高等代数(北大版第三版)知识题目解析一到四章
高等代数(北大版第三版)习题答案I
高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。
2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。
高等代数习题答案
高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
(完整版)高等代数(北大版第三版)习题答案II
证 1)作变换 ,即
,
则
。
因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而
,
令
,
则
。
由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设
。
其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换
,
使得
。
下面证明 。采用反证法。设 ,考虑线性方程组
,
该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是
,
上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以
。
同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有
。
即证。
5.设 是反对称矩阵,证明: 合同于矩阵
。
设 的秩为 ,作非退化线性替换 将原二次型化为标准型
,
其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即
,
这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使
,
即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。
高等代数北大第三版
即 rs Z . f ( x) rsg1( x) h1( x). 得证.
推论 设 f ( x), g( x) 是整系数多项式,且 g( x)是本原
旳,若 f ( x) g( x)h( x), h( x) Q[ x], 则 h( x) 必为整系数多项式.
f ( x) (bl xl bl1 xl1 b0 )(cm xm cm1 xm1 c0 ) bi ,c j Z , l, m n, l m n
an blcm , a0 b0c0 . p | a0 , p | b0 或 p | c0 ,
又 p2 | a0 , p 不能同步整除 b0 , c0 . 不妨设 p | b0 但 p | c0 .
对a,b Q ( a 0), 多项式 g( x) f (ax b) 在有理数域上不可约.
例5 证明:f ( x) x2 1 在 Q上不可约. 证: 作变换 x y 1, 则
f ( x) y2 2 y 2, 取 p 2, 由Eisenstein鉴别法知, y2 2 y 2 在Q上不可约, 所以 f ( x) 在Q上不可约.
bi Z , i 0,1, 2, , n. 若 bn ,bn1, ,b1,b0 没有 异于 1 旳公因子,即 bn ,bn1, ,b1,b0 是互素旳, 则称 g( x)为本原多项式.
有关性质
1.f ( x) Q[ x], r Q, 使 f ( x) rg( x), 其中 g( x)为本原多项式. (除了相差一种正负号外,这种表达法是唯一旳).
在 R 上,不可约多项式只有一次多项式与某些 二次多项式;
但在 Q上有任意次数旳不可约多项式.如
xn 2, n Z . 怎样判断 Q上多项式旳不可约性呢?
高等代数北大版(第三版)答案
令(x2+x+1)=0
得 ε1
=
−1+ 2
3i
,ε2
=
−1− 2
3i
∴f(x)与g(x)的公共根为 ε1,ε2 .
P45.16 判断有无重因式
① f (x) = x5 − 5 x4 + 7x3 + 2x2 + 4x − 8 ② f (x) = x4 + 4x2 − 4x − 3
解① f '(x) = 5x4 − 20x3 + 21x 2 − 4x + 4
设
f (x) d ( x)
=
f1 ( x),
g(x) d ( x)
=
g1 ( x),
及
d
(x)
=Байду номын сангаас
u(x)
f
(x)
+
v( x) g ( x).
所以 d (x) = u(x) f1(x)d (x) + v(x)g1(x)d (x).
消去 d (x) ≠ 0 得1 = u(x) f1(x) + v(x)g1(x)
P45.5
(1) g(x) = (x −1)(x2 + 2x +1) = (x −1)(x +1)2 f (x) = (x + 1)(x3 − 3x −1) ∴ ( f (x), g(x)) = x +1
(2) g(x) = x3 − 3x2 +1不可约 f (x) = x4 − 4x3 + 1不可约
3
u = − 1 [(t 2 + t + 3)(t 2 + 2t − 8) + 6t + 24] = −2(t + 4) ∴3
北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】
4.把 f(x)表成 x-x0 的方幂和,即表成 c0+c1(x-x0)+c2(x-x0)2+…的形式. (1)f(x)=x5,x0=1;
2 / 108
圣才电子书 十万种考研考证电子书、题库视频学习平台
6.求 u(x),v(x)使 u(x)f(x)+v(x)g(x)=(f(x),g(x)): (1)f(x)=x4+2x3-x2-4x-2,g(x)=x4+x3-x2-2x-2. (2)f(x)=4x4-2x3-16x2+5x+9,g(x)=2x3-x2-5x+4. (3)f(x)=x4-x3-4x2+4x+1,g(x)=x2-x-1. 解:(1)用辗转相除法进行计算.
所以 x5=(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1.
3 / 108
圣才电子书
(2)应用综合除法
十万种考研考证电子书、题库视频学习平台
所以 f(x)=(x+2)4-8(x+2)3+22(x+2)2-24(x+2)+11. (3)f(x)=(x+i)4-2i(x+i)3-(1+i)(x+i)2-5(x+i)+7+5i. 5.求 f(x)与 g(x)的最大公因式: (1)f(x)=x4+x3-3x2-4x-1,g(x)=x3+x2-x-1. (2)f(x)=x4-4x3+1,g(x)=x3-3x2+1.
圣才电子书
十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 1 章 多项式
1.用 g(x)除 f(x),求商 q(x)与余式 r(x): (1)f(x)=x3-3x2-x-1,g(x)=3x2-2x+1; (2)f(x)=x4-2x+5,g(x)=x2-x+2. 解:(1)用分离系数的竖式进行计算
北京大学数学系《高等代数》(第3版)章节题库-第四章至第五章(上册)【圣才出品】
5.设 A、B、C 均为 n 阶矩阵,E 为 n 阶单位矩阵,如 B=E+AB,C=A+CA,则 B -C 为( ).
A.E B.-E C.A D.-A 【答案】A 【解析】由题设(E-A)B=E,所以有 B(E-A)=E. 又 C(E-A)=A,故(B-C)(E-A)=E-A. 结合 E-A 可逆,得 B-C=E.
A.A-1P1P2 B.P1A-1P2 C.P1P2A-1 D.P2A-1P1
【答案】C
【解析】因为 B=AP2P1,而 P1-1=P1,P2-1=P2,所以 B-1=P1-1P2-1A-1=P1P2A- 1.
4.设 n(n≥3)阶矩阵
2 / 90
圣才电子书
十万种考研考证电子书、题库视频学习平台
O
B
A 1 O
O
A1
B 1
O
O A*
B* | B |
O
| A|
O 且 B
A 1 O
1 6
O B
A* O ,所以
O
B
A* O
6
O
B
A 1
O
O 3 A*
2B*
O
5 / 90
圣才电子书 十万种考研考证电子书、题库视频学习平台
9.设 A、B 为满足 AB=0 的任意两个非零矩阵,则必有( ). A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的行向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法 1:设 A=(aij)m×n,B=(bij)n×p,并记 A 各列依次为α1,…,αn. 由于 B≠0,不妨设 b11≠0,由于 AB=0 可推得 AB 的第一列 b11α1+b21α2+…+bn1αn =0,从而α1,…,αn 线性相关. 又由 AB=O 知,B′A′=O,由已知及以上证明知 B′的列线性相关,即 B 的行向量组线 性相关. 方法 2:设 A=(aij)m×n,B=(bij)n×p,由于 AB=O,所以有 r(A)+r(B)≤n. 考虑到 A≠0,B≠0,即 r(A)>0,r(B)>0,所以有 R(A)<n,r(B)<n,故 A 的列向量组及 B 的行向量组均线性相关.
高等代数(北大版第三版)习题答案II
设 A 的秩为 r ,作非退化线性替换 X CY 将原二次型化为标准型
2 X AX d1 y12 d 2 y 2 d r y r2 ,
其中 d r 为 1 或-1。由已知,必存在两个向量 X 1 , X 2 使
AX 1 0 X1
和
AX 2 0 , X2
故标准型中的系数 d1 , , d r 不可能全为 1,也不可能全为-1。不妨设有 p 个 1, q 个-1, 且 p q r ,即
X AX 0 ,
因此
X BX 0 ,
X A B X X AX X BX 0 ,
于是 X A B X 必为正定二次型,从而 A B 为正定矩阵。 14. 证明: 二次型 f x1 , x2 ,, xn 是半正定的充分必要条件是它的正惯性指数与秩相等。 证 必要性。采用反证法。若正惯性指数 p 秩 r ,则 p r 。即
高等代数(北大*第三版)答案
目录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章 多项式 行列式 线性方程组 矩阵 二次型 线性空间 线性变换
—矩阵
欧氏空间 双线性函数与辛空间
注:
答案分三部分,该为第二部分,其他请搜索,谢 谢!
12.设 A 为一个 n 级实对称矩阵,且 A 0 ,证明:必存在实 n 维向量 X 0 ,使
2 2 xn ( 2 x1 x2 2 x1 xn 2 x2 x3 n 1 x12 x2
2 x2 xn 2 xn1 xn )
2 2 2 2 x12 2 x1 x2 x2 x12 2 x1 x3 x3 xn 1 2 x n 1 x n x n
高等代数北大版第三版习题答案一到四章
u1(x) f (x) + v1(x)g (x) = 1
(1)
u2 (x) f (x) + v2 (x)h(x) = 1
将(1)(2)两式相乘,得
(2)
[u1(x)u2(x) f (x) + v1(x)u2(x)g (x) + u1(x)v2(x)h(x)] f ( x) , +[v1(x)v2 (x)]g( x)h( x) = 1 所以 ( f ( x), g( x) h( x)) =1 。
( f2( x), g1( x) g2( x)... gn( x)) =1 ................................................, ( fm (x), g1( x) g2( x)...gn ( x)) = 1
从而可得
( f1(x) f 2(x)... f m(x), g1( x) g 2( x)...gn( x)) =1 。
即[u(x) − v(x)] f ( x) + v( x)[ f ( x) + g( x)] = 1 ,
所以 ( f (x), f ( x) + g( x)) =1。
同理 ( g( x), f ( x) + g( x)) =1 。
再由 12 题结论,即证 ( f ( x) g( x), f ( x) + g( x)) =1。
9.证明: ( f ( x)h( x), g( x) h( x)) = ( f( x), g( x)) h( x) , (h( x) 的首系数为1)。
证 因为存在多项式 u(x), v( x) 使 ( f ( x), g( x)) = u( x) f ( x) + v( x) g( x) ,
北京大学数学系《高等代数》(第3版)(矩阵)笔记和课后习题(含考研真题)详解【圣才出品】
第4章矩阵4.1复习笔记一、矩阵的运算1.加法(1)定义设是两个s×n矩阵.则矩阵称为A和B的和.记为C=A+B 注意:相加的矩阵必须要有相同的行数和列数.(2)基本性质(1)A+(B+C)=(A+B)+C;(结合律)(2)A+B=B+A;(交换律)(3)A+0=A(4)A+(-A)=0(5)A-B=A+(-B)(6)秩(A+B)≤秩(A)+秩(B).2.乘法(1)定义设A=(a ik)sn,B=(b kj)nm,那么矩阵C=(c ij)sm,其中称为A与B的乘积,记为C=AB.(2)性质①在乘积的定义中,要求第二个矩阵的行数与第一个矩阵的列数相等;②矩阵的乘法适合结合律;即(AB)C=A(BC);③矩阵的乘法不适合交换律,即AB BA;④分配律:A(B+C)=AB+AC,(B+C)=BA+CA.(3)单位矩阵主对角线上的元素全是1,其余元素全是0的n×n矩阵称为n级单位矩阵,记为E n,或者在不致引起含混的时候简单写为E.3.数量乘法(1)定义矩阵称为矩阵A=(a ij)sn与数k的数量乘积,记为k A.换句话说,用数k乘矩阵就是把矩阵的每个元素都乘上k.(2)性质:①(k+l)A=k A+l A;②k(A+B)=k A+k B;③k(l A)=(kl)A;④1A=A;⑥k(AB)=(k A)B=A(k B);⑦k A=(k E)A=A(k E),k E+l E=(k+l)E,(k E)(l E)=(kl)E,其中k E是数量矩阵.4.转置(1)定义设A的转置就是指矩阵显然,s×n矩阵的转置是n×s矩阵.(2)性质:①(A')'=A,②(A+B)'=A'+B',③(AB)'=B'A',④(k B)'=k B'二、矩阵乘积的行列式与秩1.矩阵乘积的行列式(1)计算公式设A,B是数域P上的两个n×n矩阵,那么|AB|=|A||B|,即矩阵乘积的行列式等于它的因子的行列式的乘积.推论设A1,A2,…,A m是数域P上的n×n矩阵,于是|A1A2…A m|=|A1|A2|…|A m|.(2)退化的定义数域P上的n×n矩阵A称为非退化的,如果|A|≠0;否则称为退化的.一n×n矩阵是非退化的充分必要条件是它的秩等于n.推论设A,B是数域P上n×n矩阵,矩阵AB为退化的充分必要条件是A,B中至少有一个是退化的.2.矩阵的秩设A是数域P上n×m矩阵,B是数域P上m×s矩阵,于是秩(AB)≤min[秩(A),秩(B)],即乘积的秩不超过各因子的秩.三、矩阵的逆1.逆矩阵n级方阵A称为可逆的,如果有n级方阵B,使得AB=BA=E.这里E是n级单位矩阵,那么B就称为A的逆矩阵,记为A-1.2.伴随矩阵设A i j是矩阵中元素a ij的代数余子式,矩阵称为A的伴随矩阵.3.性质(1)矩阵A是可逆的充分必要条件是A非退化,而(2)如果矩阵A,B可逆,那么A'与AB也可逆,且(3)A是一个s×n矩阵,如果P是s×s可逆矩阵,Q是n×n可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)四、矩阵的分块1.定义。
高等代数北大编第1章习题参考答案
第一章多项式一、习题及参考解答1 .用g(x)除了(x),求商g(x)与余式r(x):1 ) f (x) = x3 - 3x2 - x -1, g(x) = 3x2 - 2x +1;2 ) f(x) = x4 -2x + 5,g(x) = x2 - x + 2。
解1)由带余除法,可得q(x) =L-Z,“x) =-竺x-2 ;2)同理可得g(x) = / +x-l,r(x) = -5x + 7。
2. 〃?,PM适合什么条件时,有1 ) X2 +/?1¥-1 I X3 + px + c/ 92) x2 + nix + 11 x4 + px2 +q。
解1 )由假设,所得余式为0,即(〃 + l + 〃?2)x + (q-〃?) = O,所以当 1 + 。
时有 /+〃a-11 X* + px +g 0q _ in = 0 .2)类似可得= 于是当〃? = 0时,代入(2)可得〃=夕+ 1;q + 1 —〃一" = 0而当2- 〃 -J = 0时,代入(2)可得4 = 1 04 = ] _, 时,皆有 / + + 1 I X,+ px2 + 9。
综上所诉,当p + nr = 23 .求g(x)除f(x)的商q(x)与余式:1 ) /(x) = 2«?-5x3-8x,g(x) = x + 3 ;2) f(x) = x3-x2 - xg(x) = x-l + 2i o解[)q(x) = 2x4 - 6x3 +13x2 - 39A+ 109 ,r(x) = -327 '2)= x2 -2LV-(5+2/)r(x) = -9 + 8/ °4 .把/1(X)表示成x-%的方幕和,即表成c()+ G(X —“0)+。
2(X — X。
)~ + …+ C n(X — X。
)” + …的形式:1)/(x) = x',x()= 1 ;2) /(X)= X4-2X2+3,X0 =-2 ;3) f (x) = x4 + 2汉3 -(1 + i)x2 -3x + 7 + i,x0 =-i o解 1 ) 由综合除法,可得f(x) = l + 5(x-l) + 10(x-l)2 + 10(x-1)3+5(X-1)4 + (x-1)5 ;2 ) 由综合除法,可得X4-2X2+3=11-24(X + 2) + 22* + 2)2 -8(.r + 2)3 + (x + 2),;3)由综合除法,可得『+2立3_(1 +82_3工+ (7 +,)= (7 + 5i)-5(x + i) + (-l-i)(x + i)2 -2i(x + i)3 + (x + i),。
高等代数北大版1-4ppt课件
f ( x),g( x)的最大公因式.
§1.4 最大公因式
11
如: f ( x)=x2 1, g( x)=1 ,则 ( f ( x)、g( x))=1. 取 u( x)= 1, v( x)=x2 ,有 u( x) f ( x)+v( x)g( x)=1, 取 u( x)=0, v( x)=1 ,也有 u( x) f ( x)+v( x)g( x)=1, 取u( x)= 2, v( x)=2x2 1 ,也有u( x) f ( x)+v( x)g( x)=1.
用 g( x) 除 f ( x) 得:
f ( x) q1( x)g( x) r1( x) 其中 (r1( x)) ( g( x)) 或 r1( x) 0 .
若 r1( x) 0 ,用 r1( x) 除 g( x),得:
g( x) q2( x)r1( x) r2( x)
§1.4 最大公因式
辗转相除法.
② 定理2中最大公因式 d( x)=u( x) f ( x)+v( x)g( x) 中的 u( x)、v( x) 不唯一.
③ 对于 d( x), f ( x),g( x) P[x], u( x),v( x) P[x],
使 d(x)=u( x) f ( x) v( x)g( x) ,但是 d(x)未必是
若 f ( x), g( x)不全为零,则( f ( x), g( x)) 0.
④ 最大公因式不是唯一的,但首项系数为1的最大
公因式是唯一的. 若 d1( x)、d为2( x) f ( x)、g( x)
的最大公因式,则 d1( x)=c,d2(cx为) 非零常数.
§1.4 最大公因式
4
二、最大公因式的存在性与求法
高等代数北大版第四章矩阵知识点总结
高等代数北大版第四章矩阵知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第四章 矩阵( * * * )一、复习指导:矩阵这一章节可以说是一个基础章节,它不仅很重要,而且还是其他章节的基础,学好矩阵十分重要,我们要对逆矩阵,转置矩阵,对称矩阵等等的概念都要弄清楚,除此之外,还要知道矩阵的运算性质,矩阵的秩。
在考试中,很有可能会出与矩阵这一章节有关的证明题,例如证明相互关联的矩阵的秩,矩阵的逆之间的关系,还有可能有与求矩阵的逆有关的题目。
总的来说,这一个章节是一个关键的章节,高等代数这本书里面的知识都是融会贯通的,学好了矩阵能够为后面的章节夯实基础。
二、考点精讲:(一) 基本概念及其运算1.基本概念矩阵—形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a aa a a212222111211称为m 行n 列的矩阵,记为n m ij a A ⨯=)(,行数与列数相等的矩阵称为方阵,元素全为零的矩阵称为零矩阵。
(1)若矩阵中所有元素都为零,该矩阵称为零矩阵,记为O 。
(2)对n m ij a A ⨯=)(,若n m =,称A 为n 阶方阵。
(3)称⎪⎪⎪⎭⎫ ⎝⎛=11 E 为单位矩阵。
(4)对称矩阵—设n n ij a A ⨯=)(,若),,2,1,(n j i a a ji ij ==,称A 为对称矩阵。
(5)转置矩阵—设⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211,记⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn n n m m Ta a a a a a a a a A212221212111,称T A 为矩阵A 的转置矩阵。
(6)同型矩阵及矩阵相等—若两个矩阵行数与列数相同,称两个矩阵为同型矩阵,若两个矩阵为同型矩阵,且对应元素相同,称两个矩阵相等。
(7)伴随矩阵—设n n ij a A ⨯=)(为n 矩阵,将矩阵A 中的第i 行和j 列去掉,余下的元素按照原来的元素排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,同时称ij j i ij M A +-=)1(为元素ij a 的代数余子式,这样矩阵中的每一个元素都有自己的代数余子式,记⎪⎪⎪⎪⎪⎭⎫⎝⎛=*nn n n n n A A A A A A A A A A 212221212111,称为矩阵A 的伴随矩阵。
高等代数北大编第1章习题参考答案
高等代数北大编第1章习题参考答案第一章多项式一、习题及参考解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当??+==10q p m 或=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+L 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
2019-高等代数第三版答案-优秀word范文 (28页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高等代数第三版答案篇一:高等代数(北大版)第3章习题参考答案第三章线性方程组1.用消元法解下列线性方程组: ?x1?x?1?1)?x1?x?1??x1?3x2?5x3?4x4?1?3x2?2x3?2x4??2x2?x3?x4?x5?4x2?x3?x4?x5?2x2?x3?x4?x5 ?x1?2x2?3x4?2x5?1x5??1??x1?x2?3x3?x4?3x5?2?3 2)?2x?3x?4x?5x?2x?72345?1?3?9x?9x?6x?16x?2x?252345?1??1x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44??x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?1??7x?3x?x??3?7x?2x?x?3x??0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1? 3x1?2x2?x3?x4?1????3x1?2x2?2x3?3x4?2 5)? 6)?2x1?3x2?x3?x4?1?2x?2x?2x?x?1?5x1?x2?x3?2x4??1234?1?2x?x?x?3x?4234?1??5x1?5x2?2x3?2解 1)对方程组得增广矩阵作行初等变换,有?1?1??1??1??1?1?0???0??0??033?2?4201X0?1521112?3?20?1?4?2?11?1?1201X01?1?1101000 1??1???10??3???0??3??0??1???01??1???20??0???0??0??0?0???030?5?7?10000?15?3?4?4?400?200?42358?1201X01?1?11010001???2?2? ?2??2??1???2?0? ?0?0??因为rank(A)?rank(B)?4?5,所以方程组有无穷多解,其同解方程组为?x1?x4?1??2x1?x5??2, ??2x?03???x?x?0?24解得?x1?x?2??x3?x?4??x5?1?k?k?0?k??2?2k其中k为任意常数。
高等代数[北大版]第1章习题参考答案解析
第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+L 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
高等代数第三版习题答案
高等代数第三版习题答案高等代数是一门研究线性代数、多项式、群、环、域等代数结构及其性质的数学分支。
第三版的高等代数教材通常会包含大量的习题,旨在帮助学生更好地理解和掌握代数的基本概念和技巧。
以下是一些习题的答案示例,请注意,这些答案仅为示例,具体习题的答案需要根据实际的题目来确定。
第一章:线性空间习题1:判断下列集合是否构成线性空间,并说明理由。
- 解:集合\{(x, y) ∈ R^2 | x + y = 1\}不构成线性空间,因为它不满足加法封闭性。
例如,取两个元素(1, 0)和(0, 1),它们的和(1, 1)不在集合中。
习题2:证明线性空间的基具有唯一性。
- 解:设{v1, v2, ..., vn}和{w1, w2, ..., wm}是线性空间V的两个基。
根据基的定义,任何向量v ∈ V都可以唯一地表示为v =c1*v1 + c2*v2 + ... + cn*vn和v = d1*w1 + d2*w2 + ... + dm*wm。
由于表示是唯一的,我们可以得出n = m,并且存在一个可逆矩阵P,使得[v1, v2, ..., vn] = [w1, w2, ..., wn]P。
这意味着两个基是等价的,从而证明了基的唯一性。
第二章:线性变换习题1:确定线性变换T: R^3 → R^3,定义为T(x, y, z) = (x + y, x - y, z)的核和像。
- 解:核N(T)是所有满足T(v) = 0的向量的集合。
设(x, y, z) ∈ N(T),则(x + y, x - y, z) = (0, 0, 0)。
解这个方程组,我们得到x = 0,y = 0,z可以是任意实数。
因此,核是一维的,由向量(0, 0, 1)生成。
习题2:证明线性变换的复合是线性的。
- 解:设T: V → W和S: W → X是两个线性变换。
对于任意的v1, v2 ∈ V和任意的标量c,我们需要证明(S ∘ T)(cv1 + v2) = c(S∘ T)(v1) + (S ∘ T)(v2)。
高等代数(第三版)1.3
于是由 r x 的唯一性得出,在 F[ x] 里 g x 也不能整除
f x .
总之,两个多项式之间的整除关系 不因为系数域的扩大而改变.
第一章 多项式
例1
确定m ,使 x 1 | x mx mx 1 .
2 5 2
例2
m 5 设 f x x3 px q, g x x 2 mx 1
第一章 多项式
作业: P44:1,2,3,4(2)
第一章 多项式
显然仍不能整除 f x .
第一章 多项式
假定 g x 0,那么在F[x]里,以下等式成立: 并且 r x 0 .但是F [x]的多项式 qx 和r ( x) 都是
F[ x] 的多项式,因而在 F[ x] 里,这一等式仍然成立.
f x g x qx r x
解:f ( x) ( x c)q( x) r ,,则 q( x) bn 1 x n 1 b1 x b0
比较上等式中两端同次项的系数,我们得到
第一章 多项式
a 0 b0 , a1 b1 cb0 , a 2 b2 cb1 , a n 1 bn 1 cbn 2 , a n r cbn 1 .
第一章 多项式
4、系数所在范围对整除性的影响
设F和F 是两个数域,并且F F ,那么多项式环F[ x] 含有多项式环F [x].因此F上的一个多项式 f x 也是
F 上的一个多项式.
f x , g x F[ x],则如果在F [x]里 g x 不能整除 f x
,那么在 F[ x] 里 g x 也不能整除 f x . 不能整除 f x , f x 不能等于0.因此在F[ x] 里 g x 事实上,若 g x 0 ,那么由于在F [x]里 g x
北京大学数学系《高等代数》(第3版)(线性方程组)笔记和课后习题(含考研真题)详解【圣才出品】
第3章线性方程组3.1复习笔记一、消元法1.初等变换变换1:用一非零的数乘某一方程,变换2:把一个方程的倍数加到另一个方程,变换3:互换两个方程的位置,称为线性方程组的初等变换.2.消元法解方程的过程(1)首先用初等变换化线性方程组为阶梯形方程组,把最后的一些恒等式“0=0”(如果出现的话)去掉;(2)如果剩下的方程当中最后的一个等式是零等于一非零的数,那么方程组无解,否则有解;(3)在有解的情况下,如果阶梯形方程组中方程的个数r等于未知量的个数,那么方程组有唯一的解;如果阶梯形方程组中方程的个数,小于未知量的个数,那么方程组就有无穷多个解.3.定理在齐次线性方程组中,如果s<n,那么它必有非零解.二、n 维向量空间1.n 维向量的定义所谓数域P 上一个n 维向量就是由数域P 中n 个数组成的有序数组a i 称为向量(1)的分量.用小写希腊字母α,β,γ,…来代表向量.2.向量相等的定义如果n 维向量1212(,,...,),(,,...,)n n a a a b b b αβ==的对应分量都相等,即就称这两个向量是相等的.记作α=β.3.向量和的定义向量1122(,,...,)n n a b a b a b γ=+++,称为向量1212(,,...,),(,,...,)n n a a a b b b αβ==的和,记为γαβ=+.4.零向量和负向量的定义分量全为零的向量(0,0,…,0)称为零向量,记为0;向量(-a 1,-a 2,…,-a n )称为向量α=(a 1,a 2,…,a n )的负向量,记为-α.5.向量加法的基本运算规律(1)α+β=β+α,(交换律)(2)α+(β+γ)=(α+β)+γ,(结合律)(3)α+0=α,(4)α+(-α)=0,(5)α-β=α+(-β).6.向量与数乘的定义设k为数域P中的数,向量称为向量与数k 的数量乘积,记为kα.7.向量乘法的运算性质:(1)k(α+β)=kα+kβ,(2)(k+l)α=kα+lα,(3)k(lα)=(kl)α,(4)1α=α.8.n维向量空间的定义以数域P中的数作为分量的n维向量的全体,同时考虑到定义在它们上面的加法和数量乘法,称为数域P上的n维向量空间.三、线性相关性1.定义向量α称为向量组β1,β2,…,βs 的一个线性组合,如果有数域P 中的数k 1,k 2,…,k s 使112s k k k 2s αβββ =+++.由定义知,零向量是任一向量组的线性组合(只要取系数全为0就行了).当向量α是向量组β1,β2,…,βs 的一个线性组合时,也说α可以经向量组β1,β2,…,βs 线性表出.2.等价的定义(1)定义如果向量组α1,α2,…,αt 中每一个向量αi (i=1,2,…,t)都可以经向量组β1,β2,…,βs 线性表出,那么向量组α1,α2,…,αt 就称为可以经向量组β1,β2,…,βs 线性表出.如果两个向量组互相可以线性表出,它们就称为等价.(2)向量等价的性质:①反身性:每一个向量组都与它自身等价.②对称性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,那么向量组β1,β2,…,βt 也与α1,α2,…,αs 等价.③传递性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,β1,β2,…,βt 与γ1,γ2,…,γp 等价,那么向量组α1,α2,…,αt 与γ1,γ2,…,γp 等价.3.线性相关性的定义如果向量组α1,α2,…,αs (s≥2)中有一个向量可以由其余的向量线性表出,那么向量组α1,α2,…,αs 称为线性相关的.定义的另一种表述为:向量组α1,α2,…,αs (s≥1)称为线性相关,如果有数域P 中不全为零的数k 1,k 2,…,k s ,使120s k k k 12s ααα +++=4.线性无关性的向量组(1)定义:一向量组α1,α2,…,αs (s≥1)不线性相关,即没有不全为零的数k 1,k 2,…,k s 使120s k k k 12s ααα +++=就称为线性无关;或者说,一向量组α1,α2,…,αs 称为线性无关.(2)两个小结论:①如果一向量组的一部分线性相关,那么这个向量组就线性相关.②如果一向量组线性无关.那么它的任何一个非空的部分组也线性无关.5.向量组的基本性质的几种表述(1)设α1,α2,…,αr 与β1,β2,…,βs 是两个向量组,如果①向量组α1,α2,…,αr 可以经β1,β2,…,βs 线性表出,②r>s,那么向量组α1,α2,…,αr 必线性相关.(2)如果向量组α1,α2,…,αr 可以经向量组β1,β2,…,βs 线性表出,且α1,α2,…,αr 线性无关,那么r s.(3)任意n+1个n 维向量必线性相关.(4)两个线性无关的等价的向量组,必含有相同个数的向量.6.极大线性无关组(1)定义一向量组的一个部分组称为一个极大线性无关组.如果这个部分组本身是线性无关的,并且从这向量组中任意添一个向量(如果还有的话),所得的部分向量组都线性相关.(2)性质:①向量组的极大线性无关组不是唯一的;②每一个极大线性无关组都与向量组本身等价;③一向量组的任意两个极大线性无关组都是等价的;④一向量组的极大线性无关组都含有相同个数的向量.7.向量组的秩(1)定义向量组的极大线性无关组所含向量的个数称为这个向量组的秩.(2)性质①线性无关的向量组就是它自身的极大线性无关组,所以一向量组线性无关的充分必要条件为它的秩与它所含向量的个数相同.②每一向量组都与它的极大线性无关组等价.由等价的传递性可知.任意两个等价向量组的极大线性无关组也等价.所以,等价的向量组必有相同的秩.③含有非零向量的向量组一定有极大线性无关组,且任一个无关的部分向量组都能扩充成一个极大线性无关组,全部由零向量组成的向量组没有极大线性无关组.规定这样的向量组的秩为零.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 多项式
1. 用 g(x) 除 f (x) ,求商 q(x) 与余式 r(x) :
1) f (x) = x3 − 3x 2 − x −1, g(x) = 3x 2 − 2x +1;
2) f (x) = x 4 − 2x + 5, g( x) = x2 − x + 2 。
解 1)由带余除法,可得 q(x) = 1 x − 7 , r(x) = − 26 x − 2 ;
39
99
2)同理可得 q(x) = x 2 + x −1, r( x) = −5x + 7 。
2. m, p, q 适合什么条件时,有
1) x 2 + mx −1 | x3 + px + q ,
2) x 2 + mx + 1| x4 + px2 + q 。
2) f (x) = x3 − x2 − x, g( x) = x −1 + 2i 。
q(x) = 2x4 − 6x3 +13x2 − 39x +109
解 1)
;
r (x) = −327
2) q(x) = x2 − 2ix − (5 + 2i ) 。 r (x) = −9 + 8i
4.把 f (x) 表示成 x − x0 的方幂和,即表成 c0 + c1 (x − x0 ) +c2 (x − x0 )2 + ... +cn (x −x0 )n +⋯的形式: 1) f (x) = x5 , x0 =1; 2) f (x) = x4 − 2x2 + 3, x0 = −2; 3) f (x) = x4 + 2ix3 − (1+ i )x2 − 3x + 7 + i, x0 = −i 。 解 1)由综合除法,可得 f (x) = 1+ 5(x −1) +10(x −1)2 +10(x −1)3 +5(x −1)4 +(x −1)5; 2)由综合除法,可得 x4 − 2x2 + 3 = 11− 24(x + 2) + 22(x + 2)2 − 8(x + 2)3 + (x + 2)4 ; 3) 由综合除法,可得 x4 + 2ix3 − (1+ i )x2 − 3x + (7 +i ) = (7 + 5i) − 5(x + i )+ (− 1− i )(x + i )2 − 2i (x + i )3 + (x + i )4 。 5.求 f (x) 与 g(x) 的最大公因式: 1) f (x) = x4 + x3 − 3x2 − 4x −1,g (x ) = x3 + x2 − x − 1; 2) f (x) = x4 − 4x3 +1,g (x ) = x3 − 3x2 +1; 3) f (x) = x4 −10x2 +1, g (x) = x4 − 4 2x3 + 6x2 + 4 2x + 1。 解 1) ( f ( x), g( x)) = x +1 ; 2) ( f (x), g( x)) =1; 3) ( f ( x), g( x)) = x2 − 2 2 x −1。 6.求 u(x), v( x) 使 u(x) f (x) + v(x)g (x) = ( f (x), g (x)) 。 1) f (x) = x4 + 2x3 − x2 − 4x − 2, g (x) = x4 + x3 − x2 − 2x − 2; 2) f (x) = 4x4 − 2x3 −16x2 + 5x + 9, g (x) = 2x3 − x2 − 5x + 4 ; 3) f (x) = x4 − x3 − 4x2 + 4x + 1, g (x) = x2 − x − 1。 解 1)因为 ( f ( x), g( x)) = x2 − 2 = r2( x)
3)由 ( f ( x), g( x)) =1 可得 u(x) = −x −1, v( x) = x3 + x2 − 3x− 2 。
7.设 f (x) = x3 + (1+ t )x 2 + 2x + 2u 与 g( x) = x3 + tx2 + u 的最大公因式是一个二次多项 式,求 t, u 的值。 解 因为 f (x) = q1(x)g (x) + r1(x) = (x3 +tx2 +u) + (x2 + 2x +u) ,
=
q
+1;而当
2 − p − m2 = 0 时,代入(2)可得 q = 1 。
⎧ m=0
综上所诉,当
⎨ ⎩
p
=
q
+
1
或
⎧
⎨ ⎩
p
q =1 + m2 =
时,皆有
2
x2
+
mx
+1|
x4
+
px 2
+
q
。
3.求 g (x) 除 f (x) 的商 q(x) 与余式:
1) f (x) = 2x5 − 5x3 − 8x, g (x) = x + 3;
于是 u(x) = −q2 (x) = −x −1
。
v(x) = 1+ q1 (x )q2 (x ) = 1+1i(x + 1) = x + 2
2)仿上面方法,可得 ( f (x), g( x)) = x−1,且 u(x) = − 1 x + 1 ,v(x) = 2 x 2 − 2 x −1。
33
33
g( x) = q2( x)r1( x) + r2( x)
= (x + (t − 2))( x2 + 2 x + u) − (u + 2t −4) x + u(3 − t) ,
且由题设知最大公因式是二次多项式,所以余式 r2 (x) 为 0,即
⎧ ⎨ ⎩
−(u + 2t u(3 −
再由 x) g( x)
+
r1 ( x)
,
⎩ g( x) = q2 ( x)r1( x) + r2 ( x)
解得
r2
(x)
=
g
(x)
−
q2
(x)r1
(x)
=
g
(x)
−
q2
(x)[
f
( x)
−
q1
(
x)
g(
x)]
,
= [−q2( x)] f ( x) + [1+ q1( x)q2 ( x)] g( x)
解 1)由假设,所得余式为 0,即 ( p + 1 + m2 )x + (q − m) = 0,
所以当
⎧ ⎨
p
+1+ m2
=
0 时有 x 2
+ mx −1|
x3
+
px
+ q。
⎩ q−m=0
2
)
类
似
可
得
⎧m(2 − p − m2 )
⎨ ⎩q
+1−
p
−
m2
= =
0 0
,于是当
m
=
0
时,代入 (2)可得
p