 不同
城市轨道交通车辆牵引电传动系统采用先进的调频调压交流感应电机驱 动系统,在高速时具有良好的电制动性能。
但是由于电制动的效率随着运行速度的降低而降低,所以在车速降低到 一定程度后必须采用空气制动系统。
列车制动时,将牵引电机变为发电机,动能转化为 电能。
动能转移方 式不同
制动类型
粘着制动 利用轮、轨之间的粘着力来实现制动。
制动力获取 方式不同
非粘着制动 制动力的提供不再依靠轮轨之间的粘着力,可获得超过轮轨粘着 力的制动力。

城市轨道交通车辆的制动模式

城市轨道交通车辆的制动模式

城市轨道交通车辆的制动模式城市轨道交通是一种快速、高效的公共交通工具,其安全性是保证城市交通运行的关键。

而车辆的制动系统就是保障城市轨道交通安全的一个重要组成部分。

本文将介绍城市轨道交通车辆的制动模式。

一、电制动电制动是城市轨道交通车辆的主要制动方式之一。

电制动是通过电机逆变器控制车辆电机的电流,使车辆产生制动力,从而实现制动的过程。

在电制动中,车辆电机的电流变成负值,电机产生制动力,将车辆减速甚至停下来。

电制动具有制动平稳、制动距离短、制动效率高等优点。

二、空气制动空气制动是城市轨道交通车辆的另一种主要制动方式。

空气制动通过控制车辆的空气制动系统,将车辆制动盘与车轮接触,产生制动力从而实现制动的过程。

空气制动具有制动力大、制动效率高、制动距离短的优点。

但由于空气制动需要耗费空气制动缸内的压缩空气,因此其制动距离和制动平稳性都会受到影响。

三、再生制动再生制动是城市轨道交通车辆的一种辅助制动方式。

再生制动通过逆变器控制电机的电流,将旋转的车轮所带动的电机转换成电能,并将这些电能反馈给车辆的电源系统,从而实现制动的过程。

再生制动具有制动平稳、制动距离短、不会消耗太多能量的优点。

四、紧急制动紧急制动是城市轨道交通车辆的一种应急制动方式。

紧急制动可以通过手柄或按钮等操作,使车辆的制动系统立即切断牵引电源,同时加紧空气制动或电制动以实现制动的过程。

紧急制动具有制动力大、制动距离短、制动效率高等特点,但也容易产生车轮滑动,增加制动距离和制动平稳性的难度。

城市轨道交通车辆的制动模式有电制动、空气制动、再生制动和紧急制动等多种方式。

在实际运行中,不同的制动模式可以根据车辆的具体情况和运行状态进行选择,以保证城市轨道交通的安全、高效运行。

城市轨道交通车辆制动系统

城市轨道交通车辆制动系统

城市轨道交通车辆制动系统摘要:我国城市轨道交通行业的大规模发展全面带动了装备制造业及产业链的发展和技术升级。

按照国家发改委《增强制造业核心竞争力三年行动计划》和《关于加强城市轨道交通车辆投资项目监管有关事项的通知》要求,应积极开展城轨装备标准制修订,发展团体标准和企业标准,完善城轨装备标准规范,加快构建中国城轨装备标准体系。

作为城轨交通车辆关键核心装备的制动系统,有必要建立技术标准体系,以更好地推进制动系统统型产品开发,提高产品的通用性与互换性,满足制动系统产品设计、制造和运用需求。

关键词:城轨交通车辆;制动系统;标准现状;标准体系1我国城轨交通车辆制动系统技术现状目前地铁车辆、轻轨车辆、有轨电车在国内均已批量运用,中低速磁浮车辆、市域快速车辆、单轨车辆也逐步扩大应用。

制动系统是城轨交通车辆的核心系统,组成较为复杂,以地铁列车为例,每列地铁列车制动系统通常由五六十种部件组成,且技术领域跨度大,涵盖了气动控制、计算机控制、机械驱动、摩擦材料、密封等技术,不同的城轨交通车辆采用的制动技术也有所不同,有的甚至差异较大。

绝大部分地铁车辆、轻轨车辆和市域快速车辆采用微机控制直通电空制动系统,主要由制动控制系统(也称为制动控制装置)、基础制动装置、风源装置、防滑装置、辅助设备及管路供风部件等组成。

制动控制装置分为车控和架控2种形式,主要由电子制动控制单元、中继阀、空重车阀、紧急阀、电磁阀、压力传感器等组成。

大部分城轨车辆基础制动采用踏面制动方式,主要包括单元制动器和闸瓦;100km/h及以上速度等级的大部分地铁车辆、轻轨车辆等采用盘形基础制动装置,主要由夹钳单元、制动盘、闸片组成,多采用铸铁制动盘和合成闸片。

风源装置分为主空压机组成和辅助空压机组成,主要包括空压机和干燥器,大部分采用活塞式或螺杆式空压机和双塔吸附式干燥器,部分采用膜式干燥器,主空压机组成为全列车用风设备提供压缩空气,辅助空压机组成为升弓设备提供压缩空气。

城市轨道交通车辆制动系统的重要作用

城市轨道交通车辆制动系统的重要作用
一套列车制动装置至少包括两个部分,即制信号发生与传输装置以及制动控制装置组成。制 动执行部分通常称为基础制动装置,包括闸瓦制动、盘形制动、磁轨制动 等不同方式。
一 基本概念
一 基本概念
当以压力空气作为制动信号传递和制动力控制的介质时, 该制动装置称为空气制动控制(空气制动机)。
二 城市轨道交通车辆制动系统的制动模式
三、快速制动
是为了使列车尽快停车而实施的制动,其制动力高于常用 全制动(上海、广州快速制动力高于常用全制动22% )。这种制 动方式在紧急情况下、制动系统各部分作用均正常时所采取的 一种制动方式,其特点是与常用制动相同,制动过程可以施行 缓解。
受冲击率极限的限制,主控制器手柄回“0”位,可缓解, 具有防滑保护和载荷修正功能。
一 基本概念
三、制动的实质:
(1)能量的观点:将列车的动能变成别的 能量或转移走。
(2)作用力的观点:制动装置产生与列车 运行方向相反的力,使列车尽快减速或停车。
一 基本概念
四、制动机:
产生制动原动力并进行操纵和控制的部分设备。
五、制动力:
由制动装置产生的与列车运动方向相反的外力。 对轨道交通机车车辆而言,制动力是制动时由制动装置产 生作用后而引起的钢轨施加于车轮的与列车运行方向相反的力。
一 基本概念
六、基础制动装置:
传送制动原动力并产生制动力的制动执行装置。
一 基本概念
七、 制动距离:
从司机施行制动的瞬间起(将制动手柄移至制动位),到列 车速度降为零列车所行驶的距离,其综合反映列车制动装置的性 能和实际制动效果的主要技术指标。
上海地铁规定:列车在满载乘客的条件下,在任何运行初速 度下,其紧急制动距离不得超过180m。
第二阶段:接近停车时(列车速度0.5Km/h),一个 小于制动指令(最大制动指令的70%)的保压制动由ECU 开始自动实施,即瞬时地将制动缸压力降低。如果由于 故障,ECU未接收到保压制动触发信号,ECU内部程序 将在8Km/h的速度时自行触发。

城市轨道交通车辆构造05制动系统

城市轨道交通车辆构造05制动系统

制动系统分类图
1.摩擦制动
图5-1 闸瓦制动示意图 1—制动缸 2—基础制动装置 3—闸瓦 4—车轮 5—钢轨
(1)闸瓦制动 动方式。 (2)盘形制动 所示。
闸瓦制动又称踏面制动,是最常用的一种制 盘形制动可分为轴盘式和轮盘式,如图5-2
图5-2 盘形制动 a)轴盘式 b)轮盘式
图5-3 盘形制动结构 1—轮对 2—单元制动缸 3—吊杆 4—制动夹钳
2) 具有足够的制动力,保证车组在规定的制动距离内停车。 3)对新型的城市轨道交通车辆,一般要求具有动力制动能力,并且 在正常制动过程中,应尽量充分发挥动力制动能力,以减少对城市 环境的污染和降低运行成本。 4)制动系统应保证车组在较长、较陡下坡道上运行时,其制动力不 会衰减。 5)电动车组各工况下的制动能力应尽可能一致。 6)具有紧急制动性能。
三通阀内形成以下两条通路: 制动管——充气沟7——滑阀室——副风缸; 制动缸——滑阀座r孔——滑阀底面n槽——三通阀EX口——大气。
第一条通路为充气通路,第二条通路为缓解通路,即所谓充气是指向 副风缸充气,缓解是指制动缸缓解,副风缸内压力可一直充至与制动管的 压力相等,即达到制动管定压,制动缸缓解后的最终压力为零。
空气压缩机1将压缩空气储入总风缸2内,经总风缸管3至制动阀4 。制动阀有3个不同位置:缓解位、保压位和制动位。 在缓解位时,制动管5内的压缩空气经11制动阀EX(Exhaust)排
气口排向大气; 在保压位时,制动阀保持总风缸管、制动管和EX口各不相通; 在制动位时,总风缸管压缩空气经制动阀流向制动管。
直通自动空气制动机与自动空气制动机在制动机的组成上基本相同, 只增加一个定压风缸13。但其三通阀的结构和原理与自动空气制动机的 三通阀有较大的区别。

城市轨道交通车辆构造05制动系统

城市轨道交通车辆构造05制动系统

直通自动空气制动机与自动空气制动机在制动机的组成上基本相同制动机的 三通阀有较大的区别。
一、空气制动系统的组成: 供气系统、基础制动装置、防滑装置和制动控制单元;
常见的基础制动装置有闸瓦制动装置与盘形制动装置。
其中,供气系统主要由空气压缩机、空气干燥器、压力控制装 置和管路组成,供气设备除了给车辆制动系统供气外,还向车辆的 空气悬挂设备、车门控制装置(气动门)、气动喇叭、刮雨器及车钩 操作气动控制设备等需要压缩空气的设备供气。
2) 制动位。 制动时,司机将制动阀操纵手柄放至制动位,制动管内的压力空 气经制动阀排气减压。三通阀活塞左侧压力下降,右侧副风缸压 力大于左侧。当两侧压差较小时,不足以推动活塞,副风缸的压 力空气有通过充气沟7逆流的现象。但由于制动管压力下降较快, 活塞两侧的压差仍继续增加。
压差达到足以克服活塞及节制阀的阻力时,活塞及活塞杆带动节制阀相 左移一间隙距离,使活塞杆与滑阀之间的间隙B置于前部,活塞遮断充气 沟,副风缸压力空气停止逆流,滑阀上的通孔上端开放,与副风缸相通 。随着制动管压力的继续下降,活塞两侧压差加大到能够克服滑阀与滑 阀座之间的摩擦力时,活塞带动滑阀左移至极端位,滑阀切断制动缸通 大气的通路,同时滑阀通孔下端与滑阀座制动缸孔r对准,形成副风缸向 制动缸的充气通路。如果三通阀一直保持这一位置,最终将使副风缸压 力与制动缸压力平衡。
1) 制动位 司机要实行制动时,首先把操纵手柄放在制动位,总风缸的压缩空气 经制动阀进入制动管。制动管是一根贯通整个列车、两端封闭死的管 路,压缩空气由制动管进入各个车辆的制动缸6,压缩空气推动制动 缸活塞9移动,并通过活塞杆带动基础制动装置7,使闸瓦10压紧车 轮12,产生制动作用。制动力的大小,取决于制动缸内压缩空气的压 力,由司机操纵手柄在制动位放置时间的长短而定。

城轨电空制动系统工作原理

城轨电空制动系统工作原理

城轨电空制动系统工作原理一、概述城轨电空制动系统是城市轨道交通中常见的一种制动方式,它通过电力和气压来实现列车的制动。

该系统具有安全可靠、制动效果好等优点,因此被广泛应用于城市轨道交通中。

二、系统组成城轨电空制动系统主要由以下几部分组成:1. 制动管路:由气缸、管路和阀门等组成,负责传递气压信号。

2. 电控装置:由控制器和计算机等组成,负责控制整个制动系统的运行。

3. 制动盘和制动鞋:负责产生摩擦力,使列车减速或停车。

4. 供电装置:为整个制动系统提供电力支持。

三、工作原理城轨电空制动系统的工作原理可以分为以下几个步骤:1. 列车司机踩下紧急制动按钮或自然停车按钮时,控制器会发出信号给计算机。

2. 计算机根据接收到的信号计算出列车需要施加的刹车力,并将指令发送给气压控制器。

3. 气压控制器根据计算机发送的指令,控制制动管路中的气压变化,使制动盘和制动鞋接触,产生摩擦力。

4. 列车减速或停车后,计算机会发出解除制动信号,气压控制器则会减少或消除气压信号,使制动盘和制动鞋分离。

四、具体操作流程1. 列车司机踩下紧急制动按钮或自然停车按钮时,控制器会发出信号给计算机。

2. 计算机根据接收到的信号计算出列车需要施加的刹车力,并将指令发送给气压控制器。

3. 气压控制器根据计算机发送的指令,控制主风管中的气压变化。

当需要施加刹车时,气压控制器会打开快速放空阀门,使主风管中的气体迅速排放。

当需要解除刹车时,气压控制器则会关闭快速放空阀门,并逐渐增加主风管中的气体压力。

4. 当主风管中的气体压力下降到一定程度时,进入辅助风管中的空气就会被抽入主风管。

这些空气会经过气压控制器中的电磁阀,进入制动缸中。

当空气进入制动缸时,气缸活塞就会向外推动,使制动盘和制动鞋接触,产生摩擦力。

5. 列车减速或停车后,计算机会发出解除制动信号,气压控制器则会逐渐减少或消除主风管中的气体压力。

这样一来,进入辅助风管中的空气也就不再进入制动缸了。

城轨车辆电制动系统

城轨车辆电制动系统
城市轨道交通车辆构造
任务引入
图6-16为某城轨车辆制动电阻实 物图,每个动车均装有一组这样的制 动电阻。当列车施行制动时,优先使 用再生制动,若随着网压的抬高再生 电能不能反馈到电网,
制动系统开始投入电阻制动,通 过电阻将电能转化为热能,从而实现 制动。
思考:再生制动和电阻制动的工 作原理是怎样的?
城市轨道交通车辆构造
图6-16 制动电阻
3.1 再生制动
图6-17为再生制动工作原理图。当发生常用制动时,电动机以发电机状态运行,将车辆 的动能变成电能,经VVVF整流成直流电并反馈于接触网,供列车所在接触网供电区段上的 其他车辆或本车的其他系统(如辅助系统等)使用,此过程称为再生制动。再生制动取决于 接触网的接收能力,也取决于网压高低和负载利用能力。
图6-17 再生制动的工作原理
3.2 电阻制动
图6-18为电阻制动工作原理图。如果制动列车所在的接触网供电区段内无其他列车吸收 制动能量,则VVVF将能量反馈在线路电容上,使电容电压(XUD)迅速上升。当XUD达到 最大设定值1 800 V时,DCU启动能耗斩波器模块A14上的门极可关断晶闸管GTO∶V1, GTO打开制动电阻RB,制动电阻RB与电容并联,将电动机上的制动能量转变成电阻的热能 消耗掉,此过程称为电阻制动,也称为能耗制动。
图6-18 电阻制动工作原理图
任务实施
将全班学生进行分组,每5人为一组,利用本任务学到的知识,具体选定某种类型的城 轨车告进行针对性指导。
参考案例 下面以郑州地铁1号线车辆为例,认识城轨车辆的电制动系统。 郑州地铁1号线车辆的电制动系统采用再生制动和电阻制动。当制动指令发出时,优先 采用电制动。如果接触网的网压允许,则使用的主要制动模式是再生制动。如果接触网的网 压高于1 800 V,则不能再吸收反馈回来的能量,而采用电阻制动。

地铁车辆制动系统关键技术分析

地铁车辆制动系统关键技术分析

地铁车辆制动系统关键技术分析地铁车辆是一种城市公共交通工具,其制动系统是车辆安全运行的关键技术之一。

地铁车辆制动系统的性能和稳定性直接影响着乘客出行的安全和舒适性。

本文将对地铁车辆制动系统的关键技术进行分析,包括制动原理、制动器、制动控制系统等方面,希望能为读者对地铁车辆制动系统有更深入的了解。

一、地铁车辆制动原理地铁车辆制动原理主要包括机械制动和电气制动两种方式。

机械制动是指通过制动器施加摩擦力来减速或停止车辆的运动,而电气制动则是利用电力控制来实现车辆的制动。

机械制动包括摩擦制动和液压制动两种形式。

摩擦制动是利用制动盘和制动片之间的摩擦来产生制动力,通过制动杆和制动摩擦板的相对运动来实现车辆的制动。

液压制动则是通过液压传动系统将制动力传递到车轮上,实现车辆的制动。

电气制动主要包括再生制动和感应制动两种方式。

再生制动是指通过逆变器将车辆的动能转换为电能,再将其馈回给供电系统,以实现减速和停车的目的。

而感应制动则是通过感应电机的电磁力来实现制动。

制动器是地铁车辆制动系统的核心组成部分,主要负责产生制动力,并将其传递到车轮上。

地铁车辆制动器一般包括摩擦制动器和液压制动器两种。

摩擦制动器通常采用制动盘和制动片的摩擦方式来产生制动力,具有制动力大、响应速度快的优点。

制动盘和制动片的材料选择和制动力的分配是影响摩擦制动器性能的重要因素。

摩擦制动器还需要考虑制动热量的散热和制动噪音的控制等问题。

液压制动器则是通过液压传动系统将制动力传递到车轮上,具有制动力平稳、可调性好的特点。

液压制动器的设计需要考虑液压系统的工作稳定性、密封性以及系统的响应速度和故障诊断等方面的问题。

机械制动控制系统一般采用机械传动方式将制动信号传递到制动器,所以需要考虑传动系统的可靠性和灵敏度。

电气制动控制系统则需要考虑电气控制单元的稳定性和精度,以及电气信号的传输和转换等问题。

地铁车辆制动控制系统还需要考虑制动力的分配和调节、制动辅助系统的设计以及制动系统的故障诊断和处理等方面的问题。

2023年新城市轨道交通车辆制动系统习题库

2023年新城市轨道交通车辆制动系统习题库

绪论一、判断:1、使运动物体减速,停车或制止其加速称为制动。

(×)2、列车制动系统也称为列车制动装置。

(×)3、地铁车辆旳常用制动为电空混合制动,而紧急制动只有空气制动。

(√)4、拖车空气制动滞后补充控制是指优先采用电气制动,局限性时再补拖车旳气制动(×)5、拖车动车空气制动均匀补充控制是指优先采用电气制动,局限性时拖车和动车同步补充气制动(√)6、为了保证行车安全,实行紧急制动时必须由司机按下紧急按钮来执行。

(×)7、轨道涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。

(√)8、旋转涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。

(×)9、迅速制动一般只采用空气制动,并且可以缓和。

(×)10、制动距离和制动减速度都可以反应列车制动装置性能和实际制动效果。

(√)11、从安全旳目旳出发,一般列车旳制动功率要比驱动功率大。

(√)12、均匀制动措施就是各节车各自承担自己需要旳制动力,动车不承担拖车旳制动力。

(√)13、拖车空气制动优先补足控制是先动车混合制动,局限性时再拖车空气制动补充。

(×)14、紧急制动通过EBCU旳控制,使BCU旳紧急电磁阀得电而实现。

(×)二、选择题:1、现代都市轨道交通车辆制动系统不包括(C)。

A.动力制动系统B.空气制动系统C.气动门系统D.指令和通信网络系统2、不属于制动控制方略旳是(A)。

A.再生制动B.均匀制动方式C.拖车空气制动滞后补足控制D.拖车空气制动优先补足控制3、直通空气制动机作为一种制动控制系统( A )。

A.制动力大小靠司机操纵手柄在制动位放置时间长短决定,因此控制不太精确B.由于制动缸风源和排气口离制动缸较近,其制动和缓和不再通过制动阀进行,因此制动和缓和一致性较自动制动机好。

C.直通空气制动机在各车辆都设有制动、缓和电空阀,通过设置于驾驶室旳制动控制器使电空阀得、失电D.直通空气制动机是依托制动管中压缩空气旳压力变化来传递制动信号,制动管增压时缓和,减压则制动4、三通阀由于它和制动管、副风缸及制动缸相通而得名( B )A.充气缓和时,三通阀内只形成如下一条通路:①制动管→充气沟i→滑阀室→副风缸;B.制动时,司机将制动阀操纵手柄放至制动位,制动管内旳压力空气经制动阀排气减压。

地铁车辆制动系统常见故障处理与分析

地铁车辆制动系统常见故障处理与分析

地铁车辆制动系统常见故障处理与分析摘要:对于目前的城市轨道交通运营而言,车辆制动系统长期以来不仅是影响车辆运营安全的重要因素。

随着地铁车辆软硬件的不断优化和安全系数的不断提高,制动性能也成为列车牵引和车辆运行速度的重要限制因素。

随着城市人口的不断扩大、轨道交通网络的不断延伸和车辆使用寿命的增加,轨道交通车辆制动系统的故障率也在逐渐增加。

关键词:地铁车辆;制动系统;故障处理;措施1制动系统功能及构成城市轨道交通地铁车辆制动系统一般采用架控式,在ATO、ATP和司机控制器的控制下,对列车的单相或相态制动和缓解做出响应,并以列车为单元,采用硬线和网络冗余来管理制动力。

主要有紧急制动、常用制动、快速制动、驻车制动等制动方式,其中:常用制动主要用于控制或调整列车运行过程中的车速,包括进站过程。

常用制动优先采用电阻制动,制动力不足时用空气补充制动力;紧急制动是指车辆快速停车时施加的制动,在正常行驶过程中不会施加。

由于紧急制动采用“失电制动、通电缓解”的设计原则,考虑到停电、断弓、断钩等紧急和意外情况,仅采用空气制动;快速制动主要由司机控制器触发,使列车尽快停车,所需的制动力控制方式与常用制动相同;停车制动器主要用于车库,以防止车辆在长期停车时滑动。

它由驾驶员控制台上的按钮控制。

驻车制动器在弹簧力的作用下接合,释放由压缩空气释放。

空气制动作为车辆制动系统的重要组成部分,其性能直接影响到车辆正线的运行。

空气制动系统主要由供气设备(空气压缩机组、空气干燥器和气缸)、制动控制部分(EP2002阀)和执行部分(闸瓦制动装置)组成。

作为车辆制动控制的核心部件,制动控制单元EP2002阀安装在其控制的转向架附近,集成了各种压力传感器、气动阀组件和制动控制管理电子设备,用于控制相应转向架的车轮防滑保护、紧急制动、常用制动等功能。

2地铁车辆制动系统故障处理措施2.1故障预测技术车载PHM单元主要针对存在早期征兆的故障进行预警,将预警结果发送至地面平台进行进一步分析,在车载PHM单元运算能力范围内实现在线故障预测功能,复杂预警模型放置地面PHM系统实现其功能,故障预测的结果与车辆日常检修维护周期相结合,逐步实现定期修到状态修的过渡。

城市轨道交通制动系统

城市轨道交通制动系统

城市轨道交通制动系统1. 引言城市轨道交通成为现代城市中不可或缺的交通方式之一。

为了确保轨道交通的运行安全和顺畅,制动系统起到了至关重要的作用。

本文将介绍城市轨道交通制动系统的基本原理、组成部分和运行方式。

2. 制动系统的基本原理城市轨道交通的制动系统主要依靠摩擦力来减速列车。

当制动系统施加力使车轮和轨道接触产生摩擦力时,列车的运动能量将会转化为热能而减速。

制动系统的基本原理是通过施加摩擦力来阻滞列车的运动,并将运动能量转化为热能来减速。

3. 制动系统的组成部分城市轨道交通的制动系统一般由以下几个主要组成部分构成:3.1 制动盘制动盘是由特殊材料制成的转动部件,安装在轮轴上。

当制动系统施加力时,制动盘会与制动片接触,通过摩擦产生制动力。

3.2 制动片制动片是制动系统的主要摩擦元件,通常由高温耐磨材料制成。

制动片和制动盘之间的摩擦产生制动力,实现列车的减速和停车。

3.3 制动装置制动装置是控制制动片与制动盘接触的装置。

它由制动机构、传动装置和控制系统组成。

制动机构用于施加力使制动片与制动盘接触,传动装置用于传递制动力,而控制系统用于控制制动力的施加和释放。

3.4 减速器减速器是将列车的高速旋转转换为适合制动系统工作的合适速度的装置。

它通常由齿轮传动系统组成,通过传动装置将高速旋转转换为低速旋转,然后由制动系统实施制动。

4. 制动系统的运行方式城市轨道交通的制动系统通常有以下几种运行方式:4.1 机械制动机械制动是通过物理力量使制动片与制动盘接触来实现制动效果。

例如,手动刹车系统就是一种常见的机械制动系统,司机通过踩下踏板来使制动片与制动盘接触以减速列车。

4.2 电子制动电子制动是通过电子设备来控制制动系统的工作。

例如,列车制动系统与列车控制系统相连,当列车控制系统检测到需要减速或停车时,它会向制动系统发送信号,制动系统便会施加制动力。

4.3 辅助制动辅助制动是指在列车制动过程中,通过其他手段来帮助制动系统减速。

《城市轨道交通车辆构造》教学课件 项目6 城轨车辆制动系统

《城市轨道交通车辆构造》教学课件 项目6  城轨车辆制动系统

2.2 空气制动系统的工作原理
2〕自动空气制动机
〔1〕工作原理。 自动空气制动机的工作原理如图6-14所示。与其他空气制动机相比,自动空气制动 机增加了三个部件,即在总风缸与制动阀之间增加了给气阀,在每节车辆的制动管与制动 缸之间增加了三通阀和副风缸。其中,给气阀的作用是给制动管定压,即无论总风缸压力 多高,给气阀出口的压力总保持为一个设定值。
① 制动管增压制动、减压缓 解,列车别离时不能自动停车。
② 能实现阶段缓解和阶段制动。
〔2〕 根本特点
④ 制动时,全列车制动缸的压缩 空气都由总风缸供给;缓解时, 各制动缸的压缩空气都需经制动 阀排气口排入大气。因此,前后 车辆的制动一致性较差。
③ 制动力大小由驾驶员将 手柄放置在制动位的时间 长短决定,因此制动控制 不太精确。
任务实施
将全班学生进行分组,每5人为一组,利用本任务学到的知识,具体选定某种类型的城 轨车辆,对其制动系统进行分析,并做成分析报告交给老师。老师根据每组学生的分析报 告进行针对性指导。
参考案例 下面以沈阳地铁1号线车辆为例,认识城轨车辆的制动系统。 沈阳地铁1号线车辆采用的制动系统是德国Knorr公司生产的EP2002型微机控制的模 拟式电空制动系统。该系统具有常用制动、快速制动、停放制动及紧急制动模式。常用制 动和快速制动采用电空混合方式,优先采用电制动。停放制动采取弹簧施加制动和充气缓 解的方式,可以对停放制动进行手动缓解。该制动系统采用单元踏面制动形式,每辆车配 备8套根底制动装置,其中4套带有停放制动功能。 电空制动系统可根据载荷调节制动力的大小,使车辆减速度保持不变,并可以实现防 滑保护及状态监控功能。
1.1 制动的相关概念 2〕缓解
缓解是指对已经施行制动的列车进 行制动解除或减弱的过程。

城市轨道交通系统制动概述

城市轨道交通系统制动概述

城市轨道交通系统制动概述随着城市化的进步,城市轨道交通系统的重要性愈发突出。

制动作为城市轨道交通系统中至关重要的一部分,对保证乘客的安全和乘坐的舒适性起着至关重要的作用。

本文将就城市轨道交通系统制动的概述进行论述。

一、制动系统的概念与分类在城市轨道交通系统中,制动系统起到了控制列车速度和停车的作用。

它由制动装置、制动操纵装置和制动电气设备组成。

根据不同的工作原理,制动系统可以分为摩擦制动系统和电力制动系统。

1. 摩擦制动系统摩擦制动系统是制动系统中应用最广泛的一种。

它通过摩擦片与车轮之间的摩擦力来产生制动力,从而减速列车并将其停下来。

这种制动系统具有制动力大、反应灵敏等特点。

2. 电力制动系统电力制动系统利用电能将动能转化为热能,并通过辅助冷却系统散热。

这种制动系统具有制动效果稳定、不易受外界环境影响等特点。

二、制动原理与工作过程城市轨道交通系统的制动原理和工作过程可以简化为以下几个步骤:首先,操纵员通过制动操纵装置发出制动指令。

对于摩擦制动系统,指令将通过操作机械装置将摩擦片压紧车轮,从而产生摩擦力。

对于电力制动系统,指令将通过控制电路将电能传送到电制动单元,产生电磁力。

其次,制动装置根据指令产生的力对车轮施加制动力。

通过摩擦或电磁力的作用,制动装置将车轮逐渐减速,从而逐渐减小列车的速度。

最后,列车根据制动装置施加的制动力来减速和停车。

当制动力达到一定程度时,列车将完全停止。

同时,制动系统需要确保列车在制动过程中的稳定性和安全性,以保证乘客的安全。

三、制动系统的发展趋势随着技术的不断进步和需求的不断增长,城市轨道交通系统制动系统也在不断发展和革新。

以下是一些制动系统的发展趋势:1. 精准控制现代城市轨道交通系统制动系统需要具备精准的控制能力,以确保列车在不同情况下的减速和停车。

这包括根据列车负载的变化、不同天气条件和路面状态等因素进行制动力的调整。

2. 节能环保为了减少对环境的影响并提高能源利用效率,制动系统应朝着节能环保的方向发展。

轨道交通车辆的制动系统设计与优化

轨道交通车辆的制动系统设计与优化

轨道交通车辆的制动系统设计与优化在现代城市交通中,轨道交通系统扮演着重要的角色,它为人们提供了高效、便捷、安全的出行方式。

而轨道交通车辆的制动系统作为保障乘客安全的关键部件,其设计与优化显得尤为重要。

本文将探讨轨道交通车辆制动系统的设计原理,以及如何进行优化,以提高制动性能和乘客的乘坐舒适度。

一、轨道交通车辆制动系统的设计原理轨道交通车辆制动系统的设计目标是在车辆运行过程中保证行车的安全、可靠性和舒适性。

一个完整的制动系统一般由三个部分组成:制动装置、操纵装置和辅助装置。

制动装置:制动装置包括主要制动装置和辅助制动装置。

主要制动装置通常是通过压力传感器或踏板来控制,分为空气制动和电力制动两种方式。

空气制动是利用空气压力驱动制动系统,而电力制动则是通过电能转换为机械能来实现制动。

辅助制动装置是为了在主要制动系统失效时提供备用制动。

操纵装置:操纵装置是指用于控制制动系统的操作手柄或按钮,一般位于驾驶室内或乘客车厢内,方便司机或乘客进行制动操作。

辅助装置:辅助装置是指用于制动系统安全性和舒适性的增强装置,如制动防滞系统、牵引力控制系统和气囊减震系统等。

二、轨道交通车辆制动系统的优化在轨道交通车辆的制动系统中,性能的优化是提高乘车安全性和乘坐舒适度的关键。

以下是几种常用的优化措施:1. 制动力的精确控制:制动力的精确控制可以减少制动时的冲击力和停车距离。

通过先进的电子控制系统,可以实现对制动力的精确调节,提高制动的平稳性和减震效果。

2. 制动材料的选择与设计:轨道交通车辆制动材料的选择和设计直接影响制动性能。

合适的材料选用可以提高制动的效率和耐久性。

目前,常用的制动材料包括钢、碳陶瓷和碳纤维等,它们各自具有不同的制动性能和耐磨性。

3. 制动系统的故障检测和预警:为了保证车辆的安全运行,制动系统需要进行定期的故障检测和维护。

通过安装传感器和数据监测装置,可以实时监测制动系统的工作状态,并提前发现潜在故障,以避免事故的发生。

城市轨道交通车辆制动系统

城市轨道交通车辆制动系统

城市轨道交通车辆制动系统1. 背景介绍城市轨道交通作为一种重要的公共交通工具,在现代城市中扮演着至关重要的角色。

为了确保城市轨道交通的安全性和可靠性,车辆制动系统是不可或缺的重要组成部分。

本文将对城市轨道交通车辆制动系统的原理、结构和功能进行详细介绍。

2. 制动系统的原理城市轨道交通车辆制动系统的原理是通过施加力量来减速或停止车辆运动。

在制动系统中,力量通常是由制动装置产生的。

制动力可以通过以下几种方式产生:2.1 机械制动力机械制动力是通过机械装置施加力来产生的。

常见的机械制动装置有摩擦制动器和齿轮制动器。

摩擦制动器通过增加两个物体之间的摩擦力来产生制动力,而齿轮制动器则通过齿轮之间的相互作用力来产生制动力。

2.2 液压制动力液压制动力是通过液压装置施加压力来产生的。

液压制动系统由液压液、液压泵、液压缸和制动器组成。

当驾驶员踩下制动踏板时,液压泵将液压液送入液压缸中,产生压力,将制动器施加在车轮上,实现制动功能。

2.3 电子制动力电子制动力是通过电子装置生成电信号来产生的。

电子制动系统使用信号传感器来检测车辆的速度和制动需求,并将信号传输给电子控制单元。

电子控制单元根据接收到的信号来控制电动机或电磁阀产生制动力。

3. 制动系统的结构城市轨道交通车辆制动系统通常包括以下几个组件:3.1 制动器制动器是车辆制动系统的核心部件,用于产生制动力并将其传递到车轮上。

常见的制动器包括摩擦制动器、齿轮制动器和电子制动器。

3.2 控制系统控制系统用于监测车辆的制动需求,并控制制动器的工作。

控制系统可以是机械、液压或电子控制系统,具体取决于车辆制动系统的类型和设计。

3.3 辅助系统辅助系统包括供电系统、供油系统和供气系统等。

供电系统为制动器和控制系统提供所需的电力,供油系统为液压制动系统提供液压液,供气系统为空气制动系统提供压力。

3.4 监测系统监测系统用于检测车辆的制动状态和性能。

通常包括制动压力传感器、车速传感器和制动温度传感器等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.再生制动
也是将牵引电动机变为发电机,不同的 是,它将电能反馈回电网使用,在经济上是 合算的,但技术上比较复杂,而且它只能用 于电网供电的电力机车和电动车组。
8. 液力制动

应用于液力传动内燃机车上,在液力传
动装置内装液力制动器(液力耦合器),制
动时向它充入液体,车轮带动它旋转时液体
与液体之间、液体与耦合器之间摩擦生热。
世界上许多高速列车(200km/h)以上都采 用了电空制动机,中国广深线准高速 (160km/h)旅客列车和某些干线的提速客 车也采用了电空制动机。
5.电(磁)制动机 它的操纵控制和原动力都用电,例如轨道涡
流制动和旋转涡流制动这两种制动方式,其 制动机就都属于电(磁)制动(机)的范畴。
城市轨道交通车辆制动系统 绪论
第一节 列车制动的几个基本概念 制动:人为的制止物体的运动,包括使其减
速、阻止其运动或加速运动。
缓解:对已经实行制动的物体,解除或减弱 其制动作用。
列车制动装置:为了使列车能够施行制动或 缓解而安装于列车上的一整套设备 。
制动机是产生制动原动力并进行操纵和控制的部 分。
(二)按制动原动力和控制方式的不同分类 按制动原动力和操纵控制方式的不同,
铁路机车车辆制动机可分为:手制动机、空 气制动机、电空制动机、电磁制动机和真空 制动机。
1.手制动机
手制动机是以人力制动原动力,以手轮的转 动方向和手力大小来操纵控制。构造简单, 费 用低廉,是铁路历史上使用最久远、生命力 最顽强的制动机。铁路发展初期,机车车辆 上只有这种制动机,每车或几个车配备一名 制动员,按司机笛声号令协同操纵,由于制 动力弱,动作缓慢,不便于司机直接操纵, 所以很快就被非人力制动机取而代之,手制 动机成辅助的备用制动机。
2.空气制动机 空气制动机
是压力空气作为制动原动力,以改变压 力空气的压强来操纵控制。制动力大,操纵 控制就灵敏便利。中国铁路习惯把压力空气 简称为“风”,把空气制动简称为“风闸”。 空气制动机又分直通式和自动式两大类:

直通式空气制动机已不再采用。


自动空气制动机(参看图4)。
真空制动机在许多发展中国家铁路上至今仍 是主要制动机,例如亚洲的巴基斯坦、孟加 拉国、斯里兰卡、泰国,非洲的赞比亚等。 中国援建的坦赞铁路所用货车上也装有两个 真空制动缸的真空制动机。中国提供给坦赞 铁路的DFH1和DFH2型液力传动采用了由中国 设计制造的JZ— 6型真空空气两用的制动机。

4.轨道涡流制动 ( 又称线性涡流制动或涡流 式轨道磁制动)
也是把电磁铁悬挂在转向架侧架下面同 侧的两个车轮之间。不同的是,制动时电磁 铁不放在钢轨上。利用电磁铁与钢轨相对运 动使钢轨感应出涡流,产生电磁吸力作为制 动力,把列车动能转化为热能,消散于大气。

5.旋转涡流制动(又称涡流式圆盘制动)

在牵引电动机轴上装金属盘,制动时
金属盘在电磁铁形成的磁场中旋转,盘的表
面被感应出涡流,产生电磁吸力并发热消散
于大气,从而起制动作用。圆盘虽然没有装
在轮对上,但同样要通过轮轨粘着才能产生
动力,也要受粘着限制。而且,消耗的电能
也很多。
6. 电阻制动 广泛用于电力机车、电动车组和电传动内燃
机车。在制时将原来驱动轮对的自激牵引电 动机改变为他激的发电机发电,并将电流通 往专门设置的电阻器,采用强迫通风,使电 阻器发生的热量消于大气,从而产生制动作 用。

但是,如果在制动缸降压过程中将制动阀手柄由缓 解位移至保压位,则列车管和副风缸虽能停止充风增 压,三通阀(主)活塞都仍停留在右极端(缓解位), 制动缸的风仍继续排向大气,直至完全缓解。制动阀 手柄反复在缓解位和保压位之间移动,只能使列车管 和副风缸的风压呈阶段式上升,都不能使制动缸实现 阶段缓解,即只能实现“一次彻底缓解”,又称“轻 易缓解”。
紧急制动:紧急情况下,为了尽快停车而施 行的制动,也称非常制动。作用迅猛,用尽 所有的制动能力。
制动距离:从司机施行制动的瞬间起,到列 车速度降为零的瞬间止,列车所驶过的距离。 是一个综合反映列车制动装置的性能和实际 制动效果的主要技术指标。
计算制动距离:各个国家根据自己的铁路情 况制定的紧急制动的最大允许值。我国《技 规》规定:列车在任何线路坡道上的紧急制 动距离为800m。
与直通式相比,自动空气制动机在每辆车上 多一个三通阀,一个副风缸。“三通”者, 一通列车管,二通副风缸,三通制动缸。
当制动阀手柄置于缓解位Ⅲ时,总风缸的风经制动阀 进到列车管(充风增压),并进入三通阀,将其中的 (主)活塞推至右极端(缓解位)并经三通阀活塞套 上部的“充气沟”进入副风缸。此时,制动缸经三通 阀(缓解槽和排气孔)通大气。如制动缸原来在制动 状态则可得到缓解。
真空制动机在非人力制动机中构造较简单, 价格较便宜,维修也较方便。它既能阶段制动, 也能阶段缓解,而且可保证牵引重量为1 000t 的货物列车制初速为80 km/h的紧急制动距离不 超过80km/h的紧急制动距离不超过800m。但 是,由于大气压强本身有限,“绝对真空”又 很难运到,而且,需要较大的制动缸和较粗的 列车管,所以,有些采用真空制动的铁路,随 着牵引重量和运行速度的提高,已经正在向空 气制动过渡。
当制动阀手柄置于缓解位时,真空泵与列车管 连通。列车管和制动缸内的空气都被抽走,列 车管和制动缸内上下两方都保持高度真空(约 510mmHg,相当于绝对压强33 kPa),活寒因 自重落下(图中右半部的状态),活塞杆向外 (图中为向下)伸出,此为机车车辆缓解状态。
当制动阀手柄置于缓解位时,真空泵与 列车管连通。列车管和制动缸内的空气都被 抽走,列车管和制动缸内上下两方都保持高 度真空(约510mmHg,相当于绝对压强33 kPa),活寒因自重落下(图中右半部的状 态),活塞杆向外(图中为向下)伸出,此 为机车车辆缓解状态。
1、 闸瓦制动(踏面制动)

它是自有铁路以来使用最广泛的制动
方式,用铸铁或其他摩擦材料制成的瓦状制
动块(闸瓦)紧压滚动着的车轮踏面,通过
闸瓦与车轮踏面的机械摩擦,将列车动能转
化为热消散于大气并产生制动力。
2.盘形制章(摩擦式圆盘制动)

它是在车轴上或在车轮辐板侧面安装
制动盘(一般为铸铁圆盘),用制动夹钳
3. 电空制动机 它是电控空气制动的简称,是在空气制动机
的基础上加装电磁阀等电气控制部件而形成 的(参看图5)。它的特点是制动作用的操 纵控制用“电控”,但制动作用原动力还是 压力空气。而且,在制动机的电控因故失灵 时,它仍可实行“气控”(空气压强控制), 临时变成空气制动机。
施行电空制动时贯通全列车的制动导线使各 车的制动电磁阀6的排气口同时打开,将列车管 1的压力空气排往大气,产生制动作用。施行缓 解时贯通全列车的缓解导线使各车的缓解电磁 阀8 的通路同时打开,各车的加速缓解风缸5 同 时向列车管1充风(加速缓解风缸的风是在初充 气或上次缓解时列车管1经过三通阀2向副风缸3 充风的同时经过止回阀9充至定压的,由于止回 阀的作用,制动时加速缓解风缸的风没有使 用)。
二、列车制动的分类 (一) 按列车制动方式不同分类
从能量的观点看,“制动”的实质就是 将列车动能转变为别的能量或转移走。从作 用力的观点看,“制动”就是让制动装置产 生与列车运行方向相反的外力,使列车速度 控制在允许范围内。
为达到上述目的,铁路机车车辆上采用 了不同的制动方式,主要有闸瓦制动、盘形 制动、磁轨制动、轨道涡流制动、旋转涡流 制功、电阻制动、再生制动、液力制动、逆 汽制动等。
基础制动装置是指传送制动原动力并产生制动力 的部分。
机车制动辆制动装置只能控制车辆本身的制动作用。
制动力:由制动装置产生的与列车运行方向 相反的外力。
常用制动:正常情况下为调速或进站停车所 施行的制动。特点是作用缓和,制动力可调, 只用到列车制动能力的20%~80%,一般只 用50%。
使以合成材料制成的两个闸片紧压制动盘
侧面,通过摩擦产生制动力,把列车动能
转化为热能,消散于大气从而实现制动。
3.磁轨制动(又称摩擦式轨道电磁制动)
在转向架侧架下面同侧的两个车轮之间, 各安置一个制动用的电磁铁(又称电磁靴), 制动时将它放下并利用电磁吸力紧压钢轨, 通过电磁铁上磨耗板与钢轨间的滑动摩擦产 生制动力,把列车动能转化为热能,消散于 大气。
由此可见,自动式空气制动机的特点是列车管 排气(减压)时制动缸充气(增压),发生缓 解。优点是,当列车发生分离事故,制动软管 被拉断时,列车管风将急剧下降,三通阀(主) 活塞将自动而迅速地左移到制动位,由于各车 都有副风缸分别向制动缸供风,制动缸动作较 快,故列而且列车前后部开始制动作用的时间 表差小,即制动和缓解的一致性较好,适用于 编组较长的列车。因此在世界各国(包括中国) 铁路上得到最广级最持久的应用。
再经由散热器消散于大气,从而产生制动作
用。
9.逆汽制动(反汽制动)
它是蒸汽机车特有的,俗称“打倒汽”。它 是在机车前进中突然把遮断手把(断汽手把) 从“前进位”拉到“逆行位”,将蒸汽发动 机变为蒸汽压缩机,从而产生制动作用。逆 汽制动容易顶弯机车摇杆,还会把烟箱燃气、 煤渣、灰渣等吸入汽缸,损坏汽缸壁。所以 一般情况下禁止使用。只是在主要制动方式 失灵而且十分危险时才可以使用逆汽制动, 事后还必须及时报告,申明使用理由并对机 车进行认真的检查和维修。
当副风缸的空气压强降至列车管空气压强 略低时,列车管风压会将三通阀(主)活塞向 右反推至中间位置(中立位或保压位),刚好 使三通阀通制动缸的孔被关闭(遮断),副风 缸停止向制动缸供风,副风缸空气压强不再下 降,处于保压状态,制动缸空气压强不再上升, 也处于保压状态。如在制动缸升压过程中将手 柄反复置于制动位和保压位,则制动缸空气压 强变可分阶段上升,即实现阶段制动。
相关文档
最新文档