高中数学必修5模块测试
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修5模块测试
第一部分(选择题,将答案写在后面表格中)
一、 选择题(每小题5分,10小题,共50分)
1、在ABC ∆中,︒===452232B b a ,,,则A 为( )
A .︒︒︒︒︒
︒30.15030.60.12060D C B 或或
2、在ABC ∆中,bc c b a ++=222,则A 等于( )
A ︒︒︒︒
30.45.60.120.D C B
3、在ABC ∆中,1660=︒=b A ,,面积3220=S ,则a 等于( ) A. 6
10.
B. 75
C . 49 D. 51
4、等比数列{}n a 中293a a =,则313239310log log log log a a a a ++++ 等于( ) A .9 B .27 C .81 D .243
5、三个数a ,b ,c 既是等差数列,又是等比数列,则a ,b ,c 间的关系为 ( ) A .b-a =c-b B .b 2=a c C .a =b=c D .a =b=c ≠0
6、等比数列{}n a 的首项1a =1,公比为q ,前n 项和是n S ,则数列⎭
⎬⎫
⎩⎨⎧n a 1的前n 项和是( )
A .1
-n S B .n n q S - C .n n q S -1 D .11
--n n q S 7、在等差数列{}n a 中,前四项之和为40,最后四项之和为80,所有项之和是210, 则项数n 为( )
A .12
B .14
C .15
D .16 8、已知,,a b c R ∈,则下列选项正确的是 ( )
A.2
2
a b am bm >⇒> B.
a b
a b c c
>⇒> C .11,0a b ab a b >>⇒< D.22
11,0a b ab a b
>>⇒<
9、已知x y xy +=,则y x +的取值范围是( )
A .]1,0(
B .),2[+∞
C .]4,0(
D .),4[+∞
10、⎪⎪⎩⎪⎪⎨⎧≥≥-<-<+0
011234x y y x y x 表示的平面区域内的整点的个数是( )
A .8个
B .5个
C .4个
D .2个
第二部分(非选择题)
二、填空题(每小题5分,4小题,共20分)
11、已知0,0>>y x ,且
19
1=+y
x ,求y x +的最小值 _____________ 12、当x 取值范围是_____________ 时,函数122-+=x x y 的值大于零 13、在等比数列}{n a 中,08,204321=+=+a a a a ,则=10S
14、不等式组6003x y x y x -+≥⎧⎪
+≥⎨⎪≤⎩
表示的平面区域的面积是
三、解答题
15、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322
=+-x x 的两个根,
且()1cos 2=+B A 。求:(1)角C 的度数; (2)AB 的长度。
16、有四个数,前三个数成等比数列,它们的和19,后三个数成等差数列,它们的和12,求此四个数。
17、求和 1+2x+3x 2+…+nx n-1
18、若y=)8(62
++-k kx kx 对于x 取一切实数均有意义,求k 的取值范围。
19、设等差数列{n a }的前n 项和为n S ,已知3a =24,011=S .
(Ⅰ) 求数列{n a }的通项公式; (Ⅱ)求数列{n a }的前n 项和n S ;
(Ⅲ)当n 为何值时,n S 最大,并求n S 的最大值。
20、已知关于x 的不等式02
<++c bx ax 的解集是⎭
⎬⎫⎩⎨⎧->-<212|x x x 或, 求不等式02
>+-c bx ax 的解集
高中数学必修5模块测试答案
二、
11、已知0,0>>y x ,且
19
1=+y
x ,求y x +的最小值 16 12、当x 取值范围是34+∞⋃-∞-(,)(,)时,函数122-+=x x y 的值大于零
13、在等比数列
}{n a 中,08,204321=+=+a a a a ,则=10S 6820
14、不等式组6003x y x y x -+≥⎧⎪
+≥⎨⎪≤⎩
表示的平面区域的面积是 36
三、解答题
15、解:(1)()[]()2
1
cos cos cos -
=+-=+-=B A B A C π ∴C =120° (2)由题设:2
a b ab ⎧+=⎪⎨=⎪⎩
︒-+=∙-+=∴120cos 2cos 22
2
2
2
2
ab b a C BC AC BC AC AB
()()
1023
22
2
22=-=-+=++=ab b a ab b a
10=∴AB
16、解:设此四个数依次为
2
(4),4,4,44d d d --+,则
2
(4)44194
d d -+-+= 2
12280d d ∴--=
解得d= -2或14
所以这四个数为9,6,4,2或25,-10,4,18
17、解:当x=1时,S n =1+2+3+…+n=
(1)
2n n + 当x ≠1时,S n =1+2x+3x 2
+…+nx n-1 ①
xS n = x+2x 2+…+(n-1) x n-1+nx n ②